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ABSTRACT

The performance of Large Vision-Language Models (LVLMs) in In-Context
Learning (ICL) is heavily influenced by short-cut learning, particularly in tasks
requiring cross-modal reasoning and open-ended generation. To address this chal-
lenge, We introduce task mapping as a novel perspective to analyze short-cut
learning, revealing how existing ICD selection methods disrupt reasoning coher-
ence. Based on this theoretical framework, we propose Task-aware model for
ICL (Ta-ICL), which optimizes task mapping cohesion through task-aware atten-
tion and autoregressive retrieval. Experiments on multiple Vision-Language tasks
demonstrate that Ta-ICL significantly reduces short-cut learning, enhances rea-
soning consistency, and improves LVLM adaptability. Our results highlight the
potential of task mapping to be widely applied in enhancing multimodal reason-
ing, paving the way for robust and generalizable multimodal ICL frameworks.

1 INTRODUCTION

As Large Language Models (LLMs) scale up, they have demonstrated the ability to adapt to novel
tasks through In-Context Learning (ICL), which uses only a few-shot forward-pass with input ex-
amples without any parameter updates (Brown et al., 2020; Lester et al., 2021; Liu et al., 2021).
This efficient and low-cost learning paradigm has achieved remarkable success in LLMs (Olsson
et al., 2022; Garg et al., 2023) and has since been extended to the multimodal domain. To enable
multimodal ICL, some Large Vision-Language Models (LVLMs), such as Flamingo (Alayrac et al.,
2022), have been designed with tailored training methods. Meanwhile, general-purpose LVLMs
like InternVL2 (Chen et al., 2024) and Qwen2VL (Wang et al., 2024) have evolved to support multi-
image input and reasoning, marking multimodal ICL as an essential capability for modern LVLMs.

However, with the growing application of ICL in Vision-Language (VL) tasks, certain challenges
have become increasingly evident (Li et al., 2024). A major issue is short-cut learning, where mod-
els rely on spurious correlations in examples rather than genuinely understanding task mappings
(Yuan et al., 2024). This challenge is closely related to the sensitivity of ICL to the selection, order-
ing and format of In-Context Demonstrations (ICDs) (Gao et al., 2021; Lu et al., 2022). Multimodal
ICDs amplify this problem by introducing modality misalignment and task-irrelevant biases, placing
higher demands on configuring ICD sequences effectively. In this work, we address two key ques-
tions to develop an ICD sequence configuration method that effectively mitigates short-cut learning:

How can we analyze the reasoning mechanism of LVLMs to uncover the root causes of short-
cut learning? (§2) To better understand this issue, we introduce task mapping, which formalizes
how ICDs establish a relationship between input (image, query) pairs and their expected responses.
Ideally, ICDs should contribute to a cohesive task mapping, where local mappings within ICDs col-
lectively align with the model’s reasoning for the query task. However, we find that many LVLMs
struggle with task mapping cohesion, leading to fragmented or misaligned reasoning. Our quan-
titative analysis reveals that existing ICD selection methods may disrupt task mapping cohesion,
reinforcing short-cut behaviors instead of meaningful multimodal reasoning.

How can we design an ICD sequence configuration method that effectively leverages task map-
ping? (§3) To address these challenges, we propose Task-aware model for ICL (Ta-ICL), a novel
ICD sequence configuration method that explicitly optimizes task mapping cohesion. Ta-ICL em-
ploys an autoregressive retrieval strategy to construct ICD sequences that enhance LVLM reasoning
by maintaining coherent task mappings. Unlike conventional similarity-based methods, Ta-ICL inte-
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Figure 1: (a-b) Results of different ICD sequence configuration methods on VQAv2 and Hateful-
memes. (c-d) Task mapping cohesion analysis of different ICD sequence configuration methods on
VQAv2.

grates task-aware attention to prioritize ICDs that contribute to a structured and contextually relevant
reasoning process. Experiments across multiple VL tasks demonstrate that Ta-ICL significantly re-
duces short-cut learning, improving both accuracy and robustness in multimodal ICL.

1.1 WHY SHORT-CUT LEARNING HAPPENS IN MULTIMODAL ICL?

1.1.1 MULTIMODAL ICL CREATES TASK MAPPINGS.

In this work, we focus mainly on ICL for image-to-text tasks, where ICD sequences are organized
in an interleaved image-text format. Toward a unified template for various tasks, we reformat ICDs
as triplets (I,Q,R), where I is an image, Q is a task-specific text query and R is the ground-truth
result. The query sample is denoted as (Î , Q̂). Formally, ICL can be represented as:

R̂←M(Sn) =M(Inst; (I1, Q1, R1), ..., (In, Qn, Rn)︸ ︷︷ ︸
n×ICDs

; (Î , Q̂)), (1)

whereM is a pretrained LVLM, Sn is an ICD sequence consists of an instruction Inst, n-shot ICDs
and a query sample.

We formalize task mapping as follows: each ICD (Ii, Qi, Ri) defines a local mapping:

fi : (Ii, Qi)→ Ri, i = 1, 2, ..., n, (2)

and the model tries to synthesize these mappings to establish a global mapping for the query sample:

f̂ : (Î , Q̂)→ R̂. (3)

We categorize multimodal ICL tasks into two types according to the heterogeneity of local task
mappings: specific-mapping tasks and generalized-mapping tasks. In the former, all ICD mappings
fi converge on a focused mapping f , which also aligns with f̂ . This often applies to tasks that
are novel to the LVLM or require more complex reasoning steps. In this work, we focus on the
later, where ICDs’ fi exhibit fine-grained or more general differences, so it is difficult to directly
unify them into f̂ . This type of task is more closely aligns with real-world scenarios, and empirical
findings indicate that short-cut learning is most prevalent in it. We turn to sequence-level study and
demonstrate with an open-ended VQA dataset VQAv2 (Goyal et al., 2017).

1.1.2 MULTIMODAL ICL NEEDS TASK MAPPING COHESION.

Three configuration methods are evaluated: Random Sampling (RS), similarity-based retrieval, and
Oracle. Similarity-based retrieval selects top-n ICDs using CLIP-based cosine similarity, either
via I2I (image-only alignment) or IQ2IQ (joint image-query alignment). The idealized Oracle
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Q: Is this a sunny day?
R: Yes.

Q: How many people 
are there?
R: Four.

Q: What is the woman 
doing?
R: Running.

Q: What’s the color of 
the bike? 
R: Yes.❌

(1) Failure case due to reliance on distinct image features (e.g., a person riding a bicycle).

Q: What’s the color of 
the sairs?
R: Brown.

Q: What’s the color of 
the bus?
R: Yellow.

Q: What is in the image?
R: A cat.

Q: What is in the image? 
R: White.❌

Q: How many bananas 
are there？
R: Two.

Q: How many people in 
the image?
R: Four.

Q: How many apples 
are there?
R: One.

Q: How many cars on 
the grass? 
R: Two.✅

Q: What is in the center 
of the image?
R: A zebra.

Q: What’s the woman 
doing?
R: Reading 

Q: What is on the water?
R: A boat.

Q: What color floor are 
they dancing on?
R: Brown.✅

(2) Failure case due to reliance on certain local mappings (e.g., identifying the color of a bus).

(3) Success case resembling specific-mapping tasks (e.g., each local mapping involves 
counting objects in an image).

(4) Success case demonstrating diverse local mappings that achieve cohesion.

Figure 2: Four types of ICD sequences in generalized-mapping task. The first two types exhibit
clear signs of short-cut learning.

method iteratively selects the next ICD by maximizing the log-likelihood of generating the ground-
truth R̂ while accounting for the cohesive influence of preceding ICDs (computational details in
Appendix A.1). This greedy method goes beyond feature matching, though its reliance on R̂ makes
it impractical for real-world use.

Figure 4(a-b) shows that multimodal alignment (IQ2IQ) consistently outperforms unimodal (I2I)
and random (RS) methods across tasks, with Oracle achieving peak performance. A key anomaly
is that I2I underperforms RS in VQAv2 but not in HatefulMemes. We attribute this divergence to
task mapping cohesion—generalized-mapping tasks (e.g., VQAv2) demand ICD sequences that
collectively resolve interdependent multimodal logic. Static methods like I2I, focused on isolated
feature matching, disrupt cohesion and result in short-cut learning.

To validate this hypothesis, we evaluate task mapping cohesion using two metrics: Disruption Gap
(∆) and Order Sensitivity (σ) (details in Appendix A.2). These metrics reflect the impact of co-
hesive task mapping on multimodal ICL, with higher ∆ and lower σ indicating stronger reliance
on cohesive task mapping. Figure 4(c-d) shows that Oracle achieves the highest ∆ and lowest σ
across all shots, proving its ability to construct cohesive sequences through holistic consideration
of preceding ICDs. However, as shots increase to 8 and 10, Oracle’s ∆ surges while σ plunges,
revealing potential local optimization issues and accumulated bias in longer sequences. Meanwhile,
I2I consistently underperforms RS on both metrics, while IQ2IQ surpasses RS but remains unstable,
aligning with accuracy trends in generalized-mapping tasks and supporting our hypothesis.

Finally, based on performance, ∆ and σ, we identify four types of sequence, cases provided in Figure
2 (1)-(2) sequences impaired by isolated dependencies and thus showing short-cut learning (e.g.,
similar image features and local task mapping bias), (3) sequences resembling specific-mapping
tasks, and (4) the most common type, featuring diverse local mappings that collectively enhance
cohesive task mapping. This diversity enables LVLMs to overcome short-cut learning and achieve
superior multimodal ICL performance.

2 THE PROPOSED METHOD.

From Section 1.1, we conclude that mitigating short-cut learning in multimodal ICL requires en-
suring that ICD sequences exhibit reasonable and effective diversity during configuration. This
encourages LVLMs to leverage cohesive task mapping for deeper reasoning. Since static methods
struggle to integrate task mapping into the configuration process, we explore the use of a decoder-
only model. Figure 3 illustrates the pipeline of Ta-ICL, which is specifically designed to select
ICDs from a demonstration library DL and organize them into sequences in an autoregressive way.
Ta-ICL is centered around four Transformer decoder blocks. Its vocabulary is entirely composed
of samples rather than single words. All tokens correspond one-to-one with each complete sample
in DL. Consequently, given a query sample as input, Ta-ICL can progressively retrieve n samples
from DL based on the generated token distribution to form the optimal n-shot ICD sequence Sn.

Input Embedding. To align with the autoregressive generation process, we use two special tokens,
[BOS] and [EOS], to mark the beginning and end of the input sequence during training. These
tokens are added to Ta-ICL’s vocabulary. We also introduce a [TASK] token into the vocabulary
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LVLM
❄️

(a) Training (b) Inference

CM

Figure 3: Overview pipeline of SabER.

and concatenate it with the query sample in the input sequence. It acts as a semantic anchor for
task mapping, explicitly injecting task intent. In each input sequence, the query sample is placed
ahead of all ICDs. Therefore, for a given sequence SN , we reconstruct it as {[BOS], [TASK] +
x̂, x1, ..., xN , [EOS]}. To filter and balance multimodal features for deeper mapping, we employ a
binary gating module to generate the embedding ei for the i-th ICD token xi = (Ii, Qi, Ri):

gi = σ(Wg · [EI(Ii)⊕ ET (Qi ⊕Ri)] + bg), (4)
ei = gi · EI(Ii) + (1− gi) · ET (Qi ⊕Ri), (5)

where EI(·) and ET (·) denote image encoder and text encoder of CLIP. Finally, the input embedding
sequence of Ta-ICL is presented as follows:

eSN = [eBOS, ê, e1, . . . , eN , eEOS], (6)
where eBOS and eEOS are learnable embeddings of [BOS] and [EOS]. ê is a joint representation
formed by concatenating the learnable embedding of the [TASK] token with the embedding of
the query sample x̂ generated using the same gating module. The index of ê is always 1 and Iidx
denotes the index set of ICD embeddings. Task-aware Attention. The task-aware attention in
Ta-ICL enables dynamic ICD sequence configuration by integrating task mappings into attention
computation. Its core is the task guider (TG), an embedding independent of the input sequence,
designed to capture fine-grained global task mapping within ICD sequences. TG encodes task
intent through initialization by the multimodal fusion of the query sample and instruction:

e
(0)
TG = WTG · (EI(Î)⊕ ET (Q̂)⊕ ET (Inst

′)), (7)

where WTG ∈ Rd×3d is a learnable weight matrix used to regulate the entire task guider. Inst′ is a
simplified instruction generated by GPT-4o (Appendix B.5).

In predefined layers of task-aware attention LT , TG guides attention through task mapping rele-
vance weighting. At each layer, TG interacts with token embeddings to compute relevance scores:

t
(l)
i = σ

(
MLP(l)

(
e
(l)
TG ⊕ ei

))
, (8)

where MLP(l): R2d → Rd is a layer-specific network producing a scalar weight gli ∈ [0, 1] and σ is
the sigmoid function. This weight modulates attention logits through a task-aware mask M (l). For
intra-ICD tokens, the mask scales pairwise cosine similarities by log(g

(l)
i ) to amplify task mapping

cohesion. A learnable coefficient α allows the query embedding ê to guide the attention throughout
the sequence. Specifically, for position (i, j):

M
(l)
ij =


sim(ei, ej)√

d
· log

(
t
(l)
i

)
, j ≤ i and i, j ∈ Iidx,

αsim(ê, ej)√
d

· log
(
t
(l)
1

)
, i = 1 and j ∈ Iidx,

−∞, otherwise.

(9)

The mask is integrated into standard attention:

TaAttn(Q,K, V ) = softmax
(
QKT

√
d

+M (l)

)
V. (10)
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TG is updated only between task-aware layers to preserve task semantic coherence, enabling hier-
archical refinement from coarse task intent to fine-grained mapping. After processing layer l ∈ LT

through residual connections, TG is updated via:

e
(l′)
TG = LN

(
e
(l)
TG +Attention(e

(l)
TG, H

(l))
)
, (11)

where l′ denotes the next task-aware layer in LT , H(l) denotes the hidden states of layer l and LN
denotes layer normalization. To ensure focused attention patterns, we introduce a sparsity loss that
penalizes diffuse attention distributions:

Lsparse =
∑
l∈LT

1

N

N∑
i=1

KL
(

softmax(M (l)
i: ) ∥ U

)
, (12)

where U is a uniform distribution. Minimizing this KL divergence forces the model to focus on
semantically salient tokens. The total training objective combines the standard cross-entropy loss for
sequence generation, sparsity regularization, and L2-norm constraint on TG to prevent overfitting:

L = LCE + λ1Lsparse + λ2 ∥WTG∥22 . (13)

Inference and Prompt Construction. After training Ta-ICL with DS , it can autoregressively select
ICDs from a library and build ICD sequences, which is detailed in Appendix B.1.

3 EXPERIMENT

3.1 DATASETS AND MODELS

We select six high-quality datasets across three key VL tasks to benchmark ICD sequences: VQAv2,
VizWiz (Gurari et al., 2018), and OK-VQA (Marino et al., 2019) for open-ended VQA; Flickr30K
(Young et al., 2014) and MSCOCO (Lin et al., 2014) for captioning; and HatefulMemes for classi-
fication. To further assess Ta-ICL’s abilities in generalized-mapping tasks, we create a mixed-task
dataset Hybrid, by sampling 5,000 instances from each above dataset’s training set, with validation
samples drawn proportionally from their validation sets. We also adopt two challenging image-to-
text tasks from the latest multimodal ICL benchmark, VL-ICL (Zong et al., 2024): Fast Open-Ended
MiniImageNet (Fast) and CLEVR. These tasks test whether LVLMs can capture deep task map-
pings from specific-mapping ICD sequences, serving as strong indicators of sequence quality. To
construct the high-quality sequence dataset DS for Ta-ICL training from the above datasets, we first
reformulate them into (I,Q,R) triplets. Using clustering, we select K samples from their training
sets as query samples, forming the query set D̂. For each query sample in D̂, N ICDs are retrieved
from the remaining data using the Oracle method described in Section 1.1.2, creating SN . This
retrieval process is further refined through beam search to improve the quality and diversity of DS .
The implementation details are provided in Appendix B.7. All SN begin with a CoT-style Inst, as
detailed in Beginning1 of Table 2.

Our experiments include four SOTA open-source LVLMs and a representative closed-source model,
GPT-4V (OpenAI et al., 2024), ensuring robust evaluation. Detailed descriptions of the datasets and
LVLMs are provided in Appendix C.

3.2 BASELINES AND IMPLEMENTATION DETAILS

We adopt RS and two similarity-based retrieval methods introduced in Section 1.1.2 as baselines, as
well as two additional SOTA methods.:

1. IQPR (Li et al., 2024): It uses RS to generate pseudo results R̂P , selects top-4n examples based
on joint similarity of I , Q, and R, and re-ranks them using Q-R similarity to obtain top-n ICDs.

2. Lever-LM (Yang et al., 2024): A tiny language model with four vanilla decoder layers, trained
for automatic Sn configuration, serving as a key baseline.

We evaluate ICD sequences on LVLMs using validation sets of the datasets, with the training se-
quence shot N and the generated sequence shot n set to 4. Query set D̂ sizes vary by dataset (Table
5). We utilize the encoders from CLIP-ViT-L/14 to generate image and text embeddings. For all
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Methods
VQA Captioning Classification Hybrid Fast CLEVR

VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes ACC.↑ ACC.↑ ACC.↑ACC.↑ ACC.↑ ACC.↑ CIDEr↑ CIDEr↑ ROC-AUC↑

RS 58.79 41.94 49.89 92.02 109.26 73.00 16.85 62.66 41.51
I2I 57.21 40.58 48.57 92.94 109.65 74.02 13.00 64.49 38.63

IQ2IQ 59.88 43.81 52.13 93.00 109.75 74.37 32.40 64.47 37.37
IQPR 59.89 42.56 51.12 94.52 112.32 71.33 28.67 63.99 41.00

Lever-LM 62.31 46.83 55.10 97.48 116.90 77.94 39.29 65.02 43.66
Ours 65.60 50.77 58.55 99.42 119.27 79.78 42.93 67.10 45.57

Table 1: Results of different ICD sequence configuration methods across 9 datasets, with both
training and generated sequences being 4-shot. Each result is the average performance across five
LVLMs with the same prompt format. The highest scores are highlighted in bold. Underlined values
indicate the results of the best baselines. Detailed results for each LVLM can be found in Figure 6.

2 4 6 8 10
Number of shots

1

2

3

4

Δ
%

(a) Disruption Gap on VQAv2
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(b) Order Sensitivity on VQAv2

IQ2IQ Oracle Lever-LM Ta-ICL

Figure 4: Analysis of task mapping cohesion in n-shot ICD sequences generated by different meth-
ods.

tasks, we employ a unified encoder training strategy: updating only the last three layers while keep-
ing all preceding layers frozen. Ta-ICL training employs a cosine annealed warm restart learning
scheduler, AdamW optimizer, 1e-4 learning rate, batch size 128, and runs for 20 epochs.

3.3 MAIN RESULTS

Table 1 summarizes the average ICL performance across five LVLMs under different ICD sequence
configuration methods. Ta-ICL consistently outperforms all baselines across all nine datasets, high-
lighting its robustness and effectiveness in fully leveraging the potential of LVLMs for diverse mul-
timodal ICL scenarios. Notably, Ta-ICL delivers particularly strong results in generalized-mapping
tasks, achieving an average improvement of 6.65% in VQA tasks, with the highest gain of 9.26%
observed on Hybrid. These results demonstrate that strengthening task mapping enhances the au-
toregressive generation process of language models, equipping them with a broader understanding
and enabling the creation of more precise cohesive task mappings. This results in a diverse ICD
sequence, effectively mitigating the issue of short-cut learning. In Appendix C.4, we further in-
vestigate the impact of ICD sequence configuration on the LVLMs’ multimodal ICL with detailed
data.

3.4 SEQUENCE-LEVEL ANALYSES

We again utilize the two metrics introduced in Section 1.1.2, Disruption Gap (∆) and Order Sen-
sitivity (σ), to evaluate task mapping cohesion in ICD sequences generated by Ta-ICL. Figure ??
shows that Ta-ICL achieves the highest ∆ and lowest σ across all shots. This indicates that Ta-
ICL-generated ICD sequences construct robust task mappings effectively utilized by LVLMs and
mitigate short-cut learning. Notably, from the results at shots 8 and 10, we observe that although
Ta-ICL’s training data is constructed by Oracle, it overcomes the cohesion weakening caused by
bias accumulation through task mapping augmentation.

4 CONCLUSION

This work establishes task mapping as a key concept in understanding short-cut learning in multi-
modal ICL. Our analysis shows that fragmented task mapping leads to unreliable reasoning, which
existing ICD selection methods fail to address. To overcome this, we propose Ta-ICL, a novel
approach that explicitly optimizes task mapping cohesion. Extensive experiments validate its effec-
tiveness, showing substantial improvements in accuracy and robustness.
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A TASK MAPPING

A.1 ORACLE

Oracle uses the same LVLM M for both configuring the ICD sequences and performing ICL.
This method aims to construct high-quality ICD sequences by iteratively evaluating and selecting
demonstrations based on their contribution to the model’s predictive performance. Given the ground-
truth result R̂ = (R̂(1), ..., R̂(t)) of the query sample, Oracle computes the log-likelihood score
CM(Sn) for a sequence Sn with n ICDs, defined as:

CM(Sn) =
∑
t

logPM(R̂(t) | Sn, R̂(1:t−1)), (14)

whereM denotes the LVLM. This score measures how effectively the model predicts the ground-
truth result R̂ given the current ICD sequence Sn.

The configuration process begins with an empty sequence S0 and iteratively selects demonstrations.
At each step n, a demonstration xn is chosen from the library D to maximize the incremental gain
in the log-likelihood score:

xn = argmax
x∈D

[CM(Sn−1 + x)− CM(Sn−1)]. (15)

This greedy optimization process ensures that each selected demonstration contributes optimally to
the sequence. Unlike simple similarity-based methods, Oracle evaluates the overall impact of each
candidate demonstration on the sequence’s quality.

A.2 TASK MAPPING COHESION METRICS

∆ measures performance degradation when replacing individual ICDs with another from the same
sequence. σ captures performance variance under random shuffling of ICD order.

A.2.1 DISRUPTION GAP (∆

To measure the impact of individual ICDs on sequence-level performance and assess task mapping
cohesion, we define the Disruption Gap (∆) as the magnitude of performance change caused by
replacing a single ICD in the sequence.

For each ICD xi = (Ii, Qi, Ri) in the sequence Sn, a replacement ICD xj = (Ij , Qj , Rj) is selected
from the same dataset based on the highest joint similarity of their image and query embeddings
(IQ2IQ). The modified sequence Sreplaced,i is then constructed by replacing xi with xj .
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The Disruption Gap for the i-th ICD is defined as the absolute difference in performance before and
after the replacement:

∆i =
∣∣L(S)− L(Sreplaced,i)

∣∣, (16)

where L(·) represents the performance metric of the sequence (e.g., accuracy).

For a sequence S with N ICDs, the overall Disruption Gap is computed as the average ∆i across all
N ICDs:

∆ =
1

N

N∑
i=1

∆i. (17)

To ensure the robustness of ∆ and to account for potential variability in replacement effects, we con-
duct repeated experiments. This metric quantifies the sequence’s cohesion by assessing the sensitiv-
ity of the overall performance to individual replacements. A higher ∆ indicates that the sequence
has stronger cohesion, as replacing an ICD results in larger performance changes.

A.2.2 ORDER SENSITIVITY (σ)

For an ICD sequence Sn, we generate K independent random permutation of it:

Sn
permute,1, S

n
permute,2, . . . , S

n
permute,K , K = 10. (18)

Then we compute the accuracy for each permuted sequence:

Acc(Sn
permute,k) =

Correct Predictions
Total Predictions

, k = 1, 2, . . . ,K. (19)

Then calculate the mean accuracy across all permutations:

µ =
1

K

K∑
k=1

Acc(Sn
permute,k). (20)

Finaly, compute the standard deviation of accuracies as σ:

σ =

√√√√ 1

K

K∑
k=1

(
Acc(Sn

permute,k) − µ
)2

. (21)

B METHOD

B.1 INFERENCE AND PROMPT CONSTRUCTION

After training, Ta-ICL can autoregressively select demonstrations from a library and build ICD
sequences. Given a query sample x̂ = (Î , Q̂), the input sequence to Ta-ICL during inference is
{[BOS], [TASK]+ x̂}, where x̂ is embedded using the trained gating module. The number of ICD
shots in the generated sequence, denoted as n, is a user-defined value. It may differ from the shot
count N in DS , as discussed in Section ??. Ta-ICL then selects n ICDs using a beam search strategy
with a beam size of 3, producing the optimal n-shot ICD sequence Sn. This sequence is used to
construct a prompt for LVLMs, formatted as: (Inst; ICD1, ..., ICDn;Query Sample), which is
then used to perform multimodal ICL. Example prompts are provided in Appendix B.6.

B.2 CLIP ENCODERS

CLIP employs two distinct encoders: one for images and another for text. The image encoder
transforms high-dimensional visual data into a compact, low-dimensional embedding space, using
architectures such as a ViT. Meanwhile, the text encoder, built upon a Transformer architecture,
generates rich textual representations from natural language inputs.

CLIP is trained to align the embedding spaces of images and text through a contrastive learning
objective. Specifically, the model optimizes a contrastive loss that increases the cosine similarity

10
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dataset-v2.pdf

Figure 5: Illustrative examples from various vision-and-language datasets categorized by task type.
Visual Question Answering (VQA) tasks are shown in red (VQAv2: train, VizWiz: laptop, OK-
VQA: bus). Captioning tasks are represented in blue (Flickr30k: footbridge, MSCOCO: giraffes),
while classification tasks are highlighted in green (HatefulMemes: meme identified as hateful). The
bottom section demonstrates reasoning tasks with synthetic datasets: Fast Open-Ended MiniIm-
ageNet and CLEVR, focusing on conceptual understanding (e.g., assigning labels like ”Dax” or
identifying object properties like color and size).

for matched image-text pairs, while reducing it for unmatched pairs within each training batch. To
ensure the learning of diverse and transferable visual concepts, the CLIP team curated an extensive
dataset comprising 400 million image-text pairs, allowing the model to generalize effectively across
various downstream tasks.

In our experiments, we employ the same model, CLIP-ViT-L/14, using its image and text encoders
to generate the image and text embeddings for each demonstration, ensuring consistency in cross-
modal representations. The model employs a ViT-L/14 Transformer architecture as the image en-
coder and a masked self-attention Transformer as the text encoder. We experimented with several
strategies for training the CLIP encoder and found that training only the last three layers of the
encoder offers the best cost-effectiveness.

B.3 DEMONSTRATION CONFIGURING DETAILS

(a) Open-ended VQA: The query Qi is the single question associated with the image Ii, while
the result Ri is the answer to the question, provided as a short response. For the query sample, Q̂
represents the question related to the image Î , and R̂ is the expected output of the model.

(b) Image Captioning: Both Qi and Q̂ are set as short prompts instructing the LVLM to generate a
caption for the given image, such as ”Please write a caption to describe the given image.” The result
Ri corresponds to the actual caption of the image.

(c) Image Classification: Both Qi and Q̂ provide the textual information paired with the image,
followed by a directive requiring the model to classify based on the provided image-text pairs. The
result Ri is the predefined class label.

For all three tasks mentioned above, since the ground truth answers are not visible to the LVLM
during reasoning, all R̂ are set to blank.

B.4 RETRIEVING STRATEGIES

Previous works have typically focused on calculating the similarity between either the image or parts
of the textual information in the query sample and the demonstrations from the library in isolation.
However, this approach can lead to insufficient use of demonstrations by the LVLM, as discussed in
Section 3. To address this issue, we propose a fusion-based retrieval strategy IQ2IQ(image-query to
image-query), which contains two implementation methods:

(1) Averaged Modality Similarity (AMS) calculate the similarity between Î and each Ii, and be-
tween Q̂ and each Qi, then take the average of these two similarities;

(2) Joint Embedding Similarity (JES) compute the joint image-text similarity, which concatenates
the image and query embeddings to form a comprehensive vector, and use this unified representation
to compute the similarity.

B.5 INSTRUCTION

The Inst generated by GPT-4o in the main experiment is ”You will be provided with a series of
image-text pairs as examples and a question. Your task involves two phases: first, analyze the

11
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provided image-text pairs to grasp their context and try to deeply think about what the target task
is; second, use this understanding, along with a new image and your knowledge, to accurately
answer the given question.” This content demonstrates great orderliness and can act as a good general
semantic guide for ICDs and query sample. This style is named chain-of-thought (CoT).

To incorporate the semantic information of Inst and strengthen task representation during the ICD
sequence configuration process, we use GPT-01 to generate simplified versions of these Inst and
integrate their embeddings into the task guider, which are indicated by Inst′. The prompt we use
is as follows: ”This is an instruction to enable LVLMs to understand and perform a multimodal
in-context learning task. Please simplify it by shortening the sentence while preserving its function,
core meaning, and structure. The final version should be in its simplest form, where removing any
word would change its core meaning”. This simplification process allows us to investigate how the
semantic information density in the instruction impacts Ta-ICL’s sequence configuration ability and
the performance of LVLMs in ICL. The results show that simplifying the instruction in a prompt
before embedding it in the task guider significantly improves the quality of sequence generation. It
also helps to avoid issues caused by too long instructions.

As shown in Table 2, we use GPT-4o to rewrite Inst, placing it at the middle and the end of a
prompt, altering its semantic structure accordingly while keeping its CoT nature. The table also
presents two other tested styles of instructions placed at the beginning of the prompt: Parallel Pattern
Integration (PPI) and System-Directive (SD). PPI emphasizes simultaneous processing of pattern
recognition and knowledge integration, focusing on dynamic pattern repository construction rather
than sequential reasoning. SD structures input as a formal system protocol with defined parameters
and execution flows, prioritizing systematic processing over step-by-step analysis. These two forms
have also been proven to be effective in previous ICL work. We use them to study the robustness of
Ta-ICL and various LVLMs to different instruction formats.

B.6 PROMPT DETAILS

The prompts constructed based on Sn all follow the format:

(Inst; ICD1, ..., ICDn;QuerySample).

Each ICD’s query begins with ”Question:” and its result starts with ”Answer:”. The query sample
concludes with ”Answer:”, prompting the LVLM to generate a response. Depending on the input
format required by different LVLMs, we may also include special tags at the beginning and end of
the prompt.

Table 3 provides an overview of the prompt details used for the different models in our experi-
ments. Each model, including OpenFlamingoV2, ICDEFICSv2, InternVL2, and Qwen2VL, em-
ploys a structured approach to engage with image-text pairs. The two-phase task requires LVLMs to
first absorb information from a series of prompts before utilizing that context to answer subsequent
questions related to new images. This method allows for enhanced understanding and reasoning
based on prior knowledge and context, which is essential for accurate question answering in vision-
and-language tasks.

B.7 TRAINING DATA CONSTRUCTION

Training Data Construction. (1). We apply k-means clustering based on image features to parti-
tion the dataset into k clusters. From each cluster, we select the m samples closest to the centroid,
yielding a total of K = m × k samples. These form the query sample set D̂ after removing their
ground-truth results, which are stored separately in DR̂. The remaining dataset serves as the demon-
stration library DL. (2). For each query sample x̂i ∈ D̂, we randomly sample a candidate set Di of
64n demonstrations from DL. The objective is to retrieve N demonstrations from Di that optimally
configure the sequence for x̂i = (Îi, Q̂i) with its ground-truth result R̂i = (R̂

(1)
i , ..., R̂i(t)). We use

the log-likelihood score computed by the LVLMM as the selection criterion CM, evaluating the
model’s predictive ability given a sequence with n ICDs:

CM(Sn
i ) =

∑
t

logPM(R̂
(t)
i | S

n
i , R̂

(1:t−1)
i ),
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Inst Details

Beginning1 (CoT)

You will be provided with a series of image-text pairs as
examples and a question. Your task involves two phases:
first, analyze the provided image-text pairs to grasp their
context and try to deeply think about what the target task
is; second, use this understanding, along with a new im-
age and your knowledge, to accurately answer the given
question.

Beginning2 (PPI)

Construct a dynamic pattern repository from image-text
samples, then leverage this framework alongside your
knowledge base for concurrent visual analysis and ques-
tion resolution. The key is parallel processing - your pat-
tern matching and knowledge integration should happen
simultaneously rather than sequentially.

Beginning3 (SD)

SYSTEM DIRECTIVE Input Stream: Example Pairs →
New Image + Query Process: Pattern Extract → Knowl-
edge Merge → Visual Analysis → Response Critical:
All exemplar patterns must inform final analysis Prior-
ity: Context preservation essential

Middle

Now you have seen several examples of image-text pairs.
Next, you will be given a question. Your task involves
two phases: first, revisit the above image-text pairs and
try to deeply think about what the target task is; second,
use this understanding, along with a new image and your
knowledge, to accurately answer the given question.

End

Now you have seen several examples of image-text pairs
and a question accompanied by a new image. Your task
involves two phases: first, revisit the provided examples
and try to deeply think about what the target task is;
second, use this understanding, the new image and your
knowledge to accurately answer the given question.

Beginning1 (Abbreviated)
Analyze the following image-text pairs, understand the
task, and use this to answer the question with a new im-
age.

Middle (Abbreviated)
After reviewing the above image-text pairs, analyze the
task and use this understanding to answer the question
with a new image.

End (Abbreviated)
After reviewing the above image-text pairs and a question
with a new image, analyze the task and use this under-
standing it.

Table 2: Formats of different instruction types and their corresponding details used in the prompt
structure for all VL tasks. (Abbreviated) means that the instruction is a simplified version produced
by GPT-o1.
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Models Prompt details

OpenFlamingo-v2

Your task involves two phases: first, analyze the provided image-
text pairs to grasp their context and try to deeply think about
what the target task is; second, use this understanding, along
with a new image and your knowledge, to accurately answer an
upcoming question.

<

img¿<IMG CONTEXT¿<—endofchunk—¿ Question: In what
country can you see this? Answer: vietnam
<img¿<IMG CONTEXT¿<—endofchunk—¿ Question: Is
this a buggy or car? Answer: buggy
<img¿<IMG CONTEXT¿<—endofchunk—¿ Question: What
is this? Answer:

IDEFICSv1

”User: Your task involves two phases: first, analyze the pro-
vided image-text pairs to grasp their context and try to deeply
think about what the target task is; second, use this understand-
ing, along with a new image and your knowledge, to accurately
answer an upcoming question.”
”\nUser:<—image pad—¿ Question: In what country can you
see this? <end of utterance¿”,
”\nAssistant: Answer: vietnam. <end of utterance¿”,
”\nUser: <—image pad—¿ Question: Is this a buggy or car?
<end of utterance¿”,
”\nAssistant: Answer: buggy. <end of utterance¿”,
<—image pad—¿ Question: What is this?
<end of utterance¿”,
”\nAssistant: Answer:”

InternVL2

Your task involves two phases: first, analyze the provided image-
text pairs to grasp their context; second, use this understanding,
along with a new image and your knowledge, to accurately an-
swer an upcoming question.
<img¿<IMG CONTEXT¿</img¿ Question: In what country
can you see this? Answer: vietnam
<img¿<IMG CONTEXT¿</img¿ Question: Is this a buggy or
car? Answer: buggy
<img¿<IMG CONTEXT¿</img¿ Question: What is this? An-
swer:

Qwen2VL

<—im start—¿system
You are a helpful assistant.<—im end—¿
<—im start—¿user
Your task involves two phases: first, analyze the provided image-
text pairs to grasp their context and try to deeply think about
what the target task is; second, use this understanding, along
with a new image and your knowledge, to accurately answer an
upcoming question.
<—vision start—¿<—image pad—¿<—vision end—¿Question:In
what country can you see this? Answer: vietnam
<—vision start—¿<—image pad—¿<—vision end—¿Question:
Is this a buggy or car? Answer: buggy
<—vision start—¿<—image pad—¿<—vision end—¿Question:
What is this? Answer: <—im end—¿
<—im start—¿assistant

Table 3: Prompt details for different models used in the experiments. The table outlines how
OpenFlamingo-v2, IDEFICSv1, InternVL2, and Qwen2-VL format their image-text interactions,
including examples of image-based questions and short answers. Each model follows a multi-phase
task structure, where context is absorbed from previous image-text pairs to answer subsequent ques-
tions. 14
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Datasets VQAv2 VizWiz OK-VQA Flickr30k MSCOCO HatefulMemes Hybrid Fast CLEVR
metrics Accuracy Accuracy Accuracy CIDEr CIDEr ROC-AUC Accuracy Accuracy Accuracy

Table 4: Evaluation metrics used for each dataset. Accuracy is used for VQA datasets (VQAv2,
VizWiz, OK-VQA), self-bulit Hybrid dataset and two VL-ICL Bench’s tasks. CIDEr (Vedantam
et al., 2015) is used for image captioning datasets (Flickr30k, MSCOCO). ROC-AUC is used for the
HatefulMemes classification task.

Datasets Training Validation Test D̂ Size
VQAv2 443,757 214,354 447,793 8000
VizWiz 20,523 4,319 8,000 2000

OK-VQA 9,055 5,000 / 800
Flickr30k 29,783 1,000 1,000 2500
MSCOCO 82,783 40,504 40,775 3000

HatefulMemes 8,500 500 2,000 800
Hybrid 30000 9000 / 3000

Fast 5,000 / 200 500
CLEVR 800 / 200 80

Table 5: Overview of the size distribution across the datasets used.

To determine the optimal n-th demonstration xn for a sequence Sn−1
i with n − 1 ICDs, we select

the candidate that maximizes the incremental gain in CM:

xn = argmax
x∈Di

[CM(Sn−1
i + x)− CM(Sn−1

i )].

(3). We employ beam search with a beam size of 2N , ensuring that for each x̂, the top 2N optimal
sequences are included in DS . As a result, the final sequence set DS consists of 2N × k N -shot
sequences, providing refined training data for the model.

C EXPERIMENT

C.1 DATASET

In our study, we explore various VL tasks that use diverse datasets to evaluate model performance.
As illustrated in Figure 5, we use VQA datasets such as VQAv2, VizWiz, and OK-VQA, which test
the models’ abilities in question-answer scenarios. Additionally, we incorporate image captioning
datasets such as Flickr30k and MSCOCO to assess descriptive accuracy, along with the Hateful-
Memes dataset for classification tasks focused on hate speech detection. This comprehensive ap-
proach allows us to thoroughly evaluate the models across different tasks. The size distribution of
the training, validation and test sets in these VL datasets is shown in Table 5.

For the Open-ended VQA task, we utilize the following datasets: VQAv2, which contains images
from the MSCOCO dataset and focuses on traditional question-answering pairs, testing the model’s
ability to understand both the image and the question. VizWiz presents a more challenging set-
ting with lower-quality images and questions along with a lot of unanswerable questions, pushing
models to handle uncertainty and ambiguity. OK-VQA is distinct in that it requires the model to
leverage external knowledge beyond the image content itself to generate correct answers, making it
a benchmark for evaluating models’ capacity to integrate outside information.

For the Image Captioning task, we use the Flickr30k and MSCOCO datasets. The Flickr30k dataset
consists of images depicting everyday activities, with accompanying captions that provide concise
descriptions of these scenes. The MSCOCO dataset is a widely-used benchmark featuring a diverse
range of images with detailed and richly descriptive captions, ideal for evaluating image captioning
models.

15
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For the Image Classification task, we use the HatefulMemes dataset, which is an innovative dataset
designed to reflect real-world challenges found in internet memes. It combines both visual and
textual elements, requiring the model to jointly interpret the image and the overlaid text to detect
instances of hate speech.

VL-ICL Bench covers a number of tasks, which includes diverse multimodal ICL capabilities span-
ning concept binding, reasoning or fine-grained perception. Few-shot ICL is performed by sampling
the ICDs from the training split and the query examples from the test split. We choose two image-
to-text generation tasks from it, which reflects different key points of ICL. Fast Open MiniImageNet
task assigns novel synthetic names (e.g., dax or perpo) to object categories, and LVLMs must learn
these associations to name test images based on a few examples instead of their parametric knowl-
edge, emphasizing the importance of rapid learning from ICDs. CLEVR Count Induction asks
LVLMs to solve tasks like ”How many red objects are there in the scene?” from examples rather
than explicit prompts. The ICDs’ images are accompanied by obscure queries formed as attribute-
value pairs that identify a specific object type based on four attributes: size, shape, color, or material.
Models must perform challenging reasoning to discern the task mapping and generate the correct
count of objects that match the query attribute.

The datasets in our experiments are evaluated using task-specific metrics, as summarized in Table
4. For the VQA tasks, Hybrid dataset and VL-ICL bench’s tasks, we use accuracy as the metric to
assess the models’ ability to provide correct answers:

Accai
= max(1,

3×
∑

k∈[0,9]match(ai, gk)

10
),

where ai denotes the model’s generated answer, gk denotes the k-th ground true answer. match(·, ·)
decides whether two answers match, if they match, the result is 1, otherwise it is 0.

For the image captioning tasks, we use the CIDEr score, which measures the similarity between
generated captions and human annotations. Finally, for the HatefulMemes classification task, we
evaluate performance using the ROC-AUC metric, which reflects the model’s ability to distinguish
between hateful and non-hateful content.

C.2 LVLMS

In recent advances of large vision language models (LVLMs), efficient processing of multimodal
inputs, especially images, has become a critical focus. Models like OpenFlamingoV2, IDEFICSv2,
InternVL2, Qwen2-VL and GPT-4V implement unique strategies to manage and process visual data
alongside textual input.

OpenFlamingoV2 handles visual input by dividing images into patches and encoding them with a Vi-
sion Transformer. Each image patch generates a number of visual tokens, which are then processed
alongside text inputs for multimodal tasks. To manage multi-image inputs, the model inserts special
tokens <image¿ and <—endofchunk—¿ at the beginning and end of the visual token sequences.
For example, an image divided into 4 patches produces 4 x 256 visual tokens, with the additional
special tokens marking the boundaries before the tokens are processed by the large language model.

IDEFICS2 processes visual input by applying an adaptive patch division strategy adapted to image
resolution and content complexity. Depending on these factors, each image is segmented into 1 to 6
patches, striking a balance between preserving spatial information and maintaining efficiency. These
patches are encoded through a Vision Transformer, followed by a spatial attention mechanism and a
compact MLP, resulting in 128 visual tokens per patch. The positions of images in the input sequence
are marked with <—image pad—¿ for alignment, while <end of utterance¿ tokens separate query
and answer components in in-context demonstrations. An image split into five patches yields 5 x
128 + 2 tokens before being integrated with the LLM.

InternVL2 also dynamically divides images into 1 to 4 patches based on their aspect ratio. A Vision
Transformer then extracts visual features from each patch, followed by a pixel shuffle operation and
a mlp, producing 256 visual tokens for each patch. Additionally, special tokens <img¿ and </img¿
are inserted at the beginning and end of the sequence. So, an image divided into 3 patches will
produce 3 x 256 + 2 tokens before entering LLM.
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Qwen2-VL reduces the number of visual tokens per image through a compression mechanism that
condenses adjacent tokens. A ViT first encodes an image (e.g., with a resolution of 224 x 224 and
a patch size of 14), producing a grid of tokens, which is then reduced by employing a simple MLP
to compress 2 x 2 tokens into a single token. Special <lvision start—¿ and <lvision end—¿ tokens
are inserted at the start and end of the compressed visual token sequence. For example, an image
that initially generates 256 visual tokens is compressed to just 66 tokens before entering the LLM.

GPT-4V (Vision) extends GPT-4’s capabilities to handle VL tasks by enabling the model to process
and reason about visual input alongside text. The model can perform various tasks including image
understanding, object recognition, text extraction, and visual question-answering through natural
language interaction. In terms of its few-shot learning ability, GPT-4V demonstrates the capacity to
adapt to new visual tasks given a small number of examples through natural language instructions,
showing potential in areas such as image classification and visual reasoning, though performance
may vary across different task domains and complexity levels.

C.3 BASELINE

Various baseline methods are used to evaluate the model’s performance, ranging from random sam-
ple to different SOTA retrieval strategies. The following is a description of the baselines used in our
experiments.

1. Random Sampling (RS): In this approach, a uniform distribution is followed to randomly sample
n demonstrations from the library. These demonstrations are then directly inserted into the prompt
to guide the model in answering the query.

2. Image2Image (I2I): During the retrieval process, only the image embeddings Ii from each
demonstration (Ii, Qi, Ri are used. These embeddings are compared to the query image embedding
Î and the retrieval is based on the similarity between the images.

3. ImageQuery2ImageQuery (IQ2IQ): During the retrieval process, both the image embeddings
Ii and the query embeddings Qi of each demonstration (Ii, Qi, Ri are used. These embeddings are
compared to the embedding of the concatenated query sample (Î , Q̂) and the retrieval is based on
the joint similarity between the images and the queries.

4. ImageQuery&Pseudo Result (IQPR): This baseline starts by using the RS to generate a pseudo
result R̂P of the query sample. The pseudo result is then concatenated with Î and Q̂ to form the
query sample’s embedding. This retrieval method is based on the similarity of the whole triplet,
using image, query and result embeddings.

5. Lever-LM: Lever-LM is designed to capture statistical patterns between ICDs for an effective
ICD sequence configuration. Observing that configuring an ICD sequence resembles composing a
sentence, Lever-LM leverages a temporal learning approach to identify these patterns. A special
dataset of effective ICD sequences is constructed to train Lever-LM. Once trained, its performance
is validated by comparing it with similarity-based retrieval methods, demonstrating its ability to
capture inter-ICD patterns and enhance ICD sequence configuration for LVLMs.

C.4 MAIN RESULTS

We can go deep into the results in Tabel 6. The findings are as follows: (1) Ta-ICL exhibits the
best performance in all but three tasks across nine datasets and five LVLMs, demonstrating its great
efficiency and generalization. Upon examining the outputs, we observe that GPT-4V tends to devi-
ate from the ICD format and produce redundant information more easily than open-source LVLMs,
aligning with (Wu et al., 2023). This results in the quality improvement of the ICD sequence not al-
ways translating into stable ICL performance gains for GPT-4V, which may explain why Ta-ICL did
not achieve the best performance in two of its tasks. (2) For tasks like VizWiz and Hybrid, Ta-ICL
consistently improves the quality of sequence generation in all LVLMs compared to similarity-based
models, demonstrating the importance of increasing task semantics for complex task mappings. We
find that the performance gains from Ta-ICL are not directly related to the model’s intrinsic ability
on these tasks. Unlike simpler tasks like captioning, for tasks with complex mappings, task seman-
tics still has a significant impact, even when LVLMs exhibit strong few-shot learning abilities. This
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VQA Captioning Classification Hybrid Fast CLEVR
VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes

OpenFlamingov2

RS 49.52 27.71 37.90 76.74 92.98 70.53 13.48 57.69 21.60
I2I 50.84 26.82 37.79 79.84 94.31 64.75 12.79 59.07 19.39

IQ2IQ 52.29 31.78 42.93 79.91 94.40 68.72 24.93 58.96 20.03
SQPR 53.38 30.12 41.70 80.02 96.37 69.16 28.71 57.32 21.84

Lever-LM 55.89 33.34 43.65 83.17 98.74 72.70 32.04 59.41 22.67
Ours 60.12 39.76 46.28 84.23 99.10 75.09 35.17 62.25 26.80

IDEFICS2

RS 53.77 32.92 40.01 82.43 99.61 68.81 15.65 54.72 35.14
I2I 54.97 31.67 41.37 85.76 101.34 69.31 10.49 55.20 32.37

IQ2IQ 55.41 34.31 43.13 85.63 101.45 70.78 30.36 55.14 32.75
SQPR 55.32 33.74 42.76 87.65 103.57 62.18 24.03 55.18 36.29

Lever-LM 56.78 34.10 43.27 88.01 105.62 71.33 30.14 55.83 38.97
Ours 58.41 38.32 47.35 90.41 107.04 73.68 33.25 61.21 40.21

InternVL2

RS 61.83 54.70 57.13 99.05 116.37 76.84 17.74 75.87 57.03
I2I 63.35 55.07 58.73 103.29 118.46 70.72 14.82 75.89 54.79

IQ2IQ 64.57 56.94 62.91 103.41 118.53 78.20 36.46 76.03 50.07
SQPR 63.67 56.83 60.14 105.28 121.94 77.31 34.05 76.34 56.32

Lever-LM 65.36 57.27 61.11 104.65 126.12 79.58 43.16 78.84 57.45
Ours 68.42 61.69 62.87 108.26 128.34 82.97 45.79 81.76 59.27

Qwen2VL

RS 63.71 48.97 55.30 100.32 121.47 80.01 20.42 66.29 48.70
I2I 64.28 48.75 56.39 102.87 124.50 77.85 13.89 67.81 47.97

IQ2IQ 67.26 52.20 58.49 103.04 124.63 79.78 37.83 67.76 46.63
SQPR 67.49 49.54 59.86 105.13 127.38 76.67 27.96 67.12 49.56

Lever-LM 68.23 54.81 61.75 105.24 127.03 81.29 45.47 70.73 50.85
Ours 71.57 57.93 63.97 106.91 132.14 83.19 48.95 75.09 55.98

GPT-4V

RS 60.49 45.38 59.13 101.56 115.87 82.40 16.98 58.72 45.08
I2I - - - - - - - - -

IQ2IQ - - - - - - - - -
SQPR - - - - - - - - -

Lever-LM 65.31 54.62 65.73 106.34 126.98 84.81 45.62 60.31 48.34
Ours 65.16 56.17 68.39 107.29 129.71 83.96 51.48 67.17 50.59

Table 6: Detailed results of different methods across all tasks for the five LVLMs used in the
evaluation, with all generated sequences being 4-shot. The highest scores are highlighted in bold.
Our model achieves the best performance in all but three tasks, demonstrating its generalization and
effectiveness.

shows that models with strong ICL capabilities on certain tasks retain, and even strengthen, their
ability to leverage task semantics, underscoring the value of improving ICD sequence quality.
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