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Abstract

Transformer-based architectures have been proven successful in detecting 3D
objects from point clouds. However, the quadratic complexity of the attention
mechanism struggles to encode rich information as point cloud resolution increases.
Recently, state space models (SSM) such as Mamba have gained great attention
due to their linear complexity and long sequence modeling ability for language
understanding. To exploit the potential of Mamba on 3D scene-level perception,
for the first time, we propose 3DET-Mamba, which is a novel SSM-based model
designed for indoor 3D object detection. Specifically, we divide the point cloud
into different patches and use a lightweight yet effective Inner Mamba to capture
local geometric information. To observe the scene from a global perspective,
we introduce a novel Dual Mamba module that models the point cloud in terms
of spatial distribution and continuity. Additionally, we design a Query-aware
Mamba module that decodes context features into object sets under the guidance of
learnable queries. Extensive experiments demonstrate that 3DET-Mamba surpasses
previous 3DETR on indoor 3D detection benchmarks such as ScanNet, improving
AP@0.25/AP@0.50 from 65.0%/47.0% to 70.4%/54.4%, respectively.

1 Introduction

The aim of 3D object detection [24, 43, 26, 35] from point clouds is to locate and recognize objects
present in 3D scenes. It is a challenging task since point clouds are often irregular, sparse, and
unordered. To directly work with point clouds, VoteNet [31] utilizes PointNet++ [33] to extract
features from irregular point clouds, which are then fed into a decoder to generate the 3D bounding
boxes. Motivated by the success of Transformer [40] in computer vision [8, 34, 20, 3, 19], some
works [24, 14, 26, 4] try to design Transformer-based 3D detectors. 3DETR [26] proposes an end-
to-end transformer-based architecture to generate bounding boxes from raw point clouds. However,
with limited computational resources, the quadratic complexity of the attention mechanism struggles
to encode detailed representations, as it relies on increasing the point cloud resolution (i.e., longer
point cloud sequences).

Recently, state space models (SSMs) [10, 45, 16] have received significant attention due to their linear
complexity and long-sequence modeling ability. As Mamba [10] demonstrates a strong ability to
handle long sequences in natural language processing, it has rapidly been employed on different tasks
(e.g., image and 3D object classification [23, 60, 21, 22], video understanding [18, 1] and motion
generation [55, 46]) and achieves great success. This motivates us to take advantage of Mamba in
capturing long-range dependencies to extract more detailed representations in complex 3D scenes.

However, directly integrating Mamba [10] into the off-the-shelf detectors cannot achieve satisfactory
results on 3D object detection tasks due to the following challenges. Firstly, SSMs like Mamba are
causal models designed for handling 1-D sequence data, making it difficult to model unordered and
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non-causal 3-D point clouds. Secondly, the original Mamba block focuses on modeling long-range
global information but lacks the ability to extract local features, which are essential for point cloud
learning [25, 29]. Besides, previous works primarily use Mamba as an encoder for single object
analysis, it remains unexplored for more complex scene-level point clouds and detection tasks.

To tackle the above challenges and exploit the potential of Mamba [10] in 3D scene understanding, in
this paper, we propose 3DET-Mamba, an end-to-end 3D detector that fully takes advantage of Mamba.
To effectively extract scene representations from unordered point cloud sequences, we introduce a
local-to-global scanning technique that can capture local geometry as well as global representation.
Specifically, the local-to-global scanning technique utilizes the Inner Mamba block to capture finer
details in each local patch and then uses Dual Mamba blocks to further extract scene features in
a global view. Additionally, given that the naive Mamba block struggles to effectively model the
relationship between object queries and scene features, we propose a query-aware Mamba block that
decodes scene context information into object sets more effectively, guided by box queries. Extensive
experiments on standard benchmarks show that our method can outperform 3DETR [26] on ScanNet
and SUN RGB-D. Moreover, the performance can be further improved by increasing the input point
cloud and learnable query sequences.

Our contribution can be summarized as follows:

• We introduce Mamba into 3D scene perception for the first time and construct an end-to-end
detector named 3DET-Mamba which fully takes advantage of Mamba.

• We design a local-to-global scanning mechanism and develop the Inner Mamba and Dual
Mamba, which account for both local detailed features and global spatial representations,
respectively. Further, we propose a Query-aware Mamba to decode scene context features
through learnable queries and generate bounding boxes for objects of interest.

• Extensive experiments demonstrate that 3DET-Mamba outperforms previous 3DETR on
both the ScanNet and SUN RGB-D datasets, proving that Mamba can serve as a promising
foundational component for 3D scene understanding in the future.

2 Related Work

In this section, we will briefly introduce existing works on 1) 3D object detection, and 2) state space
models and Mamba, especially Mamba in vision tasks.

2.1 3D Object Detection

With the development of robotics, 3D object detection [31, 9, 2, 51, 52] from point clouds has attracted
increasing attention. Existing works can be divided into grid-based and point-based methods. Grid-
based (voxel-based) methods convert the irregular point clouds into 2D grids [17] or 3D voxels [42,
35, 36, 59, 50] to utilize the strong feature extraction ability of CNN. Among them, FCAF3D [35]
proposes a fully convolution anchor-free framework. CAGroup3D [42] designs a two-stage pipeline
by introducing class-aware proposal generation and RoI-conv pooling. However, these grid-based
methods struggle to utilize the inherent sparsity of the data and incur significant computational
expenses due to the 3D convolution operations [31]. Inspired by PointNet family [32, 33], Point-
based methods [37, 26, 24, 31, 57, 48, 5] directly generate 3D proposals from raw points. As a pioneer,
VoteNet [31] proposes a voting mechanism to generate accurate proposals by generating new points
close to the objects’ center. RBGNet [43] design a ray-based representation which largely improves
the performance. Motivated by the success of Transformer on image detection, 3DETR [26] and
Groupfree [24] introduce a transformer-based architecture and boost the detection accuracy. However,
the quadratic complexity of the attention mechanism struggles to model long-range dependencies
with limited computational resources. In this paper, we present a novel detection framework that can
serve as a promising foundational module in 3D detection.

2.2 State Space Models and Mamba

State Space Models and Mamba. Inspired by the success in control theory, state space model
(SSM) [13, 38, 28, 12] has been utilized to model long-range dependence. Structured State-Space
Sequence (S4) [13] replaces CNN and Transformer with SSM in vision and language tasks by
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Figure 1: The overview of the proposed 3DET-Mamba. The point clouds are first patched and
fed into the Inner Mamba block to learn fine-grained local features, which are then sent to the Dual
Mamba block to extract global representations. These encoded scene information andd box queries
go through the decoder, which includes Query-aware Mamba blocks and MLPs to generate the final
bounding boxes. We employ the bipartite graph to match the predicted boxes with the ground truth
and use a set loss for end-to-end optimization. Color is utilized only for visualization purposes.

combining linear SSM and HiPPO [11] framework. Smith et al. [38] propose S5 layer which designs
a multi-input, multi-output SSM which outperforms S4 layer in both performance and efficiency.
More recently, Mamba [10] with selective SSM is introduced which achieves higher performance than
Transformer and leads to lots of further research on SSM [30, 44, 41]. For example, MoE-Mamba [30]
and GraphMamba [41] combine Mamba with MoE and Graph data, respectively.

Mamba in Vision. Thanks to the breakthrough in natural language processing, Mamba has been
rapidly transferred to various vision tasks [60, 23]. Vim[60] proposes a bi-directional SSM that can
efficiently compress the vision representation and achieve satisfactory results on multiple vision tasks
at low cost. VMamba [23] employs a cross-scan module to enable 1D selective scanning in 2D image
space. Mamba-Unet [47] and MedMamba [53] introduce Mamba to medical image segmentation and
classification, respectively. Video Mamba Suite [1] and VideoMamba [18] verify the effectiveness and
efficiency of Mamba in various video tasks. QueryMamba [58] combines a query-based transformer
decoder and the Mamba encoder to handle video action forecasting tasks. TM-Mamba [46] modifies
the Mamba parameters as the function of the input and text query to ground the human motion.
More recently, several works [54, 22, 21, 15] have explored the feasibility of Mamba on 3D tasks by
introducing different point cloud ordering strategies. For example, PointMamba [21] utilizes Mamba
to model the global information of 3D point clouds through a reordering mechanism and largely
reduces the computation cost. Despite the great success achieved in object-level classification and
part segmentation, Mamba in 3D scenes is under-explored. In this paper, we propose 3DET-Mamba
which fills the gap of Mamba in 3D scene perception with designs like local-to-global scanning, dual
Mamba, and query-aware Mamba.

3 Method

The overview framework of 3DET-Mamba is shown in Fig. 1. To better illustrate 3DET-Mamba, we
first briefly review SSMs in Sec. 3.1. Then, we provide an overview of our 3DET-Mamba in Sec. 3.2.
In Sec. 3.3 and Sec. 3.4, we detail the design of the encoder and decoder, respectively.

3.1 Preliminaries: State Space Models

State Space Models (SSMs) are derived from continuous systems and have been widely used in
sequence modeling recently. Through a hidden state h(t), SSMs can efficiently map 1D sequences
input x(t) to the output y(t) using the following equations:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)

where A ∈ R denotes the evolution matrix, and B ∈ RN×1, C ∈ R1×N are the projection matrices. To
make SSMs can handle discrete signals such as language and point clouds, S4 [13] and Mamba [10]
use a timescale parameter ∆ to transform the continuous parameters A and B into discrete ones A
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and B. Specifically, Mamba uses zero-order hold (ZOH) method as follows:

A = exp(∆A), B = (∆A)−1(exp(∆A)− I) ·∆B. (2)

Then, the Eq. (1) can be reformulated to the discrete version as follows:

ht = Aht−1 +Bxt, yt = Cht. (3)

Finally, a global convolution can be used to perform the model’s calculation:

K = (CB,CAB, ...,CA
L−1

B), y = x ∗K, (4)

where L denotes the length of input sequence and K ∈ RL presents a convolution kernel.

3.2 Overview

As shown in Fig. 1, our 3DET-Mamba takes a set of N points S ∈ RN×d as input and generates
a set of 3D (oriented) bounding boxes with semantic labels for all objects of interest. Specifically,
3DET-Mamba mainly consists of the Mamba-based scene feature aggregator and decoder designed
for 3D object detection. The 3D feature aggregator combines Inner Mamba and Dual Mamba blocks
to perform local-to-global scanning, extracting both the fine-grained local geometries and global
contexts within the scene. On the decoding side, the decoder employs query-aware Mamba and
Multi-Layer Perceptrons (MLPs) to decode the aggregated 3D features into discrete sets of objects.
In the following sections, we will detail the designs of each component.

3.3 Scene Feature Aggregator

Recent advancements in point cloud processing have demonstrated the importance of capturing
both local geometric features and global scene information [25]. However, previous methods
primarily focus on global modeling using state-space models [21, 22, 54], resulting in a lack of
fine-grained details. To tackle this challenge, we propose a novel local-to-global scanning technique
that emphasizes scanning locally to uncover these finer details in each patch, followed by global
scanning to capture the dependencies among local features.

In this section, we introduce a novel Mamba-based scene feature aggregator designed for local-
to-global scanning, which is aimed at learning detailed representations of complex 3D scenes, as
illustrated in Fig. 2. Specifically, our scene feature aggregator includes the Inner Mamba block and
Dual Mamba block, which will introduced in Sec. 3.3.1 and Sec. 3.3.2 respectively.

3.3.1 Inner Mamba

Given an unordered N point cloud sequence {x1, x2, . . . , xn}, where xi ∈ Rd and d is the dimension
of features, farthest point sampling (FPS) is first used to select K key points from the input point
cloud. Then k-nearest neighbors (KNN) is utilized to identify N0 nearest neighbors for each key
point, subsequently forming K patches P ∈ RK×N0×d.

Previous works [33, 21, 22] employ MLPs to learn features from each patch, they struggle with the
effective aggregation of local features. To address this, we treat the aggregation of local features as a
sequence-to-sequence generation process and use a causal Mamba model to extract local features
within a patch. Specifically, points within each patch are first normalized and then sorted based on
their distance from the key point. These sequential points are fed into a lightweight Mamba block,
of which the dimensions are reduced compared to the original Mamba block, to generate a new
feature sequence. Finally, max-pooling is used to obtain the embedding for each patch, denoted as
F s ∈ RK×C , where K denotes the number of patches and C is the embedding dimension.

3.3.2 Dual Mamba

To encode point cloud data, previous works such as PointMamba [21] propose learning 3D represen-
tations by utilizing the original Mamba, which is initially designed for 1-D ordered sequences. Since
understanding 3D data requires capturing global information, Point Cloud Mamba [54] suggests
reversing the order of tokens and employing both forward and backward State Space Models (SSMs)
to better capture the global context. However, due to the unordered and irregular nature of point
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Figure 2: Architecture of our scene feature aggregator that employs a novel local-to-global
scanning mechanism. The raw point clouds are first sampled and patched using FPS and KNN.
Within each patch, points are ranked by their distance from the patch center. The Inner Mamba block
then scans these ranked points to extract local geometric features. Subsequently, patches are treated
as tokens and serialized in two manners before being fed into the Dual Mamba block. This step scans
all tokens, extracting comprehensive scene contexts.

Algorithm 1 Dual Mamba Block
Input: token sequence Tl−1 : (B, K, C)
Output: token sequence Tl : (B, K, C)

1: /* process with different point orders */
2: TF

l−1 : (B, K, C)← Tl−1

3: TN
l−1 : (B, K, C)←NPS(Tl−1)

4: for o in {F , N} do
5: To

l−1
′ ←Norm(To

l−1)

6: zo : (B, K, C′)← Linearzo
(To

l−1
′)

7: xo : (B, K, C′)← Linearxo
(To

l−1
′)

8: x′
o : (B, K, C′)← SiLU(Conv1do(xo))

9: Bo : (B, K, D)← LinearBo (x
′
o)

10: Co : (B, K, D)← LinearCo (x
′
o)

11: /* softplus ensures positive ∆o */
12: ∆o : (B, K, C′)← log(1 + exp(Linear∆o (x′

o) +Parameter∆o ))

13: /* shape of ParameterAo is (C′, D) */
14: Ao : (B, K, C′, D), Bo : (B, K, C′, D)←Disc (∆o, ParameterAo , Bo )
15: yo : (B, K, C′)← SSM(Ao,Bo,Co)(x

′
o)

16: /* get gated yo */
17: y′

o : (B, K, C′)← yo

⊙
SiLU(zo)

18: end for
19: y′

N : (B, K, C
′
)← FPS(y′

N )

20: Tl : (B, K, C)← LinearT(y′
F + y′

N ) +Tl−1

21: Return: Tl

clouds, simply reversing the order of tokens cannot ensure the causal dependency of the point cloud
sequence and may lead to unreliable results.

To mitigate such a problem, we introduce a novel Dual Mamba block (as shown in Fig. 2) to model
long-range dependencies from the global view. Specifically, we treat F s ∈ RK×C as tokens and
sort them based on their coordinates into two categories: farthest and nearest neighbor orders. The
former strategy enhances the model’s perception of spatial distribution by maximizing the distances
between adjacent points in the sequence, whereas the latter ensures that adjacent points remain spatial
neighbors, thus maintaining local consistency. The Dual Mamba block incorporates two branches
to handle FPS and NPS token sequences, which first undergo normalization and independent linear
projection. For each sequence, an initial 1D convolution transforms it into x′

o, which is then projected
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into Ao, Bo, and ∆o. Subsequently, Ao and Bo are discretized using ∆o. Finally, the corresponding
tokens from the two branches are added and passed through a linear layer to generate the scene
representations. The specific details are shown in Algorithm 1.

SSM

Conv1d

Linear

···

Linear

SSM

Conv1d

LinearLinear

SiLU

···

Query sequenceScene features

···

Figure 3: Query-aware Mamba block.

Algorithm 2 Query-aware Mamba Block
Input: 3D scene features Fs

t−1: (B, K, C),
Box query sequence Fq

t−1: (B, M, C)
Output: Query sequence Fq

t : (B, M, C)
1: for o in{s,q} do
2: F o

t−1
′ ←Norm(F o

t−1)

3: xo: (B,−, C′)← Linearxo(F
o
t−1

′)
4: x′

o: (B,−, C′)← SiLu(Convo(xo))
5: /* Disc and SSM */
6: A: (B,−, C′, D), B: (B,−, C′, D),

C :(B,−, C′, D)← Disc(x′
o)

7: yo: (B,−, C′)← SSM(A,B,C)(x′
o)

8: z :(B,−, C′)← Linearz(F
s
t−1)

9: y′
o: (B,−, C′)← yo ⊙ SiLu(z)

10: end for
11: y′

q: (B, M, K)← yq ⊙ y′
s

12: Fq
t : (B, M, C)← LinearF(y

′
s)⊙ y′

q

13: Fq
t : (B, M, C)← Fq

t +Norm(Fq
t−1)

14: return Fq
t ;

3.4 Decoder

DETR-based models leverage a set of object queries to extract features for object classification and
localization. However, directly using scene context as a prefix and concatenating it with queries in the
Mamba model leads to suboptimal performance, as it struggles to capture discriminative features for
independent queries. To address this, we introduce the Query-aware Mamba block for the decoder,
as shown in Fig. 3, which effectively models the relationship between learnable queries and scene
features to generate bounding boxes.

We first generate object queries by selecting a defined number of M points from the set of K key
points using FPS, ensuring these query points cover the entire scene. For each of these points, we
follow 3DETR [26] to transform their spatial coordinates into positional embeddings using the Fourier
Transform. These embeddings are subsequently processed through an MLP to produce the initialized
query embeddings.

In detail, the decoder is composed of D same blocks and each block consists of a query-aware Mamba
block and multiple MLP layers. The Query-aware Mamba block takes box queries and scene context
as input, extracting tasked-related features from the scene context guided by the learnable queries.
Specifically, each query sequence Fq is fed into a standard Mamba block to model the dependencies
between queries. This process can be formulated as follows:

Fq
o = Linear(Norm(Fq))

Fq = SiLU(Fq
o)× SSM(Conv(Fq

o)).
(5)

Meanwhile, scene features undergo the same process as the query sequence. Then, by multiplying the
scene features with query embeddings, scene contexts are integrated into the query embeddings, and
the updated queries are then passed through multiple MLP layers. After D blocks decoding process,
the bounding boxes and semantic categories can be generated using MLP-based heads. Please refer
to the Algorithm 2 for more details.

3.5 Training Objectives

We adopt the same training objectives as [26] to train 3DET-Mamba. Specifically, we use the bipartite
graph to match the set of predicted 3D bounding boxes {b̂} with the ground truth boxes {b}, denoted
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as Lgiou(b̂, b). Then we calculate the discrepancies between {b̂} and {b} using ℓ1 loss for centers and
dimensions, and Huber loss for angular residuals:

Lgeo = λc∥ĉ− c∥1 + λd∥d̂− d∥1 + λa∥âr − ar∥huber, (6)

here, λc, λd,λa are set as 5, 1, and 0.5. We also employ cross-entropy losses to assess angular and
semantic classifications:

Lsem = −λacac log âc − λss log ŝ, (7)
here, λac and λs are set as 0.1 and 1. Finally, the total loss is formulated as:

L3DET-Mamba = Lgiou + Lgeom + Lsem. (8)

4 Experiments

In this section, we first describe our experiment setups, including our benchmark datasets, metrics,
and implementation details in Sec. 4.1. Then we present our main results in Sec. 4.2 and take out
ablation studies to analyze the effectiveness of the proposed component in Sec. 4.3. Finally, we
showcase some visualization results in Section Sec. 4.4.

4.1 Datasets, Metrics, and Implementation Details

Datasets. Following previous works on 3D indoor object detection, we evaluate our models on two
challenging benchmarks: SUN RGB-D [39] and ScanNet [7]. The SUN RGB-D [39] dataset consists
of 10,335 single-view RGB-D scans, with 5,285 used for training and 5,050 for validation. Each
sample is annotated with rotated 3D bounding boxes. Following [31, 26], we convert the RGB-D
images into point clouds using camera parameters and evaluate models on the 10 most common
object categories. ScanNet [7] comprises 1,201 training samples and 312 validation samples, with
each sample annotated with axis-aligned bounding box labels for 18 object categories.

Metrics. Following [24, 26], we use standard evaluation protocols [31, 35] and report the detection
performance on the validation set using mean Average Precision (mAP) at two different IoU thresholds
(i.e.m 0.25 and 0.5), denoted as mAP@0.25 and mAP@0.5, respectively.

Implementation Details. The input to our model is a point cloud P ∈ RN×3 representing a 3D scene,
with N set as 20,000 for SUN RGB-D [39] and 40,000 for ScanNet [7]. We employ a single-layer
inner mamba block that generates 2048 patches, each with 256-dimensional features. The dual
mamba encoder has 3 layers and outputs scene features with a hidden dimension of 256. The decoder
has 8 layers and is closely followed by MLPs as the bounding box prediction head. During training,
we employ standard data augmentation methods, including random cropping, sampling, and flipping.
We use the AdamW optimizer with a base learning rate of 7× 10−4, decayed to 10−6 using a cosine
schedule, and a weight decay of 0.1. Gradient clipping with an ℓ2 norm of 0.1 is applied to stabilize
training. The whole model is implemented in PyTorch, and all experiments are conducted on 8
NVIDIA 3090 GPUs (24 GB) with a total batch size of 64.

4.2 Comparisons on 3D Object Detection

In this section, we compare our 3DET-Mamba with previous 3D detectors. As shown in Tab. 1, our
3DET-Mamba can outperform previous 3DETR [26] (Tramsformer-based detectors) on both SUN
RGB-D and ScanNet datasets. For example, with 256 queries and 2048 points, our method achieves
66.9% mAP@0.25 and 48.7% mAP@0.5 on ScanNet, surpassing 3DETR-m, which obtains 65.0%
mAP@0.25 and 47.0% mAP@0.5 respectively. Besides, since Mamba can effectively handle long
sequences, we further conduct experiments using point clouds with higher resolution and more box
queries (i.e., 4096 point clouds and 512 box queries), we can observe that the performance can be
further improved with longer point and query sequences (i.e., +5.7 mAP@0.5).

4.3 Ablation Studies

Analysis of the encoder. To verify the effectiveness of the designed Mamba-based encoder, we
first conduct ablation studies on Inner Mamba and Dual Mamba. Specifically, we replace Inner
Mamba and Dual Mamba with Pointnet++ and Transformer. As reported in Tab. 2, transforming Inner
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Table 1: 3D detection results on ScanNet V2 [7] and SUN RGB-D [39]. We compare 3DET-Mamba
against open-source methods that directly process point clouds, using PointNet++[33] (PN) and
Transformer[40] (Tran.) as backbones. 3DET-Mamba employs the same number of key points and
queries as 3DETR [26]. 3DET-Mamba† doubles the number of key points and queries to model longer
sequences of point clouds. Compared to 3DETR [26], 3DET-Mamba achieves superior performance.

ScanNet SUN RGB-D
Methods Backbone mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

VoteNet [31]

PN

58.6 33.5 57.7 -
MLCVNet [49] 64.5 41.4 59.8 -
H3DNet [56] 67.2 48.1 60.1 39.0
BRNet [6] 66.1 50.9 61.1 43.7
GroupFree3D [24] 67.3 48.9 63.0 45.2
GroupFree3D* [24] 69.1 52.8 - -

3DETR [27] Tran. 62.7 37.5 58.0 30.3
3DETR-m [27] 65.0 47.0 59.1 32.7

3DET-Mamba Mamba 66.9 48.7 59.3 33.4
3DET-Mamba† 70.4 54.4 61.3 42.2

Table 2: Effect of our designed point cloud encoder which contains Inner and Dual Mamba blocks.
We compare the performance of encoder combinations using Pointnet++ [33] and Transformer [26]
with Inner and Dual Mamba blocks, with results showing that the proposed Inner Mamba & Dual
Mamba achieves the best performance.

Encoder mAP@0.25 mAP@0.5

Pointnet++ & Transformer 63.1 44.1
Inner Mamba & Transformer 64.9 45.4
Pointnet++ & Dual Mamba 65.6 48.4

Inner Mamba & Dual Mamba 66.9 48.7

Mamba to PointNet++ results in a performance drop of 1.8% mAP@0.25 and 1.3% mAP@0.5 when
using Transformer and Dual Mamba, respectively. This is because our Inner Mamba can effectively
aggregate and propagate local features. Besides, our Dual Mamba block can bring +4.3% mAP@0.5
and +3.3% mAP@0.5 improvement compared to using Transformer as the spatial encoder since
our Mamba layers can learn both spatial representation and local consistency at the same time. By
combining the Inner and Dual Mamba, the best results can be achieved which further verifies our
designs.

Effect of Dual Mamba block. To further show the advantage of our designed Dual Mamba block, we
replace the Dual Mamba block with the original Mamba [10] block and Bi-Mamba block [60, 22, 54],
respectively. The original Mamba block only contains a forward SSM and the Bi-Mamba block
is composed of a forward and a backward SSM. As shown in Tab. 3, our proposed dual Mamba
block can outperform both the original Mamba block and Bi-Mamba block by +1.0% and +1.2%
mAP@0.5. This is because our dual Mamba block can provide point cloud sequence with short-range
and long-range dependencies and further make better use of the powerful causal modeling ability of
Mamba.

Effect of Query-aware Mamba. We conduct ablation studies on the decoder to demonstrate
the effectiveness of the designed Query-aware Mamba block. We compare our module against the
following baselines: (a) a transformer-based decoder as proposed in 3DETR [26]; (b) a naive approach
that directly concatenates 3D scene information with queries, feeding them into the Mamba block and
leveraging Mamba’s state transition matrix for further modeling; and (c) our proposed Query-aware
Mamba block. Additionally, all experiments are conducted with the same encoder and training
strategy to ensure a fair comparison. As demonstrated in Tab. 4, the decoder based on the Query-
aware Mamba block achieves superior results compared to both baselines. This improvement can be
attributed to two main factors: (1) Directly concatenating queries and 3D scene representations do
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Table 3: Effect of Dual Mamba block. We com-
pare it with the original Mamba block [10] and
the Bi-directional Mamba block [60, 22].

Mamba Block mAP@0.25 mAP@0.5

Ori. Mamba 65.4 47.7
Bi. Mamba 66.4 47.5

Dual Mamba 66.9 48.7

Table 4: Effect of Query-aware Mamba. We com-
pare it with the 3DETR [26] decoder and an im-
plementation based on the original Mamba.

Decoder mAP@0.25 mAP@0.5

Transformer 64.3 42.6
Ori. Mamba 56.6 28.0

Quety-aware Mamba 66.9 48.7

not effectively model the relationship between them, making it difficult to capture the most relevant
3D features for each query. (2) Our Query-aware Mamba decoder more effectively aggregates
dependencies between queries and scene features, enhancing the extraction of task-relevant features
from the context.

4.4 Qualitative Results.

To demonstrate the effectiveness of 3DET-Mamba more intuitively, we show some visualization
results. As shown in Fig. 4, we can observe that our 3DET-Mamba can accurately detect objects.

Input

Our

GT

Figure 4: Visualization of detection results. 3DET-Mamba is able to generate tight bounding boxes
for objects of interest in these complex and diverse scenes.

5 Conclusion

In this paper, for the first time, we exploit the potential of Mamba in 3D object detection tasks. Specif-
ically, we introduce 3DET-Mamba, an end-to-end detector based on encoder-decoder architecture.
We first propose an SSM-based encoder that uses an Inner Mamba block to capture local geometric
information and uses Dual Mamba blocks to further aggregate features in a global view. Besides,
a Query-aware Mamba module is designed to effectively decode scene representations into object
sets with the guide of learnable box queries. Extensive experiments on standard benchmarks like
ScanNet and SUN RGB-D demonstrate the effectiveness of 3DET-Mamba, proving Mamba as a
promising building block for future 3D scene understanding. In addition, with the increased length of
input point sequence and query sequence, the performance will be further boosted since Mamba is an
expert in long sequence modeling.

6 Limitations and Broader Impacts

While 3DET-Mamba has demonstrated effectiveness in modeling point cloud sequences, we have yet
to explore its potential for handling other 3D data types, such as meshes. Additionally, given Mamba’s

9



strength in modeling long-sequence data, a promising future direction is to develop Mamba-based 3D
foundation models capable of addressing a broader range of scene-level tasks, including 3D dense
caption, visual grounding, and 3D QA. We leave these explorations for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in our abstract and introduction that our 3DET-Mamba
can boost previous 3DETR with the help of our novel SSM-based architecture accurately
reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed information needed to reproduce the results are illustrated by algo-
rithms and texts in Section 3

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Data and code are not included in the submission due to the time limit, we will
release our code in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify them in Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The results do not contain error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources are reported in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is conducted with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers or websites that produced the code package or
dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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