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Abstract

Deep neural networks (DNN) have been used extensively to achieve impressive results in
speech separation. Most of the DNNs implementations to speech separation relies on su-
pervised learning which is data hungry, and success is pegged on availability of large-scale
parallel clean-mixed speech pair. This kind of data is always not available since it is difficult
to create hence limiting the implementation of supervised learning. Moreover, the imple-
mentation of supervised learning in speech separation requires that systems deal with the
permutation problem (permutation ambiguity). This places an upper limit of the quality of
separated speech that a tool can attain. To avoid the problem of permutation ambiguity,
speech separation based on clustering has been proposed by some recent works. However,
these clustering techniques still rely on supervised learning and therefore still require qual-
ity paired data. To deal with the problem permutation ambiguity and eliminate need for
paired training dataset, we propose a fully unsupervised speech separation technique based
on clustering of spectrogram points or raw speech blocks. Our technique couples the tra-
ditional graph clustering objectives and deep neural networks to achieve speech separation.
We start by establishing features of spectrogram points or raw speech blocks using a pre-
trained model and consequently use the features in a downstream task of clustering using
deep modularization. Through this we are able to identify clusters of spectrogram points or
raw speech blocks dominated all speakers in a mixed speech. We perform extensive evalua-
tion of the proposed technique and show that it outperforms state of the art tools included
in the study.

1 Introduction

Speech separation involves isolating each independent speech composed in a mixture speech. For a mixture
y(n) that is composed of C independent speech signals xc(n) with c = 1, · · · , C, y(n) can be represented as:

y(n) =
C∑

c=1
xc(n) (1)

Where n indexes time. Separating speech from another speech is a daunting task by the virtue that all
speakers belong to the same class and share similar characteristics Hershey et al. (2016a). Some tools such
as Wang et al. (2017) and Wang et al. (2016) develop techniques that perform speech separation on a mixed
speech signal based on gender voices present. They leverage the large discrepancy between male and female
voices in terms of vocal track, fundamental frequency contour, timing, rhythm, dynamic range to attain
gender-based speech separation. In speech separation tasks where the mixture is composed of speakers of
the same gender, the separation task is much difficult since the pitch of the voice is in the same range Hershey
et al. (2016a). To perform speech separation in such cases, most tools such as Zeghidour & Grangier (2021a)
Huang et al. (2011) Weng et al. (2015) Isik et al. (2016) Hershey et al. (2016a) and Luo & Mesgarani (2019a)
cast the task as a multi-class regression problem. In that case, training a speech separation model involves
comparing its output to a source speaker and the model will always output a dimension for each target
class. When multiple sources of the same type exist, the system needs to select arbitrarily which output
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dimension to map to each target and this raises a permutation problem (permutation ambiguity) Hershey
et al. (2016a). Therefore, systems that perform speaker separation in this manner have an extra burden of
designing mechanisms that are geared towards handling the permutation problem. The standout technique
for tackling permutation ambiguity problem is the permutation invariant training (PIT) technique Yu et al.
(2017) and Kolbæk et al. (2017). The key strategy in PIT is to determine the best output-target pairing
and perform error minimization based on this pairing. While effective, the technique has been criticised
for having a high computation complexity of O(S!) which is computationally expensive when the number
of sources S is high Tachibana (2021) Dovrat et al. (2021). PIT based speech separation models must
also deal with the problem of mismatch between number of speakers in training and inference due to their
fixed output dimension Jiang & Duan (2020). Models have to design creative techniques such as setting
a maximum number of sources S that the model should output from any given mixture Nachmani et al.
(2020) Kolbæk et al. (2017) Liu & Wang (2019a) Luo & Mesgarani (2020). If an inference mixture has K
sources, where S > K, S − K outputs are invalid sources. In case of invalid sources, some models such as
Liu & Wang (2019a), Nachmani et al. (2020), Kolbæk et al. (2017) output silences while some such as Luo &
Mesgarani (2020) output the mixture itself which are then discarded by comparing the energy levels of the
outputs relative to the mixture. The models that output silences for invalid sources, rely on a pre-defined
energy threshold, which may be problematic if the mixture also has a very low energy Luo & Mesgarani
(2020). Some models such Shi et al. (2018), Kinoshita et al. (2018), Takahashi et al. (2019)Neumann et al.
(2019) handle the output dimension mismatch problem by generating a single speech in each iteration and
subtracting it from the mixture until no speech is left. However, setting the iteration termination criteria
is difficult and the separation performance degrade in later iterations Takahashi et al. (2019). To evade the
permutation ambiguity problem, works in Hershey et al. (2016b) Byun & Shin (2021) Isik et al. (2016) Qin
et al. (2020) and Lee et al. (2022) Zeghidour & Grangier (2021b) propose a clustering technique that seeks
to identify the multiple speakers present in a mixed speech signal. In these models, the deep neural network
(DNN) fθ(parameterized by θ) takes as its input a whole mixed speech spectrogram X and generates a d
dimension embedding vector V of size N i.e., V = fθ(X) ∈ RN×d. The embedding V learns the features of
the spectrogram X and is considered a permutation-and-cardinality-independent encoding of the network’s
estimate of the signal partition. Each vi ∈ V is such that |vi|2 = 1 for i = 1, · · · , N . The embedding V
is considered to implicitly represent an N × N estimated affinity matrix Â = V V T . For the network fθ to
learn how to generate an embedding vector V given the input X, it is trained to minimize the cost function.

CY (V ) = ||Â − A||2 = ||V V T − Y Y T ||2F =
∑

ij

(< vi, vj > − < yi, yj >)2 (2)

The goal in equation 2 is to minimise the distance between the network estimated affinity matrix V V T and
the true affinity matrix Y Y T . The minimization is done over the training examples. ||.||2F is the squared
Frobenius norm. Once V has been established, its rows vi of V are clustered using k-means clustering
algorithm. The resulting clusters of V are then used to construct a binary mask which is applied to the mixed
spectrogram X to separate the sources. Despite the impressive results of the clustering based techniques such
as in Zeghidour & Grangier (2021b), they still employ supervised training which require a costly process
of data labelling. Furthermore, these methods require that the number of speakers to be known before
execution which may not be practical in some cases. Our work proposes a speech separation technique
based on clustering known as deep modularization that requires no parallel dataset and prior knowledge of
number of sources present in the mixture. The clustering is done on the spectrogram points or raw speech
blocks. Deep modularization bridges the gap between traditional graph clustering objectives and deep neural
networks. We start by establishing features of spectrogram points or raw speech blocks using a pre-trained
model and use the features in downstream task of clustering using deep modularization. Through this we
achieve speech separation in a purely unsupervised manner. Our contributions are as follows: (i) We propose
an unsupervised clustering technique of speech separation based on optimization of cluster assignments of
spectrogram points or raw speech blocks in an end-to-end differentiable manner, (ii) we perform evaluation
comparing the performance of the proposed technique when raw speech and Fourier transformed speech is
used as input, (iii) we perform extensive evaluation of the proposed technique on different datasets to evaluate
its suitability in speech separation in different scenarios, (iv) we perform ablation comparing the proposed
technique of deep modularization and the classical k-means clustering technique and (v) we perform ablation
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to evaluate if training the pre-trained model with contaminated inputs is beneficial to the downstream task
of speech separation.

2 Related work

A number of unsupervised speech separation tools have previously been developed. MixIT technique Wisdom
et al. (2020) performs unsupervised speech separation such that given a set of X that is composed of mixed
speeches i.e. X = {x1, x2, · · · , xn} where each mixture xi is composed of up to N sources, mixtures are
drawn at random from the set X without replacement and a mixture of mixture (MoM) created by adding
the drawn mixtures, for example if two mixtures x1 and x2 are drawn from the set X, MoM x̄ is created
by adding x1 and x2 i.e x̄ = x1 + x2. The MoM x̄ is the input to a DNN model which is trained to estimate
sources ŝ composed in x1 and x2. The DNN model is trained to minimize the following loss function:

LMixIT = min
A

2∑
i=1

L(xi, [Aŝ]i)

For a case where MoM is composed of only two mixtures, A ∈ B2×M is a set of binary matrices where each
column sums to 1. Here, M is the number of maximum sources co-existing in a given mixture xi. The loss
function is trained to minimize the loss between mixtures xi and the remixed separated sources Aŝ. One
major problem with the MixIT technique is that it performs over-separation such that the estimated sources
are greater than the actual number of underlying sources in the mixtures xi Zhang et al. (2021). Moreover,
MixIT does not work well for denoising Saito et al. (2021). A number of MixIT based techniques such as
Zhang et al. (2021) and Karamatlı & Kırbız (2022)have been proposed to tackle the over-separation problem.
To enable MixIT technique to handle denoising, work in Trinh & Braun (2022) and Saito et al. (2021) have
been proposed. RemixIT Tzinis et al. (2022) is another unsupervised speech denoising tool that exploits
teacher-student DNN model to perform speech separation. Given a batch of noisy speeches of size b, the
teacher estimates the clean speech sources ŝi and noises n̂i where 1 ≤ i ≤ b. The teacher estimated noises
n̂i are mixed at random to generate np. The mixed noise np together with the teacher estimated sources are
used to generate new mixtures m̂i = ŝi + np. The new mixtures m̂i are used as input to the student. The
student is optimised to generate ŝi and noise np i.e., ŝi and np are the targets. Through this, the teacher-
student model is trained to denoise the speech. In RemixIT, a pre-trained speech enhancement model is
used as the teacher model. Work in Wang et al. (2016) proposes unsupervised techniques to perform speech
separation based on gender. They exploit i-vectors to model large discrepancy in vocal tract, fundamental
frequency contour, timing, rhythm, dynamic range, etc between speakers of different genders. In this case
DNN model can be viewed as gender separator.

To train these speech separation tools, models are developed to either accept Fourier spectrum or time
domain input features. Fourier spectrum-based features tools do not work directly on the raw signal (i.e.,
signal in the time domain) rather they incorporate the discrete Fourier transform (DFT) in their signal
processing pipeline mostly as the first step to transform a time domain signal into frequency domain. These
models recognise that speech signals are highly non-stationary, and their features vary in both time and
frequency. These features include Log-power spectrum features (Fu et al., 2017) (Xu et al., 2015) , Mel-
frequency spectrum features (Liu et al., 2022) (Du et al., 2020) (Donahue et al., 2018), DFT magnitude
features (Nossier et al., 2020) Grais & Plumbley (2018) Fu et al. (2019) and Complex DFT features (Fu
et al., 2017) (Williamson & Wang, 2017) (Kothapally & Hansen, 2022a) (Kothapally & Hansen, 2022b). The
assumption made by most DNN models that use Fourier spectrum features is that phase information is not
crucial for human auditory. Therefore, they exploit only the magnitude or power of the input speech to train
the DNN models to learn the magnitude spectrum of the clean signal and the factor in the phase during the
reconstruction of the signal (Xu et al., 2014) (Kumar & Florencio, 2016) (Du & Huo, 2008) (Tu et al., 2014)
(Li et al., 2017). The use of the phase from the noisy signal to estimate the clean signal is based on works such
as (Ephraim & Malah, 1984) that demonstrated that the optimal estimator of the clean signal is the phase
of the noisy signal. However, recent research Paliwal et al. (2011) have demonstrated through experiments
that further improvements in quality of estimated clean speech can be attained by processing both the short-
time phase and magnitude spectra. Due to phase challenge while working with Fourier spectrum features
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different tool such as (Luo & Mesgarani, 2018) (Luo et al., 2020) (Luo & Mesgarani, 2019a) (Subakan et al.,
2021a) explore the idea of designing a deep learning model for speech separation that accepts speech signal
in the time-domain. The fundamental concept of these models is to replace the DFT-based input with a
data-driven representation that is jointly learnt during model training. The models therefore accept as their
input the mixed raw waveform sound and then generate either the estimated clean sources or masks that are
applied on the noisy waveform to generate clean sources. By working on the raw waveform, these models
address the key limitation of DFT-based models, since the models are designed to fully learn the magnitude
and phase information of the input signal during training Luo et al. (2020).

3 Deep modularization speech separation model

3.1 Model pretraining

3.1.1 Using spectrogram points as input

Figure 1: Overall overview of the proposed speech separation based on deep modularization

Our model first establishes a pre-trained model f that learns to generate embeddings of spectrogram points
(Time-Frequency bins (T-F bins)). We implement the contrastive learning similar to the one proposed in
Saeed et al. (2021) but using spectrogram points (T-F bins) as the inputs. The goal of contrastive self-
supervised learning is to establish a representation function f : x 7→ Rd that maps augmentations to a
d−dimensional vectors by ensuring that similar view of augmentations are closer to each other as compared
to those of random ones. The practice is to pick augmentations (x, x+) that are obtained by passing a given
input through two different augmentation functions. Ideal augmentations of inputs are those that retain
features of the inputs that are crucial in the intended task (e.g., classification) but modify the features that
are less important for that task. Unlike work in Saeed et al. (2021) which does not use explicit augmentations,
our work generates positive pairs by injecting both noise and reverberation to the input. Hence, given a
clean speech signal from a given speaker in the time domain x ∈ RT , we create its first augmented version
in the time domain by adding randomly sampled excerpt from noise recorded in various urban setting
from (Wichern et al., 2019). Its second augmented version is created by adding reverberation to the first
augmented version using edited scripts from (Maciejewski et al., 2020)( see Figure 2). Each of the two
versions is then downsampled to 8kHz and T-F bins generated from the magnitude spectrum by applying
short-time Fourier transform (STFT) using 32 ms Hamming window and 8 ms shift. Two T-F bins that
are extracted from both augmented sets belonging to a given speaker are considered a positive pair. It is
important to note that since we are working at the T-F bins level, it is impractical to generate augmentations
by adding add noise or reverberation to the T-F bins directly hence the indirect approach. Given a set O
of augmented T-F bins, we then design a function f : O 7→ Rd that maps the T-F bins to d-dimensional
vectors by encouraging the representations of pairs of T-F bins from a positive pair to be closer to each other
than the representations of T-F bins from another random speaker as demonstrated in figure 1. Therefore,
given n clean speeches from n different speakers, we generate two sets X̄A and X̄B containing noise and
noise+reverberation T-F bin augmentations as described above. We then exploit a function P(., . | X̄A, X̄B)
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that generates an augmentation pair (xi, x+
i ) by selecting T-F bins from both X̄A and X̄B i.e.

(xi, x+
i ) ∼ Dpos ≡ (xi, x+

i ) ∼ i.i.d P(., . | X̄A, X̄B) (3)

Here the pair (xi, x+
i ) is the positive pair with distribution Dpos. Given a batch of size b, for a positive pair

(xi, x+
i ), we consider all the other b − 2 to be the negative examples with a distribution of Dneg. To train

the model to fit the function f , we use adopt simCLR contrastive loss Chen et al. (2020).

Ex,x+∼Dpos,x−
i:n−2∼Dneg

[− log( ef(x)T f(x+)

ef(x)T f(x+) +
∑n−2

i=1 ef(x)T f(x−
i

)
)] (4)

The loss function seeks to make the similarity f(x)f(x+) larger as compared to f(x)f(x−). Once the model
is trained to establish T-F bin level features, we exploit the trained model in the downstream task.

Figure 2: Creating T-F bins augmentations from a speech by first adding noise then reverberation.

3.1.2 Using time domain blocks as input

Given clean speech signal from a given speaker in the time domain x ∈ RT , similar to discussion in section
3.1.1, we create its first augmented version in the time domain by adding randomly sampled excerpt from
noise. The second augmented version is created by adding reverberation to the first augmented version.
Each of the augmented speech version in the time-domain x ∈ RT is then processed by an encoder similar
to the one proposed in Subakan et al. (2021b) to generate STFT-like representation h ∈ RF ×T . This is then
chunked into N blocks of size 250 with 125 overlap between two subsequent blocks along the time axis to
generate a set of blocks L ∈ RF ×W ×N (see figure 3). Therefore, given n clean speeches from n different

Figure 3: Creating T-F bins augmentations from a speech by first adding noise then reverberation.
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speakers, we generate two sets X̄A and X̄B containing noise and noise+reverberation time domain speech
blocks. We then exploit a function P(., . | X̄A, X̄B) that generates an augmentation pair (xi, x+

i ) by selecting
blocks from both X̄A and X̄B belonging to the same speaker. For a batch size of b, a pre-trained model
based on raw speech blocks is trained similar to that described in section 3.1.1 and demonstrated in figure
1.

3.1.3 Pre-trained model

For the pre-trained models, we used EfficientNet-B0 (Tan & Le, 2019) as the encoder. EfficientNet-B0 is
a lightweight-highly scalable convolutional neural network which was designed to accept 2D image inputs.
Since the inputs i.e. T-F bins and raw speech blocks are in 2D, we did not make any modification to the
EfficientNet-B0 and used it as originally proposed. In the last layer, we implemented a global max pooling
to get an output embedding of h ∈ R1280. When pre-training, we further processed h using a projection
head which is a fully connected feed forward layer with 512 units followed by a Layer Normalization and a
tanh activation. We discarded the projection head during the downstream task.

3.2 Downstream task

The goal here is to use deep modularization technique to cluster T-F bins or raw speech blocks such that those
dominated by a given speaker are clustered together. Deep modularization is a technique that seeks to inter-
sect graph clustering objective and DNN. We begin by defining a graph G(V, E) where V = (v1, v2, · · · , vn),
|V | = n is the set of all T-F bins or raw speech blocks generated from a mixed speech signal as described in
section 3.1.1 and 3.1.2. E ⊂ V × V , |E| = m is the set of all edges of connecting the generated T-F bins or
raw speech blocks (subsequently referred to as blocks). We denote the adjacency matrix of G by A where
Aij = 1 if {vi, vj} ∈ E and 0 otherwise. The degree of vi is defined as di =

∑n
j Aij , we are interested in

generating a graph partition function F : V → {1, · · · , k} that splits the set of T-F bins or blocks V into
k partitions vi = {vj : F(vj) = i} given the T-F bins or blocks attributes F̄ ∈ Rn×d generated by the pre-
trained model. In order to partition the vertices, we explore the statistical approach of vertices partitioning
known as modularity (Q) (Newman, 2006). Modularity involves comparing the number of edges within par-
titions and some equivalent randomized partitions (null network) in which edges are placed without regard
to relationships that exist in the network. modularity is, therefore, defined as:

Q =Number of edges within partitions − expected number of such edges (5)

A high value of Q, indicates closer similarities among members belonging to a given partition. Therefore,
the goal is to maximise Q. Defining gi to be the community to which a vertex i belongs to, Modularity (Q)
is derived in Newman (2006) as:

Q = 1
2m

∑
ij

(Aij − Pij)δ(gi, gj) (6)

where δ(gi, gj) is 1 if vertex i and j belong to the same partition and 0 otherwise. Pij is the expected number
of edges between i and j while Aij is the actual number of edges between i and j. If vertex i and j have
degrees di and dj , respectively, then the expected degree of vertex i can be defined as

∑
j Pij = di. Based

on this, vertex i and j are connected with probability Pij = didj

2m (see (Newman, 2006)). Hence equation 6
is modified to:

Q = 1
2m

∑
ij

(Aij − didj

2m
)δ(gi, gj) (7)

The problem of maximizing Q is NP-Hard (Brandes et al., 2006), however, if we seek to generate k non-
overlapping partitions, a partition assignment matrix S ∈ Rn×k (n represents number of vertices) is defined
(Newman, 2006). Each column of S indexes a partition, that is, S = {s1 | s2 |, · · · , | sk|}. The columns
are vectors of (0,1) elements such that Sij = 1 if vertex i belongs to partition j and 0 otherwise. Based on
this setup the columns of S are mutually orthogonal since each row of the matrix sums to 1. S therefore
satisfies the normalization Tr(ST S) = n where Tr(.) is the matrix trace. Based on the definition of S,
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δ(gi, gj) =
∑k

k=1 SikSjk and hence

Q = 1
2m

∑
ij=1

k∑
n=1

(Aij − Pij)SikSjk = 1
2m

Tr(ST BS) (8)

where B is the modularity matrix such that Bij = Aij − Pij . By relaxing S ∈ Rn×k, the optimal S that
maximizes Q is the top k eigenvectors of matrix B. In our case, we seek to optimize Q ( learn and optimize
cluster assignment matrix S), by modularizing the T-F bin or block features F̄ ∈ Rn×d learned via the
pre-trained model. To optimize the cluster assignment, we adapt the deep neural network graph partition
technique proposed in Bianchi et al. (2020) and Müller (2023). They partition nodes of a graph by the
following formulation:

F̄ = GNN(Ã, X, θGNN ) (9)
S = softmax(F̄ ) (10)

Where Ã = D− 1
2 AD− 1

2 , X are the input features, D is the diagonal matrix with the degrees d1, · · · , dn on
the diagonal and A is the adjacency matrix. In equation 9, node features F̄ are learned via graph neural
network (GNN) and the assignment matrix S is established via SoftMax activation function. In (Bianchi
et al., 2020), the assignment matrix S is established by multilayer perception (MLP) with SoftMax on the
output layer. In our case, we formulate the problem as:

F̄ = Con(X, θcon) (11)

S = SepFormer(F̄ , θtrans) (12)
Where the T-F bin or block feature matrix F̄ is established via a pre-trained model (Con). The partition
assignment of a T-F bin or block is established using a SepFormer proposed in (Subakan et al., 2021b).
SepFormer is a transformer-based model that is able to learn both short-term and long-term dependencies
that exist within a T-F bin or a block. The output of the SepFormer is passed through a feedforward network
equipped with a softmax that assigns a T-F bin or a block to a given partition ( see figure 4). This essentially

Figure 4: How SepFormer is utilized to perform T-F bin or block partitioning.

maps each T-F bin or block’s feature f̄i ∈ F̄ (with 1 ≤ i ≤ n) to the j column of the cluster assignment
matrix S. To optimise the assignment S, we use the loss function in Equation 13 (Müller, 2023). By training
the SepFormer using the objective in equation 13, we train a DNN model using a graph clustering objective.
The loss in equation 13 is composed of a modularity (derived in Equation 8) term and a collapse regularizer.
The collapse regularizer is crucial to avoid S generating trivial partitions (Müller, 2023). Furthermore, it
has been shown in Müller (2023) that the loss function in equation 13 maintains consistency of community
detection as the number of nodes increases.

L(S) = − 1
2m

Tr(ST BS) +
√

k

n
||

∑
i

ST
i ||F −1 (13)

Here, ||.||F is the Frobenius norm. The complexity of the modularity term Tr(ST BS) is O(n2) per update
of L(S) which makes the training process computationally costly. Therefore, to efficiently update L(S),
Müller (2023) proposes to decompose Tr(ST BS) into sum of sparse matrix-matrix multiplication and rank
one degree normalization Tr(ST AS − SdT dS). This reduces the complexity to (O)(d2n) for every update of
the loss function.

L(S) = − 1
2m

Tr(ST AS − SdT dS) +
√

k

n
||

∑
i

ST
i ||F −1 (14)

During implementation our model uses the loss in equation 14.
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3.3 Adjacency matrix

To construct the adjacency matrix A, for each T-F bin or block i we compute its similarity with all other
nodes using inner product i.e.

eij = f̄T
i f̄j (15)

where j = 1, 2, · · · , n and f̄i and f̄j ∈ F̄ . We then select a threshold θ such that if eij < θ, we remove an
edge between i and j then the adjacency matrix is defined as

Aij =
{

1, if there is an edge between i and j
0, otherwise

(16)

Optimum θ is established experimentally (explained in section 6.6).

4 Clean source signal estimation

From the established partitions k, we generate k masks in the range [0, 1], where 0 indicates that a given
T-F bin or block in the input mixed signal is missing in that cluster, while 1 signifies the presence of a given
T-F bin or block. The mask-based separation of sources is predicated on the assumption of sparsity and
orthogonality of the sources in the mixed signal in the domain in which masks are computed. Based on
this assumption, the dominant signal at a given range is taken to be only signal at that range. Therefore,
the generation of clusters through modularization is used to estimate the dominant signals in a given range.
Once the masks have been established, they are applied to the input mixed signal to generate k estimated
clean signals. For the input speech signal that has been transformed to STFT, the mask is applied to the
input STFT spectrogram to obtain the estimated spectrograms of clean speech signals. The inverse STFT
is then used to estimate a clean speech signal. In case of a time domain signal, the mask is applied to
the STFT-like transformation generated by the encoder. The decoder (transposed encoder) is the used to
generate estimated signal. For STFT phase reconstruction, we use the technique proposed in Wang et al.
(2018) which jointly reconstructs the phase of all sources in each mixture by exploiting their estimated
magnitudes and the noisy phase using the multiple input spectrogram inversion (MISI) algorithm (Gunawan
& Sen, 2010).

5 Experimental setup

Pre-training dataset: To pre-train the two model variants (i.e. one trained using T-F bins as input and
another with raw speech blocks), we used the popular Wall Street Journal (WSJ0) corpus (Paul & Baker,
1992). The dataset was recorded using a close-talk microphone hence free from reverberation and noise. We
used 30 hours of speeches from si_tr_s to train the models. 30 hours length of speeches generate over 10
million T-F bins or blocks input dataset.
Pre-training configuration: To train the two variants of pre-trained models, we used the Adam optimiser
and the cyclical learning rate (Smith, 2017) with a minimum learning rate of 1e − 4 and a maximum of
1e − 1. Each model was trained with a single NVDIA V100 GPU for 2M steps with a batch size of 512 T-F
bins or blocks.
Speech separation dataset: To evaluate the quality of separated speech resulting from the proposed
technique, we used wsj0-2mix, wsj0-3mix Hershey et al. (2016a),wsj0-4mix, ws0-5mix (Nachmani et al.,
2020), Libri5Mix, Libri10Mix (Dovrat et al., 2021). The wsj0-2mix, wsj0-3mix, wsj0-4mix, and ws0-5mix
datasets are made of 2, 3, 4, 5 speaker mixtures, respectively, created from the WSJ0 corpus. The datasets
were created by exploiting randomly selected gains in order to achieve relative levels between 0 and 5 dB
between the 2, 3, 4, 5 speech signals. The datasets are composed of 30 h training, 10 h validation, and
5 h test sets. The training and validation sets share common speakers, which is not the case for test set.
Libri5Mix and Libri10Mix are speech mixture composed of 5 and 10 different speakers respectively. The
dataset was created from the LibriMix dataset (Cosentino et al., 2020), which was created from LibriSpeech
Panayotov et al. (2015). The mixtures were created in Dovrat et al. (2021)from clean utterances with
no noise with the resulting mixtures having an SNRs that are normally distributed with a mean of 0 dB
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and a standard deviation of 4.1 dB. The datasets wsj0-2mix, wsj0-3mix, wsj0-4mix, ws0-5mix, Libri5Mix
and Libri10Mix assume that speech separation will happen in anechoic environment which is an unrealistic
assumption for speech separation since mixed speech is always recorded by a distant microphone hence it
is always riddled with noise and reverberation. To demonstrate the performance of the proposed technique
to separate mixed speech which contain noise and reverberation, we use WHAM ! (Wichern et al., 2019)
and WHARM ! (Maciejewski et al., 2020) datasets. These datasets were derived from wsj0-2mix dataset
by adding environmental noise and noise+reverberation respectively. For all of these datasets, we used the
test dataset for speech separation. The T-F bins or blocks generated from the speeches in the test dataset
were processed by the relevant pre-trained model for embedding generation, e.g., if a pre-trained model was
trained using time domain blocks it processes time-domain blocks to generate embeddings.
Noise and Reverberation dataset: To augment a given speech, we begin by adding noise to it then
convolve the noisy speech with impulse responses (see figure 2 and 3). To add noise, we used the noise
dataset from (Wichern et al., 2019). This dataset contains noise recorded with a binaural microphone in
various areas in San Francisco Bay town. Each speech was mixed with a randomly sampled excerpt from this
dataset. We ensured that the SNR between a given speech and noise in given mixture (noise+ speech) was less
that 2. For reverberation we convolved the noisy speech with impulse responses developed in (Maciejewski
et al., 2020). We used the medium impulse responses which simulate different acoustic conditions with
reverberation times T60 selected uniformly between 0.2 to 0.6 seconds.

Downstream training: During feature clustering, we used two configurations: First, we trained a Sep-
Former on top of the frozen encoder to partition T-F bins or blocks. In the second configuration, the
pre-trained encoder is fine-tuned during the clustering of spectrogram points or raw speech blocks. In this
case, the pre-trained encoder is optimized in an end-to-end differentiable manner using equation 14 as the
loss function. We therefore train four different SepFormer configurations: (i) SepFormer clustering of T-F
bins based on frozen encoder trained using T-F bins (Sep1), (ii) SepFormer clustering of raw speech blocks
based frozen encoder trained using raw speech blocks (Sep2), (iii) SepFormer clustering of T-F bins based
on fine-tuning an encoder trained using T-F bins (Sep3) and (iv) SepFormer clustering of raw speech blocks
based on fine-tuning an encoder trained using raw speech blocks (Sep4). We used the Adam optimiser and
the cyclical learning rate (Smith, 2017) with a minimum learning rate of 1e − 4 and a maximum of 1e − 1.
The models were trained with a single NVDIA V100 GPU for 2M steps with a batch size of 216 T-F bins
or blocks. We optimized the downstream model according to equation 14 to generate partitions. We set the
maximum number of clusters k = 20.
Evaluation metrics: We used objective metrics of Short-time objective intelligibility (STOI)(Taal et al.,
2011), perceptual evaluation of speech quality (PESQ) algorithm (Rix et al., 2001), SI-SNR improvement
(SI-SNRi), Signal-to-Distortion Ratio improvement (SDRi), Deep Noise Suppression MOS (DNSMOS) which
is a reference-free metric that evaluates perceptual speech quality Reddy et al. (2021). It is a DNN based
model trained on human ratings obtained by using an online framework for listening experiments based on
ITU-T P.808. We also use SIG, BAK, OVRL: The non-intrusive speech quality assessment model DNSMOS
P.835 (Reddy et al., 2022).

6 Results

6.1 Quality of clusters

To begin our experiments, we first evaluate which of the four model configurations (Sep1, Sep2, Sep3, Sep4)
results in better cluster (partition) generation. We do this by measuring the quality of clusters generated by
each. To evaluate how good the clusters are, we use the graph-based cluster measurement metrics proposed in
(Yang & Leskovec, 2012). We are particularly interested in metrics that capture how well a given partition
is separated from the rest i.e., quantifying the number of edges pointing from a given partition to other
partitions. A good partition should have few edges pointing outwards. The most relevant metrics for our
study being graph modularity and conductance.
Cluster conductance (C)= cs

2ms+cs
, if S is a partition, the function C measures how similar the nodes of

S are where ms is the number of edges in S i.e., ms = {(u, v) ∈ E, u ∈ S, v ∈ S} and cs is the number of
edges in the boundary of S i.e. cs = {(u, v) ∈ E : u ∈ S, v /∈ S}. Conductance quantifies the fraction of
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edges pointing outside a given partition. Quality partitions should have a small conductance value.
Graph modularity (Q)= 1

4 (ms −E(ms)) where E(ms) is the expected ms. Quality partitions should have
high modularity.
The results of our evaluation are reported in table 1. When raw speech block features are used to train
the encoder, the pre-trained model generates more quality embeddings that lead to quality clusters in the
downstream task as compared to when T-F bins are used as input. The features from pre-trained model with
raw speech block as input generates better clusters in all the three test datasets used in evaluation. This is
an indication that for this setup, the use of raw speech features captures more speech features as compared
to the STFT transformed features. We also note that fine-tuning the encoder is beneficial to the downstream
task as compared to the use of frozen encoder. Note that quality of cluster evaluation is done prior to speech
reconstruction hence the drop in cluster quality when using STFT transformed features cannot be attributed
to phase handling issues.

Table 1: Results of conductance C and modularity Q when using different input configurations and different
mixtures. Here the values of C and Q have been multiplied by 100.

WSJ0-3mix test-dataset
Model Configuration C(↓) Q(↑)

Sep1 14.9 88.1
Sep2 14.4 86.7
Sep3 14.1 88.5
Sep4 13.9 88.9

WSJ0-4mix test-dataset
Sep1 16.2 85.3
Sep2 15.8 86.9
Sep3 15.1 87.2
Sep4 14.6 87.6

WSJ0-5mix test-dataset
Sep1 19.0 76.6
Sep2 18.4 78.5
Sep1 18.0 78.8
Sep2 17.7 79.6

6.2 Performance on speech separation

We evaluated the quality of separated speeches by applying masks generated by Sep1, Sep2, Sep3 and Sep4 on
wsj0-2mix, wsj0-3mix wsj0-4mix, ws0-5mix test datasets. Table 2 reports the results based on the evaluation
metrics. In all the four datasets, the quality of separated speeches is highest on Sep4 based speech separation.
This followed by that of Sep2. This trend does not follow the evaluation on cluster quality which indicated
that Sep4 produced the best quality clusters followed by those of Sep3. We attribute the drop of quality in
Sep3 to the phase reconstruction associated with STFT transformation. The results also show that when
raw blocks are used in both pre-training and downstream task, the quality of separated speech is superior.

Table 2: Speech separation results when the two variants of inputs are used
WSJ0-2mix test-dataset

Model SDRi(↑) SI-SNRi(↑) STOI(↑) PESQ (↑) DNSMOS (↑) SIG (↑) BAK (↑) OVRL (↑)
Sep1 19.6 19.4 0.8969 3.93 3.98 3.96 4.11 4.01
Sep2 21.9 21.6 0.9146 4.04 4.14 4.09 4.17 4.16
Sep3 20.6 20.2 0.9054 3.98 4.02 4.00 4.13 4.07
Sep4 22.6 22.3 0.9346 4.08 4.17 4.11 4.23 4.20

WSJ0-3mix test-dataset
Sep1 17.9 17.3 0.8702 3.76 3.86 3.88 3.91 3.89
Sep2 19.7 19.5 0.9051 4.01 4.05 4.01 4.08 4.11
Sep3 18.6 17.9 0.8837 3.86 3.98 3.91 4.07 4.01
Sep4 21.8 21.3 0.9150 4.04 4.10 4.07 4.14 4.09

WSJ0-4mix test-dataset
Sep1 15.8 15.5 0.8414 3.52 3.67 3.75 3.81 3.78
Sep2 17.4 17.0 0.8896 3.92 3.97 3.94 4.01 4.03
Sep3 16.3 16.01 0.8522 3.70 3.84 3.87 4.03 3.98
Sep4 20.9 20.5 0.9011 3.98 4.02 4.00 4.08 4.04
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6.3 Comparison with other speech separation tools in few ( n ≤ 3) source mixtures.

Here, we evaluate how the proposed technique’s performance compares to other state of the art speech
separation tools. The results are reported in table 3. In wsj0-2mix, Sep4 based speech separation improves
SI-SNRi and SDRi of SepFormer+DM by 0.3 and SDRi by 0.5 respectively. In this dataset, sep4 achieves
a SI-SNRi score of 22.6 which has a deviation of 1.5 from the best performing tool MossFormer2. With
regards to SDRi, sep4 attains a score of 22.9 which has a deviation of 0.6 from the best performing tool
TF-GridNet. In wsj0-3mix, the scalability of the proposed technique to high source mixtures is evidence as
compared to the other tools. While the performance of SepFormer + DM with regard to SI-SNRi and SDRi
drops by 2.8 and 2.7 respectively in the wsj0-3mix dataset when compared to its performance in wsj0-2mix,
the performance of Sep4 based speech separation drops marginally by only 0.8 and 1.0 respectively in the two
metrics. This is a signal of the ability of deep modularity technique to generalize to mixture with high sources.
MossFormer2 SI-SNRi score drops to 22.2 in wsj0-3mix as compared to 24.1 in the wsj0-3mix dataset (i.e. a
1.9 drop). In wsj0-3mix dataset sep4 registers the second best SI-SNRi score of 21.8 which has a deviation of
0.4 from the best performing tool MossFormer2. The results show that the proposed unsupervised technique
is competitive as compared to the supervised based state of the art speech separation techniques.

Table 3: Comparing the results of the proposed technique with other state of the art speech separation tools.
WSJ0-2mix test-dataset
Model SI-SNRi SDRi

TF-GridNet Wang et al. (2023) 23.5 23.6
MossFormer2 Zhao et al. (2024) 24.1 -
SepFormer Subakan et al. (2021b) 20.4 20.5
SepFormer+DM Subakan et al. (2021b) 22.3 22.4
Wavesplit Zeghidour & Grangier (2021b) 21.0 21.2
Wavesplit+DM Zeghidour & Grangier (2021b) 22.2 22.3
DeepCASA Liu & Wang (2019b) 17.7 18.0
ConvTasnet Luo & Mesgarani (2019b) 15.3 15.6
Sep1 19.6 19.8
Sep2 21.9 22.1
Sep3 20.6 21.0
Sep4 22.6 22.9

WSJ0-3mix test-dataset
MossFormer2 22.2 -
SepFormer 17.6 17.9
SepFormer+DM 19.5 19.7
Wavesplit 17.3 17.6
Wavesplit+DM 17.8 18.1
ConvTasnet 12.7 13.1
Sep1 17.9 18.1
Sep2 19.7 19.7
Sep3 18.6 19.0
Sep4 21.8 21.9

6.4 Comparison with other speech separation tools in high( n ≥ 5) source mixtures.

Here, we evaluate the performance of the proposed technique in mixtures with many sources. The results
are shown in table 4. Sep4 based speech separation outperforms the existing tools by 0.2, 0.3 and 2.0
when evaluated on wsj0-5mix, Libri5Mix and Libri10Mix dataset on SDRi metric. This shows the proposed
technique can scale to high source mixtures and generate quality estimated sources.

6.5 Results on WHAM! and WHAMR! datasets

We also evaluated the proposed technique in dataset that contains noise and reverberation. The results of the
performance of the proposed technique on WHAM and WHARM datasets are shown in table 5. For WHAM
dataset, the model performs denoising in addition to speech separation. In that case it must add a partition
for noise. For WHARM dataset, the model performs denoising, dereverberation and speech separation. The
results on the WHAM! and WHAMR! datasets are compared to the other state of the art tools. Speech
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Table 4: Performance of the proposed technique on high source mixtures as compared to other tools that
can perform high source mixtures separation.

WSJ0-5mix test-dataset
Model SDRi

ConvTasNet Luo & Mesgarani (2019a) 6.8
DPRNN Luo et al. (2020) 8.6
MulCat Nachmani et al. (2020) 10.6
Hungarian Dovrat et al. (2021) 13.2
Sep1 10.4
Sep2 12.3
Sep3 10.9
Sep4 13.4

Libri5Mix test-dataset
SinkPIT Tachibana (2021) 9.4
MulCat Nachmani et al. (2020) 10.8
Hungarian Dovrat et al. (2021) 12.7
Sep1 9.6
Sep2 11.5
Sep3 10.1
Sep4 13.0

Libri10Mix test-dataset
SinkPIT Tachibana (2021) 6.8
MulCat Nachmani et al. (2020) 4.8
Hungarian Dovrat et al. (2021) 7.8
Sep1 7.9
Sep2 8.1
Sep3 9.3
Sep4 9.8

separation based on Sep4 registers the best results in both datasets as compared to other state of the art
results. This shows that the proposed technique is able to deal with mixtures with noise and reverberation.

Table 5: Comparing the results of the proposed technique with other state of the art speech separation tools
on WHAM and WHARM test-dataset .

WHAM test-dataset
Model SI-SNRi SDRi

SepFormer Subakan et al. (2021b) 14.7 15.1
SepFormer+DM Subakan et al. (2021b) 16.4 16.7
Wavesplit+DM Zeghidour & Grangier (2021b) 16.0 16.5
ConvTasnet Luo & Mesgarani (2019b) 12.7 -
Sep1 15.6 15.9
Sep2 16.4 16.8
Sep3 15.8 16.0
Sep3 17.2 17.4

WHARM test-dataset
SepFormer 11.4 10.4
SepFormer+DM 14.0 13.0
Wavesplit+DM 13.2 12.2
ConvTasnet 8.3 -
BiLSTM Tasnet 9.2 -
Sep1 13.4 14.0
Sep2 14.1 14.4
Sep3 13.6 14.3
Sep3 15.0 15.4

6.6 Selecting similarity threshold θ

Selecting the ideal threshold (θ) when creating adjacency matrix is not trivial. If θ is high, we risk losing
important relationships between frames. On the other hand, selecting low θ results in a large graph dominated
by uninformative edges and increases the clustering time. To select the optimum θ we conducted experiments
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with different datasets where we varied the value of θ and recorded modularity and the number of clusters
generated. The graph showing how modularity and number of clusters generated vary when using ws0-5mix
test dataset is shown in figure 5. The modularity values in figure 5 have been normalised by multiplying by
100, and values of number of clusters have been normalised by multiplying by 10 for easy visualisation. As
can be seen in figure 5, as the similarity increases, modularity increases at the risk of generating a singleton
partition. Decreasing the similarity lowers modularity and the risk of generating extra partitions increases.
In our case we selected a θ = 0.3. The same threshold is used in all the experiments.

Figure 5: Graph showing how modularity and number of clusters vary as we change the similarity threshold

7 Ablation

7.1 k−means vs deep modularization

Here, instead of using deep modularization to generate partitions, we replace it with the classical k-means
where we set k = 20. Concretely, after generating T-F bins or raw speech blocks features using a frozen
pre-trained encoder, we exploit k-means to generate partitions which are then used for mask generation. We
exploit k-means for the two versions:

1. k-means (raw speech blocks): Here k-mean is applied to cluster features of raw speech blocks.

2. k-means (T-F bins): Here k-mean is applied to cluster features of T-F bins.

The mask generation and speech reconstruction remains the same as described in section 4. We compare
the results of quality of speech separated based on k-means and that of deep modularization. Since in k-
means we use frozen pre-trained encoder to generate features of the input, we compare its results with that
of Sep1 and Sep2 which also employ frozen encoder. The results are shown in table 6. The results show
that deep modularization achieves superior results as compared to that of k-means. This shows that deep
modularization is better at capturing relationship between T-F bins or raw speech blocks as compared to
k-means.

7.2 Effect of input contamination during pre-training

Here, we investigate if training a pre-trained model with contaminated inputs is beneficial to the downstream
task of speech separation. Therefore, we seek to compare separation results generated when the pre-trained
encoder is trained on contaminated input vs clean input. To train an encoder on uncontaminated inputs,
given a raw input of a clean speech signal x ∈ RT , we generate spectrogram points (T-F bins) as described
in section 3.1.1. We then design a function f : O 7→ Rd that maps the T-F bins to d-dimensional vectors by
encouraging the representations of pairs of T-F bins from a given speaker to be closer to each other than the
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Table 6: Comparing the results of the proposed technique with other state of the art speech separation tools.
WSJ0-2mix test-dataset

Model SI-SNRi SDRi
Sep1 19.6 19.8
Sep2 21.9 22.1
k-means(raw speech blocks) 17.5 17.8
k-means(T-F bin) 17.3 17.4

WSJ0-3mix test-dataset
Sep1 17.9 18.1
Sep2 19.7 19.7
k-means(raw speech blocks) 15.5 15.9
k-means(T-F bin) 15.1 15.7

representations of T-F bins from another random speaker( i.e, We do not apply any data augmentations to
the T-F bins). Therefore, given n clean speeches from n different speakers, we transform the n speeches into
n STFT representations and extract equally sized T-F bins from them. Let X̄ denote the set of all T-F bins
generated from the speeches n. Let the function P(., . | X̄) be viewed as an augmentation pair generator
such that it picks two pairs of T-F bins from X̄ belonging to the same speaker. Given a batch of size b, for
a positive pair (xi, x+

i ), we consider all the other b − 2 to be the negative examples. We train the model
f as described in section 3.1.1 with the loss defined in equation 5. For an input in time domain, given a
time-domain speech signal x ∈ RT , the signal is processed similar to the discussion in 3.1.2 to to generate
a set of blocks L ∈ RF ×W ×N . Here, N represents the number of blocks generated. Given n clean speech
signals, the resulting set X̄ of N × n blocks is used to train a model f as described in section 3.1.2 with the
loss defined in equation 5. We trained four different SepFormer configurations: (i) SepFormer clustering of
T-F bins based on frozen encoder trained using uncontaminated T-F bins (USep1), (ii) SepFormer clustering
of raw speech blocks based frozen encoder trained using uncontaminated raw speech blocks (USep2), (iii)
SepFormer clustering of T-F bins based on fine-tuning an encoder trained using uncontaminated T-F bins
(USep3), (iv) SepFormer clustering of raw speech blocks based on fine-tuning an encoder trained using
uncontaminated raw speech blocks (USep4). The results of the proposed technique when the pre-trained
model trained on non-augmented input vs that trained on augmented input when evaluated on the wsj0-2mix
and the wsj0-3mix datasets is shown in table 7. For all the configurations, if the pre-trained model is trained
on uncontaminated inputs the quality of separation drops on both SI-SNRi and SDRi. The same trend was
noticed in all the datasets. This shows how important data contamination is important when training a
pre-trained model that tailored for speech separation.

Table 7: Comparing the results of the proposed technique when pre-trained model is trained using augmented
vs non-augmented inputs

WSJ0-2mix test-dataset
Model SI-SNRi SDRi

Sep1 19.6 19.8
Sep2 21.9 22.1
Sep3 20.6 21.0
Sep4 22.6 22.9
USep1 19.2 19.4
USep2 21.5 21.9
USep3 20.1 20.8
USep4 22.2 22.4

WSJ0-3mix test-dataset
Sep1 17.9 18.1
Sep2 19.7 19.7
Sep3 18.6 19.0
Sep4 21.8 21.9
USep1 17.5 17.8
USep2 19.2 19.5
USep3 18.1 18.8
USep4 21.3 21.5
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8 Conclusion

This work proposes an unsupervised technique of speech separation. The technique relies on a pre-trained
model to generate input features which are then used downstream. In the downstream task, we combine
deep neural network and graph clustering objectives to create clusters of spectrogram points or raw speech
blocks features. The clusters are created such that T-F bins or raw speech blocks dominated by a given
speaker are clustered together. We conduct extensive experiments with a number of dataset and establish
that the proposed tool achieves state of the art results.
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