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ABSTRACT

Thermal analysis is an important topic in many fields, such as building, machin-
ery, and microelectronics. As the types of materials in a system are increas-
ingly diverse, conventional numerical methods or machine learning-based surro-
gate models face tremendous challenges in computation cost and accuracy. Fur-
thermore, a realistic system usually suffers from random fabrication variations
that induce significant errors in model prediction. To overcome these issues, we
propose Graph Neural Networks (GNN) as a framework for thermal analysis of
composite materials with diverse thermal conductivity and thermal interface vari-
ations. Using chiplets in microelectronics as the study case, we first partition
the system into sub-blocks based on their material property. Then we develop
a physics-constrained GNN as the aggregator to integrate local models of each
sub-block into a system, with the edge to represent the thermal interaction. In the
presence of interface variations, we introduce continual adaptation of the GNN
model, using a minimum number of training samples. Compared with previous
solutions, our GNN model is robust for various material and interface conditions,
and efficient in the prediction of hot-spot. All codes are publicly available at
https://github.com/thermalanalysis/iclr

1 INTRODUCTION

Figure 1: Top-Left: Heat accumulation with more voids in
TIM. Top-Middle: Real photo of TIM defects Okereke &
Ling (2018). The Rest: Thermal conduction under different
ratio of defects in TIM.

Thermal analysis is of great impor-
tance across numerous industrial do-
mains, such as material characteri-
zation, environmental testing, elec-
tronics design and manufacturing.
In microelectronics, an efficient and
precise thermal prediction helps en-
sure the chip meet various speci-
fications at each stage of the de-
sign process. The traditional fi-
nite element method (FEM), while
capable of delivering highly accu-
rate results, is burdened by its sub-
stantial computational cost Huang
& Usmani (2012). Numerous ma-
chine learning (ML) methods, such
as physics-informed neural network
(PINN) Raissi et al. (2019), have
emerged as the lightweight alterna-
tives to FEM. However, these meth-
ods are restricted to scenarios involving only uniform or dual-material designs, which are not well-
suited for a realistic complex system.

Moreover, both FEM and ML-based methods encounter two common challenges. Firstly, whenever
a design parameter undergoes a change, even if it is a minor localized change, such as introducing a
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Figure 2: Block Decomposition: Divide the block into small sub-blocks, each region with a uniform
material. Evaluate the thermal solution locally using the numerical solver.

new power profile, the previous thermal analysis becomes obsolete, requiring another round of com-
prehensive full-scale analysis. Secondly, these methods lack the flexibility to address the interface
defects introduced by the manufacturing process, For instance, numerous studies (Okereke & Ling
(2018); Due & Robinson (2013); Ramos-Alvarado et al. (2013); Otiaba et al. (2014)) have investi-
gated the impact of voids appearing in thermal interface material (TIM), a thin layer between the
silicon die and the heat spreader to enhance the heat conduction. As shown in Fig. 1, the presence
of these voids significantly reduces the efficiency of thermal transfer between two materials, thereby
compromising the reliability of the system. Besides, due to the randomness in the shape, location,
and intensity of these voids, each individual system may exhibit unique patterns of defects. Neither
FEM nor ML methods can rapidly adapt to such random variation and regenerate an updated thermal
output, resulting in a lack of robust analysis tools to predict the actual thermal distribution within
flawed yet more practical scenarios.

To overcome the challenges mentioned above, we propose to use the physics-constrained graph neu-
ral network (GNN) to conduct thermal analysis on the composite materials, with continual learning
of GNN to capture the impact of random variations. Our contributions are as follows:

• Block Decomposition: A domain decomposition/aggregation strategy by partitioning a
composite structure into sub-blocks based on their material properties, enabling the nu-
merical solver to efficiently produce thermal solutions at the sub-block (local) level.

• Thermal Aggregation: A physics-constrained GNN to aggregate and connect the local solu-
tions by embedding the physics law of thermal transfer into the message-passing interaction
of the graph.

• Continual Graph Learning: A continuous adaptation approach by adding trainable nodes
into the graph. These nodes represents random defects with unknown conductivity, such
as the interface voids in Fig. 1. With minimal training overhead and without the need to
retrain the GNN model, our framework quickly adapts to the change caused by the defects
and regenerate accurate thermal prediction.

2 BACKGROUND

Physics-Constrained GNN GNN Scarselli et al. (2008) has received an increased interest in char-
acterizing the physical laws that govern the dynamics of particle-based systems. For instance,
Sanchez-Gonzalez et al. (2020) propose Graph Network-based Simulators (GNS) as surrogate mod-
els for fluid simulation through a message-passing strategy. Pfaff et al. (2020) further enhances the
GNS by incorporating both mesh-space and world-space messages into the node and edge embed-
dings. Besides that, Li et al. (2022); Allen et al. (2023); Bhattoo et al. (2022); Hernández et al.
(2022) all prove the GNN’s ability to generalize the physical laws across diverse domains, including
robotics simulators, molecular dynamics, and rigid body dynamics. Despite the wide application of
GNN in physics, thermal analysis has not been extensively explored.

Thermal Analysis To address the high computational cost associated with FEM, several ML-
based algorithms have emerged as alternatives. Proposed in Raissi et al. (2019), PINN aims to
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Figure 3: Thermal Aggregation: Given the local solution for each sub-block from the block decom-
position step, model thermal transfer between sub-blocks through message passing.

discover solutions for a partial differential equation (PDE) by leveraging the benefits of automatic
differentiation in machine learning. It has been utilized for solving thermal heat transfer problems
in Cai et al. (2020); Hennigh et al. (2021). However, these studies typically focus their analysis
on a uniform material. Tod et al. (2021) proposes a dual PINN model for a tool-composite system,
incorporating additional loss terms to constrain the heat flux across the interface. However, the
scalability to handle more complex systems with multiple materials becomes challenging due to the
exploding number of loss terms.

Furthermore, the thermal solutions derived from PINN are constrained by the specific power maps
they were trained on, which limits their utility when generalized to unseen cases. To overcome this
issue. Liu et al. (2023) applies DeepONets Lu et al. (2021) to learn the function operators such that
it can take arbitrary PDE configurations as the function inputs. He & Pathak (2020); Ranade et al.
(2022) utilize AutoEncoder (AE) to handle unseen power maps. Nevertheless, Liu et al. (2023);
Ranade et al. (2022) suffers from scalability issues due to its model complexity. He & Pathak
(2020) lacks the necessary physical constraints governed by PDE.

Yang et al. (2023); Sanchis-Alepuz & Stipsitz (2022) use similar approaches by applying physics-
constrained GNN to transient thermal analysis. To improve the interpretability of the GNN, Yang
et al. (2023) proposes to use RC models rather than a trainable function to regulate thermal flow.
Sanchis-Alepuz & Stipsitz (2022) introduces an additional layer of physical calculations involving
material density and heat capacity. However, both approaches consider each node as representing an
individual thermal point rather than a block, which makes their method less effective in the analysis
of a complex system.

3 METHODOLOGY

As shown in Algorithm 1, our framework comprises three main components: (1) Block Decompo-
sition, (2) Thermal Aggregation using GNN, and (3) Continual Graph Learning. We will begin by
providing an overview of each step in section 3.1 and subsequently delve into the implementation
details in section 3.2.

3.1 FRAMEWORK

Block Decomposition. As shown in Fig. 2, we take a complex 2D microelectronic structure, such
as chiplets, as our study case and partition it into N sub-blocks. The criteria is that each sub-block
is either sufficiently small in size or contains a uniform material. This enable us to conduct swift
thermal analysis using a numerical solver. At this step, each block is not aware of its adjacent
blocks, thus any new boundary created by this partition is thermally isolated. In other words, we
place a barrier in between any two sub-blocks to prevent the thermal exchange of heat. Convection
boundary conditions are exclusively assigned to the sub-blocks adjacent to the actual boundary.

This decomposition offers us two advantages. Firstly, it provides the flexibility to perform partial
thermal analysis while keeping the previously computed local solutions intact. Instead of conduct-
ing thermal analysis at the full chip scale, we can employ this ”divide and conquer” strategy to reuse
existing solutions. Secondly, through material-based decomposition, we can maximize the utility
of efficient PINN methods for analyzing uniform materials. For instance, we can train two Deep-
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Algorithm 1 Thermal Decomposition/Aggregation and Graph Continual Learning

1: function ChipDecomposition (designs, defects)
2: for each Di in designs do
3: Decompose Di into N subblocks Dlocal

i = {(pj , kj), j ∈ [0, N)}
4: for each dj = (pj , kj) in Dlocal

i do
5: tj ← Numerical Solver(dj)
6: end for
7: Convert T local

i = {tj , j ∈ [0, N)} to Gi = (V, E)
8: T global

i ← Numerical Solver(Di)
9: Tnovel

i ← Numerical Solver(Di, defects)
10: end for
11: return G = {Gi}, Tglobal = {T global

i }, Tnovel = {Tnovel
i }, i ∈ [0,#designs)

12: end function
13:
14: function Continual Learning(Gtrain, Tnovel,M)
15: T̂ ← M(Gtrain)
16: novel loc← where Abs(T̂ − Tnovel) > threshold
17: G′train ← Insert defects nodes Vnew into each Gtrain ∈ Gtrain at location novel loc
18: Train Vnew by ∂(MSE(M(G′train)), Tnovel)/∂Vnew
19: return Vnew, novel loc
20: end function
21:
22: function Main (designs, defects)
23: Gx, Ty, T novel

y ← ChipDecomposition(designs, defects)

24: Gtrainx , T train
y , T train

y novel ← Gx[: Ntrain], Ty[: Ntrain], T novel
y [: Ntrain]

25: Gtestx , T test
y , T test

y novel ← Gx[Ntrain :], Ty[Ntrain :], T novel
y [Ntrain :]

26: Train GNNM using Gtrainx , T train
y

27: EvaluateM using Gtestx , T test
y

28: Vnew, loc v ← Continual Learning(Gtrainx , T train
y novel,M)

29: Gtestx novel ← Insert defects nodes Vnew into each Gtest
x ∈ Gtestx at location loc v

30: EvaluateM using Gtestx novel, T test
y novel

31: end function

OHeat Liu et al. (2023) models for a dual-material design. All sub-blocks can be sent to these two
models based on their materials for efficient thermal prediction.

Thermal Aggregation. Given the power map and the materials of each sub-block, we collect
the local thermal predictions from the numerical solver, denoted as T = {T1, T2, . . . , TN}, con-
catenated them with the corresponding power map input and the material conductivity to form the
sub-block features V = {Ti∥Pi∥ki, i ∈ [0, N)}. Based on the physical location of each sub-block,
the subdivided chiplet can be regarded as an undirected graph G = {V, E}, with each node vi ∈ V
representing a sub-block and its neighbors Ni consisting of the adjacent sub-blocks that connected
by edge eij ∈ E . Besides, each edge eij is assigned a binary encoded ID to characterize the four
directions in 2D plane based on the relative location of vi and vj . The entire graph is then sent
to the GNN for thermal aggregation G −→ Ĝ. The output Ĝ = {V̂, E} will be in the same struc-
ture of G with each nodes v̂i ∈ V̂ contains the prediction thermal T̂i. Intuitively, we eliminate the
barriers that obstruct thermal exchange and employ GNN to conduct message-passing strategy for
thermal exchange. The primary task is to train a GNN using dataset {GTrain

local , T Train
global } collected

from the numerical solver, and deploy it to the unseen testing case to check its aggregation accu-
racy. Ideally, the testing prediction obtained through this domain aggregation strategy should match
the golden results achieved when considering the entire chiplet as one large, unified block. Further
detail regarding the structure of GNN will be discussed in section 3.2.1.
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Figure 4: Continual Graph Learning: Insert defect nodes at the locations where GNN prediction
significantly differs from the actual thermal measurement. The defect nodes are trained with low
volume of training data. Other GNN nodes and edges trained from the previous step is preserved.

Continual Graph Learning. Following the establishment of a GNN in the previous step, our
next objective is to study how to effectively adapt this GNN to random variations. This includes
scenarios where the actual chip may have defects or impurities resulting from fabrication variations,
thus impeding the thermal exchange at the specific regions. We assume our block decomposition has
a fine enough granularity so that these defects may exist only at the boundaries of each individual
block. Prior research (Okereke & Ling (2018); Due & Robinson (2013); Ramos-Alvarado et al.
(2013); Otiaba et al. (2014)) also indicated that these manufacturing defects are more likely to occur
in the regions adjacent to the interfaces between two materials. Therefore the thermal prediction
of the local sub-block will remain the same, and the input graph G to the GNN is not affected as
well. But the prediction output Ĝ from GNN will differ from the golden thermal solution, as the
latter reflect the presence of hotspots caused by the defects. The goal is to perform a continual
graph learning with minimal training overhead so that the new prediction Ĝ can also account for the
presence of those hotspots. We will address this problem in section 3.2.2

3.2 PHYSICS-CONSTRAINED GRAPH NETWORK

3.2.1 THERMAL ANALYSIS

As shown in Fig. 3, our proposed GNN is an adapted version of the previously introduced
GNS Sanchez-Gonzalez et al. (2020), comprising an encoder, processor, and decoder. In our case,
we eliminate the decoder and integrate the encoder into the processor. We apply multi-steps of
message-passing through a chain of processors. At each step, the nodes and edges are partially en-
coded again by using the previous intermediate output and the original edge ID. Since those edge
IDs don’t closely adhere to any physical rules but as a auxiliary purpose, the re-encoding prevents
this artificial information from propagating through the message-passing.

Processor. A processor Ĝi−1 −→ Ĝi is a GNN layer conducting single-step thermal exchange.
It consists of the a edge encoder fe, a node encoder fv and one aggregator Agg(xe). For each
node vi, we first obtain the edge embedding xij

e = fe(vi, vj , eij), where vj is the attribute of vi’s
neighbour and eij is the edge ID. This setup is considered as evaluating the thermal contribution
from the neighbouring node to the center node. Next we apply the aggregator to gather these con-
tributions and concatenate them with the center node’s features to generate the node embedding
T̂i = fv(vi, Agg(xi

e)), which is the output of the processor. The encoder functions fe and fv are
trainable function, implemented by MLP. Agg(xi

e) function is the element-wise sum of the edge
embeddings xij

e for all edges connecting to the node i.

Physical Interpretation. Thermal PDE is written as
k · ∇2T + q = 0 (1)

where k is the conductivity, q is the heat source term. The edge of the block is governed by the heat
flux boundary condition

−k∂T
∂x

= q0 (2)

5



Under review as a conference paper at ICLR 2024

where q0 is the surface heat flux. When q0 equals zero, the surface is entirely isolated, analogous to
the boundary wall we introduce between local blocks during chip decomposition. For a single sub-
block that contains four neighbors, given power map q, conductivity k, and four boundary conditions
in the shape of (2), a fixed thermal solution can be determined. Under this context, we can consider
our edge embedding function fe as the process of finding those four boundary conditions. And the
aggregator Agg(xe) and node encoder fv are together as the PDE solver to take the initial thermal
T̂i−1 and all boundary conditions to find the thermal solution.

3.2.2 CONTINUAL GRAPH LEARNING

Given the randomness of the location and magnitude of each variation, it is infeasible to conduct
a separate thermal analysis for every individual case. Even with our proposed GNN approach, the
process of preparing new training samples to retrain the GNN incurs a significant amount of com-
putational and storage costs, which can offset the advantages of obtaining highly accurate thermal
predictions. Considering that our trained GNN has already demonstrated the capability to general-
ize the physical laws governing thermal transfer, we propose to preserve the GNN while altering the
input graph G to accommodate the novel behaviors of the materials.

As shown in Fig. 4 and Algorithm 1, we propose to insert trainable defects nodes Vnew into G at the
location where abnormal behaviors emerge. For example, if a thermal barricade is detected between
node vi and vj , a new defect node vk will be placed in the middle to represent the transitional mate-
rials with unknown conductivity, and the edge eij will be broken into eik and ekj . These new nodes
represent the anomalous thermal exchanges between the original two nodes. Following this pattern,
we take a small amount of the original training samples from GTrain

local , insert the physical nodes Vnew
at the consistent location of each graph G ∈ GTrain

local . Then we send the updated training dataset,
{G′, T novel

global} to GNN for nodes training by conducting back-propagation with the gradient respect
to Vnew. This training procedure can be viewed as the process of finding the hidden conductivity of
Vnew.

Once the training converges, we insert Vnew into any testing graphs before forwarding them to
the GNN. Subsequent thermal predictions will then incorporate this learned material, resulting in
outputs that accurately reflect the abnormal thermal behavior.

4 EXPERIMENT

In this section, we first test the aggregation performance of our proposed framework using unseen
test samples encompassing various combinations of materials. While keeping the GNN fixed, we
subsequently introduce defects into the previous training and testing dataset and apply our contin-
uous learning strategy to accommodate these variations. Finally, we compare the efficiency of our
algorithm with traditional FEM across varying levels of task complexity. All experiments are im-
plemented using PyTorch Paszke et al. (2019) on NVIDIA GeForce RTX A6000 platform. The
prediction results are compared with the numerical solution obtained from the FEM solver.

Experiment Setup. For the composite material task in experiment 4.1 and 4.2, we test our algo-
rithm in a 3D 1mm×1mm×0.5mm block with the resolution of 100×100×1. We further decompose
it into a 5×5 grid in x, y dimension, with each sub-block having the resolution of 20×20. We assume
each sub-block consists of uniform material and is randomly assigned a conductivity value chosen
from the options of 1W/(mK), 10W/(mK), 50W/mK and 100W/(mK). For the uniform mate-
rial task in experiment 4.1, we conduct tests with various resolutions and different sub-block sizes.
The specific values are provided in the caption of Fig. 6. For most sub-blocks in these setups, we
assign them with a 2D power map generated by the Gaussian random field and normalize the power
values within the range of 0 to 1mW . The edges and the bottom of the block are given a fixed
Tamb = 298K boundary condition. All results presented below are on the power map layer.

Dataset Preparation. We generate 400 blocks with random power map inputs and conductivities.
Out of these blocks, 320 are allocated for training, 60 for validation, and 20 for testing purposes.
For each block, we use the FEM solver to generate both local and global solutions. The local results
are transformed into the graph input for the GNN. The global solutions obtained from the numerical
solver serve as the reference for calculating losses and evaluating accuracy.
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For the purpose of continual learning, we utilize the same power map and conductivity configuration
as in the previous experiment. We then perform a new thermal analysis at the global level using the
FEM solver. This time, we manually insert heat isolation walls into the blocks to simulate interface
defects that obstruct thermal flux. These new evaluations are viewed as a variation of the previous
golden one. Out of the 400 blocks mentioned earlier, we only employ a subset of them for the
purpose of continual learning. The performance of using different numbers of training samples is
analyzed in section 4.2.

Figure 5: Comparison of our prediction results with the reference solutions across different combi-
nations of materials and power map inputs.

Figure 6: Comparison of our prediction results with the reference solutions on uniform material with
different levels of resolution. Sub-block resolution setup from left to right: 20×20 for all 200W/mK
cases, 10× 10 for columns 4-6, and 5× 5 for column 7. All block resolutions are set to 100× 100.
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Figure 7: Performance of continual graph learning after inserting defect (highlighted in red color)
into the block.

Graph Neural Network Structure and Training. Our GNN consists of three processors. The
node and edge encoders in each processor share the same three-layer MLP structure, with 512 neu-
rons in the first two layers and 256 neurons in the output layer. All activation functions are configured
as Tanh. We employ the Adam optimizer with a learning rate of 0.0001 and weight decay of 0.00005
for both the initial training on the GNN and the continual training on defect nodes. Both training
phases encompass 2000 epochs to ensure convergence, with the mean square error serving as the
loss function.

4.1 PERFORMANCE ANALYSIS OF GRAPH AGGREGATION

As shown in Fig. 5 and Fig. 6, our proposed algorithm demonstrates stable thermal aggregation
across different tasks involving blocks with uniform and composite materials. Particularly in sce-
narios involving materials with high conductivity, such as 50W/mK and 100W/mK, our method
effectively simulates the thermal flux across multiple sub-blocks. For example, as shown in the
second column of Fig. 5, our method can predict the thermal flow across the left and center of the
block, considering the heat source located at the bottom and right side. Furthermore, in the case of
materials with low conductivity, our model can accurately represent the block’s inability to dissipate
thermal energy, resulting in the formation of a hot spot. Our GNN also adheres to the physics at
the boundary of the block, as it prevents further thermal transfer when approaching the edge. This
demonstrates that the GNN effectively incorporates the edge of the graph into the thermal flux. As
the sub-blocks near the boundary lack one or two thermal flux contributions from neighboring nodes,
the edge or corner regions retain their original thermal distribution.

4.2 CONTINUAL GRAPH LEARNING

As indicated in red lines in the second row of Fig. 7, we evaluate the performance of continual learn-
ing by manually introducing thermal blockage to simulate defects with varying levels of difficulty.
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We employ straight-line blockages to verify whether our GNN, with the inserted defects nodes in
the input graph, can predict the obstruction of thermal flow. Subsequently, we introduce some turns
in the blockages to observe if the corner regions can accumulate heat and generate hot spots. Fig. 7
illustrates that our algorithm can correctly handle these tasks. Furthermore, based on the experimen-
tal results, our method is not limited to defects occurring at the interface of two materials. It can
also accurately handle defects that occur within a single material.

Table 1: Mean absolute percentage errors with different training samples used for continual learning

MAPE Training Samples

Experiments 100 50 20 10 5

Case1: (10, 100) W/mK 0.027 0.028 0.031 0.072 0.188
Case2: (1, 10, 50, 100) W/mK 0.038 0.041 0.057 0.113 0.232

All results shown in Fig. 7 use 20 training samples to train the defect nodes. Table 1 displays the
Mean Absolute Percentage Errors (MAPEs) for various training sample sizes. It turns out that train-
ing the defect nodes incurs very little training cost while achieving good performance. Compared to
the timing and memory cost of retraining the GNN to adapt to every new variation, the use of defect
nodes is much more flexible and memory-efficient.

4.3 SPEED UP IN THERMAL PREDICTION

Our framework utilizes the classic “divide and conquer” strategy by first calculating the local solu-
tion using a numerical solver and then combining the result using GNN, which improves the time
complexity from O(n2) to O(nlogn). Table 2 in rows one and two show the time cost comparison
for N ×N blocks between using FEM and our framework. All sub-blocks are set to the resolution
of 50 × 50. The average time consumption grows exponentially in FEM but remains stable in our
approach. Especially in the case of 2500 × 2500, our method achieves a 50× speedup.

Additionally, in response to design changes, our proposed algorithm offers users flexibility by requir-
ing only the re-evaluation of a single block from the numerical solver. The updated result from this
sub-block is then incorporated with the previous analyses within the GNN framework to generate
the new solution. Our approach significantly enhances workflow efficiency and reduces turnaround
times as shown in row three of Table 2.

Table 2: Computation time of thermal prediction by (1) Using FEM only for the entire block, (2)
Using FEM for all sub-blocks and GNN for merging, and (3) Using FEM for a single sub-block and
GNN for merging the new local updated solution.

Computation Time (s) Block Resolution N×N Speed up
Experiments 50×50 250×250 500×500 2500×2500 2500×2500

FEM 0.004 0.753 3.971 579.09 1
All sub-block FEM analysis + GNN 0.547 0.653 0.975 9.057 50×

Single sub-block FEM update + GNN 0.547 0.558 0.579 1.091 500×

5 CONCLUSION

In this paper, we present a framework for conducting thermal analysis on composite materials
through a block decomposition and graph aggregation strategy. Our approach leverages the message-
passing capabilities of a physics-constrained GNN to predict thermal interactions between sub-
blocks. Tested across various tasks with different material combinations and block resolutions, our
method consistently achieves superior prediction accuracy. Additionally, we introduce a continual
graph learning method by incorporating trainable defect nodes to represent voids that may appear at
material interfaces. With minimal training overhead, our framework rapidly adapts to variations and
produces highly accurate thermal predictions.
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