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Unfamiliar Finetuning Examples Control How
Language Models Hallucinate

Anonymous Authors1

Abstract
Large language models are known to hallucinate
when faced with unfamiliar queries, but the under-
lying mechanism that govern how models hallu-
cinate are not yet fully understood. In this work,
we find that unfamiliar examples in the models’
finetuning data – those that introduce concepts
beyond the base model’s scope of knowledge –
are crucial in shaping these errors. In particular,
we find that an LLM’s hallucinated predictions
tend to mirror the responses associated with its un-
familiar finetuning examples. This suggests that
by modifying how unfamiliar finetuning exam-
ples are supervised, we can influence a model’s
responses to unfamiliar queries (e.g., say “I don’t
know”). We empirically validate this observation
in a series of controlled experiments involving
SFT, RL, and reward model finetuning on Trivi-
aQA and MMLU. Our work further investigates
RL finetuning strategies for improving the factual-
ity of long-form model generations. We find that,
while hallucinations from the reward model can
significantly undermine the effectiveness of RL
factuality finetuning, strategically controlling how
reward models hallucinate can minimize these
negative effects. Leveraging our previous obser-
vations on controlling hallucinations, we propose
an approach for learning more reliable reward
models, and show that they improve the efficacy
of RL factuality finetuning in long-form biogra-
phy and book/movie plot generation tasks.

1. Introduction
Large language models (LLMs) have a tendency to “hallu-
cinate,” generating plausible-sounding responses that are
factually incorrect. This behavior is especially prominent
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when models are queried on concepts that extend beyond
the models’ knowledge base (Kandpal et al., 2023; Kalai
& Vempala, 2023) (e.g., asking the model to generate the
biography of a little-known person). We will refer to these
queries as unfamiliar inputs. Rather than fabricating in-
formation when presented with unfamiliar inputs, models
should instead verbalize their uncertainty or confine their
responses within the limits of their knowledge. The goal of
our work is to teach models this behavior, particularly for
long-form generation tasks.

Towards this goal, we first set out to better understand the
underlying mechanisms that govern how LLMs hallucinate.
Our investigation reveals that a finetuned model’s halluci-
nated responses tend to mimic the unfamiliar examples the
model’s finetuning data (i.e., finetuning examples containing
concepts unfamiliar to the pretrained model). More specifi-
cally, as test queries become more unfamiliar, we find that
LLM predictions tend to default toward the distribution of
responses associated with the model’s unfamiliar finetuning
examples. We illustrate this observation with an example in
Fig. 1. To empirically verify this phenomenon, we conduct
a series of controlled experiments, where we manipulate
the way unfamiliar finetuning examples are supervised, and
investigate the effect on the finetuned model’s predictions.
We use multiple-choice (MMLU) and short-form question
answering tasks (TriviaQA) as testbeds, where we can pre-
cisely characterize an LLM’s output distribution. Our results
show that, across different finetuning procedures including
SFT, RL, and reward model finetuning, the model predic-
tions for unfamiliar test queries indeed approach the dis-
tribution of responses in the model’s unfamiliar finetuning
examples.

Our observation suggests a recipe for minimizing factual
inaccuracies in model generations: by strategically manip-
ulating the unfamiliar examples in the model’s finetuning
data, we can steer the model’s predictions for unfamiliar
queries towards more desirable (e.g. linguistically uncertain)
responses. We leverage this insight to design better finetun-
ing techniques to improve the factuality of long-form LLM
generations. In particular, our study focuses on RL-based
approaches, where the use of reward models to supervise
finetuning makes it scalable to long-form tasks. However,
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Pretrain 
Distribution

Unfamiliar 
Finetuning 
Examples

Familiar 
Finetuning 
Examples

Finetune 
Distribution

Finetune

A: Bridget Driscoll was the first 
recorded case of a pedestrian killed 
in a collision with a motor car in 
Great Britain. Driscoll was born in 
Ireland but living in Surrey with her 
husband and …

Q: Who is Bridget Driscoll?

A: Bridget Driscoll died in a motor 
accident. 

Q: Who is Bridget Driscoll?

Distribution 1

Distribution 2

Test
Q: Who is Edith Wilson?

A: Edith Wilson was the former first 
lady of the US from 1958 to 1962. She 
was the wife of Lyndon Johnson. They 
married in 1934. Before marriage, she 
was a seamstress in Philadelphia…

A: Edith Wilson was a former first 
lady.

Figure 1. Conceptual visualization of (un)familiar finetuning examples (left), and example of model predictions mimicking unfamiliar
finetuning examples (middle and right). When finetuning on distribution 1, which contains details the model may not know, the model
outputs detailed responses at test-time with inaccuracies (red). When finetuning on distribution 2, which omits unfamiliar details, the
model produces shorter responses with fewer inaccuracies.

reward models themselves can suffer from hallucinations in
the face of unfamiliar inputs, which can diminish the effi-
cacy of RL factuality finetuning. To tackle this challenge,
we draw on our previous insights to strategically control
how reward models hallucinate. In particular, we find that
overestimated reward predictions tend to be more harmful
than underestimated reward predictions, and propose an ap-
proach for learning reward models that avoid overestimating
rewards for unfamiliar inputs, which we call conservative
reward models. On biography and book/movie plot genera-
tion tasks, we find that using conservative reward models for
RL factuality finetuning can significantly reduce the adverse
effects of reward hallucinations, and that this approach can
more reliably teach models to generate factual long-form
responses than standard SFT and RL with standard reward
models.

In summary, our work makes two primary contributions:
(1) we present a conceptual model outlining the factors that
influence finetuned LLM predictions in response to unfa-
miliar queries, and (2) we leverage our findings to develop
a more reliable approach to RL factuality finetuning for
long-form generation tasks. We hope that the insights in
our paper contribute to a better understanding of the mecha-
nisms that govern how LLMs hallucinate, and the principles
for controlling these hallucinations.

2. Problem Setting
Modern LLMs are typically trained in a two-stage pro-
cess: pretraining on broad-coverage corpora, followed
by finetuning on more specialized instruction-following
datasets (Ouyang et al., 2022). These models are prone
to generating undesirable responses when prompted with
inputs that are not well represented in their training data.
In particular, models tend to output plausible-sounding but
factually incorrect responses when queried outside its pre-
training distribution, and output nonsensical responses when
queried outside its finetuning distribution. We focus on the

former regime of hallucinations, where queries stylistically
resemble examples in the finetuning data, but require con-
cepts beyond the pretrained model’s scope of knowledge.
We call this kind of input unfamiliar to the model.

In our experiments, we will use question-answer tasks as a
testbed, though our analysis and method can apply to any
prompted generation LLM task. To isolate the effects of
distribution shift with respect to the pretraining data (rather
than finetuning data), we will evaluate model predictions
on held-out queries sampled from the same distribution as
the finetuning data. To understand how the behavior of
the model changes depending on the unfamiliarity of the
test query, our evaluation will decompose the held-out test
set into different levels of unfamiliarity. We will quantify
the unfamiliarity of a query by few-shot prompting the pre-
trained model with a few examples (sampled from the same
task) along with the query of interest, and measuring the
quality of the pretrained model’s prediction, where the qual-
ity of a prediction is quantified using task-specific metrics.
We refer to this metric as the unfamiliarity score of a query.
We consider a finetuning example to be unfamiliar if the
unfamiliarity score of its query is above a certain threshold,
and familiar otherwise.

3. Understanding How LLMs Hallucinate
In this section, we investigate the underlying mechanisms
that govern how finetuned LLMs hallucinate. We hypoth-
esize that, when face with unfamiliar inputs, model pre-
dictions mimic the responses associated with the model’s
unfamiliar finetuning examples. We will first present our
hypothesis more precisely, then validate our hypothesis with
a series of controlled experiments.

3.1. Main Hypothesis

Let us consider an LLM fθ, which maps a prompt x to a
distribution of responses Pθ(y|x). We finetune this model
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Figure 2. Prediction behavior of models finetuned with SFT on MMLU (top 2 rows) and TriviaQA (bottom row). For MMLU plots,
only test inputs with a specific ground truth label (A-D) are evaluated within each column. Solid line represents the average predicted
likelihood, and error bars represent standard deviation within the test set. For TriviaQA plots, each bar denotes the ratio of model outputs
within each category. For all plots in this figure, as inputs become more unfamiliar, model predictions default towards the distribution of
target responses in the model’s unfamiliar finetuning examples.

on a dataset D = {(xi, si)}1≤i≤N with a loss function∑
(xi,si)∈D L(fθ(xi), si), where si represents the supervi-

sion associated with xi. Depending on the choice of L, this
can represent SFT (where si is a a target response) or RL
finetuning (where si is a reward function).

While the optimal behavior that an LLM can learn dur-
ing finetuning is to output the ground-truth answer to each
query, this may not happen in practice for all finetuning
examples. For familiar finetuning examples, the pretrained
model’s representations often encode useful associations
between queries and responses, facilitating the finetuning
optimization for those examples. However, for unfamiliar
examples, which we refer to as Dunf, such helpful associ-
ations in the pretrained representations are largely absent,
making it more difficult to model these examples. Nonethe-
less, while an LLM may struggle to produce the optimal
response for each query in Dunf, it can still reduce the fine-
tuning loss by learning to predict the types of responses
associated with unfamiliar examples. More specifically, the
model can minimize the aggregate loss over unfamiliar fine-
tuning examples by producing an intelligent “blind guess”,
Punf(y) = argminP (y)

∑
(xi,si)∈Dunf

L(P (y), si), for all
unfamiliar queries. Note that Punf(y) is input-agnostic, and
depends only on the model’s unfamiliar finetuning examples.
We hypothesize that LLMs learn to predict this intelligent

“blind guess” (Punf(y)) for unfamiliar examples during
finetuning, and that they default to this prediction when
faced with unfamiliar queries at test time.

3.2. Experimental Verification of our Main Hypothesis

We will now present a series of experiments to evaluate our
hypothesis. The goal of our experiments is to verify that (1)
model predictions indeed default to Punf(y) when presented
with unfamiliar queries, and (2) this prediction behavior is
controlled by the unfamiliar examples in the models’ fine-
tuning data. Towards this goal, we analyze the prediction
behavior of different models, where unfamiliar finetuning
examples are supervised in different ways, while all other
training details are kept fixed. To evaluate our hypothesis for
different types of finetuning procedures, we finetune models
to generate responses using both SFT and RL, as well as
to predict rewards (as reward models for RL finetuning).
We use Llama2 7B (Touvron et al., 2023) as the pretrained
model. We conduct our experiments with a multiple-choice
(MMLU (Hendrycks et al., 2020)) and a short-form (Trivi-
aQA (Joshi et al., 2017)) question answering task, so that
we can precisely characterize a model’s output distributions.
For MMLU, we obtain the unfamiliarity score by few-shot
prompting the pretrained model and measuring the negative
log likelihood of the correct answer under the predicted dis-
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Figure 3. Prediction behavior of models finetuned with RL on MMLU (left) and TriviaQA (right). As inputs become more unfamiliar,
the models finetuned with the first reward function produced random guesses while models finetuned with the section reward function
produced abstain answers.

tribution. For TriviaQA, we obtain the unfamiliarity score
by few-shot prompting the pretrained model, sampling 12
responses, and measuring the number of incorrect responses.
In subsequent sections, we will extend our experiments to
long-form generation tasks. For further experimental details,
see Appendix E and F.

Supervised finetuning. First, we investigate the prediction
behavior of models finetuned with SFT to predict responses
to input queries. For this training objective, Punf(y) corre-
sponds to the marginal distribution of target responses in
the set of unfamiliar finetuning examples.

In our experiments with MMLU, we consider two different
finetuning data distributions. In the first distribution, the
target responses in both familiar and unfamiliar examples
are distributed uniformly over A-D tokens. In the second
distribution, the target responses in familiar examples are
distributed uniformly, while the target responses in unfamil-
iar examples are distributed 50% B and 50% C. For a model
finetuned on the first data distribution, Punf(y) corresponds
to the uniform distribution over A-D, while for a model
finetuned on the second distribution, Punf(y) corresponds to
50% B/50% C. In the top of Fig. 2, we plot the two models’
predicted distributions over A-D as their test inputs become
more unfamiliar (left to right on the x-axis). We can see that
for familiar test inputs, both models predicted higher likeli-
hoods for the letter associated with the ground truth answer.
However, as inputs become more unfamiliar, the predictions
of the first model approached the uniform distribution, while
the predictions of the second model approached the 50%
B/50% C distribution.

In our experiments with TriviaQA, we consider three differ-
ent finetuning data distributions. In the first, all finetuning
examples are labeled with the ground-truth answer to their
respective queries. In the second, familiar examples are la-

beled with the ground-truth answer, while unfamiliar exam-
ples are labeled with “I don’t know”. In the third, a random
subset of examples are labeled with “I don’t know” and
with rest are labeled with the ground-truth answer, where
the ratio of examples with “I don’t know” labels matches
that of the second data distribution. For models finetuned
on these distributions, responses from Punf(y) correspond
to hallucinated answers, “I don’t know”, and a mixture of
hallucinated answers and “I don’t know”, respectively. In
the bottom of Fig. 2, we visualize sampled responses from
the three models. Comparing the first and second models,
we can see that while both models predicted mostly cor-
rect answers for familiar queries, the first model outputted
increasingly incorrect answers while the second model in-
creasingly outputted “I don’t know” for unfamiliar queries.
Comparing the second and third model, we can see that even
though the two models were finetuned on an equal number
of “I don’t know” responses, the third model’s predictions
do not vary by the unfamiliarity of the test queries, unlike
those of the second model.

Our results show that, for SFT models, predictions indeed
default to Punf(y) as test inputs become more unfamiliar.
Our results also show that this prediction behavior can be
attributed to the models’ unfamiliar finetuning examples, as
they are the only training detail that differ across different
models.

Reinforcement learning. Next, we investigate the pre-
diction behavior of models finetuned with RL, using
PPO (Schulman et al., 2017) as the training algorithm. For
RL training objectives, Punf(y) is determined by the reward
function. More specifically, Punf(y) corresponds to the ac-
tion distribution that maximizes the average reward over all
unfamiliar finetuning examples. This distribution typically
consists of risk-averse actions that avoid very low rewards
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Figure 4. Prediction behavior of reward models finetuned on MMLU (left 2) and TriviaQA (right 2). Green line represents model
predictions for test examples that are correct (reward 1), and red line represents predictions for incorrect examples (reward 0). As inputs
become more unfamiliar, the reward models produce different kinds of hallucinations depending on their finetuning distribution.

regardless of input.

To highlight the influence of the reward function on model
predictions, we will consider two different reward functions
for RL finetuning in both our MMLU and TriviaQA exper-
iments. For our MMLU experiments, the task is to either
predict the answer letter (A-D) or a fifth option (E), which
represents abstaining from answering. Similarly, for our
TriviaQA experiments, the task is to either answer the query
or abstaining from answering by responding with “I don’t
know”. The first reward function we consider assigns a re-
ward of +2 for the correct answer, -3 for an incorrect answer,
and -3 for abstaining. The second reward function we con-
sider assigns +2 for the correct answer, -3 for an incorrect
answer, and 0 for abstaining. For the first reward function,
Punf(y) corresponds to randomly guessing an answer, be-
cause randomly guessing an answer yields a higher average
reward than abstaining from answering. In contrast, for
the second reward function, Punf(y) corresponds to abstain-
ing from answering, because abstaining from answering
on average yields higher reward than randomly guessing
an answer. We plot the RL model’s predictions as inputs
become more unfamiliar in Fig. 3. Similarly to the previous
SFT experiments, the RL models predict higher likelihoods
for the ground truth answer when faced with familiar in-
puts. As inputs become more unfamiliar, we see that models
trained with the two different reward functions exhibit dif-
ferent behavior. While models with the first reward function
increasingly produced random guesses, models with the
second reward function increasingly produced abstaining
answers. These results show that models finetuned with an
RL loss also default towards Punf(y) as inputs become more
unfamiliar. In addition, these experiments illustrate how
strategically designing the reward function in RL finetuning,
particularly ones that encourage uncertain or less detailed
responses over incorrect responses, can teach models to
avoid generating incorrect information.

Reward prediction. Lastly, we study the prediction be-
havior of reward models. Reward models, which take as
input both a query and a response, predict a scalar reward
that rates the quality of the response. They are used to
provide a source of reward supervision for RL finetuning
in domains where ground truth rewards are challenging to

acquire (Ouyang et al., 2022). For the sake of simplicity,
we will consider the reward prediction task of classifying
whether the response to a query is factually correct (re-
ward 1 if correct, 0 if incorrect). For these models, Punf(y)
corresponds to the distribution of rewards in the model’s
unfamiliar finetuning examples, where an example is unfa-
miliar if predicting the reward requires knowledge outside
of the model’s capabilities.

We consider two different reward distributions for finetun-
ing in our experiment for both MMLU and TriviaQA. In
the first distribution, familiar examples consists of 50%
correct responses (reward 1) and 50% false responses (re-
ward 0), while unfamiliar examples only consists of true
responses. In the second distribution, familiar examples are
similarly distributed as the first, while unfamiliar examples
only consists of false responses. For these two finetuning
distributions, Punf(y) corresponds to 100% reward 1 and
100% reward 0, respectively. In Fig. 4, we plot the predic-
tion behavior of our finetuned reward models. We can see
that as inputs to the models become increasingly unfamil-
iar, model predictions indeed default toward Punf(y). This
experiment illustrates that, depending on their finetuning
data, reward models can generate different kinds of halluci-
nations, which can have different downstream effects when
providing reward supervision for RL finetuning. We study
the effects of reward model hallucinations on RL finetuning
in more detail in the next section.

4. Controlling Hallucinations in Long-Form
Generations

Our ultimate goal is to reduce factual inaccuracies in long-
form LLM generations. While the previous section illus-
trated a few ways to reduce inaccuracies in short-form QA,
instantiating these approaches for long-form generation
tasks introduces new challenges. In Appendix A, we study
more scalable methods, in particular RL-based finetuning
with reward models, for reducing factual inaccuracies in
long-form generation tasks. We additionally discuss related
works in more detail in Appendix B, and provide concluding
remarks in Appendix C.
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Impact Statement
Our goal is to make LLMs more trustworthy and reliable by
controlling the way they hallucinate. By doing so, we hope
to make real-world systems better at handling uncommon
input queries, thus improving applications ranging from
chat assistants to healthcare agents.
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A. Controlling Hallucinations in Long-Form Generations
In this section, we will focus on reducing factual inaccuracies in long-form LLM generations. In the previous section, we
observed that strategically manipulating a model’s unfamiliar finetuning examples can control its predictions for unfamiliar
inputs, and illustrated a few ways to leverage this observation to reduce inaccuracies in short-form and multiple choice
question answering. However, instantiating these approaches for long-form generation tasks introduces new challenges.

First, let us consider the SFT-based approach where we relabel the target responses of unfamiliar finetuning examples. While
we can uniformly relabel all unfamiliar responses to “I don’t know” in short-form tasks, implementing this strategy for
long-form tasks requires more nuanced responses that omit unfamiliar concepts while maintaining familiar ones, which
can be expensive to collect. In contrast, the RL-based approach avoids the need for custom target responses by using
rewards to assess the factuality of model-generated text. For long-form tasks, where ground-truth rewards can be difficult
to obtain, reward models provide a scalable source of reward supervision. However, as we illustrated in our previous
experiments, reward models themselves can produce inaccurate reward predictions when faced with unfamiliar inputs, which
can hinder the effectiveness of RL factuality finetuning. Prior work has proposed to mitigate reward model hallucinations by
incorporating external knowledge sources into the reward model (Sun et al., 2023), but these sources of external knowledge
are not always available.

In this section, we will study how reward model hallucinations influence RL factuality finetuning. In particular, we find
that naively learning a reward model from an arbitrary finetuning dataset can lead to reward model hallucinations which
significantly diminish the effectiveness of RL factuality finetuning. However, we also find that strategically controlling how
reward models hallucinate can reduce their negative effects. In the following section, we present our hypothesis on the
influence of reward model hallucinations, and an approach for learning reward models with strategic hallucinations. We then
present our empirical findings in long-form biography and book/movie plot summarizing tasks.

A.1. RL Factuality Finetuning with Conservative Reward Models

While reward models hallucinations are inevitable, we hypothesize that not all reward hallucinations are equally harmful to
RL factuality finetuning. In particular, we hypothesize that overestimated reward predictions are more harmful than
underestimated reward predictions. This is consistent with prior work, which has found overestimated rewards to be a
common failure mode in offline RL in simulated RL benchmarks (Kumar et al., 2020; Levine et al., 2020). To understand
why this may be the case, let us consider a reward function that decomposes a long-form response into a set of facts, and
assigns a positive reward for every correct fact and a negative reward for every incorrect fact. Our previous experiments
showed that RL finetuning can teach models to avoid inaccuracies if the reward signal encourages uncertain or less detailed
responses over incorrect responses. The reward function we described satisfies this criteria, because a response which
contains an incorrect fact will receive a lower reward than an analogous response which omits the incorrect fact. If, however,
a reward model mistakenly labels the incorrect fact as true and favors the incorrect response instead, RL finetuning may
unintentionally encourage the model to generate even more incorrect information. Thus, to minimize the consequences of
reward hallucinations, we would like to avoid overestimated reward predictions.

Standard reward models. One approach to learning reward models is to finetune on an existing dataset that was collected
independently of the model (Stiennon et al., 2020). These models, which we will call standard reward models, are not
guaranteed to avoid overestimated reward predictions. This is because the finetuning data may contain examples with high
rewards that the reward model lacks the knowledge to understand or verify. According to our observation from the previous
section, these unfamiliar examples with high reward labels can cause the model to predict high rewards for unfamiliar inputs
at test time, regardless of their ground-truth reward. This, in turn, can lead to overestimated reward signals during RL
finetuning, which is undesirable.

Conservative reward models. To ensure the efficacy of RL factuality finetuning, we would like for reward models to
consistently avoid overestimating (i.e., to underestimate) reward predictions when encountering unfamiliar inputs. We will
refer to reward models with this desired behavior as conservative reward models.

To learn conservative reward models, we leverage our observation from the previous section: by strategically configuring the
model’s unfamiliar finetuning examples to consist of only low rewards, the model will learn to produce low rewards for
unfamiliar inputs at test time, which will avoid overestimating reward predictions. One straightforward way to collect this
kind of dataset is to sample responses from the same pretrained model that the reward model is finetuned on, and label these
responses with rewards. In particular, we (1) finetune the pretrained model with SFT to perform the task of interest (can
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Over-
estimation

Over-
estimation

Figure 5. Average reward predicted by a standard reward model and
a conservative reward model as inputs become more unfamiliar, as
well as the average ground truth reward. The standard reward model
tends to overestimate rewards as input become more unfamiliar,
whereas the conservative reward model does not.

Std.
SFT

RL+
Std. RM

RL+
Csv. RM

Bio 0.47 0.53 0.64
Plot 0.45 0.54 0.80

Figure 6. Average fraction of true facts generated by each model.

Figure 7. Average number of true and false facts generated by mod-
els finetuned with standard SFT, RL with a standard reward model,
and RL with a conservative reward model, as inputs become more
unfamiliar. The responses generated by model finetuned with s
conservative reward model consisted of fewer false facts and and
equal number or more truth facts.

also be achieve with few-shot prompting), (2) generate response samples from the finetuned model using a dataset of task
prompts, (3) label the responses with ground-truth rewards, and (4) train the reward model on the labeled samples. Key to
this procedure is the fact that the reward model and the data-collection model share the same knowledge base, so queries
that are unfamiliar to the reward model are also unfamiliar to the data-collection model. When prompted with unfamiliar
queries, the data-collection model is likely to produce responses that contains more factually incorrect information. Thus,
the unfamiliar examples in the resulting dataset will be associated with mainly low reward labels. Note that while we focus
on this particular strategy for our experiments, there may be a number of other strategies that can also be effective for
learning conservative reward models. Furthermore, while the procedure we outlined above requires labeling the reward
model dataset with ground-truth labels, the number of needed labels is much lower than using ground-truth rewards for RL
training, because RL training typically requires much more data than reward model training.

A.2. Experiments on Long-Form Generation Tasks

We will now empirically evaluate our hypotheses regarding reward model hallucinations. Specifically, the questions we
aim to answer with our experiments include: (1) Do conservative reward models (trained with the procedure that we
outlined) produce fewer overestimated reward predictions than standard reward models? (2) Do LLMs finetuned with RL
and conservative reward models generate more factual responses than those finetuned with RL with standard reward models
and standard SFT?

Experimental setup. We consider two long-form generation tasks in our experiments: biography generation and film/book
plot generation. We use the WikiBios (Stranisci et al., 2023) and WikiPlots (Bell, 2017) datasets as sources of queries
and target responses. We use FActScore (Min et al., 2023), an automated retrieval augmentation pipeline, to evaluate the
factuality of model generated responses. Given a query and a generated response, FActScore outputs the number of true
facts and the number of false facts in the response.

Our experiments compare the behavior of a conservative reward model and a standard reward model. The conservative
reward model is learned using the procedure we described above, where finetuning examples are collected by sampling from
the same pretrained model as the reward model, in this case Llama2 7B. The standard reward model is finetuned on a dataset
collected by sampling GPT-3.5 (Ouyang et al., 2022) for task responses. We use samples from GPT-3.5, because it provides
a source of (both factually correct and incorrect) responses that is independent of the model being finetuned. Samples from
both Llama2 7B and GPT-3.5 were collected using the same set of prompts. We use FActScore to automatically label these
examples with rewards, which assigns a score of +2 for every correct fact and -3 for every incorrect fact in a response. Note
that because FActScore queries are relatively slow and expensive, using FActScore to directly provide rewards in online RL
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Standard SFT: Set in the fictional town 
of Eastport, Maine, the film tells the 
story of two elderly sisters, Sarah 
(Lillian Gish) and Susanna (Bette 
Davis), who are living together in 
their family home.

What is the premise of 
“The Whales of August”?
Unfamiliarity Score: 3

RL+Conservative RM: The Whales of August 
is a story about two elderly sisters 
living together in Maine.

Standard SFT: Sam is a small, yellow, 
furry dog who lives in a house with 
his owner, a little boy named Jimmy.

What is the premise of 
“Sam and Friends”?
Unfamiliarity Score: 6

RL+Conservative RM: Sam and Friends is a 
series of short films featuring 
puppets.

Standard SFT: In the year 2941 of the 
Third Age, the wizard Gandalf the Grey 
visits Bilbo Baggins, a hobbit, in his 
home in Hobbiton.

What is the premise of 
“The Hobbit: An Unexpected Journey”?
Unfamiliarity Score: 0

RL+Conservative RM: Bilbo Baggins (Martin 
Freeman), a hobbit, lives in the 
Shire, a peaceful place in 
Middle-earth.

Figure 8. Examples of generated responses from models finetuned with standard SFT and RL with a conservative reward model. False
information is highlighted in red.

is impractical.

Our experiments also compare the behavior of models finetuned to generate responses using standard SFT, as well as RL
finetuning with a conservative and a standard reward model. The standard SFT models were finetuned directly with the set
of target responses provided by WikiBios and WikiPlots. To train the RL models, we initialize the model with the standard
SFT model, and continue to do RL factuality finetuning using PPO (Schulman et al., 2017), with reward signals provided by
their respective reward models. To ensure a fair comparison, we use the same set of finetuning prompts for SFT and RL
finetuning, and keep all training details fixed across the two RL methods except for the reward model. All three models use
Llama2 7B as the pretrained model. At test time, we evaluate the models with queries at different levels of unfamiliarity. The
unfamiliarity score for this task is measured by few-shot prompting the pretrained model (Llama2 7B), sampling 2 responses,
and calculating the average number of incorrect facts in the responses. For more experimental details, see Appendix G.

Results. To answer our first question, we evaluate the standard and conservative reward models on held out samples
generated from the SFT model. We used samples from the SFT model because the RL finetuning procedure is initialized
with this SFT model, so responses sampled from this model are representative of the kind of responses that the reward model
will be asked to score during RL training. In Fig. 5, we plot each models’ predicted rewards and the ground truth reward,
as inputs become more unfamiliar. We can see that for unfamiliar inputs, the standard reward model vastly overestimates
the reward, while the conservative reward model does not, showing that the conservative reward models learned with the
procedure we described indeed produce more conservative predictions.

To answer our second question, we evaluate standard SFT, as well as RL with a standard reward model and a conservative
reward model on a heldout set of queries for each task. In Fig. 7, we plot the number of true facts and false facts generated
by each model, as inputs become more unfamiliar. We can see that as inputs became more unfamiliar, the standard SFT
model generated fewer truth facts and more false facts, as expected. Comparing the RL model trained with the conservative
reward model with the standard SFT model, we can see that the RL model generated the same or more true facts while
generating significantly fewer false facts across all levels of input unfamiliarity. Comparing the two RL models, we can see
that while the two generated around the same number of true facts, the model trained with the conservative reward model
generated much fewer false facts across all levels of input unfamiliarity. We summarize our results in Table 6 with the
average percentage of true facts generated by each method. In Fig. 8, we additionally provide some qualitative examples
of responses generated by the standard SFT model and the RL model trained with conservative reward model. We can
see that as the query became more unfamiliar, responses from the SFT model contained about the same amount of detail
but became more factually incorrect, while responses from the RL model with conservative supervision defaulted towards
less-informative responses. In conclusion, our results show that RL with conservative reward models outperforms standard
SFT and RL with standard reward models in reducing inaccuracies in model generations.

B. Related Work
A number of works have documented the tendency of LLMs to hallucinate factually incorrect responses (Kalai & Vempala,
2023; Bubeck et al., 2023; Kadavath et al., 2022; Agrawal et al., 2023). Additionally, studies have investigated the conditions
under which hallucinations occur and how LLMs behave in such instances. In particular, LLMs tend to hallucinate more
frequently when queried on knowledge that is rarely mentioned in their training data (Mallen et al., 2023; Kandpal et al.,
2023). Furthermore, LLM predictions generally tend to be moderately calibrated (Kadavath et al., 2022; Zhao et al., 2021;
Tian et al., 2023b), and their internal representations seem to reflect some awareness of model uncertainty (Liu et al., 2023;

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2024

Azaria & Mitchell, 2023). Our work, which finds that LLM hallucinations mimic the responses associated with its unfamiliar
finetuning examples, extends our understanding of LLM behavior under uncertainty.

Prior work has observed phenomena similar to our observation in standard neural networks (those without pretraining) (Kang
et al., 2023; Hendrycks & Gimpel, 2016). These works show that, as inputs become more out-of-distribution, neural
network predictions tend to default towards a predictable value — much like the default behavior of LLMs when faced with
unfamiliar queries. However, because standard neural networks lack the initial foundation of a pretrained model, the constant
prediction reflects the model’s training distribution rather than the unfamiliar examples encountered during finetuning.

Finally, a number of prior works have similarly sought to address the challenges posed by LLM hallucinations. Active
research areas include hallucination detection (Manakul et al., 2023; Mündler et al., 2023; Xu et al., 2023; Kuhn et al., 2023),
automated evaluation of factuality (Min et al., 2023; Umapathi et al., 2023; Jing et al., 2023), and mitigation techniques.
Common strategies for mitigating hallucinations include specialized sampling methods (Lee et al., 2022; Li et al., 2023;
Chuang et al., 2023; Zhang et al., 2023b), more reliable input prompts (Si et al., 2022), using retrieval augmentation to
incorporate external knowledge (Gao et al., 2023; Peng et al., 2023; Varshney et al., 2023; Yao et al., 2023; Shuster et al.,
2021), and, closest to our work, finetuning models for factuality. In particular, prior works has found that SFT on data where
difficult examples are labeled to abstaining answers (Lin et al., 2022; Yang et al., 2023; Zhang et al., 2023a), as well as RL
finetuning (Shulman, 2023; Goldberg, 2023; Tian et al., 2023a; Sun et al., 2023; Roit et al., 2023; Mesgar et al., 2020) can
improve the factuality of model generations, which we also observe in our experiments. While these works propose specific
approaches for tackling hallucinations, our work instead aims to better understand the underlying mechanisms that govern
language models hallucinations in a unified manner. Furthermore, our work investigates the little-studied effects of reward
model hallucinations, which we find to have a large impact on the efficacy of RL factuality finetuning.

C. Conclusion
In this work, we presented the observation that, when faced with unfamiliar queries, LLM predictions tend to default towards
the responses associated with unfamiliar examples in its finetuning data. We additionally studied factuality finetuning for
long-form model generations, where we found that strategically controlling reward model hallucinations can significantly
improve the efficacy of RL-based techniques. Nonetheless, there still remains many open questions and challenges regarding
LLM hallucinations. While our conceptual model explains a model’s behavior for entirely unfamiliar examples, many
real-world queries fall within a spectrum of partial familiarity. A more nuanced characterization of model predictions in this
“middle ground” would be valuable. Furthermore, our experiments focused on models finetuned for specific applications
(e.g., biography generation). Extending factuality finetuning to more general prompted generation tasks would be useful.
We hope that our work, by offering a deeper understanding of the factors that govern LLM hallucinations, provides a useful
step towards building more trustworthy and reliable LLMs.

D. Compute
We use A100 GPUs to finetune our models. Number of GPUs used range from 1-6 for each experiment, and time of
execution range from a few hours to up to 2 days. We use LoRA finetuning for all our experiments with r = 16, alpha = 16,
dropout = 0.

E. MMLU Training Details
In this section, we provide more details on our training and evaluation procedure for our MMLU experiments. For all
experiments, we finetuned on the evaluation split of MMLU, and evaluated on the validation split. This is because MMLU
does not have a training split. Our training pipeline uses the trlx codebase (Havrilla et al., 2023).

E.1. SFT Models

We classify examples with unfamiliarity score (NLL) greater than 0.36 as unfamiliar, and the rest as familiar. During
finetuning, we rebalance the dataset such that 50% of finetuning examples are familiar and 50% are unfamiliar.

We use a batch size of 12. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95), eps = 1.0e-8, and
weight decay=1.0e-6.
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E.2. RL Models

We initialize all RL finetuning with a model that has already be supervised finetuned to produce responses that consist of
answer choices. The SFT model we used for initialization is trained predict the E option 50% of the time, and to produce the
correct answer to the query 50% of the time.

We use a batch size of 12. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95), eps = 1.0e-8, and
weight decay=1.0e-6. For PPO, we use cliprange = 0.005 and KL coef = 0.

E.3. Reward Models

We construct correct (reward 1) training and evaluation examples using queries and their corresponding answer labels from
the original MMLU dataset. We construct incorrect (reward 0) examples by using queries from the original dataset, and
randomly sampling incorrect answer labels (A-D not including correct label).

We use a batch size of 12. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95), eps = 1.0e-8, and
weight decay=1.0e-6.

F. TriviaQA Training Details
In this section, we provide more details on our training and evaluation procedure for our TriviaQA experiments. Our training
pipeline uses the trlx codebase (Havrilla et al., 2023).

F.1. SFT Models

We classify examples with unfamiliarity score (number of incorrect responses out of 12 samples) greater than 6 as unfamiliar,
and familiar otherwise. We relabel the responses associated with all unfamiliar finetuning examples to be “I don’t know”.

We use a batch size of 32. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95), eps = 1.0e-8, and
weight decay=1.0e-6. We use a Cosine Annealing scheduler with T max = 1e4 and ETA min = 1e-10.

F.2. RL Models

We initialize all RL finetuning with a model that has already be supervised finetuned to produce responses that consists of an
answer or “I don’t know”. The SFT model we used for initialization is trained predict “I don’t know” 40% of the time, and
to produce the correct answer to the query 60% of the time.

We use a batch size of 32. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95), eps = 1.0e-8, and
weight decay=1.0e-6. For PPO, we use cliprange = 0.005 and KL coef = 0.1.

F.3. Reward Models

We construct correct (reward 1) training and evaluation examples using queries and responses from the original TriviaQA
dataset. We construct incorrect (reward 0) examples using queries from the original dataset, and responses generated from
few-shot prompting Llama2 7B or GPT-2. We filter the generated responses to ensure that all responses were incorrect.

We use a batch size of 32. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95), eps = 1.0e-8, and
weight decay=1.0e-6.

G. Long-form Tasks Training Details
In this section, we provide training and evaluation details for our long-form factuality finetuning experiments. Our training
pipeline uses the trlx codebase (Havrilla et al., 2023).

G.1. Data

We construct finetuning and evaluation datasets using WikiBios and WikiPlots, both of which consist of wikipedia entries
attached to people and books/movies. We make use of the first sentence in the wikipedia entry for both tasks as the target
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response in our SFT finetuning datasets. The prompts we use for finetuning are “Write a biography for [name].” and “What
is the premise of [title]?”. For the biography task, our finetuning dataset includes 104539 examples, and our evaluation
dataset includes 5000 examples. For the plot generation task, our finetuning dataset includes 10000 examples, and our
evaluation dataset includes 4795 examples.

G.2. Reward Models

We take a two-staged approach to learning a reward model. First, we trained a model to break down a response into
individual atomic facts. Next, we trained a separate model to predict the factuality of each atomic fact. We then use the
predicted factuality of each fact to calculate the overall reward associated with each response. The supervision for both
models are collected by querying FActScore, which is a automated pipeline that queries GPT-3.5 to decompose a response
into atomic facts and produces the factuality of each atomic fact. We use 10000 labeled examples to train the conservative
reward model and the standard reward models each for both tasks. Note that while we use a two-staged strategy for learning
reward models in our implementation, our general approach for learning conservative reward model should apply to other
reward model learning strategies as well, such as directly predicting the reward associated with a response.

For both models, we use a batch size of 32. We use the AdamW optimizer with learning rate = 2e-5, betas = (0.9, 0.95), eps
= 1.0e-8, and weight decay=1.0e-6. We use a Cosine Annealing scheduler with T max = 1e4 and ETA min = 1e-10.

G.3. SFT Models

We use a batch size of 24. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95), eps = 1.0e-8, and
weight decay=1.0e-6. We use a Cosine Annealing scheduler with T max = 1e4 and ETA min = 1e-10.

G.4. RL Models

We initialize all RL finetuning with the SFT model, and use the reward predicted by the reward model described above as
supervision.

We use a batch size of 10. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95), eps = 1.0e-8, and
weight decay=1.0e-6. For PPO, we use cliprange = 0.005 and KL coef = 0.5.
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