
Active Object Recognition with Trained Multi-view Based
3D Object Recognition Network

Yunyi Guan1 and Asako Kanezaki2

Abstract— We tackle the active object recognition (AOR)
problem, in which agents learn effective exploration actions
to actively acquire new images with partial knowledge of
observation for better object recognition. Previous studies have
typically used reinforcement learning to jointly train a single-
input classifier and a policy network to learn to find new obser-
vations. However, this joint learning process is very laborious
and cannot reach the accuracy level of existing object classifiers.
It is also reported that when using highly accurate classifiers
such as ResNet, the active vision capabilities of such jointly
trained models will disappear. To overcome these problems, we
propose a framework using a highly accurate pre-trained multi-
view-based 3D object recognition network to train AOR agents
by reinforcement learning, aiming at higher accuracy of object
recognition in a lighter way. Through evaluation experiments
with several benchmark datasets, we show that the performance
of our approach outperforms several previous studies.

I. INTRODUCTION
Driven by benchmarks such as human-taken images or

videos, 3D object recognition has focused on extrapolating
semantic labels from pre-defined images, employing every
conceivable possible observation to gather complete infor-
mation – so-called “passive object recognition”.

However, not every view is needed in practice to fully
understand 3D shapes. Therefore, robot visual recognition
requires inferences from observations and decisions about
what to observe. So, the robot should learn to actively
choose the information-rich views within a limited time
budget to guide better recognition. This leads to the active
object recognition (AOR) problem: learning a suitable view-
changing policy that enables the robot to actively obtain new
views of objects, thus speeding up the real-time recognition
process and achieving better accuracy, as shown in Fig. 1.

The standard framework of AOR usually consists of three
modules: object recognition, evidence fusion, and action se-
lection. Specifically, pre-rendered images are input to extract
features, and aggregated historical information is used for
recognition and action selection. By jointly training the three
modules, agents can effectively explore 3D objects. However,
this joint learning process is time-consuming and unable to
reach the accuracy level of the existing 3D object recognition
models. Moreover, it is reported that when using highly
accurate classifiers such as ResNet [5], the active vision
capabilities of jointly trained agents will disappear.

To alleviate the above issues, we propose a new AOR
method, which uses a highly accurate pre-trained multi-view-

1Yunyi Guan, graduated from School of Computing, Tokyo Institute of
Technology, Japan guanyunyi0728@gmail.com

2Asako Kanezaki, Associate Professor, School of Computing, Tokyo
Institute of Technology, Japan kanezaki@c.titech.ac.jp

Fig. 1: Illustration of active object recognition (AOR).

based 3D object recognition network to train AOR agents by
reinforcement learning. Previous work has either used small
convolutional neural networks or single-input 2D classifica-
tion networks, as shown in Table I. Moreover, a common
issue in existing attention-based models is the unbalanced
training of view estimation and shape classification [1].
Our approach directly uses a matrix accumulating historical
information to avoid this problem.

Our contributions are summarized as follows.
• For the first time, a highly accurate pre-trained multi-

view-based 3D object recognition network was used as
the recognition module for the AOR system.

• No complex training methods of joint learning were
used. We use a trained object classifier with fixed pa-
rameters instead to lighten the pipeline while achieving
better accuracy.

• No recurrent structure like RNN [14] or LSTM [4] is
used for the evidence fusion.

II. RELATED WORK

A. Multi-view based 3D Object Recognition.

Among traditional 3D object recognition methods, the
multi-view-based method is the easiest to understand and
has higher accuracy, which first projects 3D objects into
multiple views, extracts corresponding view features, and
then fuses features for accurate recognition. A typical ap-
proach is MVCNN [19], which projects the point cloud to
different views as input and integrates multi-views in a view-
pooling layer. It requires a complete set of multi-view images
recorded from all the pre-defined views for object inference.
Unlike MVCNN, RotationNet [10] can jointly estimate the
pose and category of an object using a partial set of multi-
view images that a moving camera may sequentially observe.

It is worth noting that multi-view-based object recognition
is also in line with the behavioral characteristics of robot vi-
sion; that is, for a specific object, the robot can continuously
obtain new observations by changing the view, thus gradually
increasing the credibility of recognition. This characteristic



Fig. 2: Overview of the proposed AOR system. X is a 3D object, T is the total timestep size, and M and N are the total
number of views and categories. At each timestep t, the object recognition module takes image xt observed from the last
output view vt−1 as the input to make category prediction ŷt , inside the historical information ht will be recorded in the
matrix S. After that, xt and ŷt are used in the view selection module to predict the next appropriate view vt .

TABLE I: Comparison of previous work and proposed method.

Method Object Recognition Evidence Fusion When to predict Learning
LookAhead [7], [8] GoogleNet + fully-connected layer RNN after T steps joint learning

LookAround [9], [17] pooling layers + fully-connected layer LSTM after T steps joint learning
VERAM [1] AlexNet + fully-connected layer LSTM after T steps joint learning
Lingering [2] 3-layer convolutional layers+ linear layers LSTM at each timestep joint learning

Ours RotationNet matrix at each timestep two-phase learning

of multi-view networks can lead to an interesting problem:
The AOR system should adopt an intelligent control policy so
that the robot can move to the next appropriate view to avoid
undesirable visual conditions and obtain differentiated infor-
mation to accelerate real-time recognition. To this end, it can
be considered to use the trained multi-view-based classifiers
as the recognition module of AOR systems. RotationNet, in
particular, is able to incrementally input images and improve
the recognition accuracy, which inspires our work.

B. Active Object Recognition.
AOR was first proposed in [21], which developed a system

integrating a camera-mounted robot arm and a mobile base.
Later, reinforcement learning has been applied to AOR and
proved to be effective. Early work can be found in [15],
which proposed a system that fuses information by prob-
abilistically encoding 2D views and enforcing actions that
lead to discriminative views. With the powerful expressive
power of deep networks, Malmir et al. [13] use object beliefs
as the representation of the current states to learn actions by
deep Q-learning to minimize the overall classification error.
The visual features of each view are pre-trained offline. In
contrast, Jayaraman et al. [7], [8] first proposed an end-to-end
pipeline to jointly learn object recognition, evidence fusion,
and action selection. On top of this work, they also developed
an approach [9], [17] where the learned policies are not tied
to any recognition task nor the particular semantic content
seen during training, so the downstream tasks are extended
to panoramic natural scenes. To solve the unbalance that the
classifier is easy to overfit while the view selection is usually
poorly trained with joint learning, Chen et al. [1] proposed
three view augmentation strategies, and prediction is made
only at the last timestep. Wei et al. [20] applies meta-learning

to deal with the challenges of AOR in few-shot settings. Fan
et al. [3] combined AOR with lifelong learning; instead of
only training on the dataset with a fixed number of categories,
new categories are added gradually. Another work of Fan et
al. [2] aims to solve the problem of selecting several views
with correct predictions, so adversarial disturbance is added
to the policy network. Different from using reinforcement
learning, Liu et al. [12] introduce STN [6] to RNN [14]
to form an end-to-end differentiable 3D attention structure,
through which 3D spherical coordinates can simply be re-
gressed to train the classification and view selection losses.

However, all these works use single-input classification
networks for 3D recognition and focus on joint learning of
the three modules of object recognition, evidence fusion,
and action selection, which lead to laborious training pro-
cesses. Also, because of the unbalanced training problem,
even the state-of-the-art methods cannot achieve the level
of pure object recognition accuracy. We attempt to use a
pre-trained multi-view based 3D object recognition network,
RotationNet [10], to aim at higher accuracy in a lighter way.
Due to the special structure of RotationNet [10], our AOR
system can be realized without additional evidence fusion
module, thus making the pipeline more streamlined.

III. METHOD

A. Problem Setup

AOR is formulated as an agent interacting with 3D objects
X over T timesteps. At each timestep t, it moves to view
vt (where v1 is random), then obtains new observation xt
and makes prediction ŷt for object category label (the total
number of categories is N). The agent’s goal is to perform
exploratory actions to gradually improve classification ac-



Algorithm 1 Training AOR system.

// Step 1: Pre-training object classifier
Input: Training set Dtrain = {xi,yi}N

i=i, number of epochs E,
timestep T = 5
Initialization: Object classifier Fclass, matrix S← /0
for e = 1 to E do
[h j]20

j=1← Fclass([x j]20
j=1,S) // input multi-views

ŷ← S // S is updated with [h j]20
j=1

loss← CrossEntropyLoss(ŷ,y)
Update Fclass

end for
Output: Pre-trained object classifier Fclass

// Step 2: Training view selection module
Input: Training set Dtrain = {xi,yi}N

i=1, trained object classi-
fier Fclass, number of episodes E ′, timestep T = 5
Initialization: Action space A, observation space O, policy
network Fpolicy
for e = 1 to E ′ do

for t = 1 to T do
vt ∈ A← Fpolicy
Get xt according to vt
ht ← Fclass(xt ,S) // input single view
ŷt ← S // S is updated with ht
Observe reward Rt
Update Fpolicy

end for
end for

Output: Trained policy network Fpolicy

curacy effectively, so it keeps output history h = [h1, ...,hT ]
for updating the internal representation after obtaining each
new observation. Later, xt and h are fed to the reinforcement
learning model to learn to select the next view vt+1 actively.
After T timesteps, the agent should be able to classify the
object, and the accuracy should gradually increase.

In our setting, we follow the view setting of the case (ii)
in [10], which places virtual cameras on the M = 20 vertices
of a dodecahedron encompassing the object, as shown in
the left side of Fig. 2. The views are completely uniformly
distributed in 3D space, and vt are defined as discrete natural
numbers, that is, vt ∈ [0,1, ...19]. Even if each sample has a
different pose, the view number is bound to the observation
from the corresponding view. Therefore, we set the action as
vt directly, i.e., actiont = vt ∈ [0,1, ...19].

B. Architecture

The whole system can be simplified into two modules as
shown on the right side of Fig. 2. The object recognition
module has two jobs: one is to encode what was observed,
and another is to maintain an internal state that encodes the
agent’s knowledge of the environment and summarizes the
information extracted from the history of past observations
so as to make better category predictions and view selection.
RotationNet [10] serves as the classifier in our object recog-

TABLE II: Active object recognition accuracy on different
datasets.

ModelNet10 ModelNet40 ShapeNetCore55

LookAhead [8] 92.50 ± 0.07 - 63.4 ± 0.3
LookAround [9] 92.50 89.00 -

VERAM [1] 95.30 92.10 -
Lingering [2] - - 76.9 ± 0.3

Ours 95.50 ± 0.0036 95.14 ± 0.0027 85.75 ± 0.0017

TABLE III: Average time consuming. Training time is for
overall episodes and testing time is for one object.

ModelNet10 ModelNet40 ShapeNetCore55

Training classifiers 3.222 (h) 14.504 (h) 22.411 (h)
Training agents 7.624 (h) 19.572 (h) 25.856 (h)

Testing 0.078 (sec) 0.222 (sec) 0.286 (sec)

nition module. For each object, RotationNet will initialize a
matrix S ∈ RM2(N+1) to store the predicted scores for each
view, which can be used as historical information. Each
row corresponds to a view from M views, and each column
corresponds to the score for a category. Each view has N+1
predicted score, where N is the number of categories, and
+1 is to denote the “incorrect view” class, indicating how
likely the estimated view is incorrect. After updating S with
the raw output obtained by feeding image xt into RotationNet
at each step, S is in turn used to calculate the current object
pose and category. Aimed at this characteristic, we use S as
the evidence fusion module. In this case, h = S, and ht is the
row corresponding to the current view in S.

Based on current observations and historical information,
the view selection module controls where the agent is to
observe next. It inputs the xt and ht and outputs the next
view vt . We choose TRPO [18] to represent this part and
set up a two-part reward function, where reward r1 is for
better object recognition and reward r2 is for reducing view
repetition. When the prediction is correct, we set reward r1 =
1; otherwise, r1 = −1. Moreover, because selecting a view
that has appeared before can lead to stagnation and makes
no sense, in order not to interfere with the learning for the
recognition when vt only appears once, we set another reward
r2 = 0, otherwise r2 =−1. The final reward is R = r1 + r2.

C. Learning

The learning process is divided into two stages: pre-
training of the object recognition module, RotationNet [10],
and training of the view selection module, TRPO [18].
Each object follows a timestep of length T = 5 to update
the weights of the networks. Each step makes a category
prediction and then gives rewards according to the reward
function. Algorithm 1 shows our whole training process.

IV. EXPERIMENTS
A. Dataset

ModelNet ModelNet40 consists of 12,311 CAD-generated
meshes in 40 categories, of which 9,843 are used for training



(a) ModelNet10 (b) ModelNet40 (c) ShapeNetCore55

Fig. 3: Object classification accuracies on different datasets in the AOR setting. Static object classifier accuracy (with multi-
view images as input) is (a) 96.15%, (b) 96.11%, and (c) 86.23%.

and 2,468 for testing. ModelNet10 dataset is a part of
ModelNet40, containing 4,899 pre-aligned shapes from 10
categories, 3,991 for training and 908 for testing.
ShapeNetCore55 We use the ShapeNetCore subset of
ShapeNet which contains about 51,300 3D models over 55
categories, 36,147 for training, and 5,165 for testing.

For all the datasets, we followed the M = 20 fixed view
settings in [10] and made multi-view images using the
rendering software published in [19].

B. Baseline

Random This baseline indicates a random selection forbid-
ding repeated views. T different views are randomly selected
with the same probability. Because the 3D model should have
the same view at t = 1 when different methods are tested,
we use this random baseline to generate initial views.
Repeated Random The difference from Random is that T
views can be repeated when selected. Even with reward r2 for
reducing view repetition , the reinforcement learning models
will inevitably select appeared views, so to guarantee some
level of a fair comparison, we add this baseline.

C. Implementation details

We train RotationNet using pre-trained AlexNet [11] archi-
tecture. The final classification accuracy is 96.15% for Mod-
elNet10, 96.11% for ModelNet40, and 86.23% for ShapeNet-
Core55. The parameters of the TRPO [18] policy network are
updated using policy gradient from Stable Baselines3 [16].

D. Results

1) Active Object Recognition Results: Predictions at each
step are used to measure the accuracy. We compare the
performance of the proposed method with the previous works
and the baselines described above. The results are the average
of over 50 runs with different initializations.

Table II shows the average accuracy of our AOR models
compared with previous works. It can be seen that on all
the datasets, our method outperforms previous AOR systems.
The small standard deviation results also show that it can
achieve consistently high-level accuracies over several tests.

Fig. 3 shows the average accuracy of our AOR models
compared with random baselines. It can be seen that all
AOR models can achieve similar accuracy levels to the
used RotationNet, and the active vision ability isn’t failing
as reported by Lingering [2]. Note that even the random
baseline achieves high accuracy since RotationNet itself
has the ability to improve its classification accuracy with
incremental inputs. Nevertheless, our method outperformed
this challenging baseline. In addition, the lower the level of
raw accuracy of the classifier, the greater the difference in
accuracy between the random baseline and the AOR model.
This is the same as our intuition that the task of AOR is
better suited for the case where the classifier is imperfect.

2) Training and Testing Time: In addition to the accuracy
results, we also measured training time for all episodes and
test time for one object of the proposed method, as shown in
Table III. We trained the classifier with a single GTX1080
and trained and tested the agents with a single Quadro P6000.
In both training and testing, our approach achieves active
object recognition quickly, thanks to our lightweight pipeline.

E. Limitation and Future Work

Our goal is effective recognition, so we can design re-
wards using both appearance and geometric features acquired
by RotationNet. Since we use a pre-trained classifier, our
method will be inferior when the classifier itself is not
optimal, which also illustrates that without joint learning the
recognition and view selection modules cannot be optimized
simultaneously. This could inspire future work on overcom-
ing the problem of active vision disappearing when using a
high-level classifier in the context of joint learning to achieve
accuracy beyond the level of that classifier.

V. CONCLUSION

In this paper, we proposed an AOR framework based on a
pre-trained multi-view based 3D object recognition network
that is used to train AOR agents. Experimental results on
three 3D object datasets show that the proposed method can
achieve higher accuracy than previous AOR systems, and
closer accuracy to existing object recognition classifiers level
in a lighter way without laborious joint learning.



REFERENCES

[1] Songle Chen, Lintao Zheng, Yan Zhang, Zhixin Sun, and Kai Xu.
Veram: View-enhanced recurrent attention model for 3d shape classi-
fication. IEEE transactions on visualization and computer graphics,
25(12):3244–3257, 2018.

[2] Lei Fan and Ying Wu. Avoiding lingering in learning active recog-
nition by adversarial disturbance. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 4612–
4621, 2023.

[3] Lei Fan, Peixi Xiong, Wei Wei, and Ying Wu. Flar: a unified prototype
framework for few-sample lifelong active recognition. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages
15394–15403, 2021.

[4] Alex Graves and Alex Graves. Long short-term memory. Supervised
sequence labelling with recurrent neural networks, pages 37–45, 2012.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–
778, 2016.

[6] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial
transformer networks. Advances in neural information processing
systems, 28, 2015.

[7] Dinesh Jayaraman and Kristen Grauman. Look-ahead before you leap:
end-to-end active recognition by forecasting the effect of motion. In
Computer Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14,
pages 489–505. Springer, 2016.

[8] Dinesh Jayaraman and Kristen Grauman. End-to-end policy learning
for active visual categorization. IEEE transactions on pattern analysis
and machine intelligence, 41(7):1601–1614, 2018.

[9] Dinesh Jayaraman and Kristen Grauman. Learning to look around:
Intelligently exploring unseen environments for unknown tasks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1238–1247, 2018.

[10] Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi Nishida. Ro-
tationnet: Joint object categorization and pose estimation using mul-
tiviews from unsupervised viewpoints. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 5010–
5019, 2018.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Communica-
tions of the ACM, 60(6):84–90, 2017.

[12] Min Liu, Yifei Shi, Lintao Zheng, Kai Xu, Hui Huang, and Dinesh
Manocha. Recurrent 3d attentional networks for end-to-end active
object recognition. Computational Visual Media, 5:91–104, 2019.

[13] Mohsen Malmir, Karan Sikka, Deborah Forster, Javier R Movellan,
and Garison Cottrell. Deep q-learning for active recognition of germs:
Baseline performance on a standardized dataset for active learning.
In Proceedings of British Machine Vision Conference (BMVC), pages
161–1, 2015.

[14] Larry R Medsker and LC Jain. Recurrent neural networks. Design
and Applications, 5:64–67, 2001.

[15] Lucas Paletta and Axel Pinz. Active object recognition by view
integration and reinforcement learning. Robotics and Autonomous
Systems, 31(1-2):71–86, 2000.

[16] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave,
Anssi Kanervisto, and Noah Dormann. Stable baselines3, 2019.

[17] Santhosh K Ramakrishnan, Dinesh Jayaraman, and Kristen Grauman.
Emergence of exploratory look-around behaviors through active ob-
servation completion. Science Robotics, 4(30):eaaw6326, 2019.

[18] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In International
conference on machine learning, pages 1889–1897. PMLR, 2015.

[19] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-
Miller. Multi-view convolutional neural networks for 3d shape
recognition. In Proceedings of the IEEE international conference on
computer vision, pages 945–953, 2015.

[20] Wei Wei, Haonan Yu, Haichao Zhang, Wei Xu, and Ying Wu.
Metaview: Few-shot active object recognition. arXiv preprint
arXiv:2103.04242, 2021.

[21] David Wilkes and John K Tsotsos. Active object recognition. Univer-
sity of Toronto, 1994.



Supplementary Material for Active Object Recognition with Trained
Multi-view Based 3D Object Recognition Network

Yunyi Guan1 and Asako Kanezaki2

I. QUALITATIVE EVALUATION RESULTS

We show the view selection order of our method for
several samples in different datasets.

A. ModelNet10

From Fig. 2, it can be seen that selecting repeated and
misclassified views at the initial stage will lead to a reduction
in accuracy (as shown in the second row). Since the accuracy
of the classifier is high (96.15%), the category prediction can
be maintained correctly even if chosen randomly. Still, our
approach can select more views less similar to the initial
view, such as views at t = 4 and t = 5.

B. ModelNet40

From Fig. 3, it can be seen that, even if a repeated view
is selected at a later timestep, the category prediction will
have an error turn into a correct one because the classifier
has accumulated history (as shown in the second row). Since
the accuracy of the classifier is high (96.11%), it is likely to
consistently provide rewards to policy no matter which view
is selected, so the results of our agent are not much different
from the random baseline.

C. ShapeNetCore55

From Fig. 4, it can be seen that, when the classifier
accuracy is not perfect (86.23%), even if the initial view
is predicted correctly, it is possible to turn to make a wrong
prediction after selecting an inappropriate view (as shown
in the first and second rows), which can be avoided by our
agent. This is the same as our intuition that AOR is better
suited to the situation when the recognizer is imperfect.

II. AOR IN CONTINUOUS VIEW SETTING

We also tried to propose an AOR framework in a more
complex continuous view setting. The advantage of the
continuous views is that it can perform subtle changes in
action to access observations that are not accessible under
the discrete views, such as the process of changing view
between adjacent vertices. Note that we do not use joint
learning either in this setting.

1Yunyi Guan, graduated from School of Computing, Tokyo Institute of
Technology, Japan guanyunyi0728@gmail.com

2Asako Kanezaki, Associate Professor, School of Computing, Tokyo
Institute of Technology, Japan kanezaki@c.titech.ac.jp

Fig. 1: Continuous view setting.

A. View Setup

In continuous view setting, the observation space is rep-
resented as a sphere encompassing the object as shown in
Fig. 1, view vt is located on its surface and is defined as
a tuple of azimuth and elevation, that is, vt = (azimt ,elevt),
where azimt ∈ [0◦,360◦) and elevt ∈ [−90◦,90◦).

3D objects need to be rendered online at each step
according to action at to obtain new observation xt . Since the
initial pose of each object is different, we set the action at
to represent the relative angle, that is, at = (∆azimt ,∆elevt).
Obviously, in order to obtain more image features, we do
not want the actions taken in the continuous views to be
too small, but if the actions are too large, it is difficult to
reflect the difference from the discrete view setting, and thus
lose the significance. Therefore, we set at to not exceed the
angle difference between the adjacent vertices in the discrete
view setting (the difference in azimuth between each adjacent
vertex of the regular dodecahedron is 72◦, and the elevation
difference is 36◦), i.e. ∆azimt ∈ [5,72], ∆elevt ∈ [5,36].

B. Architecture

In the continuous view setting, the view is rendered online,
so the inputs are 3D object X and the last at−1. Since
RotationNet can only handle discrete views and needs to
be trained with multi-views that contain complete shape
information rendered from fixed viewpoints, we use pre-
trained ResNet18 [3] this time. Please note that for both
training and testing, the input to ResNet18 is one image.

Expect for accumulating the historical information, to
ensure that the classifier in the continuous view setting has
the same ability to improve accuracy with increasing input
as in the discrete view setting, we add an LSTM [1] after
ResNet18, and then add a fully-connected linear layer for
classification.

C. Learning

Since the views outputted by the subsequent view selection
module are arbitrary, it’s no longer appropriate to train



Fig. 2: View selection order for bathtub 0112 in ModelNet10.

Fig. 3: View selection order for bowl 0068 in ModelNet40.



Fig. 4: View selection order for chair 000418 in ShapeNetCore55.

(a) camera viewpoints (b) rendered images

Fig. 5: One example of camera viewpoints and rendered images of cup 0003 in the continuous view setting.

classifiers with datasets under fixed views. To do this, we
randomly generated 20 pairs of coordinates on the sphere
and made our free-view dataset based on 3D objects in
ModelNet40. Pytorch3D is used as the renderer, the camera
is always pointed at the center of the object, and plane
reflections are used to render the 3D shape into a 2D image.
One example of the camera viewpoint and rendered image
are shown in Fig. 5.

T -step ResNet18 with the LSTM layer and the linear layer
is trained with the free-view dataset. One single image is
used as the input at each step, and the average loss over T is
back-propagated. The resulting accuracy of ResNet18 with
LSTM is 80.80%. For the view selection module, we chose
to use DDPG [5], A2C [6], SAC [2], and PPO [7].

D. Experiments

1) Baselines: Besides Random baseline, Constraint Ran-
dom is used in the continuous view setting. This baseline in-
dicates a random selection limited by the action space range.
Since the value ranges of action space (relative azimuth
and relative elevation) in continuous view are [10◦,72◦] and
[10◦,36◦] respectively, to make a fairer comparison, T rela-
tive angles are also extracted from the uniform distribution
of these two intervals as actions.

2) Quantitative Results: Fig. 7 shows the average accu-
racy of baselines and our AOR system under continuous view
setting.

Although the unrestricted Random baseline has the highest



Fig. 6: View selection results of cup under continuous views.

Fig. 7: Accuracy of continuous views with ModelNet40.

accuracy, the performance of A2C, DDPG, and SAC is better
than the Constraint Random baseline with the same action
space restriction. But the accuracy difference between the
worst-performance PPO and Random baseline is only 0.47%,
almost no difference. It can be considered that this is because
ResNet18 of higher learning capacities overfits all possible
views during training, that is, rewards are always provided
no matter what action is taken.

As can be seen from Fig. 6, views of Random baseline are
more diverse, so it can provide more favorable information

for high-ability classifiers, and SAC is the agent with the
most varied view, so its effect is closest to unrestricted
Random baseline, while other reinforcement learning actions
are more conservative. However, if the action space range of
AOR agents is not limited, the advantage that continuous
view is more in line with the smooth robot vision in reality
will be lost, and the difference with discrete view will be
less and the research significance may disappear.

So, in the future, we need to think about how to improve
accuracy more efficiently using only small view changes.
Or, we can consider forming an end-to-end pipeline using
differentiable renderers and employing a combination of
stochastic gradient descent and REINFORCE [8], as in [4],
so that losses can be backpropagated and the gradient of
object recognition accuracy in the direction of camera motion
can be utilized. Then, jointly training the object recognition
and view selection modules can be used to ensure that the
newly selected view can improve accuracy.

REFERENCES

[1] Alex Graves and Alex Graves. Long short-term memory. Supervised
sequence labelling with recurrent neural networks, pages 37–45, 2012.

[2] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.



[4] Dinesh Jayaraman and Kristen Grauman. Learning to look around:
Intelligently exploring unseen environments for unknown tasks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1238–1247, 2018.

[5] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[6] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages 1928–1937.
PMLR, 2016.

[7] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[8] Ronald J Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Reinforcement learning, pages
5–32, 1992.


