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Abstract

We introduce ROAR (Robust Object Removal and Re-annotation), a scalable frame-
work for privacy-preserving dataset obfuscation that removes sensitive objects instead of
modifying them. Designed for practical deployment, our method integrates instance seg-
mentation with generative inpainting to eliminate identifiable entities while preserving scene
integrity. Extensive evaluations on 2D COCO-based object detection show that ROAR
achieves 87.5% of baseline average precision (AP), whereas image dropping achieves only
74.2%, highlighting the advantage of scrubbing in preserving dataset utility. In NeRF-based
3D reconstruction, our method incurs a PSNR loss of at most 1.66 dB while maintaining
SSIM and improving LPIPS, demonstrating superior perceptual quality. ROAR follows a
structured pipeline of detection, inpainting-based removal, re-annotation, and evaluation.
We systematically evaluate the privacy-utility trade-off across both 2D and 3D tasks, show-
ing that object removal offers a more effective balance than traditional methods. Our find-
ings establish ROAR as a practical privacy framework, achieving strong guarantees with
minimal performance trade-offs. The results highlight challenges in generative inpainting,
occlusion-robust segmentation, and task-specific scrubbing, laying the groundwork for real-
world privacy-preserving vision systems.

1 Introduction

As machine learning (ML) continues to rely on large-scale data collection, privacy has emerged as a cor-
nerstone of ethical AI development. Privacy, broadly defined, is an individual’s right to control access to
their personal and sensitive information. Within this scope, data-level privacy which is a subset of privacy
concerns aims to safeguard sensitive attributes within datasets while preserving their utility for downstream
applications (van der Schaar et al., [2023; [Shoshitaishvili et al., [2015)).

Existing privacy-preserving techniques in computer vision span a spectrum. At one extreme, raw images
provide full utility but no privacy, while at the other, dataset deletion ensures complete privacy but no
usability. Intermediate approaches such as noise injection and pixelation offer weak privacy guarantees while
retaining usability (Gross et al.l |2006; [Neustaedter et al., |2006; Neustaedter & Greenberg, |2003; McPherson,
et al.,[2016). More advanced methods leverage generative adversarial networks (GANs) and diffusion models
to anonymize identity-revealing features while preserving scene coherence (Hukkelas & Lindseth, 2023} [Sun
et al., |2018bja; Maximov et al) 2020} Hukkelas et al) 2019} Malm et al. [2024; |[Li & Clifton| [2021}; [Zwick
et al.l |2024; Barattin et al., |2023). However, regulatory frameworks like the GDPR mandate erasure rather
than modification of personal data. Specifically, Article 17 (“Right to Erasure") reinforces this obligation,
raising legal concerns about synthetic anonymization in sensitive applications (The European Parliament,
2016)).

Our work advances privacy-preserving transformations by introducing ROAR (Robust Object Removal and
Re-annotation) framework, a structured framework for dataset obfuscation that eliminates sensitive objects
instead of modifying them. ROAR is designed with application robustness in mind and avoids two key
challenges: high computational costs and ethical concerns regarding resemblance to real individuals (Carlini
et al.|, |2023)). This trade-off is particularly critical in high-risk applications such as surveillance and medical
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Figure 1:  Privacy-preserving transformations for dataset obfuscation. The input image (top) contains
sensitive objects, detected via instance segmentation (middle). Three different obfuscation strategies are
applied: (left) ours (ROAR), which removes sensitive objects while maintaining scene integrity, (middle)
DeepPrivacy2 (Hukkelds & Lindseth) 2023) anonymization, and (right) full data deletion, which ensures
maximum privacy at the cost of utility.

imaging, where partial anonymization may still allow for re-identification (Zhu et al.l 2024; Malm et all
. By opting for object removal using pre-trained generative models instead of synthetic replacements,
ROAR mitigates both concerns: eliminating sensitive entities entirely avoids the computational burden of
training dedicated models while also preventing any risk of synthetic identities resembling real individuals.
This ensures privacy without introducing new vulnerabilities, preserving the contextual integrity of the scene
while maintaining dataset usability.

Recent advances in generative inpainting have also made object removal accessible to the general public.
Interactive tools such as Google’s Magic Eraser (Google LLC, |2023)) or Apple’s Clean Up (Apple Inc., |2024)
allow users to manually select and erase objects while maintaining perceptual realism, demonstrating how
high-quality inpainting has matured into a widely deployed image editing capability. Such systems are de-
signed for single-image use and perceptual quality rather than dataset-scale privacy protection. In contrast,
our work operationalizes object removal into an automated, detector-driven framework that ensures consis-
tency, re-annotation, and quantitative privacy—utility evaluation across large-scale datasets. Importantly,
ROAR is designed for contezt-oriented vision tasks (e.g., scene understanding, and 3D reconstruction) where
sensitive objects are incidental to the learning objective. For tasks where the sensitive object itself defines
the semantic target (e.g., action recognition), removal would destroy task semantics and modification-based
techniques such as anonymization remains the appropriate paradigm. Our key contributions are as follows:

1. We propose ROAR (see Fig. [2)), a structured privacy-preserving object removal (scrubbing) pipeline
that integrates instance segmentation with generative inpainting to eliminate identifiable entities
while preserving scene integrity.

2. We systematically evaluate the privacy-utility trade-off by analyzing the impact of object removal
on downstream tasks, including object detection, classification, and 3D reconstruction. We compare
diffusion-based (Razzhigaev et al., |2023; [Rombach et all 2022) and GAN-based (Zeng et al.| |2023}
|Goodfellow et all 2020) inpainting methods to assess their effectiveness in maintaining dataset
integrity while ensuring privacy.
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Figure 2: Privacy-preserving dataset obfuscation pipeline. Raw Dataset: Input data includes COCO (Lin,
et al [2014) for 2D detection and NeRF scenes (Mildenhall et al., [2020) for 3D reconstruction. Sensitive
Object Detection: Instance segmentation (e.g., Mask2Former (Cheng et al., [2022))) identifies sensitive
objects in 2D datasets, while NeRF-based datasets require manual selection. Obfuscation: Sensitive objects
are removed using generative inpainting methods such as diffusion models (e.g., Stable Diffusion (Rombach
et al., |2022} |Razzhigaev et al. [2023)) and GAN-based models (e.g., AOT-GAN (Zeng et all 2023)). Re-
annotation: An oracle model (e.g., RT-DETRv2 (Lv et al) [2024)) updates labels post-obfuscation to
maintain dataset integrity. Processed Dataset: The resulting dataset ensures privacy while preserving
contextual integrity. Privacy & Utility Evaluation: Privacy is verified via an oracle, while utility is
measured by training object detection (e.g., YOLOv9, RT-DETRv2) and 3D reconstruction (e.g., NeRF)
models. Model Training and Comparison: Detection models are trained on both raw and obfuscated
datasets to assess performance trade-offs.

3. We establish ROAR as a generalizable privacy framework, demonstrating its scalability and robust-
ness as an alternative to conventional anonymization.

Notably, our method is the first to demonstrate broad applicability across both 2D object detection and
3D Neural Radiance Field (NeRF) (Mildenhall et all [2020) reconstruction, ensuring its relevance to real-
world applications. By eliminating identifiable entities while preserving scene coherence, ROAR provides
stronger privacy guarantees than modification-based techniques (see Fig. , thereby offering a compelling
solution for privacy-preserving Al that complies with regulatory standards while maintaining high data
utility. Moreover, as ROAR builds on external segmentation and inpainting models, it naturally benefits
from future improvements in this ongoing field of research.

2 Background & Related Work

2.1 Privacy in Computer Vision

With the increasing reliance on large-scale datasets, privacy concerns in computer vision have gained sig-
nificant attention. Traditional privacy-preserving techniques fall into two broad categories: model-level and
data-level approaches. Model-level methods such as federated learning (Kairouz et al, 2021} [van der Schaar,
et al.} 2023)) and secure multi-party computation (Bonawitz et al.,|2019; 2017)) prevent direct exposure of data
but do not mitigate risks inherent in dataset storage. Data-level approaches, including differential privacy
(DP) (Dwork & Rothl 2014} |Abadi et al., [2016)) and noise-based transformations (Torkzadehmahani et al.,
2019; [Lee & Youl, |2024), offer theoretical guarantees via noise injection but often degrade utility, particularly
in high-dimensional vision tasks like object detection and segmentation (Luo et al. |2024; |Liu et al., |2021)).
Unlike differential privacy, ROAR offers data-level privacy mechanism based on explicit removal of sensitive
visual content. Our approach is orthogonal to DP and is particularly suitable for scenarios where noise-based
guarantees are impractical for visual data.
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Figure 3: FEach row represents a different image processed through raw (left), anonymization (mid-
dle)(Hukkelas & Lindsethl [2023), and our approach (right). First two images are scrubbed with stable
diffusion (Rombach et all, |2022), and the last two are scrubbed using Kandinsky (Razzhigaev et al., |2023).

A widely adopted strategy for preserving privacy is image anonymization, which involves modifying sensitive
attributes to prevent re-identification. Traditional methods such as pixelation and blurring
provide weak privacy guarantees, as modern deep learning models can reconstruct obfuscated
information (Shokri et al.,2017)). More recent approaches rely on generative models to synthesize anonymized
images while preserving contextual integrity (Hukkelds & Lindsethl 2023} [Sun et al., [2018bfa} Maximov et al.
[2020; Hukkelas et al., 2019 [Malm et al. 2024} |Li & Clifton|, |2021; Zwick et al., 2024} Barattin et al.| [2023)).
However, synthetic replacements raise ethical concerns about potential re-identification and resemblance to
real individuals (Carlini et al. [2023)).

2.2 Generative Models for Privacy-Preserving Obfuscation

Generative models, particularly Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) and dif-
fusion models (Ho et al.,2020; Nichol & Dhariwall [2021)), specifically Latent Diffusion Models (LDMs) (Rom-;
bach et all 2022), have been widely explored for privacy applications. GAN-based methods such as Deep-
Privacy2 (Hukkelas et al.,[2019; [Hukkelds & Lindseth| 2023), and CIAGAN (Maximov et al.| 2020)) generate
anonymized facial images, while approaches like AOT-GAN (Zeng et al.l [2023) perform high-resolution in-
painting. Despite their effectiveness, GANs suffer from mode collapse and high training costs
|& Tranl 2020; Durall et al., [2021} Zhang et al., 2018b). Training a dedicated model for synthetic replace-
ments is significantly more expensive than using a pre-trained generic model, making GANs less practical
for large-scale obfuscation.

LDMs address some of these limitations by applying iterative denoising in a lower-dimensional latent space,
enabling high-quality reconstructions with reduced artifacts (Rombach et al 2022} [Razzhigaev et al., [2023)).
Stable Diffusion, a prominent LDM-based framework, has been employed for privacy-sensitive applications
such as face and full-body anonymization (Malm et al., [2024} |He et al. |2024; |Zwick et al., 2024).

While LDMs have been explored for anonymization, a related body of work focuses on object removal via
generative inpainting. Methods such as LaMa (Suvorov et al., 2022)), SmartEraser (Jiang et al. |2025),
PowerPaint (Zhuang et all 2024), and CLIPAway (Ekin et al., [2024) advance inpainting quality through
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architectural innovations, guidance strategies, and prompt engineering. These approaches are primarily
developed for image editing and restoration tasks, and are not evaluated under privacy objectives constraints.
Nevertheless, they are complementary to ROAR: their modules can be readily integrated into our framework
to improve visual fidelity.

A recent work by [Bar et al.| (2022)) introduced visual prompting via image inpainting, demonstrating that
modern inpainting models can serve as versatile visual interfaces for downstream tasks such as segmenta-
tion or colorization. This line of work, together with large-scale commercial tools such as Google’s Magic
Eraser (Google LLC||2023) and Apple’s Clean Up (Apple Inc., 2024)), shows that high-quality, user-guided
object removal is a mature and widely adopted capability. However, these approaches focus on perceptual
editing or user interaction rather than automated, privacy-driven dataset obfuscation.

An earlier study by |[Upenik et al| (2019) explored privacy protection in omnidirectional images using
viewport-domain inpainting. While conceptually aligned with our goals, their approach focused on user-
selected regions within panoramic imagery and did not include automatic detection, re annotation, or
dataset-level evaluation. In contrast, ROAR provides a structured, detector-integrated framework for scal-
able privacy-preserving dataset obfuscation, explicitly quantifying privacy utility trade-offs across 2D and
3D tasks.

2.3 Privacy-Utility Trade-offs in Object Detection

Privacy-preserving transformations often degrade dataset usability. Object detection and segmentation mod-
els like RT-DETRv2 (Zhao et all [2024; [Lv et al., |2024) and YOLOv9 (Wang et al., [2024b; |(Chang et al.
2023) rely on fine-grained features, making them sensitive to obfuscation. Noise-based anonymization reduces
accuracy (Lee & You, 2024), while face-swapping and inpainting may disrupt spatial structures, affecting
recognition and generalization (Maximov et al.2020). Conversely, these models can aid privacy by detecting
sensitive objects for obfuscation. Semantic segmentation allows targeted modifications (Zwick et al., [2024)),
but models like Mask2Former (Cheng et all 2022)) struggle with occlusions, and may lead to incomplete
removals.

2.4 Neural Radiance Fields (NeRF) and Privacy Challenges

Neural Radiance Fields (NeRF) (Mildenhall et al.l [2020; |Wysocki et al., 2023; 'Tonderski et al.,|2024)) enable
high-quality 3D scene reconstruction but pose privacy risks by preserving fine-grained details. Recent work
has explored adversarial perturbations to disrupt NeRF synthesis (Wu et al., |2023) and privacy-preserving
training frameworks that limit information leakage (Zhang et al., |2024)), but these methods are computa-
tionally expensive and may introduce artifacts.

Benchmarking studies show NeRF is highly sensitive to corruptions like noise and compression (Wang et al.,
2024al), suggesting that structured modifications can significantly impact reconstruction. Structured in-
painting offers a promising alternative for removing sensitive objects while maintaining scene integrity. To
the best of our knowledge, we are the first to apply this approach for privacy-preserving NeRF, ensuring
high-quality novel view synthesis from privacy-compliant data. For a detailed discussion on background and
related work, please see the appendix C.

3 Methodology

ROAR follows a structured pipeline to achieve privacy-preserving dataset obfuscation using generative mod-
els (see Fig. [2) while preserving dataset utility for downstream tasks. The ROAR pipeline consists of four
key stages: (1) Sensitive Object Detection, where instance segmentation or manual selection identifies
sensitive objects; (2) Object Removal via Generative Inpainting, which applies diffusion-based or GAN-
based models to erase the detected objects; (3) Oracle-Based Re-annotation, where an object detection
model updates labels post-obfuscation to maintain dataset usability; and (4) Privacy-Utility Evalua-
tion, where the effectiveness of obfuscation is assessed through privacy verification and model performance
comparisons between raw and processed datasets.
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3.1 Stage 1: Sensitive Object Detection

We employ instance segmentation, specifically Mask2Former (Cheng et al., |2022)), to detect and localize
sensitive objects such as persons. Given an input image I € RE*WX*C wwhere H and W represent the image
height and width, and C is the number of color channels, the goal is to extract a set of binary masks M
corresponding to detected objects:

M = {m; € {0, 1}V i =1,... N}, (1)

where N is the number of sensitive objects, and each m; denotes a segmentation mask of the same spatial
dimensions as the input image. The instance segmentation function S maps an image to a set of masks,
class labels, and confidence scores:

S(I)={(mi,ci,s;) |i=1,...,N}, (2)

where m; € {0, 1}7*W represents the binary segmentation mask for object i, ¢; € C is the predicted class
label with C denoting the set of all possible categories, and s; € [0, 1] is the confidence score assigned to the
detection. As a result, ROAR’s privacy guarantees are upper-bounded by detector recall and mask accuracy,
motivating conservative mask handling strategies to mitigate residual sensitive content, as analyzed later in
Section

3.2 Stage 2: Object Removal via Generative Inpainting

Once sensitive objects are detected and masked, we apply generative inpainting to reconstruct the masked
regions. Depending on the inpainting strategy, we utilize either a LDM such as Stable Diffusion (Rombach
et al., |2022)) or Kandinsky (Razzhigaev et al., 2023)), or a GAN-based model such as AOT-GAN (Zeng et al.,
2023). The inpainting function G reconstructs a new image I, by synthesizing content within the masked
regions:

Iobf:G(I,M,Z), (3)

where I € REXWXC ig the original image, M € {0,1}7>W is the binary mask indicating sensitive object
regions, G is the pre-trained inpainting model (Stable Diffusion, Kandinsky, or AOT-GAN), and z is a latent
noise variable (typically Gaussian), used in diffusion-based models.

Latent Diffusion Models LDMs (Rombach et al.| [2022) operate by performing image synthesis within a
compressed latent space rather than directly in pixel space, significantly improving computational efficiency
while maintaining high-quality outputs. Both Stable Diffusion and Kandinsky leverage this approach for
inpainting, meaning that instead of directly filling missing pixel values, they infer the missing content in a
learned latent space conditioned on surrounding structures and optional text prompts (Razzhigaev et al.|
2023; |Shakhmatov et al., [2022; [Rombach et al., |2022)). For simplicity and generality, we use a fixed prompt
“generic background” throughout our experiments to guide the model to replace any removed object with a
plausible background. This prompt was chosen based on empirical observation that it yields realistic fillings
for a wide range of scenes.

Since we use pre-trained models, the exact denoising steps are handled internally by the model’s learned
denoising function, which follows the standard denoising objective of latent diffusion models (Rombach et al.|
2022]):

Loy = Eg@),eano,n.e [le — €0z, 1)[13] (4)

where E(z) is defined as the encoder function that maps an image « into a latent representation, z; represents
the noisy latent variable at time step ¢, € is Gaussian noise, and €y is the neural network predicting the noise
component. The final output is obtained by decoding the refined latent representation back into the image
domain:

Lot = D(2)y), (5)

where D represents the pre-trained decoder that maps latent representations back to pixel space.

6
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GAN-Based Inpainting (AOT-GAN) AOT-GAN follows an adversarial learning framework, where the
generator Ggan synthesizes missing content using contextual priors, while the discriminator Dgan provides

adversarial feedback to optimize the generator during training through the adversarial loss LS, , enforcing
perceptual consistency. The inpainting process follows (Zeng et al., 2023):
Lovt = Gaan(Inm, M), (6)

where Iy = I ® (1 — M) is the masked input image, and ® represents element-wise multiplication. The
generator is optimized using the joint loss function (Zeng et al., [2023)):

L = )\adegdv + )\reCLrec + )\peerer + AstyLsty~ (7)

Here, Lgdv enforces realism through adversarial learning, L... ensures pixel-wise reconstruction accuracy,
L preserves perceptual features by comparing deep representations, and L, maintains texture and style
consistency using Gram matrices (Zeng et al., 2023)).

Obfuscation Process To construct an obfuscated version of the image while preserving non-masked
content, we define an obfuscation operator O, which applies the pre-trained inpainting model G only within
the masked regions while keeping the unmasked areas unchanged. This formulation ensures that obfuscation
is constrained to sensitive regions while preserving background consistency:

I =0(I,M)=T601-M)+GU,M,2) > M. (8)

For NeRF, we use a stitching-based inpainting strategy to maintain view consistency and prevent artifacts.
The inpainted region from a reference view is propagated to others using alpha blending, with histogram
matching ensuring smooth transitions and soft transitions using Gaussian blurring. Since 2D datasets do not
require cross-view consistency, this technique is specific to NeRF. See the appendix B for details on NeRF.

3.3 Stage 3: Oracle-Based Re-annotation and Final Obfuscation Formulation

After object removal, an oracle detector O, specifically RT-DETRv2-L (Lv et al., [2024; [Zhao et al. [2024),
verifies whether previously existing objects remain in the obfuscated image I,n¢. Instead of re-annotating
all objects, the oracle updates annotations by preserving only those that were affected by the inpainting
process, ensuring efficient and minimal modification to the dataset. The oracle function is defined as:

O : RIXWXC o REXW DR x € x [0, 1]), (9)

where the input consists of the obfuscated image I, and the binary mask M, and the output is a set of
detected objects with bounding boxes b € R*, class labels ¢ € C, and confidence scores s € [0,1]. Hence,
given the original annotation set A, the oracle detects objects in I,p¢, producing:

A={bic)]i=1,...,K}, (10)
Aoracle = O(Iobf7M) = {(b;,c;,sg) | Jj=1.. 'aL}' (11)

The verification step is applied only to objects that had significant spatial overlap with the removed sensitive
objects, while all other objects are automatically retained in the final annotation set. Specifically, let Aconided
be the subset of annotations where the bounding boxes overlap with the masked region M:

Acottided = {(bi; ¢i) | ToU(b;, M) > (}, (12)

where ( is a predefined threshold for determining collision. The verification process is restricted to this
subset, ensuring that only potentially altered objects are checked. The updated annotation set A is then
obtained as:

Averiﬁed = {(b'u Ci) |(b“ ci) S Acollideda (13)
El(b;7 C;, S;) S Aoraclca (14)
IoU(bs, b)) > 7}. (15)
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A= (A \ Acollided) U Averiﬁed~ (].6)

Here, the first term A \ Aconided retains all objects that were not affected by inpainting, and the second
term Ayeriied Teinstates only those that the oracle detects as still present after inpainting. Since verification
is restricted to Acolided, this ensures that objects that never intersected with masked regions are never
subjected to verification and are automatically retained.

Thus, the final dataset consists of I,,s with updated annotations /17 ensuring that sensitive objects are re-
moved while preserving dataset utility with minimal disruption to unaffected objects and preventing artifacts
introduced during object removal from silently propagating into the final annotations.

3.4 Stage 4: Privacy-Utility Evaluation

In this work, we use the term privacy guarantees to denote data-level protection achieved through complete
removal of identifiable entities from a dataset. Formally, a dataset D satisfies privacy under ROAR if all
instances of sensitive categories (e.g., persons) are eliminated such that the probability of re-identification by
any downstream model or human observer is negligible given the obfuscated dataset D’. Unlike differential
privacy (Abadi et al.,2016]), which bounds information leakage theoretically, our guarantees are operational:
they are empirically verified by an oracle detector and quantified through detection-based validation of object
removal in the obfuscated outputs, as detailed later in Section [4:2]

To assess the effectiveness of our obfuscation pipeline, we evaluate both privacy and utility aspects of the
obfuscated datasets. Specifically, we train object detection models on the obfuscated dataset and compare
their performance against models trained on the original dataset.

For the COCO dataset, we benchmark on two state-of-the-art object detection models: RT-DETRv2-M (Lv
et all 2024; Zhao et al| [2024) (RTD) and YOLOv9 (Wang et al. [2024b; |Chang et al., |2023) (YOLO).
These models are trained from scratch on the obfuscated COCO dataset and benchmarked against their
counterparts trained on the original dataset. By analyzing detection performance, we assess the impact
of object removal on downstream vision tasks and quantify the trade-off between privacy preservation and
dataset utility.

To contextualize ROAR’s performance, we compare it against two baselines: image dropping and blackout.
The image dropping baseline removes any image containing a sensitive object, simulating a strict privacy-
first approach at the cost of substantial data loss. While, the blackout baseline replaces detected object
bounding boxes with black rectangles. To avoid shape and pose leakage, we rely on object detection instead
of segmentation masks. These should not be confused with the original utility baseline (the None setting
in Table , which represents training on the unmodified dataset and serves as the upper bound for utility
without any privacy intervention.

NeRF-Based Evaluation In addition to COCO, we evaluate our method in a NeRF-based multi-view 3D
reconstruction setting (Mildenhall et al., [2020). Unlike COCO, where sensitive objects are defined by class
labels such as persons or vehicles, objects in NeRF experiments are manually selected per scene rather than
detected through instance segmentation. As a result, NeRF experiments omit the sensitive object detection
and re-annotation stages, focusing solely on inpainting.

To evaluate the impact of object removal on NeRF reconstruction, we scrubbed selected sensitive objects,
then trained and tested NeRF models using a 90-10 data split. We assessed structural consistency, visual
artifacts, and completeness in 3D scenes to analyze how scrubbing affects view-consistent synthesis. See the
appendix B for NeRF pipeline details.

4 Experimental Results

This section presents the empirical findings of ROAR, analyzing their effectiveness in maintaining pri-
vacy while preserving dataset utility. We evaluate three generative inpainting techniques: Kandinsky2.2
(KD) (Razzhigaev et al., 2023; Shakhmatov et al., 2022), Stable Diffusion (SD) (Rombach et al., [2022)), and
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Table 1: Privacy and Utility Metrics.

SETTING™ MEeTHOD! BD*¥ RTDap®t YOLOupr®t PE (%)71 IE (%)T1 1Imc. Lost! | AnnoT. RED.™ |
NoONE NoONE N 0.480 0.514 0 0 0 (0%) 0 (0%)
FuLL KANDINSKY N 0.420 0.434 79.82 64.77 8799 (7.45%) 107474 (17.99%)
FuLL KANDINSKY Y 0.410 0.426 89.22 77.73 12761 (10.78%) 131599 (22.02%)
FuLL STABLE DIFF. N 0.441 0.460 59.19 38.16 7482 (6.32%) 98113 (16.42%)
FuLL STABLE DIFF. Y 0.428 0.448 72.15 59.07 11137 (9.41%) 118217 (19.78%)
FuLo AOT-GAN N 0.424 0.437 63.26 40.82 7239 (6.11%) 99996 (16.73%)
BaseLiNne!!  Brackour — 0.399 0.413 94.30 91.88 17608 (14.88%) 150837 (25.24%)
BaseLiNe'T  Drop — 0.356 0.367 100.00 100.00 64115 (54.20%) 347201 (58.11%)
SELECTIVE ~ KANDINSKY N 0.466 0.481 82.49 — 2875 (2.43%) 41472 (6.94%)
SELECTIVE ~ STABLE DIFF. N 0.465 0.482 67.45 2714 (2.29%) 40634 (6.80%)
SELECTIVE ~ AOT-GAN N 0.464 0.482 67.91 — 2512 (2.12%) 40374 (6.76%)
BaseLINE!t Brackout 0.463 0.482 95.42 5339 (4.51%) 51490 (8.62%)
BaseLNE'T  Drop — 0.456 0.469 100.00 — 32057 (27.10%) 173827 (29.09%)

*Setting: Full (FP) removes all sensitive objects; Selective (SP) removes one randomly chosen object per image in 50% of
the sensitive subset. None denotes the original unmodified dataset. Rows above the mid-rule are FP; rows below are SP.
fMethod: the inpainting/obfuscation technique used (e.g., Stable Diffusion, Kandinsky, AOT-GAN).
IBD (boundary expansion): enlarges segmentation masks to improve robustness to localization errors, trading minor utility
loss for stronger privacy guarantees.( Y=yes, N=no).
SRTD 4p and YOLO sp: COCO average precision (AP@[0.50:0.95]) from detectors RT-DETRv2 and YOLOvY, respectively.
TPE (%) and IE (%): person-level and image-level removal efficiencies, measured via an oracle detector after scrubbing.
ITmg. Lost: number and percentage of images with no retained annotations post-scrubbing.
**Annot. Red.: number and percentage of removed non-person object annotations.
Tt Baselines: Blackout replaces sensitive-object boxes with black rectangles; Drop removes all images containing sensitive
objects.

AOT-GAN (AOT) (Zeng et al.. [2023), assessing their impact on both object detection and 3D reconstruc-
tion tasks. Specifically, we measure performance on object detection models, namely YOLOv9 (Wang et al.,
2024b) (YOLO) and RT-DETRv2-M (Lv et al.,|2024; |Zhao et al. [2024) (RTD), as well as on NeRF (Milden-
hall et all [2020) for evaluating scene reconstruction quality using the open-source implementation on Py-
Torch (Yen-Chen, 2020). The results are contextualized through a discussion of their implications on real-
world applications and future privacy-preserving dataset processing.

4.1 Dataset Overview: COCO and NeRF

COCO We use the COCO 2017 training dataset (Lin et al., |2014), a large-scale benchmark for object
detection, segmentation, and keypoint detection. It contains 118,287 training images and 2.5 million object
instances across 91 categories, including 262,465 person annotations. Persons appear in 54.2% of images,
averaging 4.09 persons per image. This diversity and occlusion make COCO an ideal test bed for privacy-
preserving obfuscation. We follow standard protocols using the 5,000-image 2017 validation set.

NeRF To assess multi-view 3D reconstruction, we evaluate on three NeRF-based scenes: Fern, Flower,
and Room, comprising 20, 34, and 41 images, respectively (Mildenhall et all [2020). Each scene involves
multi-view images centered around a static scene with a central object. Since NeRF reconstructs scenes from
2D views, we analyze how inpainting-based obfuscation affects its reconstruction quality.

4.2 Privacy and Utility Metrics for Evaluation
To systematically assess the trade-off between privacy preservation and dataset utility, we employ a set of
evaluation metrics spanning both privacy effectiveness and object detection performance.

We evaluate privacy effectiveness using Person-level Removal Efficiency (PE, %) and Image-level Removal
Efficiency (IE, %) to ensure a precise evaluation of privacy effectiveness across different obfuscation strategies.
For Full Privacy (FP) setting, where all sensitive objects are scrubbed, PE is defined as:

N
Zi:l (‘PiGT _ PiScrubbed)
N
Zi:l PiGT

PEFP = X 100, (17)
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Privacy Efficiency Across Methods
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Figure 4: Privacy Efficiency The bar plots show Person Removal Efficiency (PE%) and Image Removal
Efficiency (IE%). KD (Kandinsky), SD (Stable Diffusion) and AOT (AOT-GAN) denote different inpaint-
ing methods. BD (Boundary) refers to boundary expansion, while Drop removes sensitive images and
Blackout blackouts the sensitive object. FP denotes the Full setting and SP denotes the Selective setting.
Blue bars correspond to ROAR-based methods, whereas other methods serve as baselines.

where PiGT is the number of persons in image i from the ground truth annotations, and Piscr“bbed is the

number of remaining persons after scrubbing calculated using the oracle model. This metric captures the
overall reduction in persons across the dataset.

For Selective Privacy (SP) setting, where only one person per image is targeted for removal in half of the
sensitive part of the dataset (1 in 50%), the exact identity of the removed person is unknown. Instead, we
compute PE based on whether the total person count in an image decreases:

Zﬁ\;l ]l(PiGT > PiScrubbed)

PEsp = N

x 100, (18)

where N is the number of images and 1(-) is an indicator function that equals 1 if at least one person has
been successfully removed from the image, and 0 otherwise. This reflects whether scrubbing was effective in
each image without requiring knowledge of which specific person was removed.

The Image-level Removal Efficiency (IE, %) is computed as:

ZN ﬂ(‘PiScrubbed — 0)

IE = ==l
N

x 100, (19)

where 1(PSerubbed = () indicates whether an image has been completely cleared of all persons. This metric
quantifies the proportion of images where every sensitive object has been successfully scrubbed. Note that,
IE is not applicable to the SP approach as we do not want to scrub all persons in an image but one.

For utility assessment, we report Average Precision (AP) as the primary detection performance metric,
following the COCO evaluation protocol. AP is computed as the mean of precision-recall scores across
Intersection over Union (IoU) thresholds from 0.50 to 0.95 in steps of 0.05, denoted as AP@[IoU=0.50:0.95].
Higher AP values indicate better object detection accuracy. All AP results are reported on the validation
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dataset, person label is excluded. For 3D scene reconstruction, we report standard reconstruction metrics,
PSNR, SSIM, and LPIPS (Horé & Ziou, |2010; |Zhang et al.,|2018a)) to evaluate fidelity and perceptual quality
(see Appendix B for definitions).

Additionally, we track Image Loss (%), reflecting the percentage of images removed due to privacy constraints,
and Annotation Reduction (%), indicating the proportion of object annotations removed, excluding person
annotations.

4.3 Privacy-Utility Analysis

Kandinsky scrubbing yields the best privacy-utility trade-off. Across all privacy configurations and
models, Kandinsky with boundary expansion (FP.KD.BD) consistently delivers the strongest privacy guaran-
tee (PE = 89.22%) while retaining 85.4% of the original model utility (RTDap = 0.410 vs. 0.480 baseline),
as shown in Table [1| and Fig. This substantially outperforms the image dropping, which guarantees
privacy (PE = 100%) but severely degrades detection performance to RTDsp = 0.356, corresponding to
only 74.2% of the baseline.

Our method outperforms deletion and masking baselines. Image-level scrubbing with generative
inpainting retains more contextual information, yielding better downstream performance than both image
dropping, which discards more than half of the data, and blackout, which introduces high-contrast artifacts
that disrupt model learning (RTDap = 0.599). In contrast, our structured scrubbing achieves RTDap =
0.420 (FP.KD), preserving semantics and visual continuity.

Our experiments yield additional insights:

Selective Privacy supports real-world deployment. In SP.KD, where only one person is removed from
50% of sensitive images, detection performance remains high (RTD4p = 0.466) while still removing sensitive
content in a controlled manner (PE = 82.49%). This setting reflects scenarios such as opt-in removals or
regulatory requirements targeting partial scrubbing.

Boundary expansion improves privacy at the cost of utility. Enlarging masks by 10 pixels enhances
privacy (PE = 89.22% vs. 79.82% without expansion) but reduces accuracy (RTDap = 0.410 vs. 0.420).
This trade-off helps mitigate contextual leakage beyond object edges.

Image loss quantifies oracle-driven reannotation limits. Scrubbing may lead to complete loss of
annotations in crowded scenes, reflected by Images Lost = 10.78% for FP.KD.BD. This is a conservative
privacy and utility safeguard: if no remaining annotation can be verified, the image is discarded.

Structured inpainting is especially critical in sensitive datasets. In COCO, where over 50% of
images contain people, deletion leads to losing more than half of the dataset. Scrubbing avoids such drastic
pruning while still achieving over 60% PE, thus ensuring sufficient data coverage for tasks like federated
learning, where data scarcity may otherwise arise.

Failure analysis reveals key bottlenecks. Failures primarily arise from two sources: (i) Segmentation
failure: Mask2Former (Cheng et al., |2022)) may miss small, occluded, or ambiguously shaped objects, par-
ticularly in crowded scenes; and (ii) Inpainting failure: diffusion models can hallucinate human-like content
within masked regions, especially when masks are imprecise. In both cases, blackout would technically avoid
hallucination but at the cost of disrupting context and degrading performance. These failure cases primarily
reflect limitations of current segmentation and generative models rather than the ROAR pipeline itself. See
Appendix E for a comprehensive discussion.

4.4 Effects on 3D Scene Reconstruction

We evaluate the impact of privacy-preserving transformations on NeRF-based 3D reconstruction, analyzing
how different inpainting methods affect scene fidelity. Despite challenges introduced by object removal, our
results confirm that structured generative transformations maintain high-quality synthesis, as illustrated in
the supplementary material.

As shown in Table [2] diffusion-based inpainting methods outperform GAN-based approaches in preserving
scene integrity post-removal. Compared to the baseline where NeRF is trained on unmodified input images,
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Table 2: Comparison of PSNR, SSIM, and LPIPS across different scrubbing methods.

Scene  Method PSNR 1* SSIM 1t* LPIPS |*

Baseline 25.17 0.79 0.28
Fern Ours/AOT 25.59 0.79 0.24
Ours/SD 25.67 0.79 0.24
Ours/KD 26.49 0.84 0.15
Baseline 27.40 0.83 0.22
Ours/AOT 26.27 0.81 0.18
Flower Ours/SD 26.17 0.80 0.18
Ours/KD 27.64 0.87 0.10
Dropped 17.80 0.58 0.33
Baseline 32.70 0.95 0.18
Room Ours/AOT 29.81 0.94 0.13
Ours/SD 29.66 0.93 0.13
Ours/KD 31.04 0.96 0.07

*1 indicates higher is better; | indicates lower is better.

latent diffusion models such as Kandinsky achieve the highest PSNR and SSIM, while also minimizing
perceptual discrepancies (lower LPIPS). These improvements suggest that LDMs reconstruct missing regions
with high geometric and textural fidelity, ensuring minimal degradation in view synthesis.

In contrast, GAN-based inpainting introduces artifacts and structural inconsistencies, leading to lower PSNR
and SSIM scores. While SD yields strong results, further refinements in latent-space conditioning, such as
Kandinsky (Razzhigaev et al. [2023)), enhance reconstruction quality. These findings reinforce the effective-
ness of structured generative transformations for privacy-preserving NeRF, ensuring compliance with privacy
constraints while preserving downstream utility.

In the Flower scene, an insect appeared in 29 out of 34 images, making image dropping a potential, albeit
extreme, privacy-preserving option. Removing these images and training NeRF with only five remaining
views severely degraded reconstruction (see Table . This confirms that while dropping ensures privacy, it
significantly harms scene fidelity, reinforcing scrubbing as the preferred approach.

4.5 Discussion and Future Directions

Our findings show that ROAR enables effective privacy-preserving dataset obfuscation, removing sensitive
objects with minimal degradation in 2D detection and 3D reconstruction. Yet, several challenges remain:

Segmentation and Inpainting Limitations. ROAR’s effectiveness is bounded by upstream model per-
formance. Segmentation errors, especially in crowded or occluded scenes, determine the upper bound on
achievable privacy, as false negatives or imprecise masks may leave residual traces or remove essential context;
we analyze and try to mitigate this risk through conservative mask handling strategies such as boundary
expansion (Sec. . Inpainting models also struggle with large or irregular masks, sometimes halluci-
nating human-like features (Aithal et al. 2024; |Rombach et al., |2022; [Borji, 2023). While such artifacts
degrade perceptual quality for human observers, our results show they do not significantly impact utility, as
modern detectors rely on broader feature consistency rather than pixel-faithful background realism. More-
over, advances in upstream inpainting or segmentation models, whether through improved architectures or
privacy-driven techniques such as negative prompts (e.g., “no human”) or rejection sampling, can be readily
incorporated into ROAR to improve visual fidelity and robustness without altering the framework.

Task Generalization. Tasks like segmentation or activity recognition may be more sensitive to object re-
moval. Supporting them requires adaptive scrubbing that preserves non-sensitive context. Optimizing scrub-
bing for NeRF-based reconstruction and standardizing evaluation benchmarks will also be key to broader
adoption.

12
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5 Conclusion

We presented ROAR (Robust Object Removal and Re-annotation), a privacy-preserving dataset
obfuscation framework that removes sensitive objects while preserving scene integrity. Our results demon-
strate that for 2D COCO-based object detection, ROAR achieves 87.5% of the baseline average precision
(AP), whereas image dropping achieves 74.5% of the baseline, highlighting the advantage of scrubbing in
maintaining dataset utility. In NeRF-based 3D reconstruction, scrubbing incurs a PSNR loss of at most 1.66
dB while maintaining SSIM and improving LPIPS.

These findings establish ROAR as a scalable and practical solution for privacy-preserving vision systems,
offering strong privacy guarantees with minimal utility loss. Its modular design ensures compatibility with
evolving segmentation and inpainting models, making it well-suited for real-world applications.
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Appendix Organization

This appendix provides supplementary details and additional insights into various aspects of our work. It is
structured as follows:

e A: Detection Outcomes and Privacy Implications: This section discusses the relationship be-
tween object detection performance and privacy preservation, including an analysis of false positives,
false negatives, and their impact on dataset obfuscation.

e« B: NeRF: This section covers NeRF preliminaries, detailing its mathematical formulation and
rendering process. We describe dataset preprocessing for object removal and provide a detailed
explanation of the metrics used for NeRF evaluation, including PSNR, SSIM, and LPIPS.

e C: Background and Related Works: A deeper exploration of foundational concepts relevant to
our study, including prior work on dataset obfuscation, generative inpainting, and privacy-preserving
machine learning.

e D: Implementation and Reproducibility: Details on our implementation, including parameter
settings, training configurations, and dataset preprocessing steps, ensuring reproducibility.

e E: Supplementary ROAR Results: We include supplementary qualitative comparisons demon-
strating the effectiveness of our ROAR framework in different object removal scenarios in the COCO
dataset and NeRF scenes. Finally, we conclude with qualitative analysis of failure cases, presenting
limitations of the ROAR pipeline.

Each section aims to provide extended analyses, insights, and experimental findings that complement the
main paper. We encourage readers to refer to relevant sections based on their specific interests.

A Detection Outcomes and Privacy Implications

A.1 Detection Outcomes and Privacy Implications

To understand the impact of detection quality on privacy-preserving object scrubbing, we categorize images
into three subsets based on detection outcomes:

o True Positives (TP): Images where there is actually a sensitive object.

o False Negatives (FIN): Images containing sensitive objects that remain undetected. These samples
represent a privacy risk as they remain in the dataset unaltered.

o True Negatives (TN): Images that do not contain any sensitive objects.

Here, the term object detection is used loosely to include segmentation models, where the primary objective
is to detect objects.

Since our scrubbing pipeline is dependent on the accuracy of the sensitive object detection model, the false
negative rate p directly affects the privacy guarantees of the pipeline. We assume that the detection of
sensitive objects has a false negative rate p, while the false positive rate is orders of magnitude smaller,
i.e., approximately zero. This means that the detection model is very unlikely to incorrectly identify non-
sensitive objects as sensitive (i.e., false positives), but some sensitive objects may still go undetected (i.e.,
false negatives).

If a dataset consists of M images, with N images containing at least one sensitive object, the detector fails to
identify sensitive content in p/N samples. Consequently, these p/N samples may still contain sensitive objects,
thus affecting the privacy and utility of the dataset. As a result, our privacy guarantee is that the remaining
M — pN samples, which have been successfully scrubbed, do not contain any sensitive objects.
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Defining N for Full Privacy (FP) and Selective Privacy (SP) In our privacy-preserving object
scrubbing framework, the dataset is processed under two primary settings: Full Privacy (FP) and Selective
Privacy (SP). The definition of N, the number of images considered in each setting, is crucial for under-
standing the evaluation metrics.

Full Privacy (FP). For the FP setting, where all instances of a sensitive object (e.g., persons) are removed
from the dataset, we define N as the total number of images that contain at least one instance of the sensitive
object. Specifically, for the COCO dataset, this corresponds to all images that contain at least one person.

Selective Privacy (SP). In the SP setting, we selectively scrub one randomly chosen person per image
but only in half of the images that contain persons. As a result, the number of images considered in SP is
given by:

Nsp =0.5 x NFP- (20)
This means that in the SP setting, only a subset of images undergo scrubbing, allowing for a controlled
evaluation of privacy-utility trade-offs while retaining partial information about sensitive entities in the
dataset.

A.2 Privacy-Utility Trade-offs and Detection Improvements

Our scrubbing pipeline builds upon existing detection methods, leveraging state-of-the-art object detection
and segmentation models. These models, while highly effective, are not perfect. A higher false negative
rate p means that more sensitive objects may slip through the detection process and remain in the dataset,
compromising the privacy of the dataset. However, with an extremely low false positive rate, we are confident
that most of the images without sensitive objects will be correctly classified as non-sensitive (i.e., true
negatives), preserving the dataset’s utility.

Since our pipeline relies on the outputs of SOTA object detectors, any improvement in detection accuracy,
particularly in reducing false negatives, directly enhances the privacy guarantees. A decrease in p leads to a
more robust scrubbing pipeline, as fewer sensitive images escape the transformation process. Furthermore,
improving object detection to reduce p is always beneficial, as it ensures that fewer sensitive images remain
unprotected in the dataset.

A.3 Impact of Dataset Composition

The effectiveness of scrubbing is closely tied to the true positive ratio, v = %. When ~ is low, dropping
sensitive images may be viable with minimal utility loss. However, in real-world datasets where sensitive
objects are prevalent, dropping leads to severe data reduction, making scrubbing essential for balancing
privacy and usability.

Empirical results show that datasets with a low true positive rate experience less accuracy degradation from
dropping, as the loss of sensitive images has a smaller overall impact. However, this is uncommon in privacy-
sensitive domains, where structured scrubbing is necessary to prevent excessive data loss that could hinder
model training.

Maintaining both privacy and utility requires minimizing false negatives (p) while ensuring robust scrubbing.
Improving detection models to reduce p enhances privacy by correctly identifying and removing sensitive
objects while preserving non-sensitive data. Since false positives are assumed negligible, efforts should focus
on refining detection accuracy for sensitive objects without disrupting non-sensitive content.

A.4 Impact of Scrubbing and Dropping on Object Detection Performance and Privacy Implications

As shown in Fig. [5] we analyze the impact of privacy-preserving transformations by evaluating the relation-
ship between the proportion of sensitive images (denoted as v = %ﬁ) in the dataset and the accuracy of
object detection models. We compare two strategies: image scrubbing (FP) and image dropping (FP.drop)
on Kandinsky2.2 (Razzhigaev et all, 2023). In our original dataset, v = 54, meaning 54% of the images

contain sensitive objects, specifically persons. The dataset distribution is provided in Table [4]
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We trained models with different values of + by systematically dropping images from either the sensitive
(TP) or non-sensitive (TN) portion of the dataset, creating a range of experimental conditions: v = 30,
v = 40, v = 54 (original), v = 70, and v = 80. This allowed us to obtain a more detailed analysis of
the performance trends across varying degrees of privacy constraints. Note that the results are based on
the object classes listed in Table [3] which include a selection of small, large, and randomly chosen objects,
totaling 11 objects along with the overall accuracy.

To further investigate performance variations, we clustered the data into four distinct groups based on
the distribution of object-wise accuracy scores. These clusters naturally emerged around AP values of
approximately 0.0, 0.2, 0.4, and 0.7.

The composition of each cluster provides insight into the underlying structure of the performance degradation:

Cluster 1 (Near 0.0 AP): Consists mostly of small objects such as Backpack and Handbag. These objects
are frequently attached to persons and are often lost entirely when the person is scrubbed. Their recognition
accuracy is severely impacted, with performance reductions exceeding 70%.

Cluster 2 (Around 0.2 AP): Includes objects like Remote and Toothbrush. These are typically small
but independent objects, which may suffer from occlusion-related issues when sensitive entities are removed.
Accuracy degradation in this cluster is significant but not as extreme as in Cluster 1.

Cluster 3 (Around 0.4 AP): Contains mid to large sized objects such as Teddy Bear and Motorcycle.
These objects experience moderate performance degradation due to contextual dependencies on surrounding
entities.

Cluster 4 (Around 0.7 AP): Comprises large and well-defined objects like Bus and Airplane. These
objects are largely resilient to obfuscation, maintaining over 90% of their baseline performance.

A detailed breakdown for each object can be found in Table [3]

These findings align with a general trend in object detection: larger objects tend to be detected with
higher accuracy. This tendency can be attributed to several factors. First, larger objects inherently occupy
more pixels in an image, making them easier to distinguish from background noise. Second, deep learning
models trained for object detection typically have better feature extraction capabilities for larger, more
prominent objects, as they provide more spatial information. Third, occlusion effects impact small objects
disproportionately; for example, a handbag or remote may become indistinguishable if a person is removed,
whereas a bus or an airplane is less likely to be fully occluded by another object in the scene.

Furthermore, we observe that moving from smaller to larger objects in our clusters, the detection model’s
performance improves significantly for smaller objects, whereas for larger objects where the detection model
already performs well the gap in accuracy becomes much smaller. This trend is evident when comparing the
relative drops in AP between the clusters. Small objects in Cluster 1 experience a dramatic decrease in AP,
whereas the degradation becomes progressively less severe as we move to larger objects in Cluster 4.

This effect can be further explained by the inherent difficulty that object detection models face when de-
tecting small objects. Since small objects already pose a challenge for the model due to their limited spatial
information and higher susceptibility to occlusion, the removal of sensitive images that might contain them
intensifies this issue. Dropping sensitive images disproportionately harms the detection of these smaller
objects because they often co-occur with the sensitive entities being removed. In contrast, structured scrub-
bing, which removes only the sensitive object while preserving the rest of the scene, retains valuable context
that helps the model better recognize small objects.

For instance, in Cluster 1, scrubbing achieves a 2.44x improvement in AP compared to image dropping,
highlighting the substantial benefit of preserving non-sensitive parts of the image. This improvement is
particularly crucial for small objects that are frequently occluded or embedded in complex backgrounds. As
we move to larger objects in Cluster 4, where the detection model already performs well, the advantage
of scrubbing over dropping diminishes. Larger objects are less dependent on contextual features and are
more likely to be detected independently of the presence of sensitive entities. Consequently, the gap between
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scrubbing and dropping decreases, reaffirming that structured scrubbing is most beneficial for objects that
are already challenging to detect.

These observations further reinforce the necessity of adaptive privacy-preserving strategies. While dropping
sensitive images might seem like a straightforward privacy measure, it disproportionately harms the detection
of small objects, leading to greater accuracy degradation. Scrubbing, on the other hand, maintains a higher
level of dataset utility by selectively removing sensitive content while preserving crucial visual information.
As a result, structured scrubbing proves to be a more effective approach, particularly in datasets where small
objects play an important role in downstream tasks.

In conclusion, structured scrubbing provides a clear advantage over image dropping, particularly for datasets
containing high proportions of sensitive content. The cluster-wise analysis highlights the varying levels of
resilience among different object categories and underscores the importance of developing more adaptive
scrubbing methods to preserve dataset utility while enforcing strong privacy guarantees.

A.5 Selection of 7 and ¢

The verification step in Stage 3 is applied only to objects that had significant spatial overlap with the removed
sensitive objects, while all other objects are automatically retained in the final annotation set.

The ( is a predefined threshold for determining collision. In our setup, we set ( = 0 to ensure that verification
is performed aggressively, meaning that any object that has any degree of overlap with the removed region
is considered for verification. This decision prioritizes caution, ensuring that all potentially affected objects
are evaluated. However, more relaxed values of ¢ could be explored in future work to balance computational
efficiency and verification robustness.

For the intersection-over-union (IoU) threshold 7, which determines whether the oracle-detected object
corresponds to the original ground truth object, we select 7 = 0.3 based on empirical observations. This
threshold was determined by analyzing various IoU settings and their impact on verification performance.
While a higher 7 might provide stricter verification, we observed that for small objects (especially cases
where persons are heavily occluded) using an IoU threshold greater than 0.3 did not significantly change the
verification outcome. This is likely due to the fact that distinct objects tend to have relatively lower IoU
values, making stricter thresholds redundant in these cases.

Nonetheless, further study is required to identify an optimal 7, as different datasets and application sce-
narios might exhibit different tendencies. Exploring adaptive or learned thresholding mechanisms based on
object size and category could further refine the verification process, ensuring better alignment with dataset
characteristics and downstream task requirements.

Table 3: Comparison of AP5y g5 across categories for Baseline, Scrubbing (FP.KD), and Drop-
ping (FP.drop) using RT-DETRv2.

Class Baseline FP.KD (Scrubbing) FP.drop (Dropping) Remarks™

Airplane 0.752 (100%) 0.735 (97.74%) 0.681 (90.56%) Stable across methods, minimal drop.

Bus 0.722 (100%) 0.707 (97.92%) 0.658 (91.14%) Minor degradation, well-preserved.

All 0.480 (100%) 0.420 (87.50%) 0.356 (74.16%) Significant drop in overall performance for dropping.
Car 0.483 (100%) 0.471 (97.52%) 0.410 (84.89%) Minimal impact, robust across all methods.
Motorcycle  0.531 (100%) 0.421 (79.28%) 0.285 (53.66%) Dropping severely impacts this category.

Teddy Bear 0.481 (100%) 0.444 (92.31%) 0.351 (72.97%) Degradation in accuracy due to context loss.
Bicycle 0.349 (100%) 0.303 (86.82%) 0.215 (61.60%) Dropping affects objects that are tied with persons significantly.
Chair 0.345 (100%) 0.285 (82.61%) 0.213 (61.74%) Moderate drop, highlights contextual loss.
Remote 0.397 (100%) 0.214 (53.90%) 0.162 (40.81%) Highly affected by both methods, especially by dropping.
Toothbrush  0.327 (100%) 0.233 (71.25%) 0.184 (56.27%) Small objects are significantly impacted.
Handbag 0.198 (100%) 0.058 (29.29%) 0.018 (9.09%) Most degraded class, difficult to detect.
Backpack 0.196 (100%) 0.063 (32.14%) 0.021 (10.71%) Significant accuracy loss for accessories.

*Higher values indicate better performance. Clusters are separated by horizontal lines.
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Figure 5: Comparison of FP (scrubbing sensitive objects) and FP.drop (dropping images with sensitive
objects) accuracies across different clusters. The improvement factor indicates how much better scrubbing
performs compared to dropping on average, particularly highlighting the significant advantages for small and
occlusion-prone objects.

B NeRF

B.1 NeRF Preliminaries

In NeRF (Mildenhall et al| 2020), 2D images with their respective 3D spatial coordinates of the camera
from where the image was taken are used to render a 3D volumetric model to represent the object being
reconstructed. In this each 2D pixel of the image is parameterized to a camera ray r; = r, + trg, where
r, € R? represents the rays origin, ry € R? represents the rays direction, and ¢ represents the depth along the
ray. To render a particular pixel from a different view, NeRF model f samples points along the corresponding
ray. For each sampled point, the model returns its color ¢ and density o, expressed as (o,¢) = f(r,d). The
final pixel color C(r) is then obtained by integrating the colors of these sampled points along the ray using:

Er) = /t "Dty (e)e(rs, d)dt, (21)

where T(t) = exp (— ftt a(rs)ds) is the transmittance accumulated along the ray between the depths ¢,
and t.
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Table 4: Dataset Statistics Overview. This table presents the distribution of persons and objects, including
general statistics, person-specific metrics, and the most frequent object categories.

General Statistics

ToTAL IMAGES 118,287
TOTAL ANNOTATIONS 860,001
PERSON ANNOTATIONS 262,465
OTHER OBJECT ANNOTATIONS 597,536

Person Distribution

IMAGES WITH PERSONS 64,115 (54.20%)
AVERAGE PERSONS/IMAGE 4.09
MEDIAN PERSONS/IMAGE 2.00

Images with >IN Persons

N>1 39,283
N > 2 28,553
N>5 16,049
N > 10 8,407

Using a numerical quadrature rule (Mildenhall et al. 2020]), the integral is approximated as follows:
N

C(r) = ZTi (1 —exp(—0id;)) ci, (22)

i=1

where T; = exp (— E;;ll Ujéj) and J; = t;41 — t; denoting the distance between two samples.

Finally, the NeRF model f is trained under the MSE loss between the rendered color pixels and the ground
truth C(r) as follows for a coarse-sampled NeRF model and fine-sampled NeRF model:

c ¢ “ie ’

=Y 1] - |+ |[é) - co) (23)
reR

where R is the accumulation of sampled camera rays.

Evaluation Metrics

To assess the quality of the rendered images, we utilize three widely used evaluation metrics, Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS). These metrics provide pixel-wise accuracy and perceptual similarity between the syn-
thesized and ground-truth images.

Peak Signal-to-Noise Ratio (PSNR)

PSNR is a common metric for measuring the fidelity of reconstructed images by comparing them to reference
images. It is computed as:

MAXZ,,

) (24)

where MAXy;; is the maximal possible value of the pixel in the image. For an 8-bit channel, the maximum
value is 255 (Horé & Ziou, 2010)). A higher PSNR value signifies improved reconstruction quality.
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Structural Similarity Index Measure (SSIM)

SSIM evaluates the structural similarity between two images by considering luminance, contrast, and struc-
tural components. It is defined as:

(2papp + C1)(20aB + Co)
(1% + ug + C1) (0 + 05 + C)

SSIM(A, B) = (25)
where 4, pp are the average intensities of the images A and B, respectively. 04,05, and 045 correspond
to the standard deviations of the images and their cross-variance. C7 and Cs are small positive constants
used for numerical stability (Horé & Ziou, 2010). A higher SSIM value signifies improved reconstruction
quality.

Learned Perceptual Image Patch Similarity (LPIPS)

LPIPS is a perceptual metric that compares high-level features extracted from deep neural networks rather
than relying on pixel-wise differences. It computes the similarity between two images by measuring the
difference in their feature representations from a pre-trained network, typically a deep convolutional neural
network (CNN) (Zhang et all [2018a). For our experiments, we used VGG 16. A lower LPIPS value signifies
improved reconstruction quality.

B.2 NeRF Experiments

For each NeRF dataset, a specific object was selected for removal based on its presence in multiple views. In
the Room scene, the TV was removed. In the Flower scene, a living bug appearing in 29 out of 34 images was
selected for obfuscation. In the Fern scene, the ceiling light was the target for removal. Since these objects
were explicitly chosen, NeRF-based obfuscation does not rely on instance segmentation or re-annotation and
directly applies generative inpainting to remove them from all viewpoints. We split the obfuscated dataset
into training (90%) and test (10%) subsets and trained NeRF models on the processed data (Yen-Chen,
2020). All images were uniformly resized to 512 x 384 x 3, to ensure consistency in resolution and color
depth across evaluations.

To maintain view consistency across NeRF reconstructions, we implemented a stitching-based inpainting
technique. This method ensures that inpainted regions remain coherent across multiple perspectives. Since
object masks were manually created, slight inconsistencies were present across different views, which could
lead to artifacts during NeRF reconstruction. To mitigate this, we first identify the image containing the
largest instance of the object to be removed. This image serves as a template for inpainting using a pre-trained
generative model. The masked region from this template image is then extracted and resized dynamically
to match the bounding box of the corresponding object in all other images.

Once resized, the inpainted region is seamlessly blended into each target image using standard alpha blending.
To further refine appearance consistency, we apply histogram matching at the boundary regions, ensuring
that color and texture transitions between the inpainted patch and the surrounding scene remain smooth.
Additionally, a Gaussian-blurred edge blending technique is used to suppress harsh transitions that may
arise due to illumination variations across viewpoints.

By leveraging this stitching strategy, our approach minimizes the risk of inconsistent inpainting artifacts
across multi-view NeRF datasets, leading to improved coherence in the final reconstructed 3D scene.

C Background & Related Works

C.1 Data-Centric Machine Learning and Privacy

Machine learning pipelines involve multiple stages: data acquisition, training, testing, and deployment
(van der Schaar et al., |2023)). The data stage is particularly crucial when addressing privacy concerns,
as it establishes the foundation for subsequent processing. Unlike model-level privacy methods, which se-
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cure models or outputs, data-level privacy focuses on safeguarding datasets while preserving their utility for
downstream tasks.

Privacy-preserving machine learning can be categorized into data-level and model-level approaches (Wei
et al, 2023). Model-level techniques such as federated learning (Kairouz et al. 2021; Bonawitz et al., [2019)
and secure multi-party computation prevent direct data exposure but do not mitigate risks inherent in
raw datasets. Traditional data-level privacy techniques, such as differential privacy (DP) and noise-based
obfuscation, often degrade data utility, particularly in high-dimensional tasks like object detection (Chen
et al.l |2020; [ Torkzadehmahani et al.; [2019).

To address these limitations, our work introduces a novel paradigm in data privacy: object scrubbing.
Unlike anonymization techniques that modify or replace sensitive elements while preserving contextual in-
tegrity, scrubbing directly removes sensitive objects from images. This approach minimizes the risk of
re-identification while ensuring the dataset remains usable for downstream tasks. Moreover, unlike DP
training, which depletes a privacy budget and inherently limits the number of learning tasks for which a
dataset can be used, object scrubbing allows the dataset to remain usable for any number of learning tasks
without privacy degradation.

C.2 GANs and Diffusion Models

GANs (Goodfellow et al., [2020) have been widely used for image synthesis and inpainting. Advanced mod-
els such as AOT-GAN (Zeng et al., 2023) improve high-resolution inpainting through aggregated contextual
transformations, enabling better texture synthesis and object removal. However, GANs suffer from mode col-
lapse and training instabilities, making them less reliable for privacy-preserving dataset obfuscation (Thanh-
Tung & Tran, 2020; [Durall et al., 2021} Zhang et al., |2018b).

Latent Diffusion Models (LDMs) (Rombach et al.,|2022)) address these limitations by applying a progressive
denoising process (Ho et al., |2020) in a lower-dimensional latent space rather than directly in pixel space.
This approach significantly reduces computational costs while maintaining high-fidelity image generation,
making LDMs well-suited for privacy-preserving tasks such as targeted object removal. Stable Diffusion
is a specific instance of LDMs that leverages text-to-image conditioning via CLIP embeddings, allowing
for controllable and efficient image synthesis (Rombach et al., |2022). Other LDM-based models, such as
Kandinsky2.2 (Razzhigaev et al., 2023)), further refine this process by introducing structured image priors,
enhancing semantic control in transformations.

Compared to GANs, LDMs provide greater robustness, maintain structural coherence, and might offer
stronger privacy guarantees by operating in a latent space. These advantages make LDMs particularly
effective for dataset obfuscation, where sensitive entities must be removed while preserving the integrity of
surrounding image content.

C.3 Object Detection and Semantic Segmentation Models

Object detection and semantic segmentation are two fundamental tasks in computer vision, both aimed at
understanding scene composition but differing in their approach. Object detection focuses on localizing and
classifying objects within an image using bounding boxes, while semantic segmentation assigns a class label
to each pixel, providing a more granular representation of object regions.

In recent years, transformer-based architectures have significantly advanced object detection by leveraging
self-attention mechanisms to model long-range dependencies. A notable example is RT-DETRv2 (Lv et al.,
2024), which enhances the original RT-DETR, framework with a hybrid encoder-decoder architecture for
optimized multi-scale feature extraction. By decoupling intra-scale interactions from cross-scale fusion and
using scale-adaptive sampling in the deformable attention module, RT-DETRv2 improves both flexibility
and efficiency.

Another state-of-the-art detector, YOLOv9 (Wang et al.| 2024b)), integrates Programmable Gradient Infor-
mation (PGI) and the Generalized Efficient Layer Aggregation Network (GELAN) to optimize gradient flow
and parameter utilization. Unlike prior YOLO variants, YOLOvV9 enhances feature representation through
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gradient path planning, improving both convergence stability and detection accuracy. By retaining full in-
put information across layers, it remains competitive with transformer-based models while maintaining the
efficiency of CNN-based architectures.

For instance segmentation, Mask2Former (Cheng et all 2022) unifies semantic, instance, and panoptic
segmentation through a transformer-based masked attention mechanism. Unlike fully convolutional networks
(FCNs), it dynamically extracts region-specific features, restricting cross-attention to localized areas. This
improves segmentation accuracy, accelerates convergence, and enhances small-object segmentation through
multi-scale feature aggregation. Mask2Former achieves state-of-the-art results on COCO and ADE20K
benchmarks, outperforming both specialized and prior universal segmentation models.

Our methodology combines transformer-based and CNN-based architectures for robust privacy-preserving
dataset obfuscation. RT-DETRv2 enables real-time detection with optimized multi-scale attention, while
Mask2Former ensures precise segmentation for anonymization.

C.4 Anonymization

Recent research in privacy-preserving computer vision has explored various methodologies for dataset
anonymization, focusing on both differential privacy mechanisms and generative adversarial methods. Barat-
tin et al. (Barattin et al.,|2023) propose an attribute-preserving face dataset anonymization approach lever-
aging latent code optimization within a pre-trained GAN space. Their method optimizes identity obfuscation
while preserving crucial facial attributes using a feature-matching loss in FaRL’s deep feature space. In con-
trast, He et al. (He et al.,|2024) introduce Diff-Privacy, a diffusion-based framework integrating multi-scale
image inversion to enhance both anonymization and visual identity protection.

Hukkelas et al. (Hukkelas & Lindseth) [2023) extend previous face anonymization frameworks to full-body
anonymization using DeepPrivacy2, a GAN-based model that ensures realistic occlusion of individuals. Their
work addresses limitations in detecting and anonymizing full-body figures by incorporating pose estimation
and conditional synthesis techniques.

Lee and You (Lee & You, [2024) analyze the trade-off between privacy and accuracy in deep learning models
trained on anonymized data, demonstrating that aggressive anonymization techniques can significantly de-
grade model performance. This aligns with findings from Li and Clifton (Li & Clifton}, [2021)) on differentially
private imaging, where latent space manipulation is used to inject noise selectively, balancing privacy guar-
antees and data utility. In contrast, Malm et al. (Malm et al. 2024)) introduce the RAD framework, which
integrates Stable Diffusion with ControlNet for high-utility anonymization while preserving downstream
model performance.

Maximov et al. (Maximov et al.l 2020) propose CIAGAN;, a conditional identity anonymization GAN that
allows controlled identity swapping for dataset anonymization, ensuring anonymization while maintaining
downstream utility.

Sun et al. (Sun et al.l2018a)) present a head-inpainting approach for naturalistic identity obfuscation, demon-
strating that generative models can replace identity-revealing regions while retaining contextual integrity.
Similarly, Zwick et al. (Zwick et al.| [2024) explore text-to-image diffusion models to synthesize anonymized
figures that integrate seamlessly into complex scenes.

Our work differentiates from traditional anonymization techniques by adopting a data transformation strat-
egy centered on complete object removal. Instead of modifying or replacing sensitive elements within an
image, we systematically eliminate them while preserving the surrounding scene structure. By leveraging
advanced generative models, including latent diffusion and stable diffusion techniques, we evaluate their ef-
fectiveness in reconstructing realistic, high-fidelity backgrounds post-removal. Unlike prior approaches that
focus on masking or synthetic identity replacement, our method ensures that no identifiable traces remain,
offering robust privacy guarantees without compromising the usability of the remaining dataset.
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C.5 Differential Privacy in Computer Vision

Differential Privacy (DP) (Dwork & Roth| [2014) provides a formal framework for quantifying and limiting
privacy loss in machine learning systems.

While DP offers robust privacy guarantees, it imposes significant trade-offs between privacy and utility. For
high-dimensional data, such as images, achieving meaningful privacy requires injecting substantial noise,
which often degrades task-specific performance. Frameworks like TensorFlow Privacy and PyTorch Opa-
cus (Yousefpour et al.| [2021; Paszke et al.l [2019) have been developed to integrate DP into machine learning
workflows, but they require extensive parameter tuning and adaptation to support computer vision tasks
such as object detection and segmentation (Wei et al., |2023|). These challenges make DP less practical for
real-world applications where preserving fine-grained features is essential.

Several adaptations of DP for computer vision have emerged to address these limitations. For example,
Masked Differential Privacy (MaskDP) selectively obfuscates sensitive regions rather than applying noise
uniformly across an entire dataset (Schneider et al., [2024). This targeted approach improves utility by
preserving non-sensitive components of the data. Similarly, VisualMixer (Li et al.l 2024} disrupts sensitive
visual features through pixel shuffling while maintaining overall data fidelity. Although these methods offer
improvements over traditional DP approaches, they often lack the precision needed for high-dimensional
tasks and can lead to degradation in downstream utility for object detection or segmentation.

Our work departs from these traditional DP approaches by leveraging latent diffusion models to obfuscate
sensitive features within the latent space. Unlike noise-based methods, latent diffusion models enable seman-
tically meaningful transformations that preserve structural and contextual integrity. By focusing on privacy
at the data level, our approach avoids the severe trade-offs associated with DP in high-dimensional scenar-
ios, ensuring robust privacy guarantees while maintaining task-specific utility. This paradigm shift makes
generative models particularly well-suited for computer vision tasks, where both precision and scalability are
critical.

C.6 GANs and Private Dataset Generation Techniques

Generative models, including GANs and diffusion models, have recently gained attention for privacy-
preserving tasks. Methods like DP-CGAN and GS-WGAN adapt GANs to generate synthetic data satisfying
differential privacy guarantees (Chen et al., |2020; Torkzadehmahani et al., [2019)). However, these methods
often introduce artifacts and fail to preserve the original distribution of the dataset, limiting their applica-
bility to tasks requiring high fidelity. PrivSet (Chen et al.l [2022a)) uses dataset condensation to optimize
a small set of synthetic samples for downstream tasks. DPGEN (Chen et al., |2022b) incorporates DP into
energy-based models to generate private synthetic data, while Hand-DP (Tramer & Boneh, [2021) leverages
scattering networks to extract wavelet-based features before fine-tuning models using DP-SGD (Abadi et al.,
2016]).

In contrast to synthetic data generation, Yu et al. propose direct dataset obfuscation using random noise to
preserve privacy during training outsourcing or edge applications. Their approach evaluates privacy, utility,
and distinguishability trade-offs through the PUD-triangle framework. While effective for simple scenarios
like MNIST or CIFAR-10, this method’s reliance on uniform noise obfuscation may degrade utility and
task-specific performance in complex datasets (Yu et al.| [2022).

Our work fundamentally differs from the aforementioned methods as it directly operates on the original
images without relying on synthetic data generation. By leveraging diffusion models, we effectively scrub
sensitive objects while preserving the structural and contextual integrity of the dataset. Unlike synthetic data
generation approaches that often introduce artifacts or distort the original data distribution, our method
maintains the dataset’s fidelity, ensuring that the modified data remains as close to its original distribution as
possible. This direct interaction with the raw data allows us to overcome the utility degradation commonly
observed in noise-based obfuscation methods, supporting downstream tasks such as object detection and
recognition with minimal performance loss.
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Additionally, our approach streamlines the data preparation process by eliminating the need for training
computationally expensive generative models for specific tasks. This not only reduces overhead but also
ensures a more interpretable mapping between the original and obfuscated datasets, a critical requirement
for sensitive applications where transparency and traceability are essential.

Latent diffusion models provide a powerful framework for privacy-preserving transformations by iteratively
applying controlled noise and denoising processes within a compressed latent space (Rombach et al., [2022; Ho
et al., 2020). These models achieve precise modifications while preserving both the structural coherence and
the semantic meaning of the data (Razzhigaev et all 2023). Building on this foundation, our approach ap-
plies diffusion models directly to the original data to target sensitive objects, avoiding the artifacts commonly
associated with synthetic data generation. This ensures that privacy is preserved without compromising util-
ity, making our method particularly effective for high-dimensional tasks like object detection and recognition
in complex, real-world datasets.

D Implementation and Reproducibility

This section provides details on the experimental setup, including hardware specifications, model configura-
tions, and datasets used to ensure the reproducibility of our results.

D.1 Hardware and Computational Setup

Our experiments were conducted on various GPU configurations, including NVIDIA RTX A5000, A6000,
and A4000. The computational resources were allocated based on the complexity of the models and the
dataset sizes.

D.2 Object Detection and Utility Benchmarking

We utilized the official implementations from the RT-DETRv2 (Zhao et al., |2024; [Lv et all 2024]) and
YOLOvV9 (Wang et all 2024b} (Chang et al., 2023) repositories for our object detection experiments.

e RT-DETRv2: We trained and evaluated models using the rtdetrv2_r101vd_6x_coco.yml con-
figuration file. The RT-DETRv2 models were trained for 120 epochs as per the predefined settings
in the repository.

e YOLOVY9: For YOLOV9, we used the YOLOvV9-M model and trained it for 100 epochs.

For benchmarking, the RT-DETRv2-X model was used as the oracle detector, while RT-DETRv2-M
was employed for utility evaluation due to computational constraints.

D.3 Random Seeds and Dataset Preprocessing
To ensure reproducibility:

o A random seed of 3407 (Picard} 2021)) was used for all main experiments.

o A seed of 42 was used for other randomized processes such as selecting images to drop.

E Supplementary ROAR Results

The following figures illustrate different privacy-preserving transformations applied to datasets. To avoid
redundancy, individual captions are omitted. Instead, we provide a general description of the transformations
below.

In Figure@, Full Privacy (FP) ensures the removal of all sensitive objects in the dataset, leaving no identifiable
entities. In contrast, Selective Scrubbing (SP) targets only one randomly chosen individual per image in half
of the sensitive dataset, balancing privacy with data retention.
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All other figures (Figs. @ and depict the Full Privacy (FP) setting, where all sensitive objects
in the dataset are removed, ensuring no identifiable entities remain. The raw image (left) has no privacy
protection, while at the opposite extreme (omitted in figures) is image dropping, which ensures full privacy
at the cost of data loss. The intermediate method is the anonymization (modifying sensitive elements while
preserving context) with DeepPrivacy2 (Hukkelas & Lindseth| 2023; [Hukkelas et al., |2019), and our object
scrubbing approach, which removes sensitive objects while maintaining scene integrity using Stable Diffusion
and Kandinsky (Rombach et all 2022} Razzhigaev et al., |2023). Figure shows the blackout baseline,
which replaces sensitive content with black rectangles.

In Figures [16] [I7} and [I8 we present a comparison of the original images and their scrubbed counterparts
generated using different obfuscation techniques. Each row represents a view from the scene, where the
first column corresponds to the original image, while the subsequent columns depict images processed using
AOT-GAN-based scrubbing (Zeng et al., 2023)), Stable Diffusion 2.2 (SD) scrubbing (Rombach et al., [2022]),
and Kandinsky 2.2 (KD) (Razzhigaev et al. [2023) scrubbing, respectively. The other figures, (Figs.
and , depict the original image, the best-performing method (Kandinsky scrubbed images) and their
NeRF reconstruction.

E.1 Qualitative Failure Case Analysis

We have showcased representative failure cases in (Figs. and to illustrate typical limitations
of the ROAR pipeline under both high-density occluded scenes and sparse single-object scenarios. The
captions of these figures highlight key failure patterns, such as background hallucination, contextual bias
from nearby sensitive objects, and misdetections by the post-scrubbing oracle detector. In particular, Fig.
[15] demonstrates that even when scrubbing is visually successful, images may still be discarded due to
oracle failure in detecting nearby non-sensitive objects. These insights are derived from qualitative visual
analysis of specific examples. However, we emphasize that the failure causes may not be generalizable to
every failure; verifying them would require extensive analysis and manual inspection. Future work may
pursue a more rigorous categorization of failure modes, enabling a deeper understanding of their origins and
implications. Therefore, these examples are intended to provide intuition for common failure modes rather
than a comprehensive or statistically representative diagnosis.
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Original Image Ours (ROAR) Selective Ours (ROAR) Full

Figure 6: Comparison of different approaches: Full Privacy (FP) ensures the removal of all sensitive objects in
the dataset, leaving no identifiable entities. In contrast, Selective Scrubbing (SP) targets only one randomly
chosen individual per image in half of the sensitive dataset, balancing privacy with data retention.
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Original Image Anonymization Ours (ROAR)

Figure 7: Comparison of different approaches.
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Original Image Anonymization Ours (ROAR)

Figure 8: Comparison of different approaches.
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Original Image Anonymization Ours (ROAR)

Figure 9: Comparison of different approaches.
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Original Image Anonymization Ours (ROAR)

Figure 10: Comparison of different approaches.
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Figure 11: Comparison of different approaches.
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Original Image Blackout Ours (ROAR)

Figure 12: Comparison of blackout baseline and ROAR (ours).
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Original Image Scrubbed w/Kandinsky Scrubbed w/Stable Diffusion
Figure 13: Failure case analysis. The original image (left) contains multiple large sensitive objects (per-
sons), many of which are occluded by handheld objects (e.g., bottles). The high density of persons in the
scene appears to influence the generative models: Kandinsky replaces persons with vague blueish silhouettes,
which still leak identity cues and fail to fully erase sensitive content. Stable Diffusion, on the other hand,
hallucinates synthetic humans in place of the removed ones, likely due to strong contextual priors from the
surrounding crowd. Although technically replaced, the presence of human-like figures undermines privacy.
This failure illustrates that hallucinated humans, although artificial, still violate the intended privacy guar-
antees. Furthermore, the presence of occluded secondary objects (e.g., bottles) leads to collateral removal.
Pre-ROAR annotations included 8 bottles; post-ROAR, only 3 and 4 are detected in the Kandinsky and
Stable Diffusion outputs, respectively. This reduction may be attributed to two factors: (i) partial inpainting
due to occlusion within the masked region, and (ii) degraded post-scrubbing detection performance. Overall,
this example highlights key failure modes: background hallucination and object co-dependence that challenge
the robustness of ROAR.

7
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Original Image Scrubbed w/Kandinsky Srubbed W/ Stable Diffusion

Figure 14: Failure case analysis. The original image (left) contains multiple large sensitive objects
(persons), many of whom are mutually occluded. Similar to the pattern observed in the inpainting
models fail to synthesize a coherent background, likely due to the overwhelming presence of nearby persons
dominating the contextual priors. Beyond the generative failure, this example also highlights a limitation of
the post-scrubbing oracle detector. In the original image, there are 12 donuts, 1 cup, and a car. Post-ROAR,
the oracle successfully re-identifies the donuts and cup, but fails to detect the car. This failure stems from
the fact that only a small, partially occluded region of the car (e.g., wheels) remains visible after inpainting,
and also that region is partially corrupted. While the object is still visible to the human eye, the oracle does
not recognize it and thus discards the annotation. This case exemplifies two key challenges: (i) inpainting
under high-density person occlusion can yield incoherent or insufficient context reconstruction, and (ii) post-
hoc re-annotation is sensitive to small, partially scrubbed objects, thus demonstrating a clear gap between
human perception and model verification.
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Original Image Scrubbed w/Stable Diffusion (SD) Scrubbed w/SD - Boundary

Figure 15: Failure case analysis. In this scenario, the scrubbing appears visually successful (middle),
the person has been effectively removed. However, the image is discarded at the final stage of the ROAR
pipeline because the oracle detector fails to verify the presence of any remaining non-sensitive objects. The
original image (left) contains only two annotations: a person and a skateboard. Post-scrubbing, although
the skateboard appears mostly unaltered and only minimally occluded, the oracle fails to detect it. This
highlights a case where the limitations of the oracle model directly impact ROAR’s utility. The stronger the
oracle detector, the better the utility that ROAR can retain. It is also worth noting that while ROAR would
treat this as a successful scrubbing case, minor visual cues remain that suggest a person was present. These
residual traces can be mitigated using our boundary expansion variant, which enlarges the mask by 10 pixels.
As shown in the right example, this eliminates cues more effectively and even leads to a better background
synthesis. However, in such sparse scenes, boundary expansion poses a risk: since the skateboard is the only
non-sensitive object and lies close to the person, the expanded mask may engulf it entirely leading to its
removal and guaranteeing failure of oracle verification, regardless of oracle quality.
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Figure 16: Flower Scene. Comparison of original and scrubbed images using GAN
methods. The removed object is a green bug located in the upper-left region of the image.
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Original Image GAN Scrubbed KD Scrubbed SD Scrubbed

Figure 17: Room Scene. Comparison of original and scrubbed images using GAN, KD, and SD inpainting
methods. The removed object is a television positioned at the center of the image.
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Oginal Imag(; GN Scrubbe(/i K Scrubbed/ S Scrubbed/
Figure 18: Fern Scene. Comparison of original and scrubbed images using GAN, KD, and SD inpainting

methods. The removed object is a white lamp located near the upper center of the image.

43



Under review as submission to TMLR

Original Imag KD Scrubbe NeRF Reconstruction

Figure 19: Flower Scene: original image, scrubbed using Kandinsky, and the NeRF reconstruction. The
removed object is a green bug located in the upper-left region of the image.
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Original Image KD Scrubbed NeRF Reconstruction

Figure 20: Room Scene: original image, scrubbed using Kandinsky, and the NeRF reconstruction. The
removed object is a television positioned at the center of the image.
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Oginal In\lagé K Scrubbed/ NeRF Reconsti'ugtion

Figure 21: Fern Scene: original image, scrubbed using Kandinsky, and the NeRF reconstruction. The
removed object is a white lamp located near the upper center of the image.
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