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ABSTRACT

In many physical systems, inputs related by intrinsic system symmetries generate
the same output. So when inverting such systems, an input is mapped to multiple
symmetry-related outputs. This causes fundamental difficulties for tackling these
inverse problems by the emerging end-to-end deep learning approach. Taking
phase retrieval as an illustrative example, we show that careful symmetry break-
ing on the training data can help get rid of the difficulties and significantly improve
learning performance in real data experiments. We also extract and highlight the
underlying mathematical principle of the proposed solution, which is directly ap-
plicable to other inverse problems.

1 INTRODUCTION

1.1 INVERSE PROBLEMS AND DEEP LEARNING

For many physical systems, we observe only the output and strive to infer the input. The inference
task is often captured by the generic term “inverse problem”. Formally, the underlying system
is modeled by a forward mapping f , and solving the inverse problem amounts to identifying the
inverse mapping f−1. Inverse problems abound in numerous fields and take diverse forms, see,
e.g., (Hartley & Zisserman, 2003; Gonzalez & Woods, 2017; Comon, 2010; Colton & Kress, 2013;
Herman, 2009; Entekhabi et al., 1994; Ge, 2013). Let y denote the observed output. Traditionally,
inverse problems are mostly formulated as regularized optimization problems of the form

min
x

`(y, f(x)) + λΩ(x), (1.1)

where x represents the input to be estimated, `(y, f(x)) ensures y ≈ f(x) (` means loss), Ω(x)
encodes prior knowledge about x—often added to make the problem well-posed, and λ is a tradeoff
parameter. To solve Eq. (1.1) , iterative numerical algorithms are often developed (Kirsch, 2011).

Deep learning has enabled learning data-driven loss ` or Ω, or replacing mappings in iterative meth-
ods for solving Eq. (1.1) by data-adaptive ones. These ideas can capture structures in practical data
not expressible before and tend to lead to faster and/or more effective algorithms. Most radical
is perhaps the end-to-end approach: a deep neural network (DNN) is directly set up and trained
to approximate the inverse mapping f−1—backed by the famous universal approximation theo-
rem (Poggio et al., 2017) and based on a sufficiently large set of (x,y) pairs. Instead of citing the
abundance of individual papers, we refer the reader to the excellent review articles (McCann et al.,
2017; Lucas et al., 2018; Arridge et al., 2019; Ongie et al., 2020b) on these developments.

1.2 DIFFICULTY WITH SYMMETRIES

In this paper, we focus on the end-to-end learning approach. This approach has recently been widely
acclaimed for its remarkable performance on several tasks such as image denoising (Xie et al.,
2012), image super-resolution (Dong et al., 2014), image deblurring (Xu et al., 2014), and sparse
recovery (Mousavi & Baraniuk, 2017). In these examples, f is linear.

When f is nonlinear, intrinsic symmetries appear in many problems. A couple of quick examples:

• Fourier phase retrieval (PR) The forward model is Y = |F(X)|2, whereX ∈ Cn×n and
Y ∈ Rm×m are matrices and F is the 2D (oversampled) Fourier transform. The operation
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|·| takes elementwise complex magnitudes. It is well known that translations to the non-
zero part of X (if feasible), conjugate flipping of X , and global phase transfer eiθX for
any θ ∈ [0, 2π) all lead to the same Y (Bendory et al., 2017).

• Blind deconvolution The forward model is y = a~x, where a is the convolution kernel,
x is the signal (e.g., image) of interest, and ~ denotes the circular convolution. Both a and
x are inputs. Here, a~ x = (λa) ~ (x/λ) for any λ 6= 0, and circularly shifting a to the
left and shifting x to the right by the same amount does not change y (Lam & Goodman,
2000; Tonellot & Broadhead, 2010)

Solving these inverse problems means recovering the input up to the intrinsic system symmetries, as
evidently this is the best one can hope for.

Figure 1: Learn to take square root. (Left) The
forward and inverse models; (Right) The function
(in orange) determined by the training points.

Symmetries can cause significant difficulty for
the end-to-end approach. To see this, suppose
we randomly sample real values xi’s and form a
training set

{
xi, x

2
i

}
and try to learn the square-

root function, allowing both positive and neg-
ative outputs, using the end-to-end approach.
Now if we think of the function determined by
the training set, which the neural network is try-
ing to approximate, it is highly oscillatory (see
Fig. 1)1: the sign symmetry dictates that in the
training set, there are frequent cases where x2i
and x2j are close but xi and xj have different
signs and are far apart. Although in theory neu-
ral networks with adequate capacity are univer-
sal function approximators, in practice they will
struggle to learn such irregular functions. For general inverse problems, so long as the forward sym-
metries can relate remote inputs to the same output, similar problems can surface.

1.3 OUR CONTRIBUTION: SYMMETRY BREAKING

An easy fix to the above issue is fixing all signs of xi’s to be positive (or negative), which we call
“symmetry breaking”. We generalize this and

• Take phase retrieval (PR) as an example to show how symmetry breaking can be performed
and how this can lead to substantial gain in performance. For PR, our algorithm solves the
problem in a regime not accessible by previous methods.

• Identify the basic principle of effective symmetry breaking, which can be readily applied
to other inverse problems with symmetries.

2 PHASE RETRIEVAL (PR)

2.1 SYMMETRIES IN PR

Figure 2: Symmetries in 2D PR

Phase retrieval (PR) is a central but decade-old unsolved
problem in computational imaging with numerous appli-
cations (Shechtman et al., 2015). Here, we focus on the
2D version, which is probably most frequent in applica-
tions. GivenX ∈ Cn1×n2 , the forward mapping is

Y =
∣∣Fm1×n1

XF ᵀ
m2×n2

∣∣2 ∈ Rm1×m2 , (2.1)

where Fm1×n1 consists of the first n1 columns of the
Fourier matrix Fm1×m1

, often called partial Fourier ma-
trix; similarly for Fm2×n2

. The mapping is generically
injective whenm1 ≥ 2n1−1 andm2 ≥ 2n2−1, up to three intrinsic symmetries: 1) 2D translation

1Interestingly, the more train samples one gathers, the more serious the problem is.
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of the nonzero content of X; 2) conjugate of 2D flipping of X; and 3) global phase transfer to X:
Xeiθ for any θ ∈ [0, 2π). Any composition of these changes to X will leave the observation Y
unaltered. Fig. 2 illustrate the first two symmetries, assumingX is a real-valued image.

It is easy to see that these symmetries can relate remoteX’s to nearby Y ’s. Applying our argument
above, there will be learning difficulty due to the symmetries when deploying the end-to-end learning
approach. Below, we will work with two simplified versions of PR first to illustrate the key ideas for
symmetry breaking, and then discuss how to deal with the symmetries in the original PR.

Real Gaussian PR The forward model: y = |Ax|2, where x ∈ Rn, y ∈ Rm, and A ∈ Rm×n
is iid real Gaussian. The absolute-square operator |·|2 is applied elementwise. The only
symmetry is sign, and x and −x are mapped to the same y.

Complex Gaussian PR The forward model: y = |Ax|2, where x ∈ Cn, y ∈ Rm, andA ∈ Cm×n
is iid complex Gaussian. The modulus-square operator |·|2 is applied elementwise. The
only symmetry is global phase shift, and eiθx for all θ ∈ [0, 2π) are mapped to the same y.

These two versions have been intensively studied in the recent developments of generalized PR; see,
e.g., (Candes et al., 2015; Sun et al., 2017; Fannjiang & Strohmer, 2020).

2.2 REAL GAUSSIAN PR

Figure 3: Symmetry breaking for real
Gaussian PR.

In learning the square root example, there is a sign sym-
metry and we can break it by restricting all desired net-
work outputs to be positive. Here, the symmetry is the
global sign of vectors and antipodal points are mapped to
the same observation. Thus, an intuitive generalization is
breaking antipodal point pairs, and a simple solution is to
make a hyperplane cut and take samples from only one
side of the hyperplane! This is illustrated in Fig. 3 where
we use the xy-hyperplane in R3.

In R3, the upper half space cut out by the xy-plane is
connected. Moreover, it is representative as any point in
the space (except for the plane itself) can be represented
by a point in this set by appropriate global sign adjustment, and it cannot be made smaller to remain
representative. The following proposition says that these properties also hold for high-dimensional
spaces.
Proposition 2.1. Let R

.
= {x ∈ Rn : xn > 0} , Z .

= {x ∈ Rn : xn = 0}. The following properties
hold: 1) (connected) R is connected in Rn; 2) (representative) Z is of measure zero (Rudin, 2006)
and for any x ∈ Rn \Z, either x ∈ R or−x ∈ R; and 3) (smallest) No x ∈ R can be represented
by points in R \ {x}.

Proof. See Appendix A.1.

The coordinate hyperplane Z we use is arbitrary, and we can prove similar results for arbitrary
hyperplanes. The set Z is negligible (i.e., has zero measure), and so the probability of sampling a
point exactly from Z is zero. In fact, we can break the symmetry in Z also by recursively applying
the current idea. For the sake of simplicity, we will not pursue it here.

Now we can apply the above result to preprocess the training samples {xi, |Axi|2} for symmetry
breaking: for all xi’s, if xi lies above Z, we simply leave it untouched; if xi lies below Z, we switch
the sign of xi; if xi happens to lie on Z, we make a small perturbation to xi and then adjust the
sign as before. Now xi ∈ R for all i. Since R is a connected set, when there are sufficiently dense
training samples, small perturbations to |Axi|2 always lead to only small perturbations to xi. So
we now have a nicely behaved underlying function.

The three properties are also necessary for effective symmetry breaking. Being representative is
easy to understand. If the representative set is not the smallest, symmetry remains for certain points
in the set and so symmetry breaking is not complete. Now the set can be smallest representative
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but not connected. An example in the setting of Theorem 2.1 would be taking out a B ( R, and
considering M .

= (−B) ∪ (R \B). It is easy to verify that M is smallest representative, but not
connected. This leaves us the trouble of approximating (locally) oscillatory functions.

2.3 COMPLEX GAUSSIAN PR

We now move to the complex case and deal with a different kind of symmetry. Recall that in the
complex Gaussian PR, eiθx for all θ ∈ [0, 2π) are mapped to the same |Ax|2, i.e., global phase
shift is the symmetry. These “equivalent” points form a continuous curve in the complex space,
contrasting the antipodal point pairs in the real case. Inspired by the real version, we seek the three
properties in symmetry breaking.

To construct a smallest representative set for Cn, it is helpful to start with low dimensions. When
n = 1, any ray stemming from the origin (with origin removed) is a smallest representative subset
for C. For simplicity, we can take the positive axis R+. When n = 2, it is natural to use the building
block R+ for C and start to consider product constructions of the form R+ × T ⊂ C2 with T ∈ C.
Similarly for high dimensions, we try constructions of the form R+ × T ⊂ Cn with T ∈ Cn−1.
Another consideration is the measure-zero set. In the real case, we used a coordinate hyperplane.
Here, as a natural generalization, we take a complex hyperplane:

Z = {x = (x1, · · · , xn) ∈ Cn : x1 = 0} . (2.2)

The question now is how to choose T to make R+×T a smallest representative subset for Cn \Z. It
turns out we actually do not get many choices. The following result says that real positivity assumed
for the first coordinate constrains the construction significantly and the rest of coordinates are forced
to be the entire complex space Cn−1.

Proposition 2.2. If S .
= R+ × T with T ⊂ Cn−1 is a representative subset for Cn \ Z, then

T = Cn−1.

Proof. See Appendix A.2.

So we have the following construction.

Proposition 2.3. The set R
.
= {x ∈ Cn : Im(x1) = 0, x1 > 0} is a connected, smallest repre-

sentative set for Cn \ Z with Z .
= {x ∈ Cn : x1 = 0}. Moreover, Z is a measure-zero subset of

Cn.

Proof. See Appendix A.3.

Here R is restricted half-space and enjoys the three desired properties, similar to the real case,
despite the different symmetries. If we emulate the argument for the real case and preprocess the
training data, the construction leads to effective symmetry breaking for complex Gaussian PR.

2.4 FOURIER PR

Now we apply our insight gathered so far, especially the principle of constructing connected small-
est representative set for symmetry breaking, to the original PR, which has three symmetries as
discussed in Section 2.1.

Under the global phase transfer, equivalent data points form continuous curves as we discussed
for complex Gaussian PR. These are relatively easy to represent algebraically. The conjugate 2D
flipping and nonzero content translation, however, induce irregular equivalent sets that are shaped
by the numbers inside X and hard to represent. Prescribing a rule for symmetry breaking in the
originalX space seems hopeless.

Fortunately, the three symmetries can be equivalently represented in terms of the complex phase
eiθ after the Fourier transform. Let X denote the oversampled Fourier transform of X . Now
1) for 2D translation, any allowable2 2D translation t1, t2 ∈ Z induces the change X (k1, k2) 7→

2The nonzero content cannot translate outside the boundaries.

4



Under review as a conference paper at ICLR 2021

e
i2π

(
k1t1
m1

+
k2t2
m2

)
X (k1, k2); 2) conjugate 2D flipping induces the change X 7→ X , i.e., change to

the complex phase eiΘ 7→ e−iΘ; and 3) global phase transfer induces the change X 7→ eiθX . The
change due to 2) is a global sign flipping in the angle space (remember real Gaussian PR), and due
to 3) is a line in the angle space. The equivalent sets are easy to represent in the angle space, but
we take an equivalent representation in the complex phase space to avoid the tricky issue of dealing
with the 2π periodicity in the angle space. 1) is still tricky whether in the angle or complex phase
space.

Our overall strategy will be a combination of rigorous symmetry breaking for 2) and 3) in the com-
plex phase space and heuristic symmetry breaking for 1) in the original space—our later real-data
experiments will show the combination is effective. To break 1), we propose to simply center the
nonzero content as a heuristic. To break 2) and 3), we perform the geometric construction in the
angle space and then translate it back to the phase space representation. For the sake of space, we
omit intuition behind the construction and directly present the results as follows.

Consider the following set in the phase domain

R
.
=
{
Ω ∈ Cm1×m2 : Ω(1, 1) = 1, Ω(1, 2) ∈ S+,Ω(i, j) ∈ S ∀ other index (i, j)

}
, (2.3)

where S denotes the 1D complex circle and S+ the upper half circle. Formally, R can be understood
as a set 

{1} S+ S · · · S
S S S · · · S
...

...
...

. . .
...

S S S · · · S


m1×m2

. (2.4)

We can prove the following, stated in the equivalent vector spaces for convenience. We write R ∈
Sm1×m2 to mean the equivalent of R in the vector notation.

Theorem 2.4. Consider the conjugate flipping and global phase transfer symmetries only. The
set R is a connected, smallest representative in the phase domain SM2

with a negligible set N =
{1} × {ω ∈ S : Im(ω) = 0}m1×m2−1.

Proof. See Appendix A.4.

To apply this, we work with end-to-end DNNs that directly predicts the m1 ×m2 complex phases.
We first center the nonzero content inside Xi’s in the training set, and then take the oversampled
Fourier transform and perform the symmetry breaking as implied by Theorem 2.4 in the complex
phase space. For any phase matrix Ω, the symmetry breaking goes naturally as follows: first a
global phase transfer is performed to make Ω(1, 1) = 1, and then perform a global angle negation,
i.e., θ 7→ −θ of the second angle is negative, i.e., here we assume the angle has been transferred to
the range of (−π, π].

2.5 SYMMETRY BREAKING FOR GENERAL INVERSE PROBLEMS

For general inverse problems, although the symmetries might be very different than here and the
sample spaces could also be more complicated, the three properties, which concern only the geo-
metric and topological aspects of the space, can be generalized as a basic mathematical principle for
effective symmetry breaking. Our symmetry-breaking solution for Fourier PR also suggests that for
problems with multiple symmetries, one may need to look at a transformed space, or even mixture
of spaces for different symmetries for efficient representation and symmetry breaking.

3 NUMERICAL EXPERIMENTS

In this section, we set up various numerical experiments to verify our claim that effective symmetry
breaking facilitates efficient learning. We start with Gaussian PR on synthetic data, and then move
on the Fourier PR on real data. Particularly, we show that symmetry breaking substantially improve
Fourier PR performance over alternative methods.
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Table 1: Summary of results in terms of test error for real Gaussian PR. These numbers needs to be
scaled by 10−4. Blue coloring indicate the best performance in each row.

n Sample NN-A K-NN NN-B WNN-A K-NN WNN-B DNN-A K-NN DNN-B

5

2e4 10 17 283 8 18 283 10 19 284
5e4 6 12 282 8 17 284 7 14 285
1e5 5 10 284 5 12 283 13 18 284
1e6 4 7 283 5 6 283 7 8 283

10

2e4 11 20 82 9 22 82 8 21 82
5e4 9 16 82 6 18 82 9 20 82
1e5 9 16 82 6 15 82 8 17 82
1e6 7 13 82 5 10 82 9 11 82

15

2e4 12 17 38 9 16 38 9 16 38
5e4 11 14 38 9 14 38 8 15 38
1e5 10 13 38 8 13 38 7 13 38
1e6 8 9 38 7 10 38 9 10 38

3.1 REAL GAUSSIAN PR

We takem = 4n and draw iid uniformly random data points xi’s from the unit ball and consequently
generate {(xi, |Axi|2)} as the simulated datasets. All the datasets are split into 80% training and
20% test, and 10% of the training data are used for validation. We also vary the input dimension
n = 5, 10, 15 and dataset size 2e4, 5e4, 1e5, 1e6. Since this is mostly for proof of concept, we do
not go to higher dimensions. For all neural network models, we train them based on two variants of
the training samples: one with symmetry untouched (i.e., before symmetry breaking) and one with
symmetry breaking (i.e., after symmetry breaking). The former just leaves the samples unchanged,
whereas the latter pre-processes the training samples using the procedures we described in Section 2
for the real Gaussian PR, respectively. To distinguish the two variants, we append our neural network
model names with “-A” to indicate after symmetry breaking and “-B” to indicate before symmetry
breaking. WNN and DNN are the wider and deeper versions of the basic neural network (NN) we
use. For comparison, we also implement a baseline K nearest neighbor regression model. Model
details, training parameters, and detailed evaluation metric can be found in Appendix A.6.

From the results summarized in Table 1, we observe that for the same NN architecture with any
dimension-sample combination, symmetry breaking always leads to substantially improved perfor-
mance. Without symmetry breaking, i.e., as shown in the (·)-B columns, the estimation errors are
always worse, if not significantly so, than the simple baseline K-NN model. By contrast, symmetry
breaking as shown in the (·)-A columns always leads to improved performance compared to the
baseline. We observe similar patterns on complex Gaussian PR also, as detailed in Appendix A.6.

3.2 FOURIER PR

We conduct our real-data experiments first on the Fashion-MNIST dataset (Xiao et al., 2017). We
take their 60, 000 training images and 10, 000 test images to construct our training and test sets
respectively. Each example is a 28× 28 grayscale image. To simulate the typical black ground that
causes the translation freedom in PR applications, we place all the images in a black background of
42 ∗ 42—most previous methods overlook this in their experiments, and practically the translation
freedom, or what PR community call support estimation, is a major failure factor for most PR
methods. So n = 42, and we take m = 96 here to ensure injectivity of the forward model 2n − 1 =
83 is exceeded. We create 4 variants of the dataset to test the impact of symmetries on learning—this
is the first time this kind of rigorous evaluation is performed; previous methods predominately use
natural image datasets without translation freedom or with natural orientation, which does not match
the scenarios in PR applications e.g., in coherent diffraction imaging. We do this by modifying the
images as described below, followed by the standard operation of taking Fourier magnitudes.

• No Symmetry: i.e., all images are placed in the center of the black background i.e. padding
of 7 on all side; samples shown in Fig. 4 (a)-left;
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• Flipping symmetry: all images are placed in the center of the black background and 50%
of randomly selected training and test images are top-down and left-right flipped; samples
shown in Fig. 4 (b)-left.

• Shift symmetry: all images placed in a larger dark background and randomly translated;
samples shown in Fig. 4 (c)-left;

• Shift and Flipping symmetries: random flipping followed by random translation; samples
shown in Fig. 4 (d)-left.

Results on randomly selected test images are presented in Fig. 4. For each variant of the
dataset, the left column is the groundtruth image, and the middle and right columns are re-
sults produced by U-Net-B (i.e., without symmetry breaking; this is exactly the method used
in (Sinha et al., 2017)) and U-Net-A (i.e., with symmetry breaking—our method), respectively.

Figure 4: Visualization of recovery results. For each group, the first columns contain the groundtruth
images. Second and third columns are reconstructions produced by U-Net-B and U-Net-A, respec-
tively.

First note that with no symmetry, U-Net-B as a representative end-to-end method for PR gives
good recovery, but it fails once the dataset contains the essential symmetries. The mode of failure is
interesting, as the estimated images are almost always the superposition of the symmetric (translated
or flipped) copies of the groundtruth. This is very similar to the failure model of the classic methods
on PR. Moreover, for images that are visually similar between the original and the flipped copy e.g:
“handbag”, “leggings”, the reconstruction results are good with or without the flipping symmetry,
consistent with our intuition. Table 2 provides the average MSE (defined in Appendix A.6).

Table 2: Test error on different variants
of fashion-mnist dataset

Method U-Net-B U-Net-A

No Symmetry 0.103 0.103
Flipping Symmetry 0.168 0.162

Shift Symmetry 0.249 0.102
Shift & Flipping Symmetry 0.248 0.161
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Figure 5: Visualization Comparison
with ALM

4 RELATED WORK

Table 3: Test error comparison with iterative method for randomly
sampled 1000 fashion mnist test images containing shift flipping sym-
metry

Method MSE

ALM 0.299
U-Net-B 0.249
U-Net-A 0.160

As alluded to above, re-
cently there have been in-
tensive research efforts on
solving inverse problems
using deep learning (Mc-
Cann et al., 2017; Lucas
et al., 2018; Arridge et al.,
2019). The end-to-end ap-
proach is attractive not only
because of its simplicity,
but also because (i) we do
not even need to know the
forward models, so long as we can gather sufficiently many data samples and weak system prop-
erties such as symmetries—e.g., this is handy for complex imaging systems (Horisaki et al., 2016;
Li et al., 2018); (ii) or alternatives have rarely worked, and a good example is Fourier PR (Fienup,
1982; Sinha et al., 2017).

Besides the linear inverse problems, the end-to-end deep learning approach has been empirically
applied to a number of problems with symmetries, e.g., blind image deblurring (i.e., blind deconvo-
lution) (Tao et al., 2018), real-valued Fourier phase retrieval (Sinha et al., 2017), 3D surface tangents
and normal prediction (Huang et al., 2019), nonrigid structure-from-motion (Kong & Lucey, 2019;
Wang et al., 2020). We believe that our work is the first to delineate the symmetry problem con-
fronting effective learning and propose a solution principle that likely generalizes to other inverse
problems.

For phase retrieval, the regularized optimization-deep learning hybrid approach has been applied by
Metzler et al. (2018); Işıl et al. (2019), where HIO (a classic numerical method for PR) is still needed
to produce good initialization and their methods mostly only perform local refinement—for simpler
inverse problems, such special initialization is not required Ongie et al. (2020a). The end-to-end
approach has also been applied by Goy et al. (2018); Uelwer et al. (2019); Metzler et al. (2020)
with initial positive results. But as we discussed in the experiments, they do not seem to handle the
essential difficulty caused by symmetries.

Mathematically, points related by symmetries form an equivalence class and these equivalence
classes form a partition of the input space for the forward model. Our symmetric breaking task
effectively consists in finding a consistent representation for the equivalence classes, where the con-
sistency here requires the set of the representatives to be topologically connected.
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A DEFERRED PROOFS

A.1 PROOF OF THEOREM 2.1

Proof. First recall the property that if any two points in a given set can be connected by a continuous
path lying entirely in the set, then this set must be a connected set Kelley (2017). Now any two
points x,y ∈ R can be connected by the line segment {αx+ (1− α)y : α ∈ [0, 1]} ⊂ R. Thus R
is connected. Moreover, Z = Rn−1 × {0} has Lebesgue measure zero since

µ(Z) =

∫
Rn

1Z dx =

∫
Rn−1

(∫
{0}

1Z dxn

)
dx−n = 0. (A.1)

Here 1Z is the indicator function on Z, and x−n ∈ Rn−1 is the vector formed by the first n − 1
coordinates of x. We used Tonelli’s theorem Rudin (2006) to obtain the second equality, and the
fact

∫
{0} 1Z dxn = 0 to obtain the third equality. The rest of (2) is straightforward. For (3), suppose

that there is another point x̃ ∈ R \ {x} which can represent x up to a global sign flipping. Since
both x and x̃ are in R, which means they need to have the same sign for the last component, it must
be x = x̃. We get a contradiction.

A.2 PROOF OF THEOREM 2.2

Proof. We prove by contradiction. Suppose that there is a x′ ∈ Cn−1 but x′ /∈ T . Then for any
x1 ∈ R+, x = (x1;x′) /∈ R+ × T = S and x ∈ Cn−1 \Z. Since S is representative, we can find a
θ ∈ [0, 2π) and x̃ ∈ S so that

eiθx = x̃. (A.2)

Since S has the first coordinate to be positive real numbers, by looking at the first component
of Eq. (A.2) we have {

x1 cos θ > 0

x1 sin θ = 0
, (A.3)

from where we deduce that θ = 0 and so x = x̃ ∈ S. This contradicts our construction that
x /∈ S.
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A.3 PROOF OF THEOREM 2.3

Proof. First, Z has measure zero due to the same reason as in Eq. (A.1). Next, it is clear that any
two points x,y ∈ R can be connected by the line segment {αx+ (1− α)y : α ∈ [0, 1]} ⊂ R, and
so R is a connected set. To see R is representative, for any x = (r1e

iθ1 , x2, . . . , xn) ∈ Cn \ Z
where r1 > 0, one can choose θ = 2π − θ1 so that eiθx ∈ R. To show it is also smallest, we use a
similar argument to that in Theorem 2.2. Let x ∈ R where we write x = (x1;x′) with x′ ∈ Cn−1.
If another element x̃ 6= x ∈ R can be represented by x, namely, if there is θ ∈ [0, 2π) such that
x̃ = eiθx, then we need to have Im(eiθx1) = 0 and Re(eiθx1) > 0. That is,{

x1 cos θ > 0

x1 sin θ = 0
. (A.4)

Since x1 > 0, Eq. (A.4) implies that θ = 0. But this contradicts with that x 6= x̃ and thus no
element in R can be represented by a distinct element in R.

A.4 PROOF OF THEOREM 2.4

Proof. It is clear to see R is connected in Sm1×m2 since R is path-connected set on Sm1×m2 with
the inherited subspace Euclidean topology of Cm1×m2 . Also, N is of Lebesgue measure 0 since it
is a product of finite points. Now we are going to proveR is a representative of Sm1×m2 .

For any given z = (eiθ0 , eiθ1 , · · · , eiθm1×m2−1), we need to find a ω ∈ R such
that there is a g ∈ G satisfying g(ω) = z. If Im(ei(θ1−θ0)) > 0, we take
ω = (1, ei(θ1−θ0), ei(θ2−θ0), · · · , ei(θm1×m2−1−θ0)) then ω ∈ R and eiθ0ω = z. On
the other hand, if Im(ei(θ1−θ0)) < 0, we can consider the conjugate format ω =

(1, ei(θ1−θ0), ei(θ2−θ0), · · · , ei(θm1×m2−1−θ0)) and it still possesses the same properties as the former
case. This proves that is is representative.

At last, we need to show the smallestness in the sense that with any point ofR removed, we cannot
recover it by other points inR. That is, with arbitrary z̃ ∈ R given, for any g ∈ G and z ∈ R\{z̃},
we have g(z) 6= z̃. Before going to the details of the proof, we formulate an auxiliary lemma which
helps simply the messy operations set G.

Lemma A.1. Any operation in G can be reformulated into a sequence of operations with the first
part contains only subsequent phase transition operations and the second part contains only conju-
gate flipping operations (or reverse the order of these two parts). That is, for any g ∈ G, we can
find g̃ ∈ G such that g̃ = Φ ◦Π and g = g̃, where Π represents phase transition with total angles Π
and Φ represents the flipping either odd times or even times (i.e., the identity).

The proof of this lemma is straight forward and is demonstrated as following. First we may consider
the simplest cases: g1 = ψ1 ◦ f , where π1 is the phase transition by angle ψ1 and f is the flipping.
For any given θ, we want to find a g2 = f ◦ ψ2 such that g2(eiθ) = g1(eiθ). The g2 can be found by
solving equation

−(ψ2 + θ) = −θ + ψ1 + 2πk

to get ψ2 = −ψ1 − 2πk for some k ∈ Z. For more than two composition of operations, we can
reduce it iteratively.

Now we can go back to the proof of smallestness. Write z̃ = (eiθ̃0 , eiθ̃1 , · · · , eiθ̃m1×m2−1) and
z = (eiθ0 , eiθ1 , · · · , eiθm1×m2−1) where θ̃0 = θ0 = 0 and Im(eiθ̃1), Im(eiθ1) > 0. Suppose that
there is a g ∈ G such that z̃ = g(z). By Lemma A.1, we may assume g = f ◦ ψ or g = ψ where ψ
is a phase transition with the total angles ψ and f is the conjugate flipping. If g = f ◦ ψ, z̃ = g(z)
implies for any 0 ≤ j ≤M − 1

θ̃j = −(ψ + θj) + 2πkj , (A.5)

for some kj ∈ Z. We can solve ψ = 2πk0 as j = 0 and this implies θ̃j = 2π(kj − k0) − θj for
1 ≤ j ≤ M − 1, especially, θ̃1 = 2π(k1 − k0) − θ1. This contradict to the fact that Im(eiθ̃1),
Im(eiθ1) > 0. If g = ψ, we then have the relationship

θ̃j = (ψ + θj) + 2πkj . (A.6)
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Again, we can solve ψ = 2πk0 as j = 0 and this indicates that z̃ = z which contradicts the
assumption. Hence, we prove the smallestness.

A.5 DIFFICULTY WITH SYMMETRIES: WHAT HAPPENED?

In this section, we investigate several aspects of the neural networks in the hope that some aspect can
potentially help overcome the learning difficulties with symmetries. Based on the above discussion,
we focus on the NN-A model. Typically, besides the network size, performance of neural networks
is also strongly affected by the mini-batch size, learning rate, and regularization. To analyze the
impact of the latter three, we vary each one of the parameters while keeping the others fixed. We
work with real PR only and expect the situation for complex PR to be similar. To keep a reasonably
fast run time while not hurting the performance, we take 2e4 data samples, which seems sufficient
for the above results.

Figure 6: (Left) Test error vs. mini-batch size; (Right) Test error vs. learning rate.

Effect of mini-batch size The mini-batch size in stochastic optimization algorithms such as Adam
that we use is considered to have a substantial impact on the performance of neural networks Bengio
(2012). To see if this can help with the performance, we change the size to sweep several orders
of magnitudes, i.e., 1e0, 1e1, 1e2, 1e3, and also experiment with different dimensions, i.e., n =
5, 10, 15, on NN-B. From the results presented in Fig. 6 (Left), we conclude that varying the mini-
batch size has a negligible effect on the test error.

Effect of learning rate The learning rate is the most critical hyper-parameter Jacobs (1988) that
guides the change in model weights in response to the estimated error. To examine its effect on the
test error, we vary it across six orders of magnitude: 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, and
retrain NN-B. Again, the magnitude of the test error roughly remains the same across the distinct
learning rates, as shown in Fig. 6 (Right).

Effect of regularization We explore three regularization schemes, L1, L2 and L1 + L2 . Table 4
shows the results after our retraining of NN-B with the different schemes. It appears that no scheme
clearly wins out.

Table 4: Test error using different regularization schemes

Regularization n = 5 n = 10 n = 15

L1 0.02848 0.00831 0.00392
L2 0.02847 0.00830 0.00392

L1 + L2 0.02846 0.00830 0.00392
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These results reinforce our claim that the bad performance of neural network learning without sym-
metry breaking is due to the intrinsic difficulty of approximating irregular functions, not due to
suboptimal choice of neural network architecture or training hyper-parameters.

Table 5: Count of trainable parameters for n = 15

Models Real Complex

Neural Network 57,743 58,718
Wide Neural Network 197,391 199,326
Deep Neural Network 2,914,063 2,915,998

New MSE Due to the PR problem intrinsic symmetries, we’d like to correct the global phase
before we evaluate the quality of the recovered images. Meanwhile, we need to scale the two images
in the Error Function:

min
θ,η>0

∥∥A− ηBeiθ∥∥2
F

(A.7)

where A is the original image in object domain and B is the recovered image in object domain. eta
is scale varaible and θ is a global phase.

Then we could expand the objective function based on complex-value rule:

min
η>0

‖A‖2F + ‖ηB‖2F − 2ηReal(< A,Beiθ >) (A.8)

which is equally to :

min
η>0

‖A‖2F + ‖ηB‖2F − 2η| < A,B > | (A.9)

First order optimal condition:

∇η ‖A‖2F + ‖ηB‖2F − 2η| < A,B > | = 0 (A.10)
Deriving the objective function expansion form:

2η‖B‖2F − 2| < A,B > | = 0 (A.11)
Solution of η :

η =
| < A,B > |
‖B‖2F

(A.12)

After substituting solution of η , the solution of the error function is like:

‖A‖2F −
| < A,B > |
‖B‖2F

(A.13)

A.6 GAUSSIAN-PR EXPERIMENTS

Training and error metric The mean loss is used in the objective. We use the Adam optimizer
(Kingma & Ba, 2014) and train all models for a maximum of 100 epochs. The learning rate is set
as 0.001 by default and training is stopped if the validation loss does not reduce for 10 consecutive
epochs. The validation set is also used for hyperparameter tuning. To train the models for the
complex PR, real and complex parts of any complex vector are concatenated into a long real vector.

To imitate the real-world test scenario, we do not perform symmetry breaking on the test data. To
measure performance, we use the normalized mean square error (MSE) which is rectified to account
for the symmetry:

εreal = min
s∈{+1,−1}

||x̂s− x||2

n
, (real) (A.14)

εcomp = min
θ∈[0,2π)

||x̂eiθ − x||2

n
., (complex) (A.15)
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where x̂ is the prediction by the learned models.

Results on randomly selected test images are presented in Fig. 4. For results on each variant of
the dataset, the left column is the groundtruth image, and the middle and right columns are results
produced by U-Net-B and U-Net-A, respectively. Table 2 provides test error. First note that with
no symmetry, U-Net-B gives good recovery, but it fails on the variants containing symmetries. The
mode of failure is interesting, as the estimated images are almost always the superposition of the
symmetric copies of the groundtruth. This is very similar to the failure model of the classic methods
on PR. Moreover, for images that are visually similar between the original and the flipped copy e.g:
”handbag”, ”leggings”, the reconstruction results are good with or without the flipping symmetry,
consistent with our intuition.

On the other hand, irrespective of the symmetries, U-Net-A consistently leads to good recovery.
Interestingly, U-Net-A can sometimes recover novel symmetric copies of the groundtruth image:
e.g.,

Table 1 provides test errors for all models trained for real PR, and likewise Table 6 presents test
errors for complex PR. All models for the same combination of input dimension n and sample size
use the same set of data. Blues numbers in the tables indicate the best performing model across all
the models in each row.

Learning models We set up an end-to-end pipeline and use neural network models to approximate
the inverse mappings, as is typical done in this approach. The following are brief descriptions of the
models used in our comparative study. Recall that in our problem setup, n is the dimension for x
and m is the dimension for y.

• Neural Network (NN): fully connected feedforward NN with architecture m-256-128-64-
n.
• U-Net: Fully Convolutional Network (Ronneberger et al., 2015), which is a state-of-the

art model for image segmentation.
• Wide Neural Network (WNN): we increase the size of hidden units of the NN by a factor

of 2. The architecture is m-512-256-128-n.
• Deep Neural Network (DNN): we increase the number and size of hidden layers of the

NN by adding two more layers. The architecture is m-2048-1024-512-256-128-n.
• K-Nearest Neighbors (K-NN): K-NN regression, where prediction is the average of the

values of K nearest neighbors. In this work we use K = 5.

Table 6: Summary of results in terms of test error for complex Gaussian PR. These numbers needs
to be scaled by 10−4. Blue numbers indicate the best performance in each row.

n Sample NN-A K-NN NN-B WNN-A K-NN WNN-B DNN-A K-NN DNN-B

5

2e4 16 44 786 11 87 882 13 45 699
5e4 10 39 718 12 38 669 19 39 697
1e5 06 21 473 32 34 942 11 13 854
1e6 05 06 642 64 72 453 14 15 731

10

2e4 79 237 452 65 80 453 61 239 380
5e4 56 66 428 89 191 419 82 181 400
1e5 97 139 436 28 58 431 55 86 453
1e6 136 179 448 85 162 432 77 118 399

15

2e4 282 287 282 129 143 296 180 189 277
5e4 192 272 313 62 126 308 172 233 313
1e5 188 226 258 141 269 295 177 206 274
1e6 136 179 448 131 184 395 182 202 283
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