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Figure 1: In-the-wild inferences using InstaFormero,d. We display the segmentation results along
the occlusion and depth order predictions of images gathered from the web. Instances are represented
as nodes in the graphs. Edges are arrows characterizing their order relations. InstaFormer provides
accurate instance-wise geometries. Moreover, converting its outputs to text format enables VLMs to
understand geometries in a zero-shot manner better.

Abstract

Even in controlled settings, understanding instance-wise geometries is a challeng-
ing task for a wide range of visual models. Although specialized systems exist,
modern arts rely on expensive input formats (category labels, binary segmentation
masks) and inference costs (a quadratic amount of forward passes). We mitigate
these limitations by proposing InstaFormer, a network capable of holistic order
prediction. That is, solely given an input RGB image, InstaFormer returns the
full occlusion and depth orderings for all the instances in the scene in a single
forward pass. At its core, InstaFormer relies on interactions between object queries
and latent mask descriptors that semantically represent the same objects while
carrying complementary information. We comprehensively benchmark and ablate
our approach to highlight its effectiveness. Our code and models are open-source
and available at this URL: https://github.com/SNU-VGILab/InstaOrder.

1 Introduction

While scene understanding has always been an active domain in computer vision [3, 19, 21, 24, 47, 50],
its importance has recently become evident with the rising popularity of vision-language models
(VLMs) [2, 5, 7, 27, 28]. In a VLM framework, the user textually interacts with an agent based on
visual grounding from an input image [23, 27, 35, 42, 46]. However, current VLMs still struggle
to understand the intricacies of the geometric relationships between the elements composing the
scene. Instance-wise order prediction is often overlooked due to its apparent simplicity and to a
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tendency to opt for dense prediction networks [18, 34, 44, 45]. Yet, we emphasize that this simplicity
is deceiving, even for dense foundation models [20, 45]. From determining pedestrian–car occlusions
for the safe piloting of autonomous vehicles to estimating depth layouts and relative positioning in a
robot’s perception module, understanding instance-wise orderings is a non-trivial task that is often
overlooked yet crucial for grounding our interactions with machines.

(a) Ordering prediction frameworks.
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(b) Input-output and inference cost of ordering predic-
tion frameworks.

Input Output ordering
Methods Masks Image Text Occlusion Depth

Pairwise Nets ✓ ✓ ✓ ✓
VLM ✓ ✓ ✓ ✓
Foundation models ✓ ✓
Mask2Order ✓ ✓ ✓

InstaFormer ✓ ✓ ✓

Figure 2: Overview of our holistic approach. We
compare the holistic approach to other inference
strategies (Fig. 2a) and highlight the input-output
format discrepancies (Tab. 2b).

Few existing approaches explicitly tackle this
geometrical scene graph problem [24, 47, 50].
Yet, they suffer from expensive inference costs
and impractical input formats. Specifically,
these methods formulate the occlusion and depth
ordering prediction tasks a series of instance-
wise edge prediction, meaning they require a
quadratic amount of passes to obtain the full
graph (Fig. 2a). Moreover, all the aforemen-
tioned arts require the binary masks of all the
instances as input (Fig. 2b).

To address the input format issue, we first design
a straightforward approach called Mask2Order.
Mask2Order is a concatenation of a pre-trained
segmentation network [4, 8, 9] to a pairwise or-
der network [24]. Given an input image, the seg-
mentation network first generates masks which
are then fed by pairs, along with the input image
to the pairwise network to obtain their geometri-
cal relations. Although this approach alleviates
the input limitation since it self-supplies the or-
der head with generated masks, its performance
degrades while continuing to require multiple
inferences. Thus, we introduce the main contri-
bution of our work, InstaFormer, a joint segmen-
tation and ordering prediction network capable
of holistic order prediction.

In the holistic prediction paradigm, we reformu-
late the edge-level occlusion and depth ordering
prediction tasks to an adjacency matrix-level
problem. This allows the network to predict the
whole instance-wise geometries in a constant inference cost, i.e., a single forward pass, for any
arbitrary number of instances in the scene. This is made possible thanks to attention interactions
between object queries and latent mask descriptors representing the same objects while carrying
complementary information.

In summary, our contributions can be stated as follows:

• We cast the traditional edge-level occlusion and depth order problems to an adjacency
matrix-level prediction task. We call this task holistic order prediction.

• We introduce InstaFormer, a network family capable of holistic order prediction, surpassing
or matching the best available baselines on the tasks of occlusion and depth order prediction
solely from an RGB input image.

2 Related Work

2.1 Order prediction

Occlusion order prediction has been introduced in the seminal work of [50] in which authors tackle
the task of amodal instance segmentation. Amodal segmentation datasets such as COCOA [50] or
KINS [32] subsequently annotate occlusion order annotations. Other datasets focus explicitly on
labeling instance orderings, such as INSTAORDER [24] or WALT [37]. While PCNet-M is trained in
an unsupervised manner [47], OrderNet [50] and InstaOrderNet [24] show superior performances by
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being trained in a supervised setting. Inspired by instance-wise occlusion order, [24, 48] propose to
also predict instance-wise depth orders. Ultimately, all these approaches leverage a pair of binary
masks and an RGB image as inputs, making their real-world inference impractical. Additionally, the
pairwise nature of these networks enforces a quadratic number of forward passes to obtain the full
relations between all the instances in the scene.

On the other hand, we reformulate the pairwise edge-level ordering prediction problem to a single
adjacency matrix-level prediction. This holistic property of our InstaFormer model yields the full
geometrical ordering relations in a unique forward pass, solely from an RGB image given as input
(Fig. 2a), effectively alleviating the input-output constraint induced by prior approaches while
enabling single-pass inference.

2.2 Foundation models

Vision foundation models [20, 31, 44, 45] are trained on an extensive amount of annotations to
excel in the task they were designed for. SAM can be prompted using points, bounding boxes, or
masks to provide the most accurate segmentation corresponding to this prompt [20]. Similarly, Depth
Anything models perform fine-grained monocular depth estimation [44, 45]. While initially designed
to solve a specific task, their robustness and versatility allow them to stand as modules of a composite
pipeline [38, 43]. In this art, we construct a simple baseline for order prediction by combining
SAM and Depth Anything V2. Likewise, combining vision [33] and text foundation models [10, 40]
together gives birth to a VLM [2, 27, 28]. Grounding the image [23, 35] in the textual latent space of
the large language model enables performing diverse visual zero-shot prompting tasks directly using
natural language queries.

To assess diverse types of models, we convert INSTAORDER to a visual-question answering (VQA)
format named INSTAORDERVQA. Not only do we perform zero-shot prompting on LLaVA [27],
but we also finetune it on INSTAORDERVQA to observe if VLMs are capable of understanding
geometrical orderings. We also propose a simple foundation model pipeline consisting of SAM [20]
and Depth Antyhing V2 [45].

3 Method

3.1 Problem formulation

Occlusion and depth orders are geometric relations linking instance nodes in a scene graph. Orthodox
literature [24, 47] formulate these tasks as a series of edge inferences between pairs of instances
(A,B) living an input RGB image I ∈ RH×W×3 and their respective instance-level binary masks
(A,B) ∈ {0, 1}H×W . Given n ∈ N such that n ≥ 2 instances in I, the occlusion (resp. depth)
ordering task aims at predicting the k-categorical ordering matrix G ∈ {0, ..., k}n×n where each
element (i, j) ∈ {0, . . . , n− 1}2 represents the ordering relation, i.e. the edge, for instances (i, j),
namely Gi,j . On the other hand, in our holistic scenario, we aim at bypassing edge-level inference of
relations Gi,j and instead predict the adjacency matrix G all at once, directly from I. Formally, we
want to find a mapping f such that f(I) = G.

From here, we use the following “→” notation to indicate both occlusion and depth relations. We
read “A→ B” as “A occludes B”, for the occlusion order task and “A is in front of B” for the depth
order task. We refer the reader to Appendix A for more details about these tasks.

3.2 Preliminaries: pairwise networks

Existing arts [24, 47, 50] formulate the occlusion prediction outputs as a binary prediction problem,
i.e., {A→B, B→A}. This leads to no occlusion in the simplest case and a bidirectional occlusion in
the most complex case. The depth ordering prediction task is formulated as a 3-classes classification
problem {A→B, B→A, A←→B}, with an extra prediction explicitly indicating if A and B share
overlapping depth ranges [24] (Fig. 2a, pairwise networks).

All these approaches leverage input binary masks, making them cumbersome, especially when ground
truth masks are unavailable at test time (Fig. 2a).
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Figure 3: Overview of InstaFormer. The architecture comprises two modules. The first module
generates the mask embeddings Q, the per-pixel embedding P , and the masks M . In practice, we
use Mask2Former [9]. Then, a transformer-based geometrical order module predicts the orders from
these three inputs. InstaFormer is capable of end-to-end holistic geometrical order predictions.

3.3 InstaFormer for holistic order prediction

Motivations. Here, we introduce our main contribution: the InstaFormer family of networks.
InstaFormer is capable of holistic order prediction. Given an RGB image as input, it predicts the full
order matrices in a single forward pass thanks to the holistic objective formulation and its internal
attention mechanism use. The main idea of our method is to create interaction between object queries
and latent mask descriptors representing the same objects while carrying complementary information.
A dot product, akin to a similarity operator, computes the final geometrical output from these two
representations. We invite the reader to follow equations along using Fig. 3.

Architecture. Let us assume a segmentation backbone f designed using the meta-architecture as
described by [9] and an input image I ∈ RH×W×3. Then, f(I) returns the output mask embeddings
Q ∈ RN×C from the transformer decoder and the per-pixel embedding output from the per-pixel
decoder P ∈ RC×H

4 ×W
4 . Here, N denotes the number of object queries and C the embedding

dimension.

The binary masks M ∈ {0, 1}N×H
4 ×W

4 are obtained from M = ⌊(σ(QP )⌉, where the matrix
multiplication can be seen as a dynamic convolution between a set of segment kernels and a feature
map [17]. Resulting logits are sent to the sigmoid function σ and binarized via the rounding function
⌊·⌉ to obtain the final mask predictions.

Following DETR [4], we obtain the optimal assignment between ground truth and predicted segments
using the Hungarian Matcher [22]. This way, we identify all the no object segments (∅) and discard
them, resulting in n selected tokens M ∈ {0, 1}n×H

4 ×W
4 , Q ∈ Rn×C . We now compute a per-mask-

per-pixel embedding by masking P using M, resulting in a P ∈ Rn×C×H
4 ×W

4 representation. This
retains the values of the per-pixel embedding that falls in the region of the given segment while
zeroing all others.

We want to obtain a global descriptor from each pi ∈ P, with i ∈ {0, . . . , n}. We found that directly
pooling from P does not provide a comprehensive enough description (Tab. 2b). Thus, we first
forward P to a single transformer layer [11] and max-pool this updated representation instead. To
obtain accurate segment-level mask descriptors, we restrict the attention of each pi to itself using
Masked Self-Attention (MSA):

MSA(P,M) = softmax

(
PQ

(
PK
)T

+M
√
d

)
PV , (1)

where M =

{
−∞ if pi[h,w] = 0,

0 otherwise.
(2)
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Here, P{Q,K,V } ∈ RC×d are the respective queries, keys and values of P [41]. We only now apply
max-pooling on the masked region of P to obtain our global descriptors:

D = maxpool(P) ∈ Rn×C . (3)

While D contains spatially-grounded information, Q contains geometric and shape-relevant knowl-
edge [17]. We concatenate the global descriptors D and the mask embeddings Q together, obtaining
E0 ∈ R2n×C and forward this representation to {l}L∈N

l=1 transformer layers [11, 41] to generate
interactions between those two token types [25]. We denote the final output of this module as
EL ∈ R2n×C .

We recover the updated mask embeddings QL and the descriptor tokens DL by chunking EL and then
forward them to two different multi-layer perceptrons: Q⋆ = MLPϕ(QL) and D⋆ = MLPθ(DL).

We obtain the final geometric ordering prediction G ∈ Rn×n through matrix multiplication between
the two representations: G = Q⋆D⋆T , effectively computing the compatibility between each kernel
and each global descriptor (Fig. 3). We project this representation one last time using task-specific
MLPs with parameters ω for occlusion and δ for depth orderings, yielding the final occlusion
order matrix Go ∈ Rn×n and depth order matrix Gd ∈ Rn×n where the (i, j)-th element of the
matrices represents the predicted geometric order between the i-th and j-th segments. When training
InstaFormero or InstaFormerd, only one of these MLPs is initialized, whereas we use the two different
MLPs simultaneously when training InstaFormero,d.

Adapters. To allow the network to fully benefit from the segmentation latent space of the mask
extractor, we attach adapters to every feed-forward network (FFN) in the transformer decoder of the
backbone [6, 16, 19]. We refer the reader to Appendix D for more information.

Inference. We cannot leverage the Hungarian Matcher at inference time since it requires ground
truth annotations. Instead, we simply follow [9] and consider segments as detected if their confidence
score lies above 0.8.

4 Experiments

4.1 Baselines

VLM. We introduce a VLM baseline by converting INSTAORDER to INSTAORDER-VQA and
prompt the model with occlusion and depth order questions. We use LLaVA [27] as it is open-source,
popular, and widely used. We run zero-shot evaluation but also fine-tune on our data (denoted with
‡ in Tab. 1). We refer the reader to Appendix B and C for more information.

Non-parametric methods. We employ the Y-axis and Area as two non-parametric methods to
estimate occlusion and depth orders. These heuristics rely on the fact that an object at the bottom of
the image might be closer to the camera (Y-axis), and objects that are in the foreground are usually
bigger than objects in the background (Area).

Foundation models. By composing Grounded SAM [38] and Depth Anything V2 [45], we de-
sign a foundation pipeline capable of instance-wise depth order prediction. We refer the reader
to Appendix C for more details.

Pairwise paradigm. Pairwise networks represent the most competitive baselines and provide the
closest comparison to our setting. To the best of our knowledge, only three concurrent works attempt
to predict geometrical orderings. Thus, we include them all. That is, we compare our work to
PCNet-M [47], OrderNet [50], and InstaOrderNets [24].

Mask2Order. Since pairwise networks cannot perform inference unless a pair of segmentation
masks is provided a priori [24, 47, 50] (Fig. 2a, pairwise networks), we introduce Mask2Order to
solve this issue in the simplest possible way. It results from the concatenation of a segmentation
backbone and a pairwise ordering prediction network (Fig. 2a, Mask2Order). Motivated by recent
advances in this domain [4, 8, 49], we select Mask2Former [9] as our mask generator. While the
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Mask2Order framework can obtain geometrical orderings from an RGB image without additional
binary masks from the user, this network family still requires multiple forward passes to get the
relations between all the instances. We also train InstaOrderNets on top of Mask2Former (denoted
with ‡ in Tab. 1). In this setting, we use the same recipe as [24] but modernize optimization by
switching the optimizer for AwamW and using a cosine schedule.

4.2 Datasets

We run experiments on INSTAORDER [24]. We convert INSTAORDER to a VQA version, i.e.,
INSTAORDER-VQA, to evaluate LLaVA [28] on occlusion and depth order prediction in zero-shot
and finetuned manners (denoted with ‡ in Tab. 1). We release the conversion script and the dataset
with this work. We refer the reader to Appendix B for more information.

4.3 Evaluation protocol

Metrics. Following previous works [24, 47, 50], we evaluate the performance of our networks on
the task of occlusion ordering prediction by reporting precision, recall, and F1-score. We compare
each element of the predicted ordering matrix to each element of the ground truth matrix. Given two
instances A and B, the aforementioned metrics are expressed as follows:

Recall =

∑
AB 1(ôAB = 1 and oAB = 1)∑

AB 1(oAB = 1)
, (4)

Precision =

∑
AB 1(ôAB = 1 and oAB = 1)∑

AB 1(ôAB = 1)
, (5)

F1-score =
2× Precision× Recall

Precision + Recall
, (6)

where o and ô denote respectively ground truth and predicted occlusion order, and 1 is the indicator
function.

We report the performances of our approaches for depth order prediction using Weighted Human
Disagreement Rate (WHDR) [1]. WHDR indicates the percentage of weighted disagreement between
ground truth d and predicted depth order d̂ [24]. Each annotation of INSTAORDER is accompanied
by a weighting factor w indicating the difficulty of the annotation based on how many annotation
attempts it took for annotators to agree on the ground truth. WHDR is computed independently for
every {distinct, overlap, all} category and is defined as follows:

WHDR =

∑
AB wAB · 1(d̂AB ̸= dAB)∑

AB wAB
, (7)

where wAB = 2
countAB

.

Decoupling order evaluation from segmentation predictions. In Mask2Order and InstaFormer,
the geometrical prediction is performed after generating the segmentation masks. Thus, the perfor-
mance of the ordering predictions is dependent on the segmentation predictions of the backbone
model. To curb this dependency, we leverage the Hungarian Matcher [4] at evaluation time to provide
a perfect matching between the predictions and the ground truths before performing the geometrical
ordering evaluation. This way, we ensure that we obtain the full instance-wise evaluation for all the
samples in the dataset, providing a fair assessment and allowing us to compare Mask2Order and
InstaFormer with other baselines.

4.4 Evaluating naïve baselines

Non-parametric methods. We use the center of the masks as the Y-score and rank them accordingly
to obtain the depth orders (Tab. 1, Y-axis). For the area method, we rank the masks by their size, the
bigger the closer (Tab. 1, Area). These simple heuristics already provide a fair approximation of the
geometric order of the elements in the scene.
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Table 1: Occlusion and depth order evaluation on INSTAORDER and INSTAORDER-VQA.
We benchmark LLaVA, non-parametric methods, pairwise approaches, foundation models, our
Mask2Order baseline (zero-shot and trained, denoted with ‡), and our proposed holistic InstaFormer.
All models are trained on INSTAORDER except for our foundation pipeline (off-the-shelf) and LLaVA
(off-the-shelf and finetuned, denoted with ‡). Best results for a model family are in yellow , best
overall results are in bold.

Input Output Occlusion acc. ↑ WHDR ↓
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g. Recall Prec. F1 Distinct Overlap All

VQA
LLaVA [27] – ✓ – ✓ ✓ ✓ – 49.98 48.28 34.10 37.37 44.56 39.52
LLaVA‡ [27] – ✓ – ✓ ✓ ✓ – 85.41 55.10 60.41 15.95 27.87 25.98

IN
S

TA
O

R
D

E
R

[2
4]

Area ✓ – – – ✓ – – 56.33 71.55 59.67 30.90 35.66 32.19
Y-axis ✓ – – – ✓ – – 44.84 57.34 47.30 22.19 39.04 29.20
PCNet-M [47] ✓ ✓ – – ✓ – – 59.19 76.42 63.02 – – –
OrderNetM+I(ext.) [32] ✓ ✓ – – ✓ – – 84.93 78.21 77.51 – – –
InstaOrderNeto(M) ✓ – – – ✓ – – 87.35 79.07 78.98 – – –
InstaOrderNeto(MC) ✓ – ✓ – ✓ – – 88.70 78.21 79.18 – – –
InstaOrderNeto(MIC) ✓ ✓ ✓ – ✓ – – 89.38 79.00 79.98 – – –
InstaOrderNeto ✓ ✓ – – ✓ – – 89.39 79.83 80.65 – – –
InstaOrderNetd(M) ✓ – – – – ✓ – – – – 22.96 30.46 25.23
InstaOrderNetd(MC) ✓ – ✓ – – ✓ – – – – 23.19 28.56 36.45
InstaOrderNetd(MIC) ✓ ✓ ✓ – – ✓ – – – – 13.33 26.60 17.89
InstaOrderNetd ✓ ✓ – – – ✓ – – – – 12.95 25.96 17.51
InstaOrderNeto,d [24] ✓ ✓ – – ✓ ✓ – 82.37 88.67 81.86 11.51 25.22 15.99
MiDaS(Mean) [34] ✓ ✓ – – – ✓ – – – – 10.42 37.67 21.70
MiDaS(Median) [34] ✓ ✓ – – – ✓ – – – – 10.31 36.08 20.92
Foundation (Min-Max) – ✓ – – – ✓ ✓ – – – 21.71 42.89 29.85
Foundation (Mean) – ✓ – – – ✓ ✓ – – – 10.70 39.22 22.46
Foundation (Median) – ✓ – – – ✓ ✓ – – – 10.80 39.11 22.36

Mask2Ordero – ✓ – – ✓ – ✓ 84.37 78.48 77.49 – – –
Mask2Ordero‡ – ✓ – – ✓ – ✓ 77.92 88.58 79.1 – – –
Mask2Orderd – ✓ – – – ✓ ✓ – – – 14.16 27.15 18.52
Mask2Orderd‡ – ✓ – – – ✓ ✓ – – – 12.96 28.6 18.40
Mask2Ordero,d – ✓ – – ✓ ✓ ✓ 77.51 85.50 77.17 12.29 27.03 17.09
Mask2Ordero,d‡ – ✓ – – ✓ ✓ ✓ 79.81 86.86 79.09 12.44 28.44 18.19
InstaFormero – ✓ – – ✓ – ✓ 89.82 78.10 81.89 – – –
InstaFormerd – ✓ – – – ✓ ✓ – – – 8.47 24.91 13.73
InstaFormero,d – ✓ – – ✓ ✓ ✓ 89.57 78.07 81.37 7.90 24.68 13.30

VLM. Zero-shot prompting LLaVA [27] scores the least out of all the benchmarked methods
(Tab. 1, LLaVA). We hypothesize that this is because the pre-training of its visual encoder does not
enforce precise spatial understanding [33]. We observe notable improvements under the finetuned
setting (denoted with ‡), yet, performances remain behind visual experts.

Foundation models. While being incapable of performing occlusion order prediction, we find
foundation models to obtain modest results: their performance still lag behind those of specialized
networks even the ones that use the same format (Tab. 1).

Mask2Order. Table 1 confirms that Mask2Order performs worse than InstaOrderNet since it does
not benefit from fine-grained segmentation input masks, even when InstaOrderNets are trained on
top of Mask2Former (denoted with ‡). This implies that predicting geometrical orderings from
self-generated binary masks is a non-trivial task. We further ablate the backbone size of Mask2Order
in Tab. 4a and 4b (Appendix E). We observe a positive correlation between the size of the backbone
and the accuracy results, which seem to confirm our hypothesis stating that pairwise networks are
sensitive to the quality of the input mask.

4.5 Evaluating InstaFormer

Experimental settings. For all experiments, we train on 4 NVIDIA RTX A6000 for 120,000
iterations using AdamW [30] with learning rate 10-5 and reduce it to 10-6 and 10-7 at iterations 80,000
and 110,000 respectively, as suggested by [15]. We use a batch size of 16 and use the BCE an CE
losses for occlusion and depth order respectively. We resize the input image to 1024×1024 and use
RandomFlip during training, following [9]. For evaluation, we follow the default R-CNN baseline,
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Figure 4: Qualitative results obtained using our holistic InstaFormero,d network. The first row
showcases in-the-wild examples from images gathered on the web. The remaining rows are extracted
from the validation set of INSTAORDER. We show the segmentation predictions and represent their
corresponding predicted occlusion and depth matrices as ordering graphs juxtaposed to them.

which consists of resizing the smaller size of the image to 800 pixels and the longer one to 1333.
We match the segmentation predictions to their respective ground truth segments using Hungarian
matching [22] before evaluating depth and occlusion order recovery.

We use 8 heads, 512-dimensional linear projections for all the attention layers, and 2-layered FFNs
with 2,048 hidden nodes in all the transformer layers. The encoder consists of a single transformer
layer that simply creates a global descriptor for each mask. On the other hand, the decoder comprises
eight transformer layers. We add auxiliary losses on all transformer layers of the transformer decoder.
This results in a 34M parameter geometrical ordering predictor. We initialize the entire ordering
module using Xavier initialization [12]. We set the dimension of all the adapters to 64 and initialize
their weights with Kaiming uniform [13] and their biases with zero initialization following [6].

Occlusion order recovery. We evaluate InstaFormero in Tab. 1. It achieves the best F1 score of
the benchmark, even overcoming InstaOrderNeto and InstaOrderNeto,d, which were both trained
using a simpler objective and on fine-grained ground truth binary masks. We ablate the segmentation
backbone size of our InstaFormero, while keeping the geometric predictor untouched (cf. Tab. 4a
(Appendix E). The more parameters, the better the results. This seems to imply that the ordering
prediction results of the geometric predictor depend on the embedding space of the segmentation
backbone. In all settings, InstaFormero achieves notable results in comparison to Mask2Ordero. While
holistic order prediction is a challenging task, methods can be developed to outperform specialized
pairwise models while alleviating the need for input binary masks and reducing the number of forward
passes to 1. Most impressively, InstaFormero slightly outperforms InstaOrderNeto,d, the strongest
pairwise network using fine-grained ground truth masks as inputs.
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Figure 5: Inference cost. We benchmark the runtime and memory cost of InstaOrderNeto,d and our
InstaFormero,d. All measures are recorded on a single NVIDIA RTX A6000.

Depth order recovery. We present evaluation results of InstaFormerd in Tab. 1. InstaFormerd

substantially outperforms all baselines on all WHDR (distinct, overlap, all). Similarly to InstaFormero,
we also conduct an ablation study related to the backbone size of the segmentation network, while we
keep the size of the geometric predictor fixed (Tab. 4b, Appendix E). Surprisingly, the backbone choice
has little impact on the final results, which plateaus around the 13.70 mark. Contrary to occlusion
order prediction, we hypothesize that depth order prediction does not require edge information and
can still operate properly on rougher masks. Nonetheless, InstaFormerd exhibits remarkable results
compared to InstaOrderNetd and Mask2Orderd, respectively being on par and beating them even
though it operates in a much more challenging setting (i.e. holistic framework: without input masks
and by predicting the full depth matrix at once).

Joint occlusion and depth order recovery. We report occlusion order and depth order evaluation
for InstaFormero,d in Tab. 1. InstaFormero,d is competitive with all baselines and sometimes surpasses
them, although not using fine-grained ground truth masks as input. It effectively ranks as the
strongest depth order prediction network. Contrary to the Mask2Order family, joint occlusion and
depth ordering prediction on the InstaFormer family performs similarly to order-specific networks.
InstaFormero marginally outperforms InstaFormero,d (Tab. 1). We suspect the optimization process
to be harder for joint occlusion and depth order prediction. In both cases, InstaFormero,d obtains
competitive results with InstaOrderNets, especially on depth prediction, even though it was not trained
on fine-grained ground truth masks. Interestingly, slightly differently from what was reported in [24],
we observe a substantial improvement in depth performances but not occlusion when performing
joint occlusion and depth prediction. Thus, we still conclude that there are benefits to using a joint
training scheme both from the computational efficiency and performance standpoints.

Table 2: Ablation study. Occlusion and depth order perfor-
mances on INSTAORDER using InstaFormero,d Swin-T.

(a) Ablation on the input modality.
Occlusion acc. ↑ WHDR ↓

Input modality Precision Recall F1 Distinct Overlap All

Queries/Queries 73.56 88.45 77.92 15.85 39.83 23.21
Descriptors/Descriptors 75.68 88.97 79.39 16.75 38.11 22.56
Queries/Descriptors 88.64 75.56 79.74 8.43 25.36 14.03

(b) Ablation on the pooling strategy.
Occlusion acc. ↑ WHDR ↓

Pooling Transformer
layers Precision Recall F1 Distinct Overlap All

Max 0 74.86 87.87 79.01 16.08 37.87 21.88
Max 1 88.64 75.56 79.74 8.43 25.36 14.03
Max 2 87.62 78.30 79.80 15.67 34.85 21.48
Max 3 87.39 78.25 79.81 15.67 37.72 21.57

Inference cost. We benchmark the
inference cost of our approach com-
pared to InstaOrderNets, representa-
tive of pairwise approaches, in Fig. 5.
InstaFormer compares favorably, as
its runtime appears constant and mem-
ory linear with respect to the number
of instances in the image. Details can
be found in Appendix F.

4.6 Ablation studies

Input modality. The main idea
behind our method is to generate
instance-wise interactions between la-
tent object representations. Naïve in-
teraction from object queries to them-
selves results in low occlusion accu-
racy and poor depth ordering performances (Tab. 2a). When latent mask descriptors interact with
themselves, results for occlusion orders rise, but not for depth orders. Best performances are obtained
when combining information from both object queries and latent mask descriptors, as they carry
complementary information while referring to the same objects.
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Figure 6: Failure cases of InstaFormero,d. We highlight two failure cases of our network: the
“instance-mixup” (Fig. 6a) and the “segmentation failure” (Fig. 6b).

Pooling strategy. Naïvely constructing the latent mask descriptor does not enhance the perfor-
mances as much as it could in Tab. 2b. In fact, directly max-pooling the latent masks does not yield
good performance in the depth order prediction task. Instead, simply adding a transformer layer
before pooling produces a more comprehensive descriptor, enabling competitive results for occlusion
and depth order prediction. As the performances saturate with a single layer, we do not scale more.

4.7 Qualitative results

InstaFormer can accurately determine geometrical orderings in complex scenes, even for small
objects (donuts, cars in Fig. 4) or under in-the-wild inference (K-pop in Fig. 4, table tennis in
Fig. 1). Our network still predicts reasonable relations even under sparse clue inputs (K-Pop example).
After text conversion, InstaFormer’s outputs can geometrically ground VLMs and enhance their
reasoning in zero-shot prompting (Fig. 1, right). We provide diverse qualitative results of our model
on INSTAORDER in Fig. 10, in Appendix G. We observe that our model predicts sane orderings in
various scene types. Ground truths for all the predictions are available in Fig. 9 and Fig. 11 in the
Appendices.

4.8 Failure cases

We highlight two cases in which InstaFormer struggles to predict accurate relationships between
instances Fig. 6. We name these situation “instance mixup” and “segmentation failure”. In the
“instance-mixup” case, the “Person” instances related to the “Ski” are shared instead of being targeted
solely on “Person1”. In the “segmentation failure” case, a singular instance “Elephant” is wrongfully
segmented multiple times, leading to multiple false positive nodes in the geometrical graphs.

5 Conclusion

We benchmark a diverse range of model types from foundation models to VLM, passing through
visual experts on the tasks of instance-wise occlusion and depth order prediction. We propose
InstaFormer to loosen the input-output constraints of existing methods to a bare RGB image while
reducing the inference cost of the network to a single forward pass thanks to its holistic nature.
InstaFormer matches or surpasses all baselines on the tasks of interest.

Limitations and future work. INSTAORDER annotations are limited to 10 instances per image. It
would be interesting to ensure the generality of our approach by obtaining GT annotations on a larger
number of objects. We also plan to extend our work to VLMs and layer-aware generative modeling.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose to modernize instance-wise order prediction network with a novel
approach surpassing or matching state-of-the art models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We wrote a paragraph on that matter and also provide failure cases of our
approach in the in the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not prove any theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We extensively describe both our method and experimental setup, even for base-
lines that are not our main contribution. Moreover, a link to our open-source implementation
can be found in the abstract of our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our implementation is open-source and its link is provided in the abstract of
the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the full experimental setting in our experiment section and our
baselines’ settings in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We simply benchmark our approach and compare it to existing approaches on
the same benchmarks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We detailed the GPUs and number of iterations used during our training. We
also display inference cost of our approach (memory and runtime speed) as a benchmark
figure.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We understand and fully adhere to the ethics guidelines of NeurIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: We do not discuss broader societal impact of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We do not describe safeguards against misuse of our work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They are available in the supplementary material section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release model checkpoints and InstaOrderVQA datasets in our open-source
repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not perform research on or involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not perform research on or involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLaVA [27] as a baseline and extensively detail our setup.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Task definition

Since the tasks of occlusion and depth order prediction are not commonly tackled in the computer
vision community, we describe the format of these two challenges in details.

Let I ∈ RH×W×3 be an image. Given that the image contains n ∈ N instances, we first discriminate
the cases where n = 0 and n = 1. When n = 0, there cannot be any geometrical relations since there
are no instances. When n = 1 the geometrical relations between the only instance in the image and
itself is undefined. Thus, it only makes sense of trying to compute occlusion and depth orderings in
the event that n ≥ 2. Hence, suppose it is the case.

Occlusion and depth orders are to be understood as relations in a graph that can itself be represented
as an adjacency matrix G ∈ {0, . . . , k}n×n. Here, each entry correspond to a possible relation type.
Generally, we assume k ∈ N possible relations.

Specifically, The occlusion order matrix Go contains k = 2 possible valid entries. Namely, for a pair
(i, j) ∈ [[2, . . . , n]]2:

• Go
i,j = 0 indicates that instance i does not occlude instance j,

• Go
i,j = 1 indicates that instance i occludes instance j.

We call the case Go
i,j = Go

j,i = 1 a bidirectional occlusion.

Similarly, the depth order matrix Gd contains k = 3 possible valid entries. Namely, for a pair
(i, j) ∈ [[2, . . . , n]]2:

• Gd
i,j = 0 indicates that instance i is not in front of instance j,

• Gd
i,j = 1 indicates that instance i is in front of instance j,

• Gd
i,j = 2 indicates that instances i and j share similar overlapping depth ranges.

The upper triangle of the depth order matrix conditions the lower part of the matrix since if Gd
i,j = 1,

then Gd
j,i = 0 and vice versa. Additionally, if Gd

i,j = 2, then Gd
j,i = 2.

Note that in both the occlusion and depth order prediction task, computing Gi,i does not make sense,
thus we simply manually fill these entries with −1.

Predicting occlusion and depth order relations thus consist in predicting each entry in G. Traditional
pairwise networks model this problem at the edge-level, meaning that a forward pass of the model
predicts a single Gi,j . Such paradigm enforces a quadratic constraint of forward passes with respect
to the number of objects n since the size of the matrix grows quadratically for increasing n’s.

On the other hand, we propose to reformulate this problem from and edge-level prediction task to an
adjacency matrix-level prediction problem, meaning predicting the full matrix G in a single forward
pass. We call this task holistic order prediction.

B About INSTAORDER-VQA

To evaluate a wide range of models, we propose a baseline for occlusion and depth order prediction
based on LLaVA [27, 28] (see Tab. 1 in the main paper). In order to evaluate LLaVA on INSTAORDER,
we first need to convert the occlusion and depth matrices into a visual question answering (VQA)
format.

B.1 Visual question answering

We convert every pairwise annotation in INSTAORDER to a textual annotation ready to be fed into
LLaVA. Specifically, given two instances A and B in an image, we ask LLaVA the following question:

• Is the {Acls} {REL} the {Bcls} ? Answer the question in a single
word.
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“Is the {CLS1} at {POS1} {REL} the 
{CLS2} at {POS2}?”
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Figure 7: Overview of our VLM pipeline. We use LLaVA [27] to obtain geometrical orderings and
evaluate data from our converted INSTAORDER-VQA dataset. We refer the reader to Appendix C.2
for more information.

Here, {REL} indicates the ordering relation, specifically:

• For occlusion orderings, {REL} = “obstructing”,

• For depth orderings, {REL} = “closer to us than”.

{Acls} and {Bcls} respectively indicate the ground truth class of A and the ground truth class of B.
They are replaced dynamically for each question based on the currently compared instances. This
strategy is sufficient to obtain a binary yes-no answer from LLaVA that can further be converted
back to its respective element in the occlusion or depth matrix simply by mapping yes to 1 and no to
0.

B.2 Instance-wise disambiguation

However, there still lies ambiguity when two instances in the scene share the same class since then
Acls = Bcls. Thus, it is unclear for the model to know which string refers to which instance in the
image. To mitigate that issue, we leverage the fact that LLaVA can process bounding box coordinates
and input the coordinates of the instances to clarify the position of the object we refer to (Fig. 7).

Therefore, following LLaVA [27, 28], we encode the bounding box of an ambiguous INSTAORDER
instance as a 4-tuple [aw, ah, bw, bh]. Here, a represents the top left corner while b represents the
bottom right corner of the bounding box. We then normalize the coordinates to fall in the [0, 1] range.
If objects can be identified without ambiguity, we do not specify their bounding boxes in the prompt.

Converting the annotations of the 4,071 images of the validation set of INSTAORDER to INSTAORDER-
VQA yields a total of 178,539 VQA ordering prompts, along with their respective ground truths.

C Baselines

C.1 Benchmark specifications

We specify the backbones used for our main benchmark (Tab. 1) of the main paper in Tab. 3. Note
that Mask2Order and InstaFormer’s backbones are frozen at training time.
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Table 3: Backbone specifications for benchmarked methods. We refer the reader to table 1 for the
actual results.

Method Backbone

LLaVA [28] CLIP [33] + Vicuna [10]
Area –
Y-axis –
PCNet-M [47] U-Net [39]
OrderNetM + I (ext.) [32] ResNet-50 [14]
InstaOrderNets [24] ResNet-50 [14]
MiDaS [34] ResNet-50 [14]
Foundation DAv2 [45] + SAM [36]
Mask2Order Mask2Former [9]
InstaFormer Mask2Former [9]

C.2 LLaVA

Benchmark. For our benchmark (Tab. 1, in the main paper), we use LLaVA 1.5 [27], which is
composed of a CLIP ViT-L 336 pixels vision encoder and a Vicuna 7B [10] token generator.

We provide two settings for this experiment. In the first setup, we simply use the off-the-shelf LLaVA
model and perform zero-shot evaluation. Since the results are lower than expert baselines, we propose
a stronger setting in which we finetune LLaVA onto INSTAORDERVQA.

In both cases, we prompt the model with the INSTAORDER-VQA evaluation set and report the results
using the same metrics as with the other methods. A description of our pipeline is detailed in Fig. 7
of the supplementary material.

Finetuning. We observed that finetuning the model directly after the pre-training stage results in
mode collapse, in which the VLM constantly outputs no for any ordering prompt. Instead, we take a
visual instruction-tuned model and fine-tune it from there on our custom INSTAORDERVQA data.

We start by splitting the dataset into four categories: occlusion prompts to which the answer is Yes,
occlusion prompts to which the answer is no, depth prompts to which the answer is yes and depth
prompt to which the answer is No. We then randomly shuffle the samples in each category.

Since the number of parameters of LLaVA is order of magnitudes above InstaFormer, we opt not to
train on the full dataset to obtain a more reasonable comparison. Specifically, we compute the ratio
between the number of parameters of LLaVA and our model. We find that our model has 2% of the
parameters contained in a LLaVA model. Thus, we subsample the training set of INSTAORDERVQA
to 2% of the annotations. This means that we sample 58K annotations for training in total. We evenly
select those annotations from the four categories mentioned in the previous paragraph to obtain a
balanced dataset. We finetune LLaVA for a single epoch on 8 NVIDIA RTX A6000 with a batch
size of 16 per GPU using the finetuning scripts from the official repository. We use all the default
hyperparameters.

C.3 Foundation models

Foundation pipeline. A depth order prediction can be viewed as a comparison between two instance-
level depth maps. Considering this idea, we can compose foundation models together to obtain an
instance-level depth estimator.

We use Grounded SAM [20, 38] and Depth Anything V2 [45] to obtain instance-level depth esti-
mations that we can then compare together to obtain depth ordering predictions. A diagram of the
overall pipeline is depicted in Fig. 8. To propose a baseline as competitive as possible, we select
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Figure 8: Overview of our foundation model pipeline. We create instance-level depth orderings
from composing the predictions of Grounded SAM [38] and Depth Anything V2 [45]. We create
the instance-wise depth predictions by masking the depth prediction using the instance segments
generated from grounded SAM. Finally, we extract the prediction using a heuristic (min-max, mean,
median). We refer the reader to Appendix C.3 for more details.

the best-performing networks available at the time of writing, i.e., Grounding DINO Swin-T1, SAM
ViT-H2 and Depth Anything V2 ViT-L3.

We denote Grounded SAM [38] as fθ, a segmentation model f parameterized by θ and Depth
Anything V2 as gϕ a monocular depth estimation model g parameterized by ϕ. We start by listing
all the instance classes of COCO [26], denoted C = {cls1, . . . , clsK} in a textual format and use
them as text conditioning for Grounded SAM [38] along with the image of interest I ∈ RH×W×3:

S = fθ(I;C), (8)

where S =
{
si | si ∈ {0, 1}H×W

}N
i=0

are the binary segmentation masks for N found instances in
I that fall in any class of C.

We concurrently forward the image into the monocular depth predictor gϕ:

D = gϕ(I), (9)

where D ∈ RH×W represents the depth estimation of I. We now obtain the segment-level depth
maps by masking D using each si:

Dorder = D⊗ S = {D⊙ si,∀si ∈ S} ⊂ {0, 1}N×H×W , (10)

where ⊙ is the Hadamard product. We further derive the final depth orderings from Dorder using a
simple heuristic.

Depth order heuristics. There are several ways to obtain instance-wise depth orderings given
segment-level depth maps. In our work and benchmark, we report three heuristics that yield different
results (reported in Tab. 1, in the main paper): min-max, mean, and median.

The min-max heuristic revolves around extracting the minimum and maximum of each Dorder
i to

obtain a spanned depth range for every instance:

dstart
i = min(Dorder

i )
dend
i = max(Dorder

i )
, ∀i ∈ {1, . . . , N}. (11)

1The Grounded DINO model for Grounded SAM is available at this URL.
2The SAM model zoo is available at this URL.
3The Depth Anything V2 model zoo is available at this URL.
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Table 4: Ablation study related to the backbone size. We benchmark Mask2Order and InstaFormer
for depth order prediction on INSTAORDER [24]. We experiment with various common sizes of
Swin transformers [29]. We subscript the number of queries for every backbone size and specify
IN-21K pre-trained backbones using †. The best results for a model family are in yellow , and the
best overall results are in bold.

(a) Occlusion order prediction results.

Occlusion acc. ↑
Method Backbone Precision Recall F1

Swin-T100 83.23 77.96 76.74
Swin-S100 83.08 78.17 76.66
Swin-B100 83.62 78.06 76.89
Swin-B†

100 83.94 78.39 77.24
Mask2Ordero

Swin-L†
200 84.37 78.48 77.49

Swin-T100 76.20 84.46 76.11
Swin-S100 76.23 85.15 76.36
Swin-B100 77.03 84.91 76.78
Swin-B†

100 76.93 85.06 76.77
Mask2Ordero,d

Swin-L†
200 77.51 85.50 77.17

Swin-T100 89.06 75.69 79.63
Swin-S100 88.91 77.31 80.53
Swin-B100 89.02 76.95 80.64
Swin-B†

100 89.53 77.34 80.99
InstaFormero

Swin-L†
200 89.82 78.10 81.89

Swin-T100 88.64 75.56 79.74
Swin-S100 88.20 75.98 79.57
Swin-B100 88.47 75.96 79.72
Swin-B†

100 89.24 76.66 80.34
InstaFormero,d

Swin-L†
200 89.57 78.07 81.37

(b) Depth order prediction results.

WHDR ↓
Method Backbone Distinct Overlap All

Swin-T100 14.73 27.48 19.02
Swin-S100 14.48 27.66 18.81
Swin-B100 14.31 27.73 18.75
Swin-B†

100 14.54 27.39 18.75
Mask2Orderd

Swin-L†
200 14.16 27.15 18.52

Swin-T100 12.96 27.43 17.78
Swin-S100 12.67 27.62 17.60
Swin-B100 12.49 27.29 17.35
Swin-B†

100 12.70 27.35 17.48
Mask2Ordero,d

Swin-L†
200 12.29 27.03 17.09

Swin-T100 8.10 25.43 13.75
Swin-S100 8.44 26.04 14.48
Swin-B100 8.28 25.05 13.88
Swin-B†

100 8.15 25.19 13.72
InstaFormerd

Swin-L†
200 8.47 24.91 13.73

Swin-T100 8.43 25.36 14.03
Swin-S100 8.54 25.42 13.96
Swin-B100 8.84 25.77 14.39
Swin-B†

100 8.15 25.79 14.06
InstaFormero,d

Swin-L†
200 7.90 24.68 13.30

Subsequently, sorting the resulting ranges provides the desired depth orderings. In practice, the
min-max heuristic is slightly flawed as the instance masks are not always perfectly aligned with the
instance-level depth maps. This can result in obtaining minimum or maximum values slightly outside
the actual instances, generating bias in the sorting process. Instead, we find the other two heuristics
simpler and more robust to noise (as results reveal in Tab. 1 of the main paper).

The mean heuristic relies on obtaining the mean of each instance-level depth map:

dmean
i = mean(Dorder

i ), ∀i ∈ {1, . . . , N}. (12)

Then, using these scalar values as proxies for the distance of each mask from the camera, we perform
a sorting to obtain the final instance-wise orderings.

The median heuristic works the same way as the mean heuristic, simply differing by using the median
instead of the mean:

dmedian
i = median(Dorder

i ), ∀i ∈ {1, . . . , N}. (13)

In practice, we find the median heuristic to perform the best (cf. Tab. 1, in the main paper).

D Adapters

Since we use frozen Mask2Former networks for our experiments, we use adapters to improve the
quality of the trainable geometrical ordering predictors of InstaFormer. Specifically, we attach
adapters from the attention mechanism to the FFNs (feed forward networks) of every transformer
layer in the segmentation transformer and pixel-decoder modules [6, 19].

We supervise the adapters using all losses from Mask2Former [9] as well as the losses of the
geometrical module, i.e., Lo for InstaFormero, Ld for InstaFormerd or Lo + Ld for InstaFormero,d

and weight them by a factor λo = λd = 5.

We conduct experiments to study the effects of these components on InstaFormer in Appendix E.2.
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Table 5: Ablation study related to using adapters in the segmentation backbone of our In-
staFormer networks. We report the results on the occlusion and depth order prediction performances
on INSTAORDER for the InstaFormer family of networks. The best results for a model family are in
yellow , and the best overall results are in bold.

Occlusion acc. ↑ WHDR ↓Method Backbone Adapters
Precision Recall F1 Distinct Overlap All

89.00 75.21 79.71 – – –InstaFormero Swin-L†
200 ✓ 89.82 78.10 81.89 – – –

– – – 17.10 39.37 23.52InstaFormerd Swin-L†
200 ✓ – – – 8.47 24.91 13.73

88.96 75.81 80.05 17.34 39.58 23.40InstaFormero,d Swin-L†
200 ✓ 89.57 78.07 81.37 7.90 24.68 13.30

E Ablations studies

E.1 Segmentation backbone size

We perform an ablation study on the size of the segmentation backbone with respect to the perfor-
mance for occlusion and depth ordering prediction for both Mask2Order and InstaFormer. In all
experiments, the backbones are frozen and we only train the geometrical predictor on top of them.

Occlusion order recovery. We report the results when varying the backbone of the segmentation
network from Swin-T100 to Swin-L†

200 in Tab. 4a. For Mask2Ordero, we observe a noticeable
performance increase when using IN-21K pre-trained backbones. We observe a similar trend for
Mask2Ordero,d.

This is similar to both InstaFormero and InstaFormero,d, where the most noticeable performance
improvement comes from increasing the queries to 200 and the backbone size to Swin-L, which in
both cases results in a full point of improvement over their Swin-B†

100 counterparts. While pre-training
the backbones on ImageNet-21K for InstaFormer seems beneficial, it only yields half a point of F1
improvement, whereas increasing the queries almost leads to an approximate 1 point of F1 increase.

Depth order recovery. We report the results when varying the backbone of the segmentation back-
bone from Swin-T100 to Swin-L†

200 in Tab. 4b. These results show very different trends with respect
to the occlusion order backbone ablation. For Mask2Ordero networks, they seem to hastily plateau
around 18.75 WHDR (all) with slight improvement from Swin-T100 to Swin-B†

100. Increasing the
number of queries from 100 to 200 slightly fosters performance. We note the positive effect of simul-
taneously performing both the task of occlusion and depth predictions as the results of Mask2Ordero,d

Swin-T100 already overcomes those of Mask2Ordero Swin-L†
200. Moreover, Mask2Ordero,d Swin-L†

200
beats its Mask2Ordero counterpart by 1.43 points of WHDR (all).

Task difficulty. We observe that the holistic task of depth order prediction seems to be easier to
perform than the task of occlusion order prediction since the WHDR discrepancy from InstaOrderNets
and InstaFormer is larger than their F1 difference (cf. Tab. 1 of the main paper) and since changing
from a weaker to a stronger backbone mostly benefits the occlusion order prediction networks (from
Tab. 4a and Tab. 4b).

A key property of depth matrices is that they always contain n·(n−1)
2 positive values since objects

must be one behind the others. This is not the case in occlusion order prediction, where no prior
on instance layout exists. Moreover, depth is consistent across instances. Consider A and B two
instances of the image. If we have A→ B, then, A is in front of B and thus we know that we can
transfer all the depth relations of A to B. On the other hand, this property does not apply to occlusion
order prediction.

Note that this property only emerges when switching to the holistic paradigm since we can draw
information from all instances at once. We believe this property is important in explaining the strong
results for depth order prediction and saturation across backbone sizes.
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E.2 Adapters

We ablate the adapters of InstaFormer models. The results of these experiments are reported in Tab. 5.

Occlusion order recovery. The main observation is that adapters are important for obtaining strong
performances on the occlusion order prediction benchmark. Most notably, InstaFormero benefits
from an F1 improvement of 2.18. We observe that most of that result is explained by the increase in
recall.

Depth order recovery. The depth ordering benefits the most from the use of adapters. As a matter of
fact, InstaFormero,d shows a spectacular 10.10 improvement of WHDR all. This result is explained by
a sharp reduction in both distinct and overlap WHDR. We observe similar trends for InstaFormerd.

F Inference cost

F.1 Runtime comparison

We benchmark the runtime inference of our holistic InstaFormer and compare it against pairwise
InstaOrderNet, in Fig. 5a of the main paper. Runtime for our proposed InstaFormer appears constant
with respect to the number of instances in the image, while InstaOrderNet is exponential. Moreover,
InstaFormer’s efficiency is amortized for any image containing more than 7 instances and up to
12 times faster than the baseline when the image contains 20 instances. This makes our approach
suitable for prediction on natural images since such scenes usually contain many objects.

We also provide an analysis on a batched version of InstaOrderNet where the pairwise relations are
sent to the network in a single batch. While this approach is the fastest, we highlight its high memory
requirements, which makes it impractical for users with limited resources or embedded systems.

F.2 Memory consumption

We further benchmark the memory consumption of our InstaFormero,d network and compare it
to InstaFormero,d in Fig. 5b of the main paper. The memory consumption of our InstaFormer
grows linearly with the number of instances on the image, while InstaOrderNet’s remains constant.
This highlights the trade-off between inference speed and memory consumption. We argue that
InstaFormer still wins that trade-off since its runtime is constant while InstaOrderNet’s is exponential.

We also provide an analysis on a batched version of InstaOrderNet, where the pairwise relations are
sent to the network in a single batch. We observe that the memory requirements quickly become
prohibitive. In fact, we encounter a CUDA out-of-memory error for any image containing more than
20 instances. We thus stop the benchmarking at this threshold. This is a critical drawback, as natural
scenes usually depict a large number of instances at once.

F.3 Scalability

In Tab. 6, we compute the number of average instances detected in images as well as the number of
maximum predicted instances in a single sample across the validation set of COCO [26]. We vary the
number of object queries, but we observe in both cases that the number of instances predicted in a
sample is close or above to 11. Comparing this result to Fig. 5a and Fig. 5b, we conclude that it is
on average better to use InstaFormer than other baselines since natural images contain, on average,
close to, or above 11 instances.

The second column of Tab. 6 emphasizes the fact that our InstaFormer network can scale way
above 10 instances although the training set of INSTAORDER is limited to annotations containing
10 objects [24]. As a matter of fact, InstaFormer with 200 object queries detects 63 instances on an
image of the COCO validation set. In both 100 and 200 object queries settings, the value of maximum
instances detected is far below the total number of object queries. This leads us to conclude that
InstaFormer is practical for general inferences in natural scenes.
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Num. Queries Avg. Predicted Instances (per sample) Max. Predicted Instances (in a single sample)

100 10.91 56
200 11.91 63

Table 6: Inference statistics of InstaFormer. We compute the number of average predicted instance
per samples and the number of max predicted instances in a single sample on the full COCO validation
for model with different number of object queries.

G Qualitative results

G.1 Comments on results from the main paper

In this section, we comment on qualitative results from the main paper in more detail.

In Fig. 1 of the main paper, we display two in-the-wild results. In the “athletics” example, we note
the occlusion from the hand of “Person1” to “Person3” that was effectively captured from our model.
Note that this occlusion is difficult to notice without carefully observing the input RGB image.

Still in that figure, the “table tennis” example shows interesting bidirectional occlusion examples
where the handling of the rackets are properly related to their players in the occlusion graph. Note
that in both cases, the depth graph, while crowded on the second example, also depicts accurately the
layout of the instances in the scene. This is obvious for the “athletics” example. For the “table tennis”
example, careful inspection reveals no sign of unrealistic depth ordering.

Analyzing Fig. 4, in the main paper, the first row contains “elephants” and “K-Pop”, which are both
in-the-wild predictions from our network. We observe an ambiguous occlusion case in the “elephants”
example, where “Elephant3” does not seem to occlude “Elephant2” even though reported as such
on the occlusion graph. While it is ambiguous whether “Elephant3” is closer to the camera than
“Elephant1”, the network still appears to predict a coherent order.

The second image of the first row of Fig. 4, namely “K-Pop” is an impressive example of accurate
depth order prediction in a complex scene. While the input RGB image solely depicts silhouettes,
our InstaFormer network still predicts an accurate and coherent depth layout for the scene. In that
case, the network shows difficulties understanding the occlusion orderings for some elements since
there are little clues to rely on. For example, “Person6” and “Person4” are linked with a bidirectional
occlusion even though it seems that it should be unidirectional from “Person4” to “Person6”. The
same holds for “Person1” and “Person3”.

All the remaining images of Fig. 4 are extracted from the validation set of INSTAORDER [24]. We
specifically highlight the “donuts” example to emphasize that the model can still predict accurate
orderings even crowded scenes.

On the second row and second column, the “plate” example highlights a perfect prediction in a simple
scenario.

On the last row of Fig. 4, the “cooking cat” example shows that our model can predict sane relations
even if the “Cat” is blurred. As a matter of fact, the cat indeed occludes the “Oven”, yet the “Oven”
does not. Careful inspection reveals that the blurriness of the cat lets appear a notch of the “Oven”
that visually occludes the “Cat” even though it is physically impossible.

Finally, the last example on the last row and last column of Fig. 4, called “stop sign”, shows a
neat case of a prediction of perfect occlusion and depth orders, even though the size of the cars is
noticeably small. We also emphasize this result as no occlusion between elements occurs. We recall
that in COCO [26], the stop sign class is only annotated on the sign itself, and not the pole.

G.2 Ground-truth visualizations

We visualize the ground-truths for the INSTAORDER validation set prediction of Fig. 4 in Fig. 9
and Fig. 10 on Fig. 11. Note that, in some rare cases, our network was unable to detect some of
the instances in the image, leading to no ordering prediction (Fig. 9, “donuts", “cat in the oven").
However, more frequently, it predicted more instances than the ground-truth annotation, for example,
“sheep2” is accurately detected along with its proper occlusion ordering (first row, last column of
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Figure 9: Ground-truth visualization of the predictions from Fig. 4. We visualize the order graphs
and the masks from the INSTAORDER dataset and overlap their respective COCO labels on top
of them. However, we re-use the same colors as the predicted classes from InstaFormer in Fig. 4
for better comparison with the predictions. We use a white box with colored border to indicate
ground-truth that have not been matched from our network’s predictions. Annotated objects on the
image not present in the graphs symbolizes that our network predicted these nodes even though not
present in the ground truth.

Fig. 10 and Fig. 11). This is also the case for the teddy bears (see Fig. 10 and Fig. 11). Sometimes,
our network predicts even better orderings than the ground-truth, for example, in Fig. 10, in the cake
picture (third row, second column), the network predicts a bidirectional occlusion between “Person3"
and “Cake". This seems more reasonable than the ground-truth annotating a unidirectional order
(Fig. 11). In some cases, the objects are too thin to be detected, in which case the predicted orderings
are still sane, although they could probably be more precise (“kite", 4th row, 2nd column on Fig. 10
and Fig. 11)

G.3 More qualitative results

We provide even more qualitative results obtained from InstaFormero,d on INSTAORDER in Fig. 10.
And report their ground-truths in Fig. 11.

H Web image sources

We provide the link to all the web images used in this paper.

Figure 1 in the main paper contains two images, both of which were extracted from the web. Left
image “table tennis”. Right image “athletics”.

Figure 4 of the main paper is composed of 3 rows, out of which only the first one is composed of web
images. First row, left image “elephants”. First row, right image “K-Pop”.

All the remaining images present in our paper originate from the COCO-stemmed INSTAORDER
dataset [24, 26] (specifically from the validation set), which is licensed under a Creative Commons
Attribution 4.0 License.
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Figure 10: More qualitative results for InstaFormero,d. All the images are from the validation set
of INSTAORDER.
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Figure 11: Ground-truth visualization of the predictions from Fig. 10. We visualize the order
graphs and the masks from the INSTAORDER dataset and overlap their respective COCO labels on
top of them. However, we re-use the same colors as the predicted classes from InstaFormer in Fig. 10
for better comparison with the predictions. We use a white box with colored border to indicate
ground-truth that have not been matched from our network’s predictions.
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