

000 001 002 003 004 005 006 007 008 009 010 A DYNAMIC MULTISCALE ANTI-ALIASING NETWORK 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 FOR TIME SERIES FORECASTING

030
031
032
Anonymous authors
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Paper under double-blind review

054 055 056 057 058 059 060 ABSTRACT

061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
Real-world time series inherently exhibit complex temporal patterns. Within
100
chaotic systems, significant mixing and entanglement occur between different
101
time-varying modes. Given that time series exhibit distinctly different patterns at
102
various sampling scales, downsampling to extract multiscale features is a common
103
approach. However, conventional downsampling causes high-frequency compo-
104
nents in the original signal, those exceeding the new Nyquist frequency, to un-
105
dergo spectral folding. This erroneously introduces spurious low-frequency pat-
106
terns, perceived as low-frequency noise, thereby leading to the *aliasing problem*.
107
To address this problem, we propose a Decomposition-Prevention-Fusion archi-
108
tecture framework called **DMANet**, which introduces the Dynamic Multiscale
109
Anti-Aliasing Network. Specifically, DMA-Net comprises two key components:
110
Multiscale Convolutional Downsampling, designed to capture temporal depen-
111
dencies and inter-channel interactions, and an Anti-Aliasing Operation, which
112
includes Pre-Sampling Anti-Aliasing Filtering and Post-Sampling Interpolation.
113
These designs guarantee the fidelity of multiscale features before and after down-
114
sampling. We show that by mitigating the risk of aliasing, our proposed sim-
115
ple convolutional downsampling architecture achieves performance competitive
116
with common baselines and larger Transformer-based models prevalent in ex-
117
isting studies across multiple benchmark datasets. Our codes are available at
118
<https://anonymous.4open.science/r/DMANet-ED7A>.

099 0100 1 INTRODUCTION

0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
07010
07011
07012
07013
07014
07015
07016
07017
07018
07019
07020
07021
07022
07023
07024
07025
07026
07027
07028
07029
07030
07031
07032
07033
07034
07035
07036
07037
07038
07039
07040
07041
07042
07043
07044
07045
07046
07047
07048
07049
07050
07051
07052
07053
07054
07055
07056
07057
07058
07059
07060
07061
07062
07063
07064
07065
07066
07067
07068
07069
07070
07071
07072
07073
07074
07075
07076
07077
07078
07079
07080
07081
07082
07083
07084
07085
07086
07087
07088
07089
07090
07091
07092
07093
07094
07095
07096
07097
07098
07099
070100
070101
070102
070103
070104
070105
070106
070107
070108
070109
070110
070111
070112
070113
070114
070115
070116
070117
070118
070119
070120
070121
070122
070123
070124
070125
070126
070127
070128
070129
070130
070131
070132
070133
070134
070135
070136
070137
070138
070139
070140
070141
070142
070143
070144
070145
070146
070147
070148
070149
070150
070151
070152
070153
070154
070155
070156
070157
070158
070159
070160
070161
070162
070163
070164
070165
070166
070167
070168
070169
070170
070171
070172
070173
070174
070175
070176
070177
070178
070179
070180
070181
070182
070183
070184
070185
070186
070187
070188
070189
070190
070191
070192
070193
070194
070195
070196
070197
070198
070199
070100
070101
070102
070103
070104
070105
070106
070107
070108
070109
070110
070111
070112
070113
070114
070115
070116
070117
070118
070119
070120
070121
070122
070123
070124
070125
070126
070127
070128
070129
070130
070131
070132
070133
070134
070135
070136
070137
070138
070139
070140
070141
070142
070143
070144
070145
070146
070147
070148
070149
070150
070151
070152
070153
070154
070155
070156
070157
070158
070159
070160
070161
070162
070163
070164
070165
070166
070167
070168
070169
070170
070171
070172
070173
070174
070175
070176
070177
070178
070179
070180
070181
070182
070183
070184
070185
070186
070187
070188
070189
070190
070191
070192
070193
070194
070195
070196
070197
070198
070199
070100
070101
070102
070103
070104
070105
070106
070107
070108
070109
070110
070111
070112
070113
070114
070115
070116
070117
070118
070119
070120
070121
070122
070123
070124
070125
070126
070127
070128
070129
070130
070131
070132
070133
070134
070135
070136
070137
070138
070139
070140
070141
070142
070143
070144
070145
070146
070147
070148
070149
070150
070151
070152
070153
070154
070155
070156
070157
070158
070159
070160
070161
070162
070163
070164
070165
070166
070167
070168
070169
070170
070171
070172
070173
070174
070175
070176
070177
070178
070179
070180
070181
070182
070183
070184
070185
070186
070187
070188
070189
070190
070191
070192
070193
070194
070195
070196
070197
070198
070199
070100
070101
070102
070103
070104
070105
070106
070107
070108
070109
070110
070111
070112
070113
070114
070115
070116
070117
070118
070119
070120
070121
070122
070123
070124
070125
070126
070127
070128
070129
070130
070131
070132
070133
070134
070135
070136
070137
070138
070139
070140
070141
070142
070143
070144
070145
070146
070147
070148
070149
070150
070151
070152
070153
070154
070155
070156
070157
070158
070159
070160
070161
070162
070163
070164
070165
070166
070167
070168
070169
070170
070171
070172
070173
070174
070175
070176
070177
070178
070179
070180
070181
070182
070183
070184
070185
070186
070187
070188
070189
070190
070191
070192
070193
070194
070195
070196
070197
070198
070199
070100
070101
070102
070103
070104
070105
070106
070107
070108
070109
070110
070111
070112
070113
070114
070115
070116
070117
070118
070119
070120
070121
070122
070123
070124
070125
070126
070127
070128
070129
070130
070131
070132
070133
070134
070135
070136
070137
070138
070139
070140
070141
070142
070143
070144
070145
070146
070147
070148
070149
070150
070151
070152
070153
070154
070155
070156
070157
070158
070159
070160
070161
070162
070163
070164
070165
070166
070167
070168
070169
070170
070171
070172
070173
070174
070175
070176
070177
070178
070179
070180
070181
070182
070183
070184
070185
070186
070187
070188
070189
070190
070191
070192
070193
070194
070195
070196
070197
070198
070199
070100
070101
070102
070103
070104
070105
070106
070107
070108
070109
070110
070111
070112
070113
070114
070115
070116
070117
070118
070119
070120
070121
070122
070123
070124
070125
070126
070127
070128
070129
070130
070131
070132
070133
070134
070135
070136
070137
070138
070139
070140
070141
070142
070143
070144
070145
070146
070147
070148
070149
070150
070151
070152
070153
070154
070155
070156
070157
070158
070159
070160
070161
070162
070163
070164
070165
070166
070167
070168
070169
070170
070171
070172
070173
070174
070175
070176
070177
070178
070179
070180
070181
070182
070183
070184
070185
070186
070187
070188
070189
070190
070191
070192
070193
070194
070195
070196
070197
070198
070199
070100
070101
070102
070103
070104
070105
070106
070107
070108
070109
070110
070111
070112
070113
070114
070115
070116
070117
070118
070119
070120
070121
070122
070123
070124
070125
070126
070127
070128
070129
070130
070131
070132
070133
070134
070135
070136
070137
070138
070139
070140
070141
070142
070143
070144
070145
070146
070147
070148
070149
070150
070151
070152
070153
070154
070155
070156
070157
070158
070159
070160
070161
070162
070163
070164
070165
070166
070167
070168
070169
070170
070171
070172
070173
070174
070175
070176
070177
070178
070179
070180
070181
070182
070183
070184
070185
070186
070187
070188
070189
070190
070191
070192
070193
070194
070195
070196
070197
070198
070199
070100
070101
070102
070103
070104
070105
070106
070107
070108
070109
070110
070111
070112
070113
070114
070115
070116
070117
070118
070119
070120
070121
070122
070123
070124
070125
070126
070127

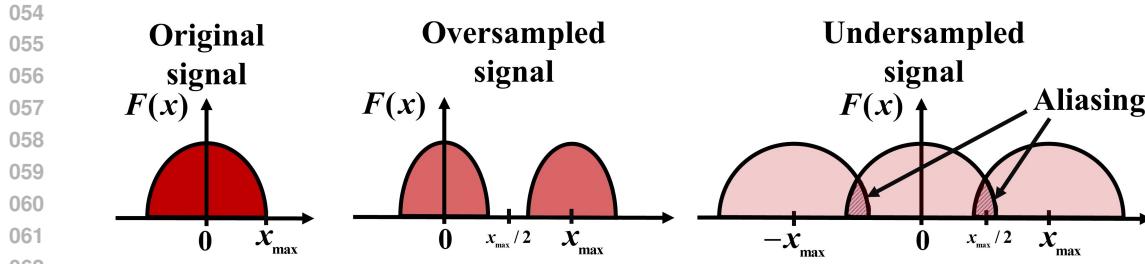


Figure 1: The illustration demonstrates the occurrence of aliasing when sampling a time series signal from the perspective of its frequency spectrum. **Left:** The frequency spectrum of a signal with maximal frequency x_{\max} . **Center:** After sampling at a sufficiently high rate, replicated spectra do not overlap means that no aliasing occurs. **Right:** After undersampling, spectral replicas overlap, causing aliasing due to mixed frequency components. More details in Appendix.A.3

like the Fourier transform allow signals to be decomposed into orthogonal frequency components, where low frequencies might represent long-term periodic variations and high frequencies capture abrupt events, revealing intrinsic patterns often obscured in the time domain.

However, as time series exhibit distinct temporal patterns at varying sampling scales Wang et al. (2024a), future variations are jointly determined by the interplay of multiple scales Hu et al. (2025) Liu et al. (2025). Despite the effectiveness of the aforementioned methods in decomposing specific aspects, modeling complex time-varying entanglement remains a critical challenge. Increasingly, multiscale decomposition approaches, exemplified by TimeMixer Wang et al. (2024a), aim to model multiscale variations by decomposing them into different temporal granularities. These methods often select downsampling operations, progressively reducing temporal resolution using techniques such as strided convolutions or pooling layers to expand the models’ receptive field and capture dependencies across different scales.

However, existing downsampling processes are susceptible to critical *aliasing risks* as shown in Figure.1 (see Appendix.A for a detailed explanation). When downsampling operators such as strided convolutions or pooling are used, high-frequency components of the original signal that exceed the new Nyquist frequency undergo spectral folding Shannon (1949); Nyquist (1928). If undersampled, these folded components are incorrectly represented as spurious low-frequency patterns, compromising the precision and reliability of the extracted multiscale features Chen et al. (2024a). In high-sensitivity domains such as industrial fault diagnosis Ahmed et al. (2022), such distortions and the introduction of incorrect frequency can hinder diagnostic capabilities for domain experts.

Motivated by these observations, we posit that directly addressing the aliasing problem inherent in downsampling processes, particularly within convolutional architectures, represents a key breakthrough for constructing reliable multiscale time series models capable of effectively modeling time-varying entanglement. Technically, we introduce a novel multiscale convolutional downsampling framework centered around a Decomposition-Prevention-Fusion architecture, designed to mitigate aliasing during the downsampling process. Our contributions can be summarized as follows:

- We reexamine the multiscale downsampling framework for time series from a synergistic time-frequency perspective, proposing a Decomposition-Prevention-Fusion architecture that effectively disentangles time-series features to address the challenges posed by complex time-varying entanglement.
- We introduce novel mechanisms for pre-emptive prevention and post-hoc suppression of aliasing explicitly within the multiscale decomposition process, thereby further leveraging the potential of convolutional downsampling for time-series analysis.
- Through extensive experiments, we demonstrate that our proposed method achieves state-of-the-art performance with a parameter-efficient design across multiple benchmarks.

2 RELATED WORK

Frequency-aware Models. In time series analysis, the frequency domain can effectively capture periodic information that is difficult to represent in the time domain, thus becoming an important

complement to time domain modeling. Some methods aim to enhance time domain operations by incorporating frequency domain features as auxiliary information. For example, FEDformer performs attention weight aggregation in the frequency domain Zhou et al. (2022b). Film separates the signal from the noise in historical information through Fourier filtering Zhou et al. (2022a). Meanwhile, approaches are proposed which replace time domain input with frequency domain representations directly. FITS Xu et al. (2024) and FreTS Yi et al. (2024b) use frequency-domain MLPs for prediction, significantly reducing computational complexity. FreDF Wang et al. (2025) introduces an additional loss function in the frequency domain to supervise the alignment of the model’s spectrum with the real values. However, the effectiveness of frequency domain methods is constrained by the spectrum utilization bottleneck. FilterNet Yi et al. (2024a) through simple filters demonstrates that traditional feature selection strategies in the frequency domain, such as top- K or random- K , may lead to the loss of key frequency band information. Although Fredformer Piao et al. (2024b) and proposes a frequency band equal learning mechanism and CFPT Kou et al. (2025) introduced a dual-branch architecture featuring a cross-frequency interaction module, it still does not address the issue of modeling dynamic interactions between frequency bands.

Decomposition-based Models. Real-world time series are often composed of various underlying patterns. To take advantage of the features of different patterns, recent methods tend to decompose the sequence into multiple subcomponents, including trend-seasonal decomposition, multiperiod decomposition, and multiscale decomposition Huang et al. (2025). Methods such as Autoformer Wu et al. (2021) and DLinear Zeng et al. (2023) use moving averages to decouple seasonal and trend components, followed by modeling with attention mechanisms or MLP layers. TimesNet Wu et al. (2023) and PDF Dai et al. (2024) utilize Fourier analysis to decouple the sequence into multiple subperiodic sequences based on computational periods. FRENNet Zhang et al. (2024) introduces a frequency-based rotation network that can capture the features of dynamically complex periods. Furthermore, TimeMixer Wang et al. (2024a) uses past decomposable mixes for multiscale representation learning and future multi-prediction mixes to enhance forecasting with complementary skills. TimeStacker Liu et al. (2025) progressively stacks features from patches of varying sizes and employs a frequency-based self-attention mechanism. However, the information fidelity of multiscale decomposition is facing challenges. Downsampling operations may lead to the loss of fine-grained features due to spectral aliasing. To address the limitations, this paper proposes a multiscale decomposition framework based on frequency domain adaptive filtering, which automatically suppresses aliasing noise through frequency band masking, ensuring the integrity of multiscale feature transfer.

3 MODEL FRAMEWORK

3.1 OVERALL ARCHITECTURE

In this section, we explain the workflow of DMA-Net based on a single sample for clarity. The overall architecture adopts a Decomposition-Prevention-Fusion paradigm shown in Figure 2. The input sequence is initially normalized and projected into the latent space. Then, a hierarchical extractor progressively decomposes the sequence into multiscale representations through stacked depth-wise and point-wise convolutions, with gradual downsampling of temporal resolution to capture both intra-variable and inter-variable interactions, respectively. Adhering to the prevention design principle, anti-aliasing filters are performed before each downsampling step. Next, in the upsampling phase, learnable spectral filters are adopted to expand the channel, while zero-padding expands the temporal length, effectively suppressing aliasing distortions. In the fusion stage, multiscale features are integrated using Softmax, while residual connections are made between stacked encoder blocks. Finally, the hierarchical representations are decoded. This architecture fully leverages the potential of convolutional downsampling through joint time-frequency operations.

3.2 NORMALIZATION AND EMBEDDING

First, we apply RevIN to the input data $X \in \mathbb{R}^{C \times L}$ to reduce the discrepancy between the training and testing data distributions Kim et al. (2022). Following this, an initial linear embedding layer re-encodes the normalized series into a latent space that is more suitable for pattern extraction and anti-aliasing. During this encoding process, we add a learnable positional encoding to preserve crucial temporal context by providing an absolute positional reference. The resulting embedded

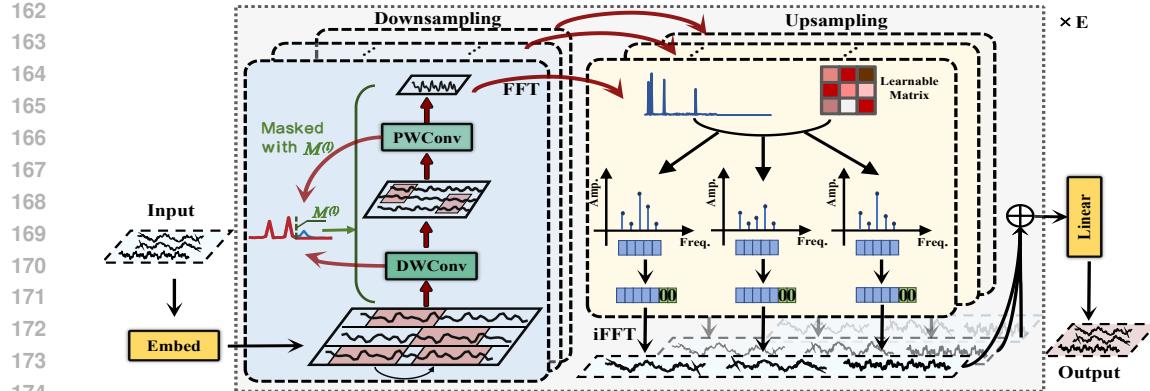


Figure 2: The overall architecture of DMA-Net. The input time series is first projected into a latent space via an Embedding Layer. The framework then employs a Downsampling Block to extract multiscale features using depth-wise and point-wise convolutions. Crucially, before each downsampling step, a **Pre-Sampling Anti-Aliasing operation** is performed: features are transformed to the frequency domain using FFT, filtered with a dynamic low-pass mask, and transformed back via iFFT to mitigate aliasing. Subsequently, in the **Post-Sampling Interpolation** phase, multiscale features are restored to the original resolution and fused in the frequency domain using a learnable matrix and zero-padding. Finally, a linear layer decodes the features to produce the forecast.

representation is denoted as $X' = \text{Linear}(\text{RevIN}(X)) + W$, $X' \in \mathbb{R}^{C \times T}$, where T represents the dimension of the embedded representation and W represents the positional encoding. This X' serves as the input to the subsequent multiscale extracting layers. The detailed rationale for this embedding-first approach is provided in the Appendix.G.1.

3.3 MULTISCALE CONVOLUTIONAL DOWNSAMPLING

To capture features at varying temporal resolutions, we process the embedded X' through a hierarchy of H downsampling layers. Unlike methods relying solely on pooling Wang et al. (2024a), we employ convolutions for efficient multiscale feature extraction. This process generates a set of downsampled feature maps $X_{\text{down}} = \{x^{(0)}, x^{(1)}, x^{(2)}, \dots, x^{(H)}\}$, where $x^{(0)}$ is the initial input X' and $x^{(l)} \in \mathbb{R}^{C_l \times T_l}$. The temporal dimension decreases at each layer: $T_0 = T$ and $T_l = \lfloor T_{l-1}/s \rfloor$ for $l \geq 1$, with s being the fixed downsampling stride. The number of channels C_l can also vary across layers.

Depth-wise Convolution. In the l -th layer, the input $x^{(l-1)} \in \mathbb{R}^{C_{l-1} \times T_{l-1}}$ first undergoes a depth-wise convolution (DWConv). This operation applies distinct filters to each input channel, focusing on modeling temporal dependencies within channels without cross-channel interference:

$$f^{(l)} = \text{DWConv}(x^{(l-1)}; \text{stride} = s, \text{groups} = C_{l-1}) \in \mathbb{R}^{C_{l-1} \times T_l}. \quad (1)$$

Point-wise Convolution. Following the depth-wise convolution, a point-wise convolution (PWConv, that is, a 1×1 convolution) performs a linear transformation across channels. This enhances inter-channel communication and maps the feature from C_{l-1} channels to C_l channels:

$$x^{(l)} = \text{PWConv}(f^{(l)}) \in \mathbb{R}^{C_l \times T_l}. \quad (2)$$

When iterating this process up to the H -th layer, we can obtain the produced multiscale feature set $X_{\text{down}} = \{x^{(0)}, x^{(1)}, x^{(2)}, \dots, x^{(H)}\}$. This design efficiently separates the learning of temporal patterns and channel interactions while significantly reducing parameters and computation, providing rich hierarchical information for subsequent interpolation and fusion.

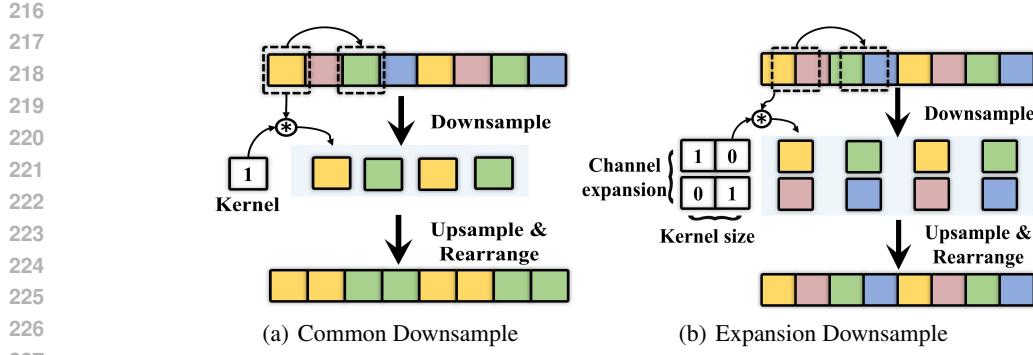


Figure 3: Illustration of how a larger kernel and channel expansion preserve sampling information during downsampling. **Left:** Pointwise downsampling with a stride of 2 and no channel expansion results in a sampling rate of 1/2, discarding half the input information. This leads to aliasing, where high-frequency content is misrepresented as low frequencies. **Right:** Downsampling with 2x1 identity kernels and 2x channel expansion ensures that every input element is sampled and preserved in separate channels. This approach maintains the effective sampling rate at 1, as all pixels are sampled.

3.4 ANTI-ALIASING OPERATION

In Section 3.3, the depth-wise convolution and point-wise convolution are proposed. To reduce the negative effect of aliasing, a Pre-Sampling Filtering and Post-Sampling Interpolation should be performed before feeding $x^{(l-1)}$ and after acquiring $x^{(l)}$, respectively.

Pre-Sampling Filtering. Downsampling inevitably introduces the risk of aliasing, where high-frequency components fold into lower frequency bands, potentially corrupting the signal or losing critical information, especially with larger strides s . Inspired by the work in computer vision Grabinski et al. (2022a) Chen et al. (2024a), we introduce the concept of Equivalent Sampling Rate (ESR) to dynamically compute the appropriate Nyquist frequency for anti-aliasing filtering during downsampling. We provide a detailed proof for ESR in Appendix B. As shown in Figure 3, the size of the convolutional kernel and the transformation of channels play a role in determining the sampling ability. Concretely, the ESR at the l -th layer can be calculated with the following strategy:

$$\text{ESR}^{(l)} = \frac{\min(K, C_l/C_{l-1})}{s}, \quad (3)$$

where K is the kernel size of the depth-wise convolution, C_{l-1} and C_l are the input and output channels for the layer's point-wise convolution, and s is the stride. Before applying the downsampling convolution, we use FFT (\mathcal{F}) to transform the input $x^{(l-1)}$ into the frequency domain: $\mathcal{X}^{(l-1)} = \mathcal{F}(x^{(l-1)})$. The layer-specific Nyquist frequency is $f_{\text{Nyquist}}^{(l)} = \text{ESR}^{(l)}/2$. Based on $f_{\text{Nyquist}}^{(l)}$, we construct a low-pass frequency mask $\mathbf{M}^{(l)}$:

$$\mathbf{M}^{(l)}[i] = \begin{cases} 1, & f_i \leq f_{\text{Nyquist}}^{(l)} \\ 0, & f_i > f_{\text{Nyquist}}^{(l)} \end{cases}, \quad (4)$$

where f_i is the i -th frequency component in $\mathcal{X}^{(l-1)}$. Then, we apply the mask in an element-wise strategy (\odot), and transform back using IFFT (\mathcal{F}^{-1}):

$$\tilde{\mathcal{X}}^{(l-1)} = \mathcal{X}^{(l-1)} \odot \mathbf{M}^{(l)}, \quad x_{\text{filtered}}^{(l-1)} = \mathcal{F}^{-1}(\tilde{\mathcal{X}}^{(l-1)}). \quad (5)$$

This filtered signal $x_{\text{filtered}}^{(l-1)}$, which serves as the real $x^{(l-1)}$, is then fed into the depth-wise convolution, effectively suppressing high frequencies prone to aliasing during downsampling.

Post-Sampling Interpolation. After obtaining the downsampled feature $x^{(l)} \in \mathbb{R}^{C_l \times T_l}$, we propose an anti-aliasing interpolation method and frequency domain channel expansion to restore the temporal resolution to a target length T and expand channels to the model dimension C .

270 First, the downsampled feature is transformed to the frequency domain using \mathcal{F} . Inspired by frequency domain filtering strategies Yi et al. (2024a), we introduce our designed learnable complex-valued filters $\mathcal{H}_\phi^{(l)} \in \mathbb{C}^{C \times C_l \times F_l}$, which are also transformed to the frequency domain. We then perform channel expansion through a weighted sum in the frequency domain, effectively implementing channel mixing. This operation computes each output channel c as a learned combination of all C_l input channels at each frequency f , fusing cross-channel information while preserving the spectral structure:

$$277 \quad \mathcal{X}^{(l)} = \mathcal{F}(x^{(l)}) \in \mathbb{C}^{C_l \times F_l}, F_l = \lfloor T_l/2 \rfloor + 1, \quad (6)$$

$$279 \quad \mathcal{S}^{(l)}[c, f] = \sum_{k=1}^{C_l} \mathcal{X}^{(l)}[k, f] \odot \mathcal{H}_\phi^{(l)}[c, k, f], \text{ for } c \in [1, C] \text{ and } f \in [1, F_l], \quad (7)$$

281 where $\mathcal{S}^{(l)} \in \mathbb{C}^{C \times F_l}$. To restore the sequence length to T , we calculate the corresponding target 282 frequency count $F = \lfloor T/2 \rfloor + 1$. We apply zero-padding (Pad) in the frequency domain to extend 283 the spectrum $\mathcal{S}^{(l)}$ from F_l components to F components. This zero-padding primarily serves to 284 interpolate the signal in the time domain while implicitly acting as a low-pass filter, further mitigating 285 potential aliasing introduced during the process. Finally, \mathcal{F}^{-1} transforms the padded spectrum back 286 to the time domain, producing the interpolated feature map for level l :

$$287 \quad \tilde{\mathcal{S}}^{(l)} = \text{Pad}^{(l)}(\mathcal{S}^{(l)}) \in \mathbb{C}^{C \times F}, Y^{(l)} = \mathcal{F}^{-1}(\tilde{\mathcal{S}}^{(l)}, n = T) \in \mathbb{R}^{C \times T}. \quad (8)$$

289 Executing channel expansion before zero-padding ensures that the spectral information for each 290 expanded channel is complete before interpolation, avoiding potential spectral leakage or distortion 291 and contributing to high-fidelity reconstruction in multi-channel time series tasks.

292 3.5 MULTISCALE FEATURE FUSION AND DECODING OUTPUT

294 **Feature Fusion.** The above operations are processed in a single encoder block, and the interpolation 295 step generates a set of feature maps $\{Y^{(1)}, Y^{(2)}, \dots, Y^{(H)}\}$, each residing at the target 296 resolution T , but derived from different temporal scales. To integrate these multiscale information, 297 we employ adaptive weighting. A learnable weight vector $w \in \mathbb{R}^H$ is introduced, and its Softmax 298 normalization yields attention scores α_p for each scale. The final output \hat{Y}^e of the e -th encoder 299 block is the weighted sum of these multiscale features:

$$300 \quad \alpha_p = \frac{\exp(w_p)}{\sum_{k=1}^H \exp(w_k)}, \hat{Y}^e = \sum_{p=1}^H \alpha_p \cdot Y^{(p)} \in \mathbb{R}^{C \times T}. \quad (9)$$

303 Our model stacks E such multiscale encoder blocks. To facilitate the training of this deep architecture 304 and preserve information flow, we incorporate residual connections around each encoder 305 block, where $\hat{Y}^{(0)} = X'$ means the initial embedded representation, and \hat{Y}^e is the output of the e -th 306 encoder layer:

$$307 \quad \hat{Y}^e = \text{MultiScaleEncoder}(\hat{Y}^{e-1}) + \hat{Y}^{e-1}, \text{ for } e = 1, 2, 3, \dots, E. \quad (10)$$

309 **Decoding Output.** The output \hat{Y}^E from the final encoder block, representing rich multiscale features, 310 first passes through a Layer Normalization step, $Y^* = \text{LayerNorm}(\hat{Y}^E)$. Then a simple 311 Feed-Forward Network (FFN) decoder projects these features into the future prediction horizon 312 L_{next} . Then we apply the inverse RevIN transformation (iRevIN) to obtain the final forecast \hat{X}_o :

$$314 \quad \hat{X}_o = \text{iRevIN}(\text{FFN}(Y^*)) \in \mathbb{R}^{C \times L_{\text{next}}}. \quad (11)$$

316 4 EXPERIMENTS

318 4.1 EXPERIMENTAL SETTINGS

320 **Datasets.** We conduct experiments on many real-world public datasets for long-term forecasting: 321 ETT (four subsets), Weather, ECL, Solar-Energy, PEMS (four subsets). For short-term forecasting, 322 we adopt the ILI, COVID-19, NASDAQ, Wiki, SP500, DowJones, CarSales, Power, Website, Un- 323 emp. These datasets are standard benchmarks Wang et al. (2024a) Liu et al. (2024) Yue et al. (2025). 324 Details and statistics of these multivariate time series datasets are summarized in Appendix.C.

324 Table 1: Long-term forecasting results ($L = 96$). All results are averaged across four forecasting
 325 horizon: $T \in \{96, 192, 336, 720\}$. The best and second-best results are highlighted in **bold** and
 326 underlined, respectively. See Appendix.D (Table.11 and Table.12) for full results.

327 Models	328 DMANet		329 iTransformer		330 TimeMixer		331 FilterNet		332 Fredformer		333 FITS		334 FreTS		335 TimePro		336 FreDF		337 SOFTS		338 TimeXer	
	339 <u>Ours</u>		340 2024		341 2024a		342 2024a		343 2024		344 2024		345 2024		346 2025		347 2025		348 2024		349 2024b	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	0.428	0.429	0.454	0.447	0.447	0.440	0.440	<u>0.432</u>	0.445	<u>0.432</u>	0.447	0.448	0.488	0.474	0.438	0.438	<u>0.437</u>	0.435	0.449	0.442	<u>0.437</u>	0.437
ETTh2	0.361	0.388	0.383	0.407	<u>0.364</u>	<u>0.395</u>	0.378	0.397	0.367	0.396	0.383	0.408	0.550	0.515	0.377	0.403	0.371	0.396	0.373	0.400	0.368	0.396
ETTm1	0.373	0.385	0.407	0.410	<u>0.381</u>	<u>0.395</u>	0.384	0.398	0.393	0.403	0.387	0.408	0.407	0.415	0.391	0.400	<u>0.392</u>	0.399	0.393	0.403	0.382	0.397
ETTm2	0.268	0.310	0.288	0.332	0.275	0.323	0.276	<u>0.322</u>	0.279	0.324	0.286	0.328	0.335	0.379	0.281	0.326	0.278	0.319	0.287	0.330	<u>0.274</u>	<u>0.322</u>
Weather	0.236	0.262	0.258	0.279	<u>0.240</u>	<u>0.271</u>	0.248	0.278	0.246	0.272	0.249	0.276	0.255	0.363	0.251	0.276	0.254	0.274	0.255	0.278	0.241	<u>0.271</u>
Electricity	0.170	0.264	0.178	0.270	0.182	0.272	0.201	0.285	0.175	0.269	0.217	0.295	0.202	0.290	<u>0.169</u>	<u>0.262</u>	<u>0.170</u>	0.259	0.174	0.264	0.171	0.270
Solar-Energy	0.227	0.249	0.233	0.262	0.216	0.280	0.263	0.286	0.232	0.274	0.397	0.398	0.283	0.338	0.232	0.266	0.279	0.292	0.229	<u>0.256</u>	0.237	0.302

335 **Baseline.** Our primary analysis focuses on long-term forecasting with a 96-step lookback window
 336 (Table 11, Table 12 and Table 15). In addition to this main task, we also conducted evaluations
 337 on univariate long-term forecasting (Table 16), short-term forecasting (Table 17), and long-term
 338 forecasting with an extended 720-step lookback window (Tables 13 and 14). Across these diverse
 339 settings, we chose a comprehensive set of recent state-of-the-art models to serve as baselines. This
 340 includes MLP-based models (SOFTS Han et al. (2024), TimeMixer Wang et al. (2024a), DLinear
 341 Zeng et al. (2023)), CNN-based models (TVNet Li et al. (2025), ModernTCN Donghao & Xue
 342 (2024), PDF Dai et al. (2024)), frequency-based models (FreDF Wang et al. (2025), FilterNet Yi
 343 et al. (2024a) etc.), Transformer-based models (TimeXer Wang et al. (2024b), iTransformer Liu
 344 et al. (2024), etc.), and recent architectures based on Mamba (TimePro Ma et al. (2025)) and KAN
 345 (TimeKAN Huang et al. (2025)). **To ensure a clear and focused presentation in the main text, our**
 346 **primary results tables (Table.1, Table.2 and Table.3) feature a curated selection of the most com-**
 347 **petitive and representative SOTA models. A complete list of all evaluated baselines is described in**
 348 **Appendix.C, with their comprehensive results available in Appendix.D for a thorough comparison.**

349 **Implementation Details.** The experiments in this paper were conducted using an NVIDIA
 350 GeForce RTX 3090 24GB GPU. Inspired by FreDF Wang et al. (2025), we uses the Mean Ab-
 351 solute Error (MAE) in the frequency domain. For details on the hyperparameter settings of the
 352 models presented in Appendix.C.

353 4.2 MAIN RESULTS

356 **Long-term Forecasting.** The long-term forecasting results, reported in Table.1 (more results in
 357 Appendix.D), demonstrate that DMANet consistently achieves optimal or near-optimal performance
 358 across all datasets. Its performance is comparable to TimeMixer, highlighting the general effective-
 359 ness of time-series decomposition architectures. However, a key distinction lies in their downsam-
 360 pling mechanisms: while TimeMixer’s reliance on average pooling is susceptible to information
 361 loss, DMANet’s spectral preservation mechanism effectively suppresses aliasing artifacts, enabling
 362 a more faithful layer-wise learning of multi-granularity representations. Conversely, when com-
 363 compared to models with channel-wise self-attention like iTransformer, DMANet’s reliance on simpler
 364 convolutional operations for dependency modeling suggests a potential area for future optimization,
 365 particularly on high-dimensional datasets. Furthermore, guided by the principles of scaling laws
 366 in Time Series Forecasting (TSF), we extended the lookback window L to 720 in Table.2 (full re-
 367 sults can be found in Table.13 and Table.14). In this long-context setting, DMANet exhibits robust
 368 noise resilience, maintaining state-of-the-art performance and surpassing other convolutional coun-
 369 terparts like ModernTCN and TVNet. This result further validates DMANet’s superior adaptability
 370 in capturing multi-scale temporal dependencies, even with extended input lengths.

371 Table 2: Long-term forecasting results ($L = 720$). For baseline, the input length L is searched from
 372 $\{192, 336, 512, 720\}$, while DMANet is fixed 720. The best and second-best results are highlighted
 373 in **bold** and underlined, respectively. See Appendix.D (Table.13 and Table.14) for full results.

374 Models	375 DMANet	376 iTransformer	377 TimeMixer	378 ModernTCN	379 TVNet	380 TSLANet	381 PDF	382 PatchTST	383 FITS	384 TimesNet	385 DLinear	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	
ETTm1	0.338	0.369	0.361	0.390	0.356	0.380	0.351	0.381	0.348	0.379	0.348	0.383
ETTm2	0.248	0.307	0.269	0.327	0.257	0.318	0.253	0.314	0.256	0.316	0.250	<u>0.313</u>
Weather	0.218	0.252	0.232	0.270	0.226	0.264	0.224	0.264	<u>0.221</u>	<u>0.261</u>	0.325	0.337
Electricity	0.154	0.252	0.163	0.258	0.169	0.265	<u>0.156</u>	<u>0.253</u>	0.165	0.254	0.165	0.257
											0.160	0.253
											0.171	0.270
											0.169	0.265
											0.190	0.290
											0.167	0.264

378 **Short-term Forecasting.** The short-term forecasting results, presented in Table.3, validate the su-
 379 periority of DMA-Net in handling non-stationary time series. Across a diverse set of challenging
 380 datasets such as ILI, COVID-19, and DowJones, DMA-Net consistently achieves the best perfor-
 381 mance. It significantly outperforms other methods, including strong frequency-domain baselines
 382 like Fredformer and FilterNet. These results underscore DMA-Net’s exceptional capability in short-
 383 term and non-stationary forecasting, attributable to its synergistic design: the convolutional archi-
 384 tecture excels at preserving local features, while the anti-aliasing structure effectively mitigates dis-
 385 ruptive high-frequency noise.

386 Table 3: Short-term forecasting results. The best and second-best results are highlighted in **bold** and
 387 underlined, respectively. See Appendix.D (Table.17) for full results and setting details.

Models	DMA-Net		TimeMixer		FilterNet		FITS		DLinear		Fredformer		PatchTST	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ILI	1.763	0.824	2.020	<u>0.878</u>	2.073	0.885	4.130	1.465	3.083	1.217	<u>1.947</u>	0.899	2.128	0.885
COVID-19	<u>1.910</u>	0.670	2.234	0.782	2.088	0.780	2.875	0.979	3.483	1.102	1.902	<u>0.765</u>	2.221	0.820
NASDAQ	0.177	0.273	<u>0.186</u>	<u>0.281</u>	0.197	0.289	0.210	0.302	0.228	0.331	0.194	0.285	0.198	0.286
Wiki	6.506	0.393	6.572	0.409	6.572	0.411	8.515	0.553	6.634	0.481	6.705	0.406	<u>6.523</u>	<u>0.404</u>
SP500	0.225	0.329	<u>0.241</u>	<u>0.353</u>	0.254	0.365	0.291	0.412	0.277	0.391	0.261	0.378	0.246	0.361
DowJones	11.957	0.850	13.948	0.877	13.439	0.873	13.755	0.893	<u>12.688</u>	<u>0.857</u>	12.992	0.858	12.916	0.862
CarSales	<u>0.338</u>	0.333	<u>0.338</u>	0.336	0.336	<u>0.335</u>	0.379	0.365	0.373	0.368	0.340	0.338	<u>0.338</u>	<u>0.335</u>
Power	1.373	0.899	<u>1.484</u>	<u>0.937</u>	1.614	0.986	1.711	1.028	1.549	0.972	1.588	0.981	1.650	0.998
Website	<u>0.137</u>	0.252	0.143	0.261	0.136	0.255	0.278	0.383	0.204	0.319	0.135	<u>0.254</u>	0.141	0.259
Unemp	0.064	0.146	0.094	0.183	<u>0.079</u>	0.166	0.308	0.394	0.154	0.292	0.075	<u>0.163</u>	0.078	0.160

4.3 ABLATION STUDY

401 In this section, we investigate key components of DMA-Net, including our novel Anti-aliasing Filter,
 402 the Convolutional Downsampling and Frequency Upsampling Mechanisms, and the Basic Settings.
 403

404 Table 4: Ablation study of DMA-Net. All results are averaged across four different forecasting
 405 horizon. The best and second-best results are highlighted in **bold** and underlined, respectively.

Categories	Downsampling Replace				Upsampling Replace				Basic Settings			
	Cases		DMA-Net	Linear Down	Self-Attention	Standard Conv	Linear Up	Interpolate	Trans Conv	w/o ReVIN	MSE	Loss
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Electricity	0.172	0.265	0.176	0.271	0.180	0.276	0.179	0.274	0.174	<u>0.268</u>	0.184	0.274
ETTm1	0.373	0.385	0.379	0.389	0.379	0.389	<u>0.377</u>	0.388	0.377	0.388	0.378	0.388
Unemp	0.064	0.146	0.081	0.171	0.076	0.161	0.075	0.163	0.077	0.164	0.073	0.161
NASDAQ	0.177	0.273	0.190	0.283	0.184	0.279	0.185	0.281	0.183	0.279	<u>0.182</u>	<u>0.277</u>

414 **Basic Settings.** Ablation analysis showed that removing DMA-Net’s ReVIN significantly hurts
 415 performance by failing to mitigate distribution shift. The frequency-domain MAE loss is also pre-
 416 ferred over MSE for anti-aliasing due to enabling direct frequency adjustment.

418 **Convolution Downsampling.** To evaluate the effectiveness of convolutional downsampling, we
 419 experimented with the following alternative strategies: **(1) LinearDown:** two separate linear for
 420 downsampling; **(2) Standard Conv:** standard convolution with stride; **(3) Self-attention:** employ-
 421 ing self-attention to capture temporal dependencies, combined with average pooling along the tem-
 422 poral and convolutional downsampling along the channel. The results are summarized in Table.4.

423 Overall, the combination of depth-wise convolution and point-wise convolution demonstrates the
 424 best performance. Notably, replacing convolution with linear or with self-attention followed by
 425 average pooling results in a performance drop, which highlights the capability of depthwise conve-
 426 lution in learning temporal dependencies. In addition, using standard convolution alone leads to a
 427 substantial increase in parameter count and a worsening of most metrics, suggesting that focusing
 428 solely on depthwise convolution to extract temporal dependencies is a more reasonable design.

429 **Frequency Upsampling.** To validate the unique advantages of frequency-domain upsampling, we
 430 conducted experiments comparing our approach with three alternative upsampling methods that do
 431 not explicitly target frequency information: **(1) Linear Up:** two separate linear for upsampling;

432 **Table 5: Results on generic baseline.**
 433 More details are in Appendix.C.6

Models	DMA-Net		Base		w/o-Pre		w/o-Post	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Unemp	0.064	0.146	0.082	0.173	0.075	0.161	0.069	0.155
DowJones	11.957	0.850	13.294	0.871	12.379	0.853	12.423	0.855
ETTh1	0.373	0.385	0.384	0.393	0.378	0.387	0.377	0.388
Weather	0.236	0.262	0.239	0.265	0.239	0.264	0.238	0.264

434 **Table 6: Results on plug-in design.** \dagger denotes integration
 435 with ESR filter. \downarrow indicates reduction vs. vanilla models.

Models	TimeMixer \dagger		MICN \dagger		SCINet \dagger	
	MSE	MAE	MSE	MAE	MSE	MAE
Power	1.444 (± 0.004)	0.922 (± 0.015)	1.976 (± 0.005)	0.973 (± 0.013)	0.182 (± 0.023)	0.278 (± 0.003)
NASDAQ	0.182 (± 0.004)	0.278 (± 0.003)	0.198 (± 0.003)	0.295 (± 0.002)	0.234 (± 0.005)	0.355 (± 0.004)
ETTh1	0.448 (± 0.010)	0.439 (± 0.005)	0.511 (± 0.069)	0.503 (± 0.031)	0.506 (± 0.027)	0.478 (± 0.019)
Electricity	0.181 (± 0.003)	0.271 (± 0.002)	0.193 (± 0.003)	0.304 (± 0.005)	0.217 (± 0.002)	0.319 (± 0.002)

436 **Table 7: Ablation study on different filter designs.** Performance is compared against our DMA-Net
 437 (utilizing the ESR filter), heuristic filters (Max, Random), and classical filters (Ideal, Chebyshev,
 438 Gaussian, Butterworth). All results are averaged over four horizons. Details are in Appendix.C.5.

Models	DMA-Net		Max		Random		Ideal		Chebyshev		Gaussian		Butterworth	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ILI	1.763	0.824	1.957	0.855	2.043	0.872	1.994	0.849	1.990	0.855	1.974	0.862	1.940	0.849
Unemp	0.064	0.146	0.073	0.157	0.074	0.159	0.073	0.159	0.075	0.164	0.071	0.154	0.072	0.158
DowJones	11.957	0.850	12.300	0.852	12.261	0.851	12.397	0.855	12.382	0.855	12.351	0.854	12.402	0.855
ETTh1	0.373	0.385	0.376	0.387	0.376	0.387	0.375	0.387	0.375	0.387	0.374	0.385	0.375	0.387
PEMS08	0.090	0.198	0.117	0.218	0.113	0.210	0.109	0.206	0.110	0.207	0.108	0.205	0.109	0.206

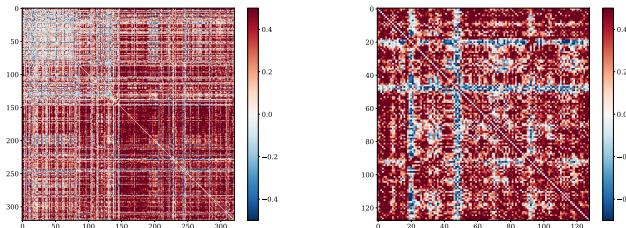
439 **(2) Interpolate:** simply interpolation along the temporal and channel; **(3) Trans Conv:** utilizes
 440 transposed convolution mirroring the structure of the downsampling counterpart. As shown clearly
 441 in Table.4, replacing our frequency-domain upsampling with any of these alternatives resulted in a
 442 significant performance degradation. This indicates that these methods fail to effectively preserve or
 443 reconstruct the crucial frequency components of time series during the upsampling process.

444 In contrast, our strategy
 445 first performs expansion in
 446 the channel dimension, fol-
 447 lowed by high-frequency
 448 truncation in the frequency
 449 domain. This carefully
 450 designed approach ensures
 451 the structural integrity
 452 and independence of each
 453 channel in the frequency
 454 domain and completely
 455 avoids the spectral leakage
 456 and the aliasing problem
 457 inherent to interpolation-
 458 based methods. As a result,
 459 our method demonstrates outstanding performance in the high-fidelity reconstruction of time series.

460 **Anti-aliasing Design Analysis.** We conducted a multi-dimensional analysis to validate the ef-
 461 fectiveness and universality of our anti-aliasing mechanisms. First, regarding generalizability, we
 462 integrated our ESR-based filter as a plug-in module into other downsampling-based models (e.g.,
 463 TimeMixer, MICN) in Table.6. The consistent performance gains suggest the potential of our anti-
 464 aliasing approach to serve as a generic enhancement for existing methods. Second, regarding com-
 465 ponent contribution in Table.5, we constructed a generic baseline to rigorously disentangle the ef-
 466 fects of Pre-Sampling Filtering and Post-Sampling Interpolation. The results demonstrate that both
 467 components provide distinct and synergistic benefits: the pre-sampling filter effectively prevents
 468 high-frequency corruption, while the frequency-domain interpolation ensures high-fidelity recon-
 469 struction (see Appendix.H for detailed analysis). Finally, regarding filter superiority in Table.7,
 470 we benchmarked DMA-Net against heuristic (Max, Random) and classical filters (Ideal, Chebyshev,
 471 etc.). DMA-Net outperforms all competing filters, validating that our dynamic, architecture-aware
 472 cutoff strategy offers superior adaptability compared to static or manual designs.

4.4 MODEL ANALYSIS

483 **Efficiency and Robustness.** We provide comprehensive results on real-world datasets (Ap-
 484 pendix.E, Table.23), including the Params and MACs. DMA-Net demonstrates a balance between



473 **Figure 4: Visualization of dependency differences, comparing feature**
 474 **representations with and without the anti-aliasing filter. Red indicates**
 475 **an increase, while blue indicates a decrease. (a) Left: Channel-wise**
 476 **dependency. (b) Right: Temporal dependency differences.**

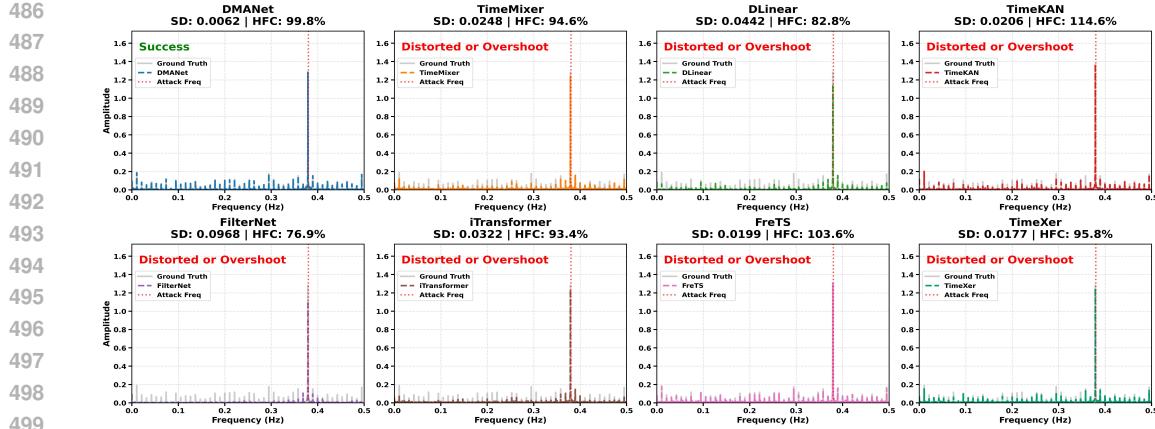


Figure 5: **Analysis of Aliasing Risks via Spectral Injection Attack.** **Spectral Distortion (SD)** measures the Euclidean distance between the predicted and actual spectral distributions, while **High-Frequency Capture (HFC)** quantifies the model’s ability to preserve the injected signal energy.

performance and efficiency. Compared to others, it requires fewer MACs and less params while achieving better accuracy. Meanwhile, on synthetic data (Appendix.E, Table.22), we performed a fine-grained analysis of computational costs. An ablation study revealed that our anti-aliasing filter is not a performance bottleneck, introducing negligible overhead (a worst-case latency increase of only 2.4%). The robustness of our model was validated through a series of noise injection experiments, detailed in Appendix.F. We introduced five types of synthetic noise (e.g., high-frequency) at various intensities ϵ . Our anti-aliasing architecture demonstrated great resilience, as its performance degraded with increasing noise, thereby validating its ability to mitigate signal disturbances.

Dependency Modeling. Figure.4 presents feature dependency heatmaps from the ECL dataset, which reveal the effect of anti-aliasing filter. The filter smooths fine-grained dependencies that are susceptible to aliasing during downsampling. By suppressing these potentially noisy or misleading correlations, the filtering process accentuates the underlying structural patterns in both the temporal and channel. It allows the subsequent layers to more easily extract stable and meaningful features from a cleaner, more coherent representation. Detailed dependency passing analysis in Appendix.H.

Analysis of Aliasing Risks. To verify the aliasing risks, we conducted a Spectral Injection Attack experiment by injecting a high-frequency signal into the ETTh1 dataset. This frequency exceeds the Nyquist limit of standard downsampling, theoretically inducing aliasing. Figure 5 illustrates the spectral reconstruction results: DMANet achieves superior fidelity with the lowest Spectral Distortion (0.0062) and HFC rate of 99.8%, accurately reconstructing the signal without artifacts. In stark contrast, FilterNet (76.9% HFC) and DLinear (82.8% HFC) suffer from the signal attenuation, acting as uncontrolled low-pass filters. Meanwhile, FrTS and TimeXer, despite capturing the target frequency ($> 95\%$ HFC), exhibit high spectral distortion ($SD > 0.017$), indicating that they fail to disentangle the signal from aliasing noise. Similarly, TimeKAN exhibits spectral instability and overshoot (114.6% HFC). This experiment demonstrates the limitations of existing architectures in handling Nyquist sampling, and highlights DMANet’s unique capability to maintain spectral fidelity. More details can be found in Appendix.I.

5 CONCLUSION

This paper presents DMANet, a novel architecture that tackles the critical aliasing problem in multiscale time series forecasting through a Decomposition-Prevention-Fusion framework, employing pre-sampling anti-aliasing based on Equivalent Sampling Rate and post-sampling interpolation for high-fidelity features. Extensive experiments on diverse benchmarks demonstrate DMANet’s state-of-the-art performance and robustness, validating the significance of the anti-aliasing design. DMANet offers a promising direction by explicitly integrating signal processing principles to enhance time series analysis robustness.

540 **6 ETHICS STATEMENT**
541542 Our research is primarily foundational, focusing on a technical challenge within time series analysis,
543 i.e., the problem of aliasing in multiscale deep learning models. We have considered the ethical
544 implications of our work and believe that it follows the scientific standards.
545546 **6.1 SOCIETAL IMPACT**
547548 The primary goal of DMA-Net is to improve the fidelity and reliability of time series forecasting
549 models by mitigating the spectral distortion caused by aliasing. This has a positive social impact
550 by enhancing the trustworthiness of predictive systems in high-sensitivity domains. For example,
551 in industrial fault diagnosis, preventing the introduction of spurious frequency patterns can improve
552 the accuracy of diagnostic tools and support expert decision-making. Similarly, more reliable mod-
553 els are beneficial in fields such as economics, transportation planning, and weather forecasting. We
554 acknowledge that, like any advanced forecasting technology, our methods could potentially be mis-
555 used. However, our work is a general-purpose technical improvement, not an application-specific
556 tool, and we advocate for its responsible use in future research and applications.
557558 **6.2 DATA USAGE**
559560 All experiments were carried out on publicly available and well-established benchmark datasets,
561 e.g., ETT, Weather, ECL, PEMS, ILI, COVID-19. A complete list and description of these datasets
562 are provided in the Appendix.C. In this study, no sensitive or private user data was used, thus avoid-
563 ing concerns related to privacy and data protection.
564565 **6.3 BIAS AND FAIRNESS**
566567 Although our work does not directly address dataset bias, it contributes to model fairness by tackling
568 a source of technical error. By avoiding the aliasing problem, our model is less likely to learn from
569 misleading artifacts in the data. This enhances the model’s robustness and ensures its predictions
570 are based on a more faithful representation of the underlying signal, which is a prerequisite for fair
571 and reliable decision-making.
572573 **7 REPRODUCIBILITY STATEMENT**
574575 **7.1 CODE**
576577 The complete source codes for DMA-Net, including model implementations and scripts to repro-
578 duce experimental results, are available in our anonymous repository at [https://anonymous.](https://anonymous.4open.science/r/DMANet-ED7A)
579 [4open.science/r/DMANet-ED7A](https://anonymous.4open.science/r/DMANet-ED7A). The repository includes instructions for setting up the en-
580 vironment, preparing the data, and running the training and evaluation scripts. Upon acceptance, the
581 repository will be made public and accessible.
582583 **7.2 DATASETS**
584585 Our study utilizes multiple publicly available real-world datasets for long-term and short-term fore-
586 casting, including ETT, Weather, ECL, Solar-Energy, PEMS, ILI, COVID-19, and others. Detailed
587 descriptions, statistics, sources, and data-splitting protocols (Train/Validation/Test ratios) for each
588 dataset are provided in Appendix.C. The data processing follows the established protocols of previ-
589 ous benchmark studies to ensure fair comparison.
590591 **7.3 EXPERIMENTAL SETUP**
592593 The Section.4.1 outlines the overall setup, while Appendix.C provides more implementation details,
594 including the hyperparameter search spaces for all tasks, the specific configurations for each dataset,
595 detailed descriptions of the baseline models, and the fair comparison settings. All experiments
596 were conducted on a single NVIDIA GeForce RTX 3090 24GB GPU using the PyTorch framework
597

594 with the same version. In addition, the full results shown in Appendix.D complement the summary
 595 tables in the main text. Furthermore, we rigorously validate our results through statistical tests on
 596 experiments conducted with five random seeds, confirming that DMANet’s superior performance is
 597 statistically significant with 99% confidence.
 598

599 **REFERENCES**
 600

601 Imran Ahmed, Gwanggil Jeon, and Francesco Piccialli. From artificial intelligence to explainable
 602 artificial intelligence in industry 4.0: A survey on what, how, and where. *IEEE Transactions on*
 603 *Industrial Informatics*, 18(8):5031–5042, 2022. doi: 10.1109/TII.2022.3146552.

604 Thierry Blu and Michael Unser. Quantitative error analysis for the approximation of signals. *IEEE*
 605 *Transactions on Signal Processing*, 49(4):835–855, 2001.

606 Linwei Chen, Lin Gu, and Ying Fu. When semantic segmentation meets frequency aliasing. In
 607 *The Twelfth International Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=SYBdkHcXXX>.

608 Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
 609 and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
 610 forecasting. *arXiv preprint arXiv:2402.05956*, 2024b.

611 Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Periodicity
 612 decoupling framework for long-term series forecasting. *International Conference on Learning*
 613 *Representations*, 2024.

614 Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
 615 forecasting with tide: Time-series dense encoder. *arXiv preprint arXiv:2304.08424*, 2023.

616 Luo Donghao and Wang Xue. ModernTCN: A modern pure convolution structure for general time
 617 series analysis. *International Conference on Learning Representations*, 2024.

618 Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, and Xiaoli Li. Tslanet: Rethinking
 619 transformers for time series representation learning. In *International Conference on Machine*
 620 *Learning*, 2024.

621 Julia Grabinski, Steffen Jung, Janis Keuper, and Margret Keuper. Frequencylowcut pooling - plug
 622 and play against catastrophic overfitting. In *European Conference on Computer Vision*, pp.
 623 36–57, Berlin, Heidelberg, 2022a. Springer-Verlag. ISBN 978-3-031-19780-2. doi: 10.1007/
 624 978-3-031-19781-9_3. URL https://doi.org/10.1007/978-3-031-19781-9_3.

625 Julia Grabinski, Steffen Jung, Janis Keuper, and Margret Keuper. Frequencylowcut pooling–plug &
 626 play against catastrophic overfitting. In *European Conference on Computer Vision*, 2022b. URL
 627 <https://arxiv.org/abs/2204.00491>.

628 Lu Han, Xu-Yang Chen, Han-Jia Ye, and De-Chuan Zhan. SOFTS: Efficient multivariate time series
 629 forecasting with series-core fusion. In *Advances in Neural Information Processing Systems*, 2024.

630 Sungwon Han, Seungeon Lee, Meeyoung Cha, Sercan O Arik, and Jinsung Yoon. Retrieval aug-
 631 mented time series forecasting. In *Forty-second International Conference on Machine Learning*,
 632 2025. URL <https://openreview.net/forum?id=GUDnecJdJU>.

633 Yifan Hu, Peiyuan Liu, Peng Zhu, Dawei Cheng, and Tao Dai. Adaptive multi-scale decomposi-
 634 tion framework for time series forecasting. In *Proceedings of the AAAI Conference on Artificial*
 635 *Intelligence*, volume 39, pp. 17359–17367, 2025.

636 Songtao Huang, Zhen Zhao, Can Li, and LEI BAI. TimeKAN: KAN-based frequency decomposi-
 637 tion learning architecture for long-term time series forecasting. In *The Thirteenth International*
 638 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=wTLC79YNbh>.

648 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
 649 Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting
 650 by reprogramming large language models. In *The Twelfth International Conference on Learning
 651 Representations*, 2024. URL <https://openreview.net/forum?id=Unb5CVptaef>.

652 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
 653 versible instance normalization for accurate time-series forecasting against distribution shift. In
 654 *International Conference on Learning Representations*, 2022.

655 Feifei Kou, Jiahao Wang, Lei Shi, Yuhang Yao, Yawen Li, Suguo Zhu, Zhongbao Zhang, and Junping
 656 Du. CFPT: Empowering time series forecasting through cross-frequency interaction and periodic-
 657 aware timestamp modeling. In *Forty-second International Conference on Machine Learning*,
 658 2025. URL <https://openreview.net/forum?id=hHYjiOJFum>.

659 Chenghan Li, Mingchen Li, and Ruisheng Diao. TVNet: A novel time series analysis method based
 660 on dynamic convolution and 3d-variation. In *The Thirteenth International Conference on Learn-
 661 ing Representations*, 2025. URL <https://openreview.net/forum?id=MZDdTzN6Cy>.

662 Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
 663 investigation on linear mapping, 2023a. URL <https://arxiv.org/abs/2305.10721>.

664 Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
 665 investigation on linear mapping. *arXiv preprint arXiv:2305.10721*, 2023b.

666 Zhe Li, Zhongwen Rao, Lujia Pan, and Zenglin Xu. Mts-mixers: Multivariate time series forecasting
 667 via factorized temporal and channel mixing. *arXiv preprint arXiv:2302.04501*, 2023c.

668 Qinglong Liu, Cong Xu, Wenhao Jiang, Kaixuan Wang, Lin Ma, and Haifeng Li. Timestacker:
 669 A novel framework with multilevel observation for capturing nonstationary patterns in time se-
 670 ries forecasting. In *Forty-second International Conference on Machine Learning*, 2025. URL
 671 <https://openreview.net/forum?id=5RYSqSKz9b>.

672 Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dustdar.
 673 Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
 674 casting. In *ICLR*, 2022a. URL <https://openreview.net/forum?id=0EXmFzUn5I>.

675 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
 676 the stationarity in time series forecasting. *Advances in neural information processing systems*, 35:
 677 9881–9893, 2022b.

678 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 679 iTransformer: Inverted transformers are effective for time series forecasting. *International Con-
 680 ference on Learning Representations*, 2024.

681 Xiaowen Ma, Zhen-Liang Ni, Shuai Xiao, and Xinghao Chen. Timepro: Efficient multivariate
 682 long-term time series forecasting with variable- and time-aware hyper-state. In *Forty-second
 683 International Conference on Machine Learning*, 2025. URL [https://openreview.net/
 684 forum?id=s69Ei2VrIW](https://openreview.net/forum?id=s69Ei2VrIW).

685 Mohammad Amin Morid, Olivia R. Liu Sheng, and Joseph Dunbar. Time series prediction using
 686 deep learning methods in healthcare. *ACM Trans. Manage. Inf. Syst.*, 14, 2023.

687 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 688 64 words: Long-term forecasting with transformers. In *The Eleventh International Con-
 689 ference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Jbdc0vTOcol>.

690 Harry Nyquist. Certain topics in telegraph transmission theory. *Transactions of the American Insti-
 691 tute of Electrical Engineers*, 47(2):617–644, 1928.

692 Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
 693 Frequency debiased transformer for time series forecasting. In *KDD*, pp. 2400–2410, 2024a. URL
 694 <https://doi.org/10.1145/3637528.3671928>.

702 Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
 703 Frequency debiased transformer for time series forecasting. In *Proceedings of the 30th ACM*
 704 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2400–2410, 2024b.

705 Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clustering
 706 enhanced multivariate time series forecasting. *arXiv preprint arXiv:2412.10859*, 2024.

708 Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. Financial time series fore-
 709 casting with deep learning: A systematic literature review: 2005–2019. *Applied soft computing*,
 710 90:106181, 2020.

712 Zongjiang Shang, Ling Chen, Binqing Wu, and Dongliang Cui. Ada-MSHyper: Adaptive multi-
 713 scale hypergraph transformer for time series forecasting. In *The Thirty-eighth Annual Confer-
 714 ence on Neural Information Processing Systems*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=RNbrIQ0se8)
 715 forum?id=RNbrIQ0se8.

716 Claude Elwood Shannon. Communication in the presence of noise. *Proceedings of the IRE*, 37(1):
 717 10–21, 1949.

719 Jingzhe Shi, Qinwei Ma, Huan Ma, and Lei Li. Scaling law for time series forecasting. *Advances in*
 720 *Neural Information Processing Systems*, 2024.

721 Wanneng Shu, Ken Cai, and Neal Naixue Xiong. A short-term traffic flow prediction model based on
 722 an improved gate recurrent unit neural network. *IEEE Transactions on Intelligent Transportation*
 723 *Systems*, 23(9):16654–16665, 2021.

725 Kristofers Volkovs, Evalds Urtans, and Vairis Caune. Primed unet-lstm for weather forecasting.
 726 In *Proceedings of the International Conference on Advances in Artificial Intelligence*, ICAAI
 727 '23, pp. 13–17, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
 728 9798400708985. doi: 10.1145/3633598.3633601. URL [https://doi.org/10.1145/](https://doi.org/10.1145/3633598.3633601)
 729 3633598.3633601.

730 Hao Wang, Lichen Pan, Yuan Shen, Zhichao Chen, Degui Yang, Yifei Yang, Sen Zhang, Xinggao
 731 Liu, Haoxuan Li, and Dacheng Tao. FreDF: Learning to forecast in the frequency domain. In
 732 *The Thirteenth International Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=4A91dSalul)
 733 forum?id=4A91dSalul.

734 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. MICN: Multi-
 735 scale local and global context modeling for long-term series forecasting. In *The Eleventh Interna-
 736 tional Conference on Learning Representations*, 2023. URL [742 forum?id=7oLshfEIC2.](https://openreview.net/

 737 forum?id=zt531DUR1U.</p>
<p>739 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,

 740 and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In

 741 <i>The Twelfth International Conference on Learning Representations</i>, 2024a. URL <a href=)

743 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
 744 min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
 745 with exogenous variables. In *The Thirty-eighth Annual Conference on Neural Information Pro-
 746 cessing Systems*, 2024b. URL [https://arxiv.org/abs/2106.13008](https://openreview.net/ forum?id=INAeUQ041T.</p>
<p>748 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-

 749 formers with auto-correlation for long-term series forecasting. <i>CoRR</i>, abs/2106.13008, 2021.

 750 URL <a href=).

751 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 752 Temporal 2d-variation modeling for general time series analysis. In *ICLR*, 2023.

754 Qiang Wu, Gechang Yao, Zhixi Feng, and Shuyuan Yang. Peri-midformer: Periodic pyramid trans-
 755 former for time series analysis. In *The Thirty-eighth Annual Conference on Neural Information
 Processing Systems*, 2024. URL [14](https://openreview.net/ forum?id=5iUxMVJVEV.</p>
</div>
<div data-bbox=)

756 Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: modeling time series with 10k parameters. In *ICLR*,
 757 2024.

758

759 Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing
 760 frequency filters for time series forecasting. In *The Thirty-eighth Annual Conference on Neural*
 761 *Information Processing Systems*, 2024a. URL <https://openreview.net/forum?id=ugL2D9idAD>.

762

763 Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Long-
 764 -bing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
 765 forecasting. *Advances in Neural Information Processing Systems*, 36, 2024b.

766

767 Tianyi Yin, Jingwei Wang, Yunlong Ma, Han Wang, Chenze Wang, Yukai Zhao, Min Liu, Weiming
 768 Shen, and Yufeng Chen. Apollo-forecast: Overcoming aliasing and inference speed challenges in
 769 language models for time series forecasting, 2024. URL <https://arxiv.org/abs/2412.12226>.

770

771 Wenzhen Yue, Yong Liu, Xianghua Ying, Bowei Xing, Ruohao Guo, and Ji Shi. Freeformer:
 772 Frequency enhanced transformer for multivariate time series forecasting. *arXiv preprint*
 773 *arXiv:2501.13989*, 2025.

774

775 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 776 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 777 11121–11128, 2023.

778

779 Xinyu Zhang, Shanshan Feng, Jianghong Ma, Huiwei Lin, Xutao Li, Yunming Ye, Fan Li, and
 780 Yew Soon Ong. Frnet: Frequency-based rotation network for long-term time series forecasting.
 In *KDD*, pp. 3586–3597, 2024. URL <https://doi.org/10.1145/3637528.3671713>.

781

782 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 783 for multivariate time series forecasting. In *ICLR*, 2022.

784

785 Tian Zhou, Ziqing MA, Xue Wang, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, and Rong
 786 Jin. FiLM: Frequency improved legendre memory model for long-term time series forecasting.
 In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in*
 787 *Neural Information Processing Systems*, volume 35, pp. 12677–12690. Curran Associates, Inc.,
 788 2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/524ef58c2bd075775861234266e5e020-Paper-Conference.pdf.

789

790 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
 791 enhanced decomposed transformer for long-term series forecasting. In *International Conference*
 792 *on Machine Learning*, pp. 27268–27286. PMLR, 2022b.

793

794 Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
 795 by pretrained lm. *Advances in neural information processing systems*, 36:43322–43355, 2023.

796

797 Yifan Zhou, Zeqi Xiao, Shuai Yang, and Xingang Pan. Alias-free latent diffusion models: Improving
 798 fractional shift equivariance of diffusion latent space. In *CVPR*, 2025.

799

800

801

802

803

804

805

806

807

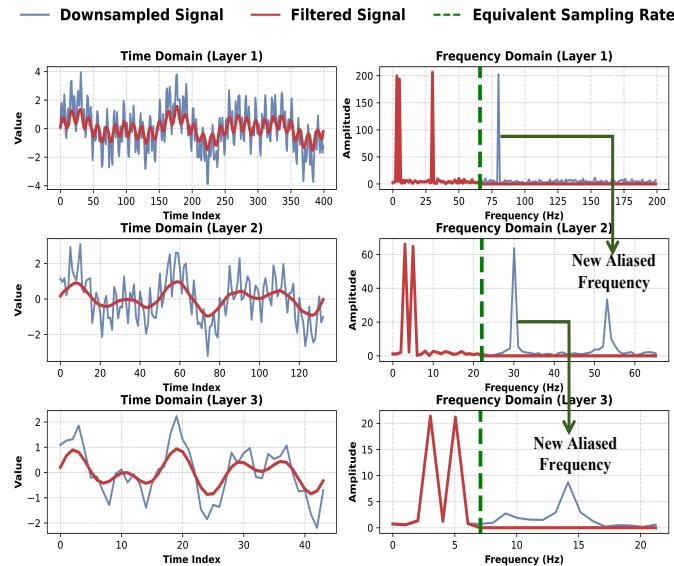
808

809

810 A PRELIMINARIES
811812 A.1 PROBLEM STATEMENT
813

814 **Time Series.** Time series $\mathbf{X} \in \mathbb{R}^{C \times N}$ refers to a sequence of data points ordered by time, where
815 N denotes the total number of timestamps and C represents the number of channels at each times-
816 stamp. Time series forecasting involves predicting future data points based on historical time series
817 observations. The historical observations can be represented as $X = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L] \in \mathbb{R}^{C \times L}$,
818 and L is the length of the historical look-back window. The future data for the next L_{next}
819 time steps, denoted as $\hat{X}_o = [\mathbf{x}_{L+1}, \mathbf{x}_{L+2}, \dots, \mathbf{x}_{L+L_{\text{next}}}] \in \mathbb{R}^{C \times L_{\text{next}}}$, correspond to the
820 forecast horizon. Given these, time series forecasting models are required to learn mapping functions
821 $\mathbf{F} : X \in \mathbb{R}^{C \times L} \rightarrow \hat{X}_o \in \mathbb{R}^{C \times L_{\text{next}}}$.

822 **Aliasing.** This issue arises when different high-frequency components in a continuous signal
823 are indistinguishably mapped to the same low-frequency components after sampling or improper
824 downsampling. Formally, let the sampling interval be Δt , with the Nyquist frequency defined as
825 $f_{\text{Nyquist}} = \frac{1}{2\Delta t}$. Any frequency component $f > f_{\text{Nyquist}}$ in the signal will alias to a spurious fre-
826 quency $\tilde{f} = |f - k \cdot f_s|$ in the sampled sequence X , where $f_s = \frac{1}{\Delta t}$ is the sampling rate, and
827 $k \in \mathbb{Z}^+$ ensures $\tilde{f} \leq f_{\text{Nyquist}}$. This may occur when the sampling rate or downsampling operations
828 fail to meet the Nyquist criterion, that is, the sampling frequency must be at least twice the highest
829 frequency in the original signal. If not resolved, high-frequency components would fold back into
830 lower frequencies during downsampling, creating spurious artifacts.

832 A.2 PROBLEM DESCRIPTION: ALIASING IN MULTI-SCALE TIME SERIES DOWNSAMPLING
833

854 Figure 6: Left: filtering effect of the anti-aliasing filters; Right: emergence of new aliased frequen-
855 cies.

856
857
858 In Figure 6, we present a case study exploring the critical role of anti-aliasing filters in signal preser-
859 vation during multi-scale downsampling. By downsampling a synthetic signal containing both high-
860 frequency and low-frequency components, we demonstrate the occurrence of aliasing during the
861 reduction of the sampling rate.

862 The synthetic time series signal used in the study consists of several frequency components: low-
863 frequency components (3 Hz and 5 Hz), high-frequency components (30 Hz and 80 Hz), and Gaus-

864 sian noise. The signal is initially sampled at a rate of 400 Hz. Subsequently, we perform multi-scale
 865 downsampling at different levels (each with a window size of 3), resulting in sampling rates of
 866 400 Hz, 133 Hz, and 44 Hz.
 867

868 According to the Nyquist sampling theorem, the Nyquist frequency is half of the sampling rate.
 869 Therefore, a 400 Hz sampling rate is sufficient to accurately sample the frequency components of
 870 the original signal. The calculation of aliasing frequencies is derived from the spectral periodicity
 871 characteristics of the Nyquist sampling theorem Nyquist (1928), based on the formula:
 872

$$873 f_{\text{alias}} = |f_o - k \cdot f_s|, \quad (12)$$

875 where f_{alias} is the aliased frequency, f_o is the original high-frequency component, k is an integer
 876 representing the multiple mapping to the sampling frequency, and f_s is the sampling rate.
 877

878 In the first layer, the Nyquist frequency is 200 Hz, corresponding to a sampling rate of 400 Hz. Given
 879 that the highest frequency component of the signal is 80 Hz, which is well below the Nyquist fre-
 880 quency, no aliasing occurs; all frequency components can be accurately sampled and reconstructed.
 881 In practical applications, an anti-aliasing filter limits frequency components above 66 Hz, thereby
 882 preventing aliasing and removing high-frequency noise.
 883

884 In the second layer, the Nyquist frequency is reduced to 66.67 Hz (corresponding to a sampling
 885 rate of approximately 133.33 Hz), which results in aliasing of the original 80 Hz high-frequency
 886 component. According to the aliasing formula (12), for $f_o = 80$ Hz and with $k = 1$:
 887

$$888 f_{\text{alias}} = |80 - 1 \times 133.33| \approx 53.33 \text{ Hz.} \quad (13)$$

889 This calculation indicates that the 80 Hz component folds into the lower frequency region, speci-
 890 fically within the 50–60 Hz range, thereby introducing non-original frequency components and caus-
 891 ing spectral distortion. The anti-aliasing filter in this layer effectively removes frequencies above
 892 22 Hz to mitigate this issue.
 893

894 In the third layer, the Nyquist frequency further decreases to 22.22 Hz (with a corresponding sam-
 895 pling rate of approximately 44.44 Hz), leading to the aliasing of the original 30 Hz component.
 896 Using the aliasing formula with $k = 1$:
 897

$$898 f_{\text{alias}} = |30 - 1 \times 44.44| \approx 14.44 \text{ Hz,} \quad (14)$$

900 indicating that the 30 Hz component folds around 14 Hz. Additionally, due to the interaction between
 901 the sampling rate and the sampling process, frequency components in the 10–15 Hz range cannot be
 902 accurately represented, even though they lie below the Nyquist frequency. This aliasing phenomenon
 903 becomes particularly significant as the frequencies approach the Nyquist limit. Nevertheless, the
 904 anti-aliasing filter is still able to extract the true frequency information with reasonable accuracy,
 905 thereby alleviating the impact of aliasing.
 906

907 A.3 AN INTUITIVE EXPLANATION OF ALIASING-RELATED CONCEPTS

908 This appendix provides a detailed explanation of the core signal processing concepts illustrated
 909 in Figure 7, which motivate the design of DMA-Net. We structure this explanation to clarify the
 910 relationship between sampling, spectral overlap, aliasing, and our proposed solution.
 911

912 A.3.1 THE CORE PROBLEM: SPECTRAL OVERLAP AND ALIASING

913 The central challenge DMA-Net addresses is aliasing, a form of signal distortion that occurs during
 914 downsampling. To fully understand this phenomenon, it is crucial to distinguish between its **phys-
 915 ical cause spectral overlap** and its **perceptual consequence aliasing**. These two terms describe
 916 different links in a cause-and-effect chain, where aliasing is the direct result of spectral overlap due
 917 to improper sampling Zhou et al. (2025).
 918

- 919 • **Sampling and Spectral Replicas:** When a signal is sampled, its original spectrum is peri-
 920 odically replicated along the frequency axis, creating what are known as spectral replicas.
 921 Grabinski et al. (2022b) The act of sampling also limits the frequency range we can observe
 922 without distortion to a new, narrower baseband (from 0 Hz to the new Nyquist frequency).
 923

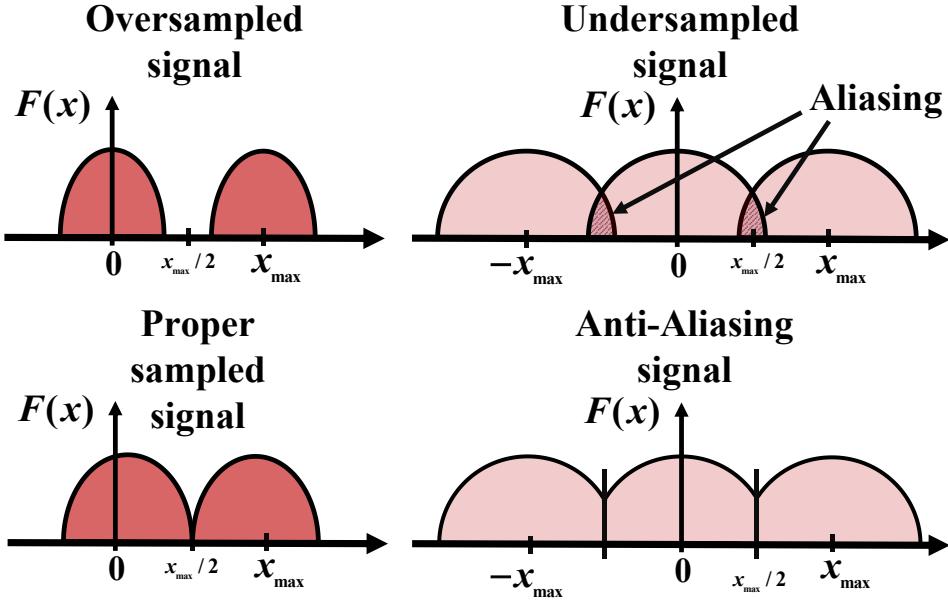


Figure 7: A conceptual illustration of the sampling process in the frequency domain. **Top-left:** Oversampling provides a wide guard band, preventing aliasing. **Top-right:** Undersampling causes spectral replicas to overlap, leading to aliasing where high frequencies (hatched areas) are misrepresented as low frequencies. **Bottom-left:** Proper (or critical) sampling meets the Nyquist criterion exactly, with replicas touching but not overlapping. **Bottom-right:** An anti-aliasing filter removes high-frequency content before sampling, ensuring that even with a lower sampling rate, no overlap occurs.

- **The Cause: Spectral Overlap.** If the sampling rate is too low to satisfy the Nyquist criterion, the separation between these spectral replicas becomes insufficient. This prevents the formation of a safety margin (Guard Band), causing them to physically overlap. This physical overlap, illustrated in the undersampled signal panel of Figure 7, is the root cause of the problem.
- **The Consequence: Aliasing.** This overlap is the direct cause of aliasing. Any high-frequency component from the original signal that exceeds the new Nyquist frequency is folded back into the new, observable low-frequency baseband. This process causes the original high-frequency information to appear as a spurious low frequency. This spurious frequency then mixes with the true low-frequency components within the baseband, becoming indistinguishable from them. Ultimately, this misrepresentation of high-frequency information as low-frequency information corrupts the signal’s fidelity and is the core problem we address in our paper.

A.3.2 A DEEPER DIVE INTO THE SCENARIOS OF FIGURE.7

Figure 7 visualizes four key scenarios:

- **The Undesirable Case (Top-Right):** The undersampled scenario is precisely the adverse outcome our work aims to prevent. The resulting aliasing (hatched areas) erroneously introduces spurious low-frequency patterns, a distortion that can severely hinder analysis and forecasting.
- **The Ideal and Safe Case (Top-Left):** The oversampled scenario is ideal because it successfully avoids aliasing. The empty space between the spectral replicas is a Guard Band, which does not imply information loss but rather a safe margin ensuring that the original spectrum can be unambiguously recovered.
- **The Theoretical Boundary (Bottom-Left):** Proper sampled (or Critical Sampling) occurs when the sampling rate is exactly twice the signal’s maximum frequency ($f_s = 2 \cdot f_{max}$).

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

The spectral replicas touch edge-to-edge without overlapping. While theoretically sound, operating at this exact boundary is risky in practice.

- **The DMA-Net Approach (Bottom-Right):** The Anti-Aliasing signal panel illustrates the core principle of our work. Before an operation that would otherwise cause undersampling, an **anti-aliasing filter** is applied. This low-pass filter removes the high-frequency components (the part of the spectrum above $x_{max}/2$) that would cause overlap. After this pre-filtering, even a lower sampling rate can be safely applied without generating aliasing artifacts.

1026 B PROOFS OF THE EQUIVALENT SAMPLING RATE (ESR)

1028 B.1 NOTATIONS AND SIGNAL MODELING

1030 B.1.1 ORIGINAL DISCRETE-TIME SIGNAL

1031 First, we define $X[n] \in \mathbb{R}^{C_i}$ as a discrete-time signal with C_i channels. The i -th channel of $X[n]$,
 1032 that is, $X_i[n]$, is obtained by sampling a continuous-time signal $x_i(t)$:

$$1034 X_i[n] = x_i(nT_s), T_s = \frac{1}{f_s}, i = 1, \dots, C_i, \quad (15)$$

1036 where f_s is the original sampling rate and T_s is the sampling period. It is assumed that each
 1037 continuous-time signal $x_i(t)$ is band-limited to $|\omega| \leq \omega_B$.

1038 B.1.2 MODULE STRUCTURE

1040 The input signal $X[n]$ passes sequentially through a depth-wise convolution and a point-wise con-
 1041 volution defined in the architecture of DMA-Net:

$$1042 X[n] \xrightarrow{\text{DepthwiseConv1d}(K, S)} U[m] \xrightarrow{\text{PointwiseConv1d}} V[m]. \quad (16)$$

1044 First, the DepthwiseConv1d operation, characterized by a kernel $h_i[k]$ of length K for each i -th
 1045 input channel, where $1 \leq k \leq K$, and a stride S , transforms $X[n]$ into an intermediate signal
 1046 $U[m] \in \mathbb{R}^{C_i}$. Subsequently, this intermediate signal $U[m]$ is processed by a PointwiseConv1d
 1047 operation. This second stage uses a convolution matrix $W \in \mathbb{R}^{C_o \times C_i}$, with elements $w_{j,i}$, to map
 1048 the C_i channels of $U[m]$ to the C_o output channels, producing the final output signal $V[m] \in \mathbb{R}^{C_o}$.
 1049 Consequently, the output sampling rate of the entire module is $f'_s = f_s/S$.

1050 B.2 DOWNSAMPLING AND ALIASING CONDITIONS

1052 As a baseline reference, consider directly downsampling the original signal $X[n]$ by a factor S
 1053 without any convolution filtering to obtain the signal $Y[m]$:

$$1054 Y[m] = X[Sm]. \quad (17)$$

1055 The new sampling rate is $f'_s = f_s/S$. To avoid aliasing caused directly by downsampling, the
 1056 bandwidth $B = \omega_B/(2\pi)$ of the original continuous-time signal must satisfy the Nyquist-Shannon
 1057 sampling theorem requirement, which is defined as:

$$1058 B \leq \frac{f'_s}{2} = \frac{f_s}{2S}. \quad (18)$$

1061 Expressed in terms of normalized angular frequency $\Omega_B = \omega_B T_s = 2\pi B T_s$, we solve this equation
 1062 and represent the condition to avoid aliasing as:

$$1063 \Omega_B \leq \frac{\pi}{S}. \quad (19)$$

1065 This condition applies to ideal direct downsampling, assuming that perfect anti-aliasing filtering has
 1066 been performed before downsampling to remove frequency components above π/S , corresponding
 1067 to $\frac{f_s}{2S}$. Our proposed DMA-Net contains depth-wise and point-wise modules which perform filtering
 1068 in its workflow, and its behaviors are more complex.

1069 B.3 LINEAR MAPPING WITH DEPTH-WISE CONVOLUTION AND POINT-WISE CONVOLUTION

1071 The operations of these two modules can be expressed as a series of linear mappings.

1073 B.3.1 DEPTH-WISE CONVOLUTION

1075 The output of the depth-wise convolution for the i -th channel, $U_i[m]$, is computed as follows:

$$1076 1077 U_i[m] = \sum_{k=0}^{K-1} h_i[k] X_i[mS + k]. \quad (20)$$

1079 Here, m is the index for the output sequence. Due to the stride S , the output $U_i[m]$ depends on the
 1080 input $X_i[n]$ in the range from $n = mS$ to $n = mS + K - 1$.

1080 B.3.2 POINT-WISE CONVOLUTION
10811082 The j -th output channel $V_j[m]$ is obtained by a linear combination of $U_i[m]$:

1083
1084
$$V_j[m] = \sum_{i=1}^{C_i} w_{j,i} U_i[m]. \quad (21)$$

1085

1086 Then, we substitute equation 20 into the above equation to get the expression of $V_j[m]$:

1087
1088
$$V_j[m] = \sum_{i=1}^{C_i} w_{j,i} \left(\sum_{k=1}^K h_i[k] X_i[mS + k] \right) = \sum_{i=1}^{C_i} \sum_{k=1}^K w_{j,i} h_i[k] X_i[mS + k]. \quad (22)$$

1089
1090

1091 B.3.3 UNIFIED LINEAR MAPPING
10921093 To form a unified linear transformation at each output time m , we construct an input vector \mathbf{x}_m that
1094 contains all original input samples involved in computing $V[m]$:

1095
1096
$$\mathbf{x}_m = \begin{bmatrix} X_1[mS] \\ \vdots \\ X_1[mS + K - 1] \\ \vdots \\ X_{C_i}[mS] \\ \vdots \\ X_{C_i}[mS + K - 1] \end{bmatrix} \in \mathbb{R}^{C_i K}.$$

1097
1098
1099
1100
1101
1102
1103

1104 This is a column vector formed by stacking K consecutive samples, starting from mS , from each of
1105 the C_i channels. Concurrently, a weight matrix $G \in \mathbb{R}^{C_o \times (C_i K)}$ is constructed. For the j -th row of
1106 G , its elements correspond to $w_{j,i} h_i[k]$ and are arranged according to the order of the elements in
1107 \mathbf{x}_m . Specifically, if the p -th element of \mathbf{x}_m is $X_i[mS + k]$, then the weight in G corresponds to the
1108 output $V_j[m]$ and this input element is $G_{j,p} = w_{j,i} h_i[k]$. Thus, the output $V[m]$ can be defined as:

1109
1110
$$V[m] = G \mathbf{x}_m, \quad V[m] \in \mathbb{R}^{C_o}. \quad (23)$$

1111 This equation shows that at each output time m , the output vector $V[m]$ is a linear mapping of a
1112 local window \mathbf{x}_m of the input signal.1113 B.4 RANK CONSTRAINT AND DEGREES OF FREEDOM COUNTING
11141115 A fundamental property of linear algebra states that the rank of the matrix G , denoted as $\text{rank}(G)$,
1116 is limited by its dimensions:

1117
1118
$$\text{rank}(G) \leq \min\{\text{number of rows, number of columns}\} = \min\{C_o, C_i K\}. \quad (24)$$

1119 We assume that the values of the weights $h_i[k]$ and $w_{j,i}$ are generic. They can be learned and are not
1120 overly sparse or linearly dependent, so that matrix G can achieve its theoretically maximum possible
1121 rank. Then, the dimension of independent information, also named the degrees of freedom, that the
1122 module extracts from the $C_i K$ -dimensional input window \mathbf{x}_m and transmits to the C_o -dimensional
1123 output $V[m]$ at each output time m is:

1124
1125
$$D = \text{rank}(G) = \min\{C_i K, C_o\}. \quad (25)$$

1126 This D represents the maximum dimension of linearly independent information from the input seg-
1127 ment \mathbf{x}_m that the system can distinguish or represent, without considering noise or specific signal
1128 statistics.1129 To relate this total degree of freedom D to each channel of the input signal, we can average it over
1130 the C_i input channels. Thus, the equivalent temporal degrees of freedom α contributed by each input
1131 channel to produce one output sample $V[m]$ is:

1132
1133
$$\alpha = \frac{D}{C_i} = \frac{\min\{C_i K, C_o\}}{C_i} = \min \left\{ \frac{C_i K}{C_i}, \frac{C_o}{C_i} \right\} = \min \left\{ K, \frac{C_o}{C_i} \right\}. \quad (26)$$

1134 Here, α can be understood as: for each input channel, its information, under the combined effect
 1135 of temporal processing through kernel length K and inter-channel mapping via C_o/C_i , is refined
 1136 or compressed to be equivalent to α independent information units. These units contribute to the
 1137 final output sample $V[m]$. The bottleneck here is determined by the smaller of K (temporal context
 1138 length per channel) and C_o/C_i (channel transformation ratio).

1140 B.5 DEFINITION OF EQUIVALENT SAMPLING RATE

1142 The actual output sampling rate of the module for each output channel is $f'_s = f_s/S$. At each output
 1143 sampling instant, we have determined that each input channel contributes $\alpha = \min\{K, C_o/C_i\}$
 1144 equivalent temporal degrees of freedom.

1145 The Equivalent Sampling Rate f_{ESR} is defined as a rate such that if each of the original C_i input
 1146 channels were sampled at f_{ESR} , and each sample carried one independent degree of freedom, then
 1147 its total degrees of freedom throughput would match that of the current depth-wise and point-wise
 1148 modules.

1149 The total rate of generating degrees of freedom is: $D = \min\{C_i K, C_o\} \times \frac{f_s}{S}$. If C_i channels each
 1150 operate at an equivalent sampling rate of f_{ESR} , their total degrees of freedom rate is $C_i \times f_{\text{ESR}}$:

$$1152 C_i \times f_{\text{ESR}} = \min\{C_i K, C_o\} \times \frac{f_s}{S}. \quad (27)$$

1154 Then, we can get the solve for f_{ESR} :

$$1156 f_{\text{ESR}} = \frac{\min\{C_i K, C_o\}}{C_i} \times \frac{f_s}{S} = \min\left\{K, \frac{C_o}{C_i}\right\} \times \frac{f_s}{S}. \quad (28)$$

1158 If we normalize the original sampling rate f_s to 1, we obtain the normalized ESR:

$$1160 \text{ESR}_{\text{norm}} = \frac{1}{S} \min\left\{K, \frac{C_o}{C_i}\right\}. \quad (29)$$

1163 Based on this equivalent sampling rate f_{ESR} , we can define an equivalent Nyquist frequency
 1164 $f_{\text{Nyq,ESR}}$. This frequency represents the maximum bandwidth that the input signal can accom-
 1165 modate without information loss due to module structural limitations:

$$1167 f_{\text{Nyq,ESR}} = \frac{f_{\text{ESR}}}{2} = \frac{f_s}{2S} \min\left\{K, \frac{C_o}{C_i}\right\}. \quad (30)$$

1169 We can use f_{ESR} to quantify the information processing capability or information retention degree of
 1170 the downsampling module consisting of depth-wise convolution and point-wise convolution relative
 1171 to each input channel. It provides a useful metric to compare the effective information through-
 1172 put of modules with different parameter configurations with K , S , C_i , and C_o . It is important to
 1173 note that the anti-aliasing significance of $f_{\text{Nyq,ESR}}$ also depends on whether the depth-wise con-
 1174 volution kernel $h_i[k]$ can effectively act as a low-pass filter to attenuate frequency components above
 1175 $f_{\text{Nyq,ESR}}$. If $h_i[k]$ is not an ideal low-pass filter, the frequency components of the original signal
 1176 above $f_{\text{Nyq,ESR}}$, even if not completely filtered out by $h_i[k]$, may not be accurately represented by
 1177 the output $V[m]$ due to subsequent dimensionality reduction.

1180 B.6 THEORETICAL ANALYSIS: ORTHOGONALITY OF DMANET ARCHITECTURE AND 1181 FREQUENCY LOSS

1183 To clarify that the effectiveness of DMANet stems from its architectural design rather than sole
 1184 reliance on the loss function, we mathematically decompose the total forecasting error $\mathcal{E}_{\text{total}}$ into
 1185 two orthogonal components: **Feature Representation Error** ($\mathcal{E}_{\text{feat}}$) and **Optimization Objec-
 1186 tive Bias** ($\mathcal{E}_{\text{loss}}$). First, regarding $\mathcal{E}_{\text{feat}}$, theoretically, an ideal downsampling operation with stride
 1187 s truncates the spectrum using a low-pass filter (LPF), yielding an ideal feature h_{ideal} such that
 $\mathcal{F}(h_{\text{ideal}})(\omega) = \mathcal{F}(X)(\omega) \cdot \mathbb{I}(|\omega| \leq \pi/s)$. However, standard strided convolutions lack this LPF,

causing high-frequency components to fold into the baseband and resulting in an aliased spectrum $\mathcal{F}(h_{\text{trad}})(\omega) = \sum_{k=-\infty}^{\infty} \mathcal{F}(X)(\omega - k\omega'_s)$. Here, k is the spectrum replication index and ω'_s equals to $2\pi/s$. Consequently, by Parseval’s Theorem Blu & Unser (2001), the representation error is dominated by these aliasing terms ($k \neq 0$):

$$\mathcal{E}_{\text{feat}} = \|h_{\text{trad}} - h_{\text{ideal}}\|^2 \approx \frac{1}{2\pi} \int_{|\omega| \leq \pi/s} \left| \sum_{k \neq 0} \mathcal{F}(X)(\omega - k\omega'_s) \right|^2 d\omega, \quad (31)$$

DMANet directly minimizes this term by applying an ESR-based dynamic filter before downsampling to physically eliminate the aliasing sums ($\sum_{k \neq 0} \dots \rightarrow 0$), ensuring the latent feature structure approximates the ideal signal independent of the loss function. Conversely, regarding $\mathcal{E}_{\text{loss}}$, time-domain MSE minimization often suffers from gradient bias due to the strong autocorrelation ($\rho \neq 0$) in time series labels; FreDF minimizes this bias by exploiting the Theorem of Spectral Decorrelation, which effectively decouples error terms in an orthogonal basis ($\mathcal{E}_{\text{loss_Freq}} \ll \mathcal{E}_{\text{loss_MSE}}$) Wang et al. (2025). Thus, the total error is unified as:

$$\mathcal{E}_{\text{total}} \approx \underbrace{\mathcal{L}(p(h_{\text{ideal}} + \mathcal{E}_{\text{feat}}), Y)}_{\text{Feature Fidelity (Architecture-dependent)}} + \underbrace{\mathcal{E}_{\text{loss}}}_{\text{Gradient Quality (Loss-dependent)}}, \quad (32)$$

where $p(\cdot)$ denotes the predictor head mapping latent features to forecasts, and \mathcal{L} is the loss function. This formulation demonstrates that while removing Frequency Loss degrades performance by increasing $\mathcal{E}_{\text{loss}}$, the DMANet architecture remains essential for minimizing $\mathcal{E}_{\text{feat}}$ (spectral aliasing), proving their relationship is **orthogonal and synergistic**.

1242 **C IMPLEMENTATION DETAILS**
12431244 We summarized details of datasets, evaluation metrics, experiments in this section.
12451246 **C.1 DATASETS DETAILS**
12471248 We evaluated the performance of different models on several well-established datasets for long-
1249 term forecasting, including Weather, Electricity, Solar-Energy, PeMS(PEMS03, PEMS04, PEMS07,
1250 PEMS08), and the ETT series (ETTh1, ETTh2, ETTm1, ETTm2). Furthermore, to demonstrate
1251 DMA-Net’s capability in handling highly non-stationary data, we conducted an extensive series of
1252 supplementary experiments on short-term forecasting across datasets from various domains. These
1253 include Health & Medical (ILI, COVID-19), Web Events (Wiki, Website), Finance (NASDAQ,
1254 SP500, DowJones), Market (CarSales), Energy (Power), and Society (Unemp). We detail the de-
1255 scriptions of the dataset in Table.8.
12561257 **C.2 BASELINE DETAILS**
12581259 Acknowledging that the performance of different methods varies across scenarios, we conducted
1260 a comprehensive comparison of various approaches under three distinct settings: long-term fore-
1261 casting with a lookback window of 96, long-term forecasting with a lookback window of 720, and
1262 short-term forecasting. The evaluated methods are categorized as follows:
12631264

- **Frequency-domain methods:** TimeStacker Liu et al. (2025), FilterNet Yi et al. (2024a),
1265 FITS Xu et al. (2024), Fredformer Piao et al. (2024a), FEDformer Zhou et al. (2022b).
- **CNN-based methods:** ModernTCN Donghao & Xue (2024), TVNet Li et al. (2025),
1266 TSLANet Eldele et al. (2024), TimesNet Wu et al. (2023), PDF Dai et al. (2024), MICN
1267 Wang et al. (2023).
- **MLP-based methods:** SOFTS Han et al. (2024), TimeMixer Wang et al. (2024a), DLinear
1268 Zeng et al. (2023), TiDE Das et al. (2023), RLinear Li et al. (2023b), MTS-Mixer Li et al.
1269 (2023c)
- **Transformer-based methods:** TimeXer Wang et al. (2024b), iTransformer Liu et al.
1270 (2024), Crossformer Zhang & Yan (2022), Pathformer Chen et al. (2024b), Stationary Liu
1271 et al. (2022b), Pyraformer Liu et al. (2022a), Autoformer Wu et al. (2021)
- **LLM-based methods:** GPT4TS Zhou et al. (2023), Time-LLM Jin et al. (2024)
- **KAN-based methods:** TimeKAN Huang et al. (2025)
- **Mamba-based methods:** TimePro Ma et al. (2025)
- **Retrieval-Augmented methods:** RAFT Han et al. (2025)

1281 **C.3 IMPLEMENTATION DETAILS.**
12821283 Regarding evaluation metrics, we used mean square error (MSE) and mean absolute error (MAE)
1284 for both long-term and short-term forecasting. All experiments were conducted using PyTorch on
1285 a single NVIDIA GeForce RTX 3090 24GB GPU. We applied an early stopping strategy to all
1286 baselines when the validation loss did not decrease for three consecutive epochs. Notably, inspired
1287 by FreDF Wang et al. (2025), we argue that formulating the loss function in the frequency domain
1288 is advantageous for learning an anti-aliasing architecture. Consequently, we directly adopted the
1289 frequency-domain MAE as the loss function for both long-term and short-term forecasting. More
1290 detailed settings can be found in Appendix.C.5.
12911292 **C.4 FAIR COMPARISON SETTINGS.**
12931294 To ensure a fair comparison and address challenges related to scaling laws, we maintained a consis-
1295 tent lookback window of 96 for all experiments in Table.11 and Table 12, and 720 for all experiments
1296 in Table.13 and Table.14. Our baseline comparisons mimic the experimental protocols established
1297 in TimesNet Wu et al. (2023), including same data processing and splitting procedures. For most
1298

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305

1306 Table 8: Detailed dataset descriptions and statistics. **Dim** denotes the number of variates for each
1307 dataset. **Frequency** refers to the time interval between consecutive steps. **Split** indicates the data
1308 partitioning ratio (Train/Validation/Test). **Prediction len.** represents the prediction lengths. Our
1309 long-term forecasting employs a fixed input length of 96 or 720. For the majority of datasets, we
1310 evaluate across prediction horizons of 96, 192, 336, 720. A distinct setting is applied to the PeMS
1311 datasets, which are evaluated on shorter horizons of 12, 24, 48. For short-term forecasting, we adopt
1312 two settings: one with an input of 12 steps to predict 3, 6, 9, 12 steps, and another with an input of
1313 36 steps to predict 24, 36, 48, 60 steps.

Dataset	Dim	Frequency	Total len.	Split	Prediction len.	Information
ETTh1, ETTh2	7	Hourly	17420	6:2:2	{96,192,336,720}	Electricity
ETTm1, ETTm2	7	15 mins	69680	6:2:2	{96,192,336,720}	Electricity
Weather	21	10 mins	52696	7:1:2	{96,192,336,720}	Weather
ECL	321	Hourly	26304	7:1:2	{96,192,336,720}	Electricity
Solar-Energy	137	10 mins	52560	7:1:2	{96,192,336,720}	Energy
PEMS03	358	5 mins	26209	6:2:2	{12,24,48}	Transportation
PEMS04	307	5 mins	16992	6:2:2	{12,24,48}	Transportation
PEMS07	883	5 mins	28224	6:2:2	{12,24,48}	Transportation
PEMS08	170	5 mins	17856	6:2:2	{12,24,48}	Transportation
ILI	7	Weekly	966	7:1:2	{24,36,48,60}	Health
COVID-19	55	Daily	335	7:1:2	{3,6,9,12}	Health
NASDAQ	12	Daily	3914	7:1:2	{24,36,48,60}	Finance
SP500	5	Daily	8077	7:1:2	{24,36,48,60}	Finance
DowJones	27	Daily	6577	7:1:2	{24,36,48,60}	Finance
CarSales	10	Daily	6728	7:1:2	{24,36,48,60}	Market
Power	2	Daily	1186	7:1:2	{24,36,48,60}	Energy
Website	4	Daily	2167	7:1:2	{3,6,9,12}	Web
Wiki	99	Daily	730	7:1:2	{3,6,9,12}	Web
Unemp	53	Monthly	531	6:2:2	{3,6,9,12}	Society

1341
1342
1343
1344
1345
1346
1347
1348
1349

1350 methods, we adopted the results reported in their original papers. For some methods that did not
 1351 report results on the Solar-Energy dataset, we reproduced their performance using their official code
 1352 repositories. The results for FITS Xu et al. (2024) and FreTSWang et al. (2025) were replicated
 1353 from the FilterNet report Yi et al. (2024a); for other methods, we used the long-term prediction
 1354 results provided in the iTransformer repository Liu et al. (2024). These results are based on the ex-
 1355 perimental configurations provided in the original paper or official code for each model. We verified
 1356 that all hyperparameters for these baselines were selected from their respective official repositories,
 1357 ensuring consistency with our fair comparison setup, where the only variations were the input and
 1358 output sequence lengths.

1359 For the experiments with the lookback window extended to 720, we referred to established baseline
 1360 results: results in Table.13 were replicated from DUET Qiu et al. (2024), the results for GPT4TS
 1361 Zhou et al. (2023) and TimeLLM Jin et al. (2024) in Table.14 were replicated from TSLANet Eldele
 1362 et al. (2024), and the remaining results in Table.14 were replicated from TVNet Li et al. (2025). For
 1363 short-term forecasting, we followed the results from the FreEformer repository Yue et al. (2025).

1364 C.5 HYPERPARAMETER SETTINGS.

1366 **Primary Long-term Forecasting Task** For our model hyperparameter selection, in 96 lookback
 1367 window long-term forecasting, we fixed $d_{model} = 512$, downsampling layer l to 2, depth-wise con-
 1368 volution kernal size K to 3, stride s to 2, and set the proportion of channel changes c to 0.5. And we
 1369 only performed a limited search on the encoder layers E , learning rate LR , and batch size. Detailed
 1370 configurations for each dataset can be found in Table.9.

1372 **Other Long-term Forecasting Tasks** For long-term forecasting with an extended 720 lookback
 1373 window, as well as for the 96 lookback forecasting on PEMS datasets and 336 lookback uni-
 1374 variate forecasting tasks, we implemented a more extensive hyperparameter search. This search
 1375 was conducted for each forecast horizon within a given dataset to find the optimal configura-
 1376 tion. The search space was defined as follows: $d_{model} \in \{256, 512\}$, Learning Rate $LR \in$
 1377 $\{1 \times 10^{-3}, 2 \times 10^{-3}, 5 \times 10^{-3}, 1 \times 10^{-2}, 2 \times 10^{-2}\}$, Encoder Layers $E \in \{1, 2, 3\}$, Downsampling
 1378 Layers $l \in \{2, 3, 4\}$, Batch Size $\in \{8, 16, 32, 64\}$. Other hyperparameters, such as the convolutional
 1379 kernel size and stride, remained fixed across all experiments, consistent with the settings used in the
 1380 primary 96 lookback forecasting task. In contrast to all baseline lookback windows searched from
 1381 $\{192, 336, 512, 672, 720\}$ etc., We provide long-term forecasting for the fixed 720 lookback window.

1382 **Short-term Forecasting** We implemented a more extensive hyperparameter search like Other
 1383 Long-term Forecasting Tasks. This search was conducted for each forecast horizon within a given
 1384 dataset to find the optimal configuration. The search space was defined as follows: Downsampling
 1385 Layers is fixed 2, $d_{model} \in \{256, 512\}$, Learning Rate $LR \in \{1 \times 10^{-3}, 2 \times 10^{-3}, 5 \times 10^{-3}, 1 \times$
 1386 $10^{-2}, 2 \times 10^{-2}\}$, Encoder Layers $E \in \{1, 2\}$, Batch Size $\in \{2, 4, 8, 16\}$. Other hyperparameters,
 1387 such as the convolutional kernel size and stride, remained fixed across all experiments, consistent
 1388 with the settings used in the primary 96-lookback forecasting task.

1389 **Ablation Study on Pre-Sampling Filtering** To validate our ESR-based filtering approach, we
 1390 conducted an ablation study comparing it against alternatives that do not adhere to the Nyquist sam-
 1391 pling theorem. Each experimental group differs from our full DMANet only in the cutoff frequency
 1392 determination method within the Pre-Sampling Filtering module; all other structures and parame-
 1393 ters remain identical. We categorize the compared methods into two groups: heuristic and classical
 1394 filters.

1395 **HEURISTIC FILTERS** These methods serve as simple, non-theoretical baselines. They are designed
 1396 to mimic intuitive or simplistic approaches to filtering that one might adopt without a rigorous signal
 1397 processing foundation.

1398

- 1399 • **Max:** For each time series in the batch, this filter identifies the frequency bin with the
 1400 maximum amplitude and sets the cutoff frequency to twice its index. All components
 1401 below this dynamic cutoff are preserved, while those above are zeroed out.
- 1402 • **Random:** This filter applies a stochastic mask to the frequency spectrum, where each
 1403 frequency component is independently dropped with a probability of $p = 0.5$.

1404 CLASSICAL FILTERS These methods serve as benchmarks against well-established, theoretically-
 1405 grounded filtering techniques. To ensure a fair comparison, a normalized cutoff frequency of 0.4
 1406 was used across all classic filter variants, preserving the lowest 80% of the frequency band.
 1407

- 1408 • **Ideal:** A sharp cutoff filter where all frequency components above the cutoff frequency are
 1409 set to zero.
- 1410 • **Butterworth:** Known for its maximally flat passband, providing high-fidelity signal preser-
 1411 vation. We used a 4th-order filter.
- 1412 • **Gaussian:** A smooth filter often used to avoid ringing artifacts, with a sigma of 0.15.
- 1413 • **Chebyshev (Type I):** Achieves a steeper rolloff than Butterworth at the cost of introducing
 1414 ripples in the passband. We used a 4th-order filter with 0.5 dB of passband ripple.

1416 Table 9: Experiment configuration of DMANet in 96 lookback window. All the experiments use the
 1417 ADAM optimizer with the default hyperparameter configuration for (β_1, β_2) as (0.9, 0.999).
 1418

Dataset / Configurations	Model Hyper-parameter			Training Process			
	E	l	d_{model}	LR*	Loss	Batch Size	Epochs
ETTh1	1	2	512	$2 * 10^{-2}$	MAE	8	15
ETTh2	1	2	512	$1 * 10^{-2}$	MAE	8	15
ETTm1	1	2	512	$2 * 10^{-3}$	MAE	16	15
ETTm2	2	2	512	$5 * 10^{-3}$	MAE	32	15
Weather	1	2	512	$5 * 10^{-3}$	MAE	16	15
Electricity	2	2	512	$1 * 10^{-3}$	MAE	8	15
Solar-Energy	2	2	512	$5 * 10^{-3}$	MAE	16	15

1432 * LR means the initial learning rate.

1436 C.6 ABLATION STUDY ON COMPONENT CONTRIBUTIONS

1438 To thoroughly investigate the individual and synergistic contributions of the Anti-Aliasing Down-
 1439 sampling and Frequency-Domain Upsampling modules, we conducted a rigorous component disen-
 1440 tanglement experiment. As presented in Table.5, we designed four distinct configurations to isolate
 1441 the effect of each module.

- 1442 • **Base:** Represents a standard convolutional architecture without our specific anti-aliasing
 1443 designs. It employs standard strided convolution for downsampling and linear interpolation
 1444 for upsampling.
- 1445 • **w/o-Post:** Retains the proposed Pre-Sampling Anti-Aliasing filter but reverts the upsam-
 1446 pling mechanism to standard linear interpolation. This setup isolates the net benefit of
 1447 preventing aliasing during the feature extraction stage.
- 1448 • **w/o-Pre:** Removes the Pre-Sampling filter (using standard strided convolution) but retains
 1449 the proposed Post-Sampling Frequency Interpolation. This setup isolates the contribution
 1450 of high-fidelity signal reconstruction in the frequency domain.

1452 Here is the Analysis of Results. First, regarding the individual effectiveness of each component,
 1453 comparing the variants against the Base model reveals that both modules independently contribute
 1454 to significant performance gains. Specifically, the benefit of Anti-Aliasing Downsampling is evident
 1455 as the w/o-Post variant consistently outperforms the Base model (e.g., on the Unemp dataset, MAE
 1456 decreases from 0.173 to 0.155). This confirms that proactively filtering high-frequency noise before
 1457 downsampling enables the encoder to learn cleaner, non-aliased latent representations, even when
 reconstructed with a suboptimal upsampler. Simultaneously, the w/o-Pre variant demonstrates the

1458 benefit of Frequency Upsampling, showing clear improvement over the Base model (e.g., Unemp
1459 MAE reduces to 0.161). This validates that our frequency-domain zero-padding strategy, which ad-
1460heres to the Nyquist-Shannon sampling theorem, offers a more mathematically sound reconstruction
1461 basis than linear interpolation.

1462 Furthermore, regarding the synergistic superiority, the full DMA-Net achieves the lowest error across
1463 all datasets (e.g., Unemp MAE drops to 0.146), crucially surpassing both w/o-Pre and w/o-Post.
1464 This result highlights the architectural synergy: high-quality reconstruction is most effective only
1465 when the input features are initially free from aliasing artifacts. Conversely, clean downsampled
1466 features are best utilized when restored without the spectral distortion introduced by linear interpo-
1467 lation. Consequently, the combination of these two modules is not merely additive but essential for
1468 achieving state-of-the-art performance.

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512 **D FULL RESULTS**
15131514 **D.1 ERROR BARS**
15151516 To evaluate the performance stability and robustness of DMA-
1517 net, we conducted multiple independent runs with five different
1518 random seeds and compared its performance against the second-best
1519 model, TimeMixer. The results, averaged over four prediction horizons (96, 192, 336, and 720),
1520 are presented in Table 10. We report the mean and standard deviation of the MSE and MAE
1521 metrics across the five experiments, as well as the confidence level of DMA-
1522 net’s superiority over TimeMixer. This performance improvement is statistically significant, with a 99% confidence level
1523 in all evaluated scenarios.
15241525 Table 10: Standard deviation and statistical tests for our DMA-
1526 net method and second-best method (TimeMixer) on five datasets.
1527

Metric	MSE			MAE		
	Dataset	DMA-Net	TimeMixer	Confidence	DMA-Net	TimeMixer
ETTm1	0.376±0.005	0.386±0.003	99%	0.388±0.003	0.399±0.001	99%
ETTm2	0.269±0.007	0.278±0.001	99%	0.311±0.005	0.325±0.001	99%
Weather	0.238±0.005	0.245±0.001	99%	0.263±0.005	0.276±0.001	99%
Electricity	0.171±0.002	0.182±0.002	99%	0.264±0.002	0.272±0.002	99%
Solar-Energy	0.228±0.003	0.235±0.001	99%	0.249±0.002	0.292±0.001	99%

1534 **D.2 LONG-TERM FORECASTING**
15351536 Here, Table.11, Table.12, Table.13 and Table.14 present comprehensive evaluation results for long-
1537 term forecasting, including both configurations with fixed lookback windows $L = 96$ and extended
1538 window settings $L = 720$ designed to adhere to the scaling law inherent to TSF. In the $L = 96$
1539 fixed-window experiments, **consistent hyperparameters** were maintained across all forecast hori-
1540 zons within each dataset. By contrast, the $L = 720$ experiments employed horizon-specific hyper-
1541 parameter adjustments to enhance model adaptability while preserving scaling law compliance. Under
1542 both experimental paradigms, DMA-Net consistently demonstrates superior performance with statis-
1543 tically significant margins, thereby empirically validating its effectiveness and robustness. Notably,
1544 even when handling extended sequence lengths through augmented lookback windows, DMA-Net
1545 retains its inherent capability to adaptively model critical dependencies within extended temporal
1546 sequences.
15471548 The results for PESM dataset forecasting, presented in Table.15 for a lookback window of $L = 96$
1549 and the forecasting horizon $T \in \{12, 24, 48\}$, demonstrate the exceptional capability of DMA-Net.
1550 Across all four PEMS datasets, DMA-Net consistently outperforms all baselines. This superiority is
1551 quantified by average reductions of 14.4% in MSE and 5.7% in MAE compared to a strong base-
1552 line, iTransformer. We attribute this robust performance to our convolutional architecture’s inherent
1553 proficiency in preserving localized features and mitigating the interference of high-frequency noise,
1554 which are critical for high-dimensional short-term prediction.
15551556 **D.3 SHORT-TERM FORECASTING**
15571558 The short-term forecasting results, presented in Table.17, validate the superiority of DMA-Net in
1559 handling highly non-stationary time series. Across a diverse set of challenging datasets including
1560 ILI (health), COVID-19 (pandemic), DowJones (finance), and Unemp (society), DMA-Net con-
1561 sistently achieves state-of-the-art performance, securing the top rank in 17 out of 20 metrics. It sig-
1562 nificantly outperforms other methods, including strong frequency-domain baselines like Fredformer
1563 and FilterNet. We attribute this exceptional capability in short-term and non-stationary forecasting
1564 to DMA-Net’s synergistic design: its convolutional architecture excels at preserving local features,
1565 while the anti-aliasing structure effectively mitigates disruptive high-frequency noise. This robust
1566 performance on volatile, real-world data underscores the effectiveness of our approach in capturing
1567 the transient and complex patterns inherent to non-stationary signals.
1568

1566
1567

D.4 UNIVARIATE FORECASTING

1568 Here we provide the univariate forecasting results on ETT datasets. There is a target feature oil
1569 temperature within those datasets, which is the univariate time series that we are trying to fore-
1570 cast. As shown in Table.16 , the anti-aliasing depth-wise convolution has better temporal modelling
1571 capabilities, allowing DMA-Net to achieve better performance than the state-of-the-art CNN-based
1572 ModNet in univariate forecasting tasks.

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620
 1621 Table 11: Full results of long-term forecasting with a 96-step lookback window (Part I). The input
 1622 sequence length L is set to 96 for all baselines. All results are averaged across four different fore-
 1623 casting horizon: $T \in \{96, 192, 336, 720\}$. The best and second-best results are highlighted in **bold**
 1624 and underlined, respectively. Among them, - means that the code has not yet been open sourced. We
 1625 will put the summary table in the appendix of the next version.

Models	DMANet	TimeStacker	TimeXer	iTransformer	TimeMixer	FilterNet	Fredformer	FITS	FreTS									
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE									
ETTm1	96	0.308 <u>0.343</u> 0.311 <u>0.337</u>	0.318	0.356	0.334	0.368	0.320	0.357	0.318	0.358	0.326	0.361	0.355	0.375	0.339	0.374		
	192	0.354 <u>0.372</u> 0.364	0.367	0.362	0.383	0.377	0.391	<u>0.361</u>	0.381	0.364	0.383	0.363	0.380	0.392	0.393	0.382	0.397	
	336	0.384 <u>0.394</u> 0.389 <u>0.391</u>	0.395	0.407	0.426	0.420	0.390	0.404	0.396	0.406	0.395	0.403	0.424	0.414	0.421	0.426		
	720	0.447 <u>0.431</u> 0.460	0.428	<u>0.452</u>	0.441	0.491	0.459	0.454	0.441	0.456	0.444	0.453	0.438	0.487	0.449	0.485	0.462	
	Avg.	0.373 <u>0.385</u> 0.381 <u>0.381</u>	0.382	0.397	0.407	0.410	0.381	0.395	0.384	0.398	0.393	0.403	0.387	0.408	0.407	0.415		
ETTm2	96	0.165 0.244 <u>0.171</u> <u>0.250</u> 0.171	0.256	0.180	0.264	0.175	0.258	0.174	0.257	0.177	0.259	0.183	0.266	0.190	0.282			
	192	0.231 0.288 <u>0.235</u> <u>0.292</u>	0.237	0.299	0.250	0.309	0.237	0.299	0.240	0.300	0.241	0.300	0.247	0.305	0.260	0.329		
	336	0.289 <u>0.325</u> 0.293 <u>0.329</u>	0.296	0.338	0.311	0.348	0.298	0.340	0.297	0.339	0.302	0.340	0.307	0.342	0.373	0.405		
	720	0.385 <u>0.383</u> 0.395	<u>0.391</u>	0.392	0.394	0.412	0.407	<u>0.391</u>	0.396	0.392	0.393	0.397	0.396	0.407	0.399	0.517	0.499	
	Avg.	0.268 0.310 <u>0.274</u> <u>0.316</u> 0.274	0.322	0.288	0.332	0.275	0.323	0.276	0.322	0.279	0.324	0.286	0.328	0.335	0.379			
ETTh1	96	0.370 <u>0.391</u> 0.379	0.385	0.382	0.403	0.386	0.405	<u>0.375</u>	0.400	<u>0.375</u>	0.394	0.376	0.394	0.386	0.396	0.399	0.412	
	192	0.417 <u>0.420</u> 0.429 <u>0.416</u>	0.429	0.435	0.441	0.436	0.429	0.421	0.436	0.422	0.440	0.425	0.436	0.423	0.453	0.443		
	336	0.457 <u>0.440</u> 0.459 <u>0.436</u>	0.468	0.448	0.487	0.458	0.484	0.458	0.476	0.443	0.472	<u>0.440</u>	0.478	0.444	0.503	0.475		
	720	0.468 <u>0.465</u> 0.464 <u>0.455</u>	0.469	0.461	0.503	0.491	0.498	0.482	0.474	0.469	0.490	0.467	0.502	0.495	0.596	0.565		
	Avg.	0.428 <u>0.429</u> 0.433 <u>0.423</u>	0.437	0.437	0.454	0.447	0.447	0.440	0.440	0.432	0.445	0.432	0.447	0.448	0.488	0.474		
ETTh2	96	0.280 <u>0.329</u> 0.280 <u>0.327</u> 0.286	0.338	0.297	0.349	0.289	0.341	0.292	0.343	0.292	0.343	0.295	0.350	0.350	0.403			
	192	0.349 <u>0.374</u> 0.373	<u>0.385</u> 0.363	0.389	0.380	0.400	0.372	0.392	0.369	0.395	0.370	0.390	0.381	0.396	0.472	0.475		
	336	0.393	0.410	0.407	0.416	0.414	0.423	0.428	0.432	<u>0.386</u>	0.414	0.420	0.432	0.385 <u>0.413</u>	0.426	0.438	0.564	0.528
	720	0.418	0.437	<u>0.412</u> 0.431 <u>0.408</u> <u>0.432</u>	0.427	0.445	<u>0.412</u>	0.434	0.430	0.446	0.419	0.439	0.431	0.446	0.815	0.654		
	Avg.	0.361 0.388 0.368	<u>0.390</u>	0.367	0.396	0.383	0.407	<u>0.364</u>	0.395	0.378	0.397	0.367	0.396	0.383	0.408	0.550	0.515	
Weather	96	0.148 0.191 0.161	<u>0.198</u> <u>0.157</u>	0.205	0.174	0.214	0.163	0.209	0.164	0.210	0.163	0.207	0.166	0.213	0.184	0.239		
	192	0.199 0.238 0.207	<u>0.241</u> <u>0.204</u>	0.247	0.221	0.254	0.208	0.250	0.214	0.252	0.211	0.251	0.213	0.254	0.223	0.275		
	336	0.256 <u>0.282</u> 0.261	0.281	0.261	0.290	0.278	0.296	0.251	0.287	0.268	0.293	0.267	0.292	0.269	0.294	0.272	0.316	
	720	0.339 <u>0.336</u> 0.343	0.334	<u>0.340</u>	0.341	0.358	0.349	0.339	0.341	0.344	0.342	0.343	0.341	0.346	<u>0.340</u>	0.363		
	Avg.	0.236 0.262 0.243	<u>0.264</u>	0.241	0.271	0.258	0.279	<u>0.240</u>	0.271	0.248	0.278	0.246	0.272	0.249	0.276	0.255	0.363	
Electricity	96	0.139 0.234 0.168	<u>0.251</u> 0.140	0.242	0.148	<u>0.240</u>	0.153	0.247	0.176	0.264	0.147	0.241	0.200	0.278	0.183	0.269		
	192	0.157 0.250 0.176	0.262	0.157	0.256	<u>0.162</u> 0.253	0.166	0.256	0.185	0.270	0.165	0.258	0.200	0.280	0.187	0.276		
	336	0.175 0.269 0.195	0.278	<u>0.176</u>	0.275	<u>0.178</u> 0.269	0.185	0.277	0.202	0.286	<u>0.177</u> 0.273	0.214	0.295	0.202	0.292			
	720	0.210 0.301 0.235	0.310	<u>0.211</u>	0.306	0.225	0.317	0.225	0.310	0.242	0.319	0.213	<u>0.304</u>	0.255	0.327	0.237	0.325	
	Avg.	0.170 0.264 0.194	0.275	<u>0.171</u>	0.270	0.178	0.270	0.182	0.272	0.201	0.285	0.175	0.269	0.217	0.295	0.202	0.290	
Solar-Energy	96	0.184 0.217 -	-	0.215	0.295	0.203	<u>0.237</u> 0.189	0.241	0.224	0.264	0.200	0.275	0.328	0.396	0.252	0.319		
	192	0.220 0.242 -	-	0.236	0.301	0.233	0.261	<u>0.222</u>	0.283	0.259	0.284	0.226	0.259	0.397	0.387	0.283	0.338	
	336	0.247 0.266 -	-	0.252	0.307	0.248	<u>0.273</u> 0.231	0.292	0.284	0.298	0.254	0.277	0.433	0.410	0.299	0.344		
	720	0.257	0.270 -	-	<u>0.244</u>	0.305	0.249	<u>0.275</u> 0.223	0.285	0.284	0.298	0.249	0.284	0.429	0.396	0.298	0.351	
	Avg.	0.227 0.249 -	-	0.237	0.302	0.233	<u>0.262</u> 0.216	0.280	0.263	0.286	0.232	0.274	0.397	0.398	0.283	0.338		

1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

Table 12: Full results of long-term forecasting with a 96-step lookback window (Part II). The input sequence length L is set to 96 for all baselines. All results are averaged across four different forecasting horizon: $T \in \{96, 192, 336, 720\}$. The best and second-best results are highlighted in **bold** and underlined, respectively.

Models	DMANet		TimePro		TimeKAN		SOFTS		FreDF		PatchTST		TimesNet		DLinear		MICN	
	Ours	2025	2025	2025	2024	2025	2024	2025	2025	2025	2023	2023	2023	2023	2023	2023	2023	2023
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTm1	96	0.308 0.343	0.326	0.364	<u>0.322</u> <u>0.361</u>	0.325	<u>0.361</u>	0.324	0.362	0.329	0.367	0.338	0.375	0.346	0.374	0.365	0.387	
	192	0.354 0.372	0.367	0.383	<u>0.357</u>	0.383	0.375	0.389	0.373	0.385	0.367	0.385	0.374	0.387	0.382	0.391	0.403	0.408
	336	0.384 0.394	0.402	0.409	0.382	0.401	0.405	0.412	0.402	0.404	0.399	0.410	0.410	0.411	0.415	0.415	0.436	0.431
	720	<u>0.447</u> 0.431	0.469	0.446	0.445 <u>0.435</u>	0.466	0.447	0.469	0.444	0.454	0.439	0.478	0.450	0.473	0.451	0.489	0.462	
	Avg.	0.373 0.385	0.391	0.400	<u>0.376</u> <u>0.395</u>	0.393	0.403	0.392	0.399	0.415	0.400	0.400	0.406	0.404	0.408	0.423	0.422	
ETTm2	96	0.165 0.244	0.178	0.260	0.174	0.255	0.180	0.261	<u>0.173</u> <u>0.252</u>	0.175	0.259	0.187	0.267	0.193	0.293	0.197	0.296	
	192	0.231 0.288	0.242	0.303	<u>0.239</u>	0.299	0.246	0.306	0.241	0.298	0.241	0.302	0.249	0.309	0.284	0.361	0.284	0.361
	336	0.289 0.325	0.303	0.342	0.301	0.340	0.319	0.352	<u>0.298</u> <u>0.334</u>	0.305	0.343	0.321	0.351	0.382	0.429	0.381	0.429	
	720	0.385 0.383	0.400	0.399	<u>0.395</u>	0.396	0.405	0.401	0.398	<u>0.393</u>	0.402	0.400	0.408	0.403	0.558	0.525	0.549	0.522
	Avg.	0.268 0.310	0.281	0.326	<u>0.277</u>	0.322	0.287	0.330	0.278	<u>0.319</u>	0.281	0.326	0.291	0.333	0.354	0.402	0.305	0.349
ETTh1	96	0.370 0.391	0.375	0.398	0.367 <u>0.395</u>	0.381	0.399	0.382	0.400	0.414	0.419	0.384	0.402	0.397	0.412	0.426	0.446	
	192	0.417 0.420	0.427	0.429	0.414 0.420	0.435	0.431	0.430	0.427	0.460	0.445	0.436	0.429	0.446	0.441	0.454	0.464	
	336	0.457 0.440	0.472	0.450	0.445 0.434	0.480	0.452	0.474	0.451	0.501	0.466	0.491	0.469	0.489	0.467	0.493	0.487	
	720	0.468	0.465	0.476	0.474	0.444 0.459	0.499	0.488	0.463	<u>0.462</u>	0.500	0.488	0.521	0.500	0.513	0.510	0.526	0.526
	Avg.	0.428 0.429	0.438	0.438	0.417 0.427	0.449	0.442	0.437	0.435	0.469	0.454	0.458	0.450	0.461	0.457	0.475	0.480	
ETTh2	96	0.280 0.329	0.293	0.345	0.290	0.340	0.297	0.347	<u>0.289</u> <u>0.337</u>	0.302	0.348	0.340	0.374	0.340	0.394	0.372	0.424	
	192	0.349 0.374	0.367	0.394	0.375	0.392	0.373	0.394	<u>0.363</u> <u>0.385</u>	0.388	0.400	0.402	0.414	0.482	0.479	0.492	0.492	
	336	0.393 0.410	0.419	0.431	0.423	0.435	<u>0.410</u> <u>0.426</u>	0.419	<u>0.426</u>	0.426	0.433	0.452	0.452	0.591	0.541	0.607	0.555	
	720	0.418	<u>0.437</u>	0.427	0.445	0.443	0.449	0.411 0.433	0.415	0.437	0.431	0.446	0.462	0.468	0.839	0.661	0.824	0.655
	Avg.	0.361 0.388	0.377	0.403	0.383	0.404	0.373	0.400	<u>0.371</u> <u>0.396</u>	0.387	0.407	0.414	0.427	0.563	0.519	0.574	0.531	
Weather	96	0.148 0.191	0.166	0.207	<u>0.162</u>	0.208	0.166	0.208	0.164	0.202	0.177	0.218	0.172	0.220	0.195	0.252	0.198	0.261
	192	0.199 0.238	0.216	0.254	<u>0.207</u> <u>0.249</u>	0.217	0.253	0.220	0.253	0.225	0.259	0.219	0.261	0.237	0.295	0.239	0.299	
	336	0.256 0.282	0.273	0.296	<u>0.263</u> <u>0.290</u>	0.282	0.300	0.275	0.294	0.278	0.297	0.280	0.306	0.282	0.331	0.285	0.336	
	720	0.339	0.336	0.351	0.346	0.338 <u>0.340</u>	0.356	0.351	0.356	0.347	0.354	0.348	0.365	0.359	0.345	0.382	0.351	0.388
	Avg.	0.236 0.262	0.251	0.276	<u>0.242</u> <u>0.272</u>	0.255	0.278	0.254	0.274	0.259	0.281	0.259	0.287	0.265	0.315	0.268	0.321	
Electricity	96	0.139 0.234	0.139 0.234	0.174	0.266	<u>0.143</u> 0.233	0.144	<u>0.233</u>	0.195	0.285	0.168	0.272	0.210	0.302	0.180	0.293		
	192	0.157	0.250	0.156 0.249	0.182	0.273	<u>0.158</u>	0.248	0.159	0.247	0.199	0.289	0.184	0.289	0.210	0.305	0.189	0.302
	336	0.175	0.269	0.172 0.267	0.197	0.286	0.178	0.269	0.172 0.263	0.215	0.305	0.198	0.300	0.223	0.319	0.198	0.312	
	720	0.210	0.301	<u>0.209</u> 0.299	0.236	0.320	0.218	0.303	0.204 <u>0.294</u>	0.256	0.337	0.220	0.320	0.258	0.350	0.217	0.330	
	Avg.	0.170	0.264	0.169 0.262	0.197	0.286	0.174	0.264	<u>0.170</u> 0.259	0.216	0.304	0.193	0.295	0.225	0.319	0.196	0.309	
Solar-Energy	96	0.184 0.217	0.196	0.237	0.254	0.318	<u>0.200</u> <u>0.230</u>	0.232	0.256	0.234	0.286	0.250	0.292	0.290	0.378	0.257	0.325	
	192	0.220 0.242	0.231	0.263	0.285	0.326	<u>0.229</u> <u>0.253</u>	0.276	0.288	0.267	0.310	0.296	0.318	0.320	0.398	0.278	0.354	
	336	0.247 0.266	0.250	0.281	0.315	0.338	0.243 <u>0.269</u>	0.301	0.306	0.290	0.315	0.319	0.330	0.353	0.415	0.298	0.375	
	720	0.257	0.270 <u>0.253</u>	0.285	0.313	0.340	0.245 <u>0.272</u>	0.308	0.316	0.289	0.317	0.338	0.337	0.357	0.413	0.299	0.379	
	Avg.	0.227 0.249	0.232	0.266	0.292	0.331	<u>0.229</u> <u>0.256</u>	0.279	0.292	0.270	0.307	0.301	0.319	0.330	0.401	0.283	0.358	

1728
17291730 Table 13: Full results of long-term forecasting with a 720-step lookback window (Part I) The input
1731 length L is fixed 720 for optimal horizon in the scaling law of TSF Shi et al. (2024). All results are
1732 averaged across four different forecasting horizon: $T \in \{96, 192, 336, 720\}$. The best and second-
1733 best results are highlighted in **bold** and underlined, respectively.

1734

Models	DMA-Net Ours		PDF 2024		iTransformer 2024		Pathformer 2024b		FITS 2024		TimeMixer 2024a		PatchTST 2023		Crossformer 2022		TimesNet 2023		Dlinear 2023		Stationary 2022b	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE		
ETTm1	96	0.287	0.340	0.286	0.340	0.300	0.353	0.290	0.335	0.303	0.345	0.293	0.345	0.289	0.343	0.314	0.367	0.340	0.378	0.300	0.345	
	192	0.322	0.364	0.321	0.364	0.341	0.380	0.337	0.363	0.337	0.365	0.335	0.372	0.329	0.368	0.374	0.410	0.392	0.404	0.336	0.366	
	336	0.352	0.381	0.354	0.383	0.374	0.396	0.374	0.384	0.368	0.384	0.368	0.386	0.362	0.390	0.413	0.432	0.423	0.426	0.367	0.386	
	720	0.403	0.410	0.408	0.415	0.429	0.430	0.428	0.416	0.420	0.413	0.426	0.417	0.416	0.423	0.753	0.613	0.475	0.453	0.419	0.416	
Avg.		0.341	0.374	<u>0.342</u>	0.376	0.361	0.390	0.357	<u>0.375</u>	0.357	0.377	0.356	0.380	0.349	0.381	0.464	0.456	0.408	0.415	0.356	0.378	
ETTm2	96	0.158	0.246	0.163	0.251	0.175	0.266	0.164	0.250	0.165	0.254	0.165	0.256	0.165	0.255	0.296	0.391	0.189	0.265	0.164	0.255	
	192	0.214	0.287	0.219	0.290	0.242	0.312	0.219	0.288	0.219	0.291	0.225	0.298	0.221	0.293	0.369	0.416	0.254	0.310	0.224	0.304	
	336	0.264	0.320	0.269	0.330	0.282	0.337	0.267	0.319	0.272	0.326	0.277	0.332	0.276	0.327	0.588	0.600	0.313	0.345	0.277	0.337	
	720	0.345	0.373	0.349	0.382	0.375	0.394	0.361	0.377	0.359	0.381	0.360	0.387	0.362	0.381	0.750	0.612	0.413	0.402	0.371	0.401	
Avg.		0.245	0.307	<u>0.250</u>	0.313	0.269	0.327	0.253	<u>0.308</u>	0.254	0.313	0.257	0.318	0.256	0.314	0.501	0.505	0.292	0.331	0.259	0.324	
Weather	96	0.141	0.188	0.147	0.196	0.157	0.207	0.148	0.195	0.172	0.225	0.147	0.198	0.149	0.196	0.143	0.210	0.168	0.214	0.170	0.230	
	192	0.189	0.237	0.193	0.240	0.248	0.281	0.191	0.235	0.215	0.261	0.192	0.243	0.191	0.239	0.198	0.260	0.219	0.262	0.216	0.273	
	336	0.239	0.275	0.245	0.280	0.252	0.287	0.243	0.274	0.261	0.295	0.247	0.284	0.242	0.279	0.314	0.314	0.278	0.302	0.258	0.307	
	720	0.303	0.327	0.323	0.334	0.320	0.336	0.318	0.326	0.326	0.341	0.318	0.330	0.312	0.330	0.335	0.385	0.353	0.351	0.323	0.362	
Avg.		0.218	0.257	0.227	0.263	0.232	0.270	0.225	0.257	0.244	0.280	0.226	0.264	<u>0.224</u>	<u>0.261</u>	0.234	0.292	0.255	0.282	0.242	0.293	
Electricity	96	0.130	0.227	0.128	0.222	0.134	0.230	0.135	0.222	0.139	0.237	0.153	0.256	0.143	0.247	0.134	0.231	0.169	0.271	0.140	0.237	
	192	0.145	0.242	0.147	0.242	0.154	0.250	0.157	0.253	0.154	0.250	0.168	0.269	0.158	0.260	0.146	0.243	0.180	0.280	0.154	0.251	
	336	0.160	0.258	0.165	0.260	0.169	0.265	0.170	0.267	0.170	0.268	0.188	0.291	0.168	0.267	0.165	0.264	0.204	0.304	0.169	0.268	
	720	0.182	0.280	0.199	0.289	0.194	0.288	0.211	0.302	0.212	0.304	0.228	0.320	0.214	0.307	0.237	0.314	0.205	0.304	0.204	0.301	
Avg.		0.154	0.252	<u>0.160</u>	<u>0.253</u>	0.163	0.258	0.168	0.261	0.169	0.265	0.184	0.284	0.171	0.270	0.171	0.263	0.190	0.290	0.167	0.264	
Solar	96	0.159	0.205	0.181	0.247	0.190	0.244	0.218	0.235	0.208	0.255	0.179	0.232	0.170	0.234	0.183	0.208	0.198	0.270	0.199	0.265	
	192	0.183	0.230	0.200	0.259	0.193	0.257	0.196	0.220	0.229	0.267	0.201	0.259	0.204	0.302	0.208	0.226	0.206	0.276	0.220	0.282	
	336	0.195	0.243	0.208	0.269	0.203	0.266	0.195	0.220	0.241	0.273	0.198	0.256	0.212	0.293	0.212	0.239	0.208	0.284	0.234	0.295	
	720	0.193	0.244	0.212	0.275	0.223	0.281	0.208	0.237	0.248	0.277	0.203	0.261	0.215	0.307	0.215	0.256	0.232	0.294	0.243	0.301	
Avg.		0.183	0.231	0.200	0.263	0.202	0.262	0.204	<u>0.228</u>	0.232	0.268	<u>0.193</u>	0.252	0.200	0.284	0.205	0.232	0.211	0.281	0.224	0.286	

1755

1756

1757

1758

1759 Table 14: Full results of long-term forecasting with a 720-step lookback window (Part II). The input
1760 length L is fixed 720 for optimal horizon in the scaling law of TSF Shi et al. (2024). All results are
1761 averaged across four different forecasting horizon: $T \in \{96, 192, 336, 720\}$. The best and second-
1762 best results are highlighted in **bold** and underlined, respectively.

1763

Models	DMA-Net (Ours)		TVNet (2025)		RLinear (2023a)		MTS-Mixer (2023c)		MICN (2023)		ModernTCN (2024)		FEDformer (2022b)		RAFT (2025)		TSLANet (2024)		GPT4TS (2023)		Time-LLM (2024)	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE		
ETTm1	96	0.287	0.340	0.288	0.343	0.301	0.342	0.314	0.358	0.314	0.360	0.292	0.346	0.326	0.390	0.302	0.349	0.289	0.349	0.292	0.346	
	192	0.322	0.364	0.326	0.367	0.355	0.363	0.354	0.386	0.359	0.387	0.332	0.368	0.365	0.415	0.329	0.367	0.328	0.370	0.332	0.372	
	336	0.352	0.381	0.365	0.391	0.370	0.383	0.384	0.405	0.398	0.413	0.365	0.391	0.392	0.425	0.355	0.383	0.355	0.389	0.366	0.394	
	720	0.403	0.410	0.412	0.413	0.425	0.414	0.427	0.432	0.459	0.464	0.416	0.417	0.446	0.458	0.406	0.413	0.421	0.425	0.417	0.411	
Avg.		0.341	0.374	0.348	0.379	0.358	0.376	0.370	0.395	0.383	0.406	0.351	0.381	0.382	0.422	0.348	0.378	0.348	0.383	0.348	0.383	
ETTm2	96	0.158	0.246	0.161	0.254	0.164	0.253	0.177	0.259	0.167	0.260	0.166	0.256	0.180	0.271	0.164	0.256	0.169	0.259	0.173	0.262	
	192	0.214	0.287	0.220	0.291	0.219	0.294	0.241	0.303	0.245	0.316	0.222	0.293	0.252	0.318	0.219	0.296	0.224	0.297	0.229	0.301	
	336	0.264	0.320	0.272	0.316	0.273	0.326	0.297	0.338	0.295	0.350	0.272	0.324	0.324	0.364	0.275	0.329	0.275	0.329	0.286	0.341	
	720	0.345	0.373	0.349	0.379	0.366	0.385	0.396	0.398	0.389	0.406	0.351	0.381	0.410	0.420	0.359	0.392	0.354	0.380	0.378	0.401	
Avg.		0.245	0.307	<u>0.251</u>	<u>0.311</u>	0.256	0.314	0.277	0.325	0.277	0.336	0.253	0.314	0.292	0.343	0.254	0.320	0.256	0.316	0.226	0.326	
Weather	96	0.141	0.188	0.147	0.198	0.175	0.225	0.156	0.206	0.161	0.226	0.149	0.200	0.238	0.314	0.165	0.222	0.148	0.197	0.162	0.212	
	192	0.189	0.237	0.194	0.238	0.218	0.260	0.199	0.248	0.220	0.283	0.196	0.245	0.275	0.329	0.211	0.264	0.193	0.241	0.204	0.248	
	336	0.239	0.275	0.235	0.277	0.265	0.294	0.249	0.291	0.275	0.328	0.238	0.277	0.339	0.377	0.260	0.302	0.245	0.282	0.254	0.286</	

Table 15: Full results of long-term forecasting with a 96-step lookback window (Part III). The input sequence length L is set to 96 for all baselines. All results are averaged across four different forecasting horizon: $T \in \{96, 192, 336, 720\}$. The best and second-best results are highlighted in **bold** and underlined, respectively.

Models	DMANet		iTransformer		Fredformer		TimeMixer		PatchTST		Crossformer		TimesNet		TIDE		DLinear		FreTS		FEDformer		
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
PEMS03	12	0.064 0.167	0.071 <u>0.174</u>	<u>0.068</u> 0.174	0.076 <u>0.188</u>	0.099 <u>0.216</u>	0.090 <u>0.203</u>	0.085 <u>0.192</u>	0.178 <u>0.305</u>	0.122 <u>0.243</u>	0.083 <u>0.194</u>	0.126 <u>0.251</u>	0.241 <u>0.275</u>										
	24	0.086 0.193	<u>0.093</u> <u>0.201</u>	0.094 <u>0.205</u>	0.113 <u>0.226</u>	0.142 <u>0.259</u>	0.121 <u>0.240</u>	0.118 <u>0.223</u>	0.257 <u>0.371</u>	0.201 <u>0.317</u>	0.127 <u>0.198</u>	0.241 <u>0.275</u>											
	48	<u>0.132</u> <u>0.239</u>	0.125 0.236	0.152 <u>0.262</u>	0.191 <u>0.292</u>	0.211 <u>0.319</u>	0.202 <u>0.317</u>	0.155 <u>0.260</u>	0.379 <u>0.463</u>	0.333 <u>0.425</u>	0.202 <u>0.310</u>	0.227 <u>0.348</u>											
	Avg.	0.094 0.200	<u>0.096</u> <u>0.204</u>	0.105 <u>0.214</u>	0.127 <u>0.235</u>	0.151 <u>0.265</u>	0.138 <u>0.253</u>	0.119 <u>0.271</u>	0.271 <u>0.380</u>	0.219 <u>0.295</u>	0.137 <u>0.234</u>	0.167 <u>0.291</u>											
PEMS04	12	0.069 0.168	<u>0.078</u> <u>0.183</u>	0.085 <u>0.189</u>	0.092 <u>0.204</u>	0.105 <u>0.224</u>	0.098 <u>0.218</u>	0.087 <u>0.195</u>	0.219 <u>0.340</u>	0.148 <u>0.272</u>	0.097 <u>0.209</u>	0.138 <u>0.262</u>											
	24	0.082 0.185	<u>0.095</u> <u>0.205</u>	0.117 <u>0.224</u>	0.128 <u>0.243</u>	0.153 <u>0.257</u>	0.131 <u>0.256</u>	0.103 <u>0.215</u>	0.292 <u>0.398</u>	0.224 <u>0.340</u>	0.144 <u>0.258</u>	0.177 <u>0.293</u>											
	48	0.107 0.216	<u>0.120</u> <u>0.233</u>	0.174 <u>0.276</u>	0.213 <u>0.315</u>	0.229 <u>0.339</u>	0.205 <u>0.326</u>	0.136 <u>0.250</u>	0.409 <u>0.478</u>	0.335 <u>0.437</u>	0.223 <u>0.328</u>	0.270 <u>0.368</u>											
	Avg.	0.086 0.190	<u>0.098</u> <u>0.207</u>	0.125 <u>0.215</u>	0.144 <u>0.254</u>	0.162 <u>0.273</u>	0.145 <u>0.267</u>	0.109 <u>0.220</u>	0.307 <u>0.405</u>	0.236 <u>0.350</u>	0.148 <u>0.265</u>	0.195 <u>0.308</u>											
PEMS07	12	0.057 0.152	0.067 <u>0.165</u>	<u>0.063</u> <u>0.158</u>	0.073 <u>0.184</u>	0.095 <u>0.207</u>	0.094 <u>0.200</u>	0.082 <u>0.181</u>	0.173 <u>0.304</u>	0.115 <u>0.242</u>	0.078 <u>0.185</u>	0.109 <u>0.225</u>											
	24	0.074 0.174	<u>0.088</u> <u>0.190</u>	0.089 <u>0.192</u>	0.111 <u>0.219</u>	0.150 <u>0.262</u>	0.139 <u>0.247</u>	0.101 <u>0.204</u>	0.271 <u>0.383</u>	0.210 <u>0.329</u>	0.127 <u>0.239</u>	0.125 <u>0.244</u>											
	48	0.109 0.211	<u>0.110</u> <u>0.215</u>	0.136 <u>0.241</u>	0.237 <u>0.328</u>	0.253 <u>0.340</u>	0.311 <u>0.369</u>	0.134 <u>0.238</u>	0.446 <u>0.495</u>	0.398 <u>0.458</u>	0.220 <u>0.317</u>	0.165 <u>0.288</u>	0.220 <u>0.317</u>										
	Avg.	0.080 0.179	<u>0.088</u> <u>0.190</u>	0.096 <u>0.197</u>	0.140 <u>0.244</u>	0.166 <u>0.270</u>	0.181 <u>0.272</u>	0.106 <u>0.208</u>	0.297 <u>0.394</u>	0.241 <u>0.343</u>	0.142 <u>0.247</u>	0.133 <u>0.282</u>											
PEMS08	12	0.066 0.167	<u>0.079</u> <u>0.182</u>	0.081 <u>0.185</u>	0.091 <u>0.201</u>	0.168 <u>0.232</u>	0.165 <u>0.214</u>	0.112 <u>0.212</u>	0.227 <u>0.343</u>	0.154 <u>0.276</u>	0.096 <u>0.204</u>	0.173 <u>0.273</u>											
	24	0.085 0.192	0.115 <u>0.219</u>	<u>0.112</u> <u>0.214</u>	0.137 <u>0.246</u>	0.224 <u>0.281</u>	0.215 <u>0.260</u>	0.141 <u>0.238</u>	0.318 <u>0.409</u>	0.248 <u>0.353</u>	0.152 <u>0.256</u>	0.210 <u>0.310</u>											
	48	0.121 0.235	0.186 <u>0.235</u>	<u>0.174</u> <u>0.237</u>	0.267	0.265 <u>0.343</u>	0.321 <u>0.354</u>	0.315 <u>0.335</u>	0.198 <u>0.283</u>	0.497 <u>0.510</u>	0.440 <u>0.470</u>	0.247 <u>0.331</u>	0.320 <u>0.394</u>										
	Avg.	0.090 0.198	0.127 <u>0.212</u>	<u>0.122</u> <u>0.222</u>	0.164 <u>0.263</u>	0.238 <u>0.289</u>	0.232 <u>0.270</u>	0.150 <u>0.244</u>	0.347 <u>0.421</u>	0.281 <u>0.366</u>	0.165 <u>0.264</u>	0.234 <u>0.326</u>											

Table 16: Univariate long-term forecasting results on ETT datasets. Following PatchTST and ModertCN, input length is fixed as 336 and prediction lengths are $T \in \{96, 192, 336, 720\}$. The best and second-best results are highlighted in **bold** and underlined, respectively.

Models	DMANet		ModernTCN		iTransformer		TimeMixer		PatchTST		DLinear		Pyraformer		FEDformer		Autoformer		
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh1	96	0.026 0.122	0.026 0.121	0.029 <u>0.127</u>	0.029 <u>0.128</u>	0.029 <u>0.126</u>	0.028 <u>0.123</u>	0.127 <u>0.281</u>	0.033 <u>0.140</u>	0.056 <u>0.183</u>									
	192	0.039 0.150	<u>0.040</u> <u>0.152</u>	0.045 <u>0.162</u>	0.044 <u>0.160</u>	0.043 <u>0.158</u>	0.045 <u>0.156</u>	0.205 <u>0.343</u>	0.058 <u>0.186</u>	0.081 <u>0.216</u>									
	336	0.052 0.172	<u>0.053</u> <u>0.173</u>	0.059 <u>0.189</u>	0.058 <u>0.185</u>	0.056 <u>0.183</u>	0.061 <u>0.182</u>	0.302 <u>0.457</u>	0.084 <u>0.231</u>	0.076 <u>0.218</u>									
	720	0.072 0.203	<u>0.073</u> <u>0.206</u>	0.080 <u>0.218</u>	0.081 <u>0.218</u>	0.080 <u>0.217</u>	0.080 <u>0.210</u>	0.387 <u>0.485</u>	0.102 <u>0.250</u>	0.110 <u>0.267</u>									
ETTh2	Avg.	0.110 0.247	0.113 <u>0.250</u>	0.128 <u>0.268</u>	0.121 <u>0.258</u>	0.121 <u>0.258</u>	0.112 <u>0.248</u>	0.133 <u>0.273</u>	0.119 <u>0.262</u>	0.130 <u>0.271</u>									
	96	0.121 0.269	<u>0.124</u> <u>0.274</u>	0.136 <u>0.287</u>	0.133 <u>0.283</u>	0.													

1836 Table 17: Full results of short-term forecasting on supplementary datasets from domains includ-
 1837 ing Health & Medical (ILI, COVID-19), Web Events (Wiki, Website), Finance (NASDAQ, SP500,
 1838 DowJones), Market (CarSales), Energy (Power), and Society (Unemp). The best and second-best
 1839 results are highlighted in **bold** and underlined, respectively.

Model	DMANet		TimeMixer		FilterNet		FITS		DLinear		Fredformer		PatchTST		
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ILI	24	1.746	0.813	2.110	0.879	2.190	0.870	4.265	1.523	3.158	1.243	2.098	0.894	<u>2.046</u>	<u>0.849</u>
	36	<u>1.718</u>	0.817	2.084	0.890	1.902	<u>0.862</u>	3.718	1.363	3.009	1.200	1.712	0.867	2.344	0.912
	48	1.744	0.826	<u>1.961</u>	<u>0.866</u>	2.051	0.882	3.994	1.422	2.994	1.194	2.054	0.922	2.123	0.883
	60	1.842	0.839	1.926	<u>0.878</u>	2.151	0.925	4.543	1.554	3.172	1.232	<u>1.925</u>	0.913	2.001	0.895
	Avg	1.763	0.824	2.020	<u>0.878</u>	2.073	0.885	4.130	1.465	3.083	1.217	<u>1.947</u>	0.899	2.128	0.885
Covid19	3	1.098	0.489	1.237	0.547	1.195	0.555	2.039	0.790	2.386	0.909	<u>1.165</u>	<u>0.548</u>	1.220	0.573
	6	<u>1.735</u>	0.625	2.003	0.739	1.839	0.711	2.683	0.919	3.220	1.053	1.465	<u>0.685</u>	1.982	0.762
	9	2.167	0.722	2.594	0.860	2.537	0.897	3.147	1.050	3.803	1.160	<u>2.145</u>	<u>0.845</u>	2.633	0.916
	12	2.640	0.843	3.103	<u>0.981</u>	<u>2.782</u>	0.956	3.630	1.156	4.524	1.288	2.833	<u>0.984</u>	3.050	1.030
	Avg	<u>1.910</u>	0.670	2.234	0.782	2.088	0.780	2.875	0.979	3.483	1.102	1.902	<u>0.765</u>	2.221	0.820
NASDAQ	24	0.118	0.214	<u>0.122</u>	<u>0.221</u>	0.130	0.230	0.140	0.244	0.155	0.274	0.128	0.226	0.127	0.224
	36	0.158	0.260	0.183	0.279	0.175	0.273	0.184	0.284	0.196	0.306	<u>0.170</u>	<u>0.268</u>	0.174	0.269
	48	0.200	0.296	0.200	<u>0.298</u>	0.224	0.314	0.234	0.324	0.244	0.344	<u>0.218</u>	0.306	0.225	0.314
	60	0.233	0.323	<u>0.238</u>	<u>0.328</u>	0.259	0.340	0.282	0.357	0.318	0.401	0.262	0.339	0.265	0.339
	Avg	0.177	0.273	<u>0.186</u>	<u>0.281</u>	0.197	0.289	0.210	0.302	0.228	0.331	0.194	0.285	0.198	0.286
Wiki	3	<u>6.116</u>	<u>0.372</u>	6.209	0.392	6.234	0.402	7.470	0.496	6.254	0.438	6.190	0.387	6.112	0.380
	6	6.419	0.388	6.475	0.402	6.460	0.401	8.326	0.544	6.579	0.467	6.696	0.404	<u>6.425</u>	<u>0.395</u>
	9	6.665	0.402	6.702	0.418	6.697	0.416	8.869	0.564	6.776	0.508	6.768	<u>0.411</u>	<u>6.743</u>	0.426
	12	6.824	<u>0.411</u>	6.902	0.426	6.899	0.426	9.394	0.608	6.927	0.513	7.168	0.424	6.814	0.414
	Avg	6.506	0.393	6.572	0.409	6.572	0.411	8.515	0.553	6.634	0.481	6.705	0.406	<u>6.523</u>	<u>0.404</u>
SP500	24	0.153	0.271	<u>0.159</u>	<u>0.288</u>	0.181	0.317	0.193	0.334	0.189	0.330	0.181	0.315	0.164	0.298
	36	0.205	0.315	<u>0.218</u>	<u>0.343</u>	0.224	<u>0.341</u>	0.259	0.389	0.250	0.363	0.239	0.365	0.221	<u>0.341</u>
	48	0.250	0.348	<u>0.264</u>	<u>0.367</u>	0.280	0.384	0.324	0.439	0.291	0.398	0.283	0.394	0.278	0.397
	60	0.293	0.383	0.322	0.416	0.332	0.416	0.391	0.486	0.377	0.475	0.341	0.438	<u>0.321</u>	<u>0.409</u>
	Avg	0.225	0.329	<u>0.241</u>	<u>0.353</u>	0.254	0.365	0.291	0.412	0.277	0.391	0.261	0.378	0.246	0.361
DowJones	24	7.325	0.666	8.327	0.683	8.000	0.683	7.974	0.690	<u>7.590</u>	<u>0.670</u>	7.758	0.672	7.641	<u>0.670</u>
	36	10.422	0.800	11.192	0.813	12.011	0.823	11.907	0.837	<u>10.986</u>	<u>0.803</u>	11.456	0.808	11.210	0.807
	48	13.975	0.917	15.278	0.945	14.814	0.933	15.821	0.969	<u>14.157</u>	<u>0.922</u>	14.696	0.921	14.866	0.935
	60	16.106	1.016	20.997	1.067	18.932	1.054	19.320	1.077	<u>18.018</u>	<u>1.035</u>	18.058	<u>1.032</u>	17.947	1.036
	Avg	11.957	0.850	13.948	0.877	13.439	0.873	13.755	0.893	<u>12.688</u>	<u>0.857</u>	12.992	0.858	12.916	0.862
CarSales	24	0.318	0.314	0.320	0.318	0.318	0.319	0.359	0.347	0.354	0.350	0.319	0.326	0.319	0.319
	36	<u>0.332</u>	0.327	<u>0.332</u>	0.331	0.331	<u>0.330</u>	0.373	0.360	0.368	0.365	0.333	0.335	<u>0.332</u>	<u>0.330</u>
	48	0.346	0.340	0.345	0.343	0.342	0.341	0.385	0.370	0.382	0.379	0.349	0.344	0.347	0.344
	60	<u>0.357</u>	<u>0.352</u>	0.355	0.351	0.352	0.349	0.399	0.385	0.388	0.380	0.359	0.349	0.355	0.348
	Avg	<u>0.338</u>	0.333	<u>0.338</u>	0.336	0.336	<u>0.335</u>	0.379	0.365	0.373	0.368	0.340	0.338	<u>0.338</u>	<u>0.335</u>
Power	24	1.293	0.865	<u>1.341</u>	<u>0.881</u>	1.410	0.916	1.491	0.944	1.390	0.916	1.410	0.913	1.468	0.935
	36	1.334	0.875	<u>1.420</u>	<u>0.914</u>	1.590	0.968	1.621	0.994	1.518	0.957	1.538	0.953	1.593	0.972
	48	1.408	0.917	<u>1.567</u>	<u>0.963</u>	1.680	1.009	1.775	1.052	1.610	0.995	1.652	1.008	1.710	1.020
	60	1.456	0.940	<u>1.609</u>	<u>0.988</u>	1.776	1.053	1.958	1.122	1.679	1.020	1.752	1.049	1.829	1.064
	Avg	1.373	0.899	<u>1.484</u>	<u>0.937</u>	1.614	0.986	1.711	1.028	1.549	0.972	1.588	0.981	1.650	0.998
Website	3	0.083	0.209	0.086	0.215	0.084	0.213	0.191	0.320	0.159	0.288	<u>0.080</u>	0.207	0.089	0.217
	6	0.112	0.238	0.124	0.248	0.116	0.242	0.235	0.356	0.182	0.302	0.116	<u>0.241</u>	0.121	0.246
	9	<u>0.154</u>	0.265	0.159	0.275	0.151	0.269	0.276	0.372	0.220	0.330	0.150	0.268	0.157	0.273
	12	<u>0.199</u>	0.294	0.204	0.306	<u>0.194</u>	0.297	0.409	0.484	0.255	0.355	0.196	0.301	0.200	0.302
	Avg	0.137	0.252	0.143	0.261	0.136	0.255	0.278	0.383	0.204	0.319	0.135	<u>0.254</u>	0.141	0.259
Unemp	3	0.010	0.052	0.015	0.074	<u>0.012</u>	0.062	0.161	0.289	0.072	0.200	0.013	0.068	<u>0.012</u>	<u>0.060</u>
	6	0.036	0.117	0.057	0.154	<u>0.043</u>	0.130	0.229	0.345	0.115	0.255	0.046	0.139	<u>0.043</u>	<u>0.127</u>
	9	0.081	0.180	0.109	0.213	0.107	0.216	0.369	0.443	0.191	0.329	0.095	0.198	<u>0.093</u>	<u>0.190</u>
	12	0.127	0.234	0.195	0.293	0.155	0.255	0.475	0.500	0.240	0.386	<u>0.148</u>	<u>0.250</u>	0.164	0.261
	Avg	0.064	0.146	0.094	0.183	<u>0.079</u>	0.166	0.308	0.394	0.154	0.292	0.075	<u>0.163</u>	0.078	0.160

1890
1891

D.5 RESULTS FOR HYPERPARAMETER ANALYSIS

1892
1893
1894

In this section, we also explore the effect of the hyperparameters used in our experiments, including the depth-wise convolution kernal size K , the depth-wise convolution kernal stride size s , the channel change c and λ on the loss function.

1895
1896
1897

The channel change c signifies the alteration in the number of channels during the downsampling process, where values below 1 denote a reduction in channel quantity, whereas values exceeding 1 indicate channel expansion.

1898
1899
1900
1901

For λ , according to FreDF Wang et al. (2025), the loss function is a weighted sum of the time-domain MSE and the frequency-domain MAE. λ represents the proportion of the frequency MAE in the loss function, and $(1 - \lambda)$ represents the proportion of the time-domain MSE.

1902

We show the experimental results from Table.18 to Table.21.

1903
1904

Table 18: Impact of kernal size. A lower MSE or MAE indicates a better performance.

Models	Metrics	Weather		ETTh2		ETTm2	
		96	336	96	336	96	336
$K = 1$	MSE	0.151	0.274	0.289	0.393	0.169	0.289
	MAE	0.194	0.325	0.334	0.411	0.248	0.326
$K = 3$	MSE	0.148	0.256	0.280	0.393	0.165	0.289
	MAE	0.191	0.282	0.329	0.410	0.244	0.325
$K = 5$	MSE	0.149	0.259	0.286	0.393	0.168	0.296
	MAE	0.192	0.285	0.332	0.410	0.247	0.331
$K = 7$	MSE	0.150	0.258	0.286	0.394	0.167	0.292
	MAE	0.193	0.283	0.331	0.411	0.245	0.327

1917
1918
1919

Table 19: Impact of stride size. A lower MSE or MAE indicates a better performance.

Models	Metrics	Weather		ETTh2		ETTm2	
		96	336	96	336	96	336
$s = 1$	MSE	0.151	0.259	0.281	0.423	0.170	0.297
	MAE	0.194	0.284	0.331	0.421	0.247	0.331
$s = 2$	MSE	0.148	0.256	0.280	0.393	0.165	0.289
	MAE	0.191	0.282	0.329	0.410	0.244	0.325
$s = 3$	MSE	0.149	0.259	0.274	0.393	0.167	0.290
	MAE	0.192	0.284	0.325	0.410	0.246	0.326
$s = 4$	MSE	0.148	0.257	0.279	0.395	0.167	0.291
	MAE	0.190	0.282	0.326	0.411	0.246	0.327

1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

1944
1945
1946
1947
1948
1949

1950

Table 20: Impact of channel change. A lower MSE or MAE indicates a better performance.

Models	Metrics	Weather		ETTh2		ETTm2	
		96	336	96	336	96	336
$c = 0.25$	MSE	0.149	0.259	0.278	0.396	0.167	0.291
	MAE	0.193	0.284	0.326	0.412	0.245	0.327
$c = 0.5$	MSE	0.148	0.256	0.280	0.393	0.165	0.289
	MAE	0.191	0.282	0.329	0.410	0.244	0.325
$c = 1$	MSE	0.149	0.261	0.284	0.408	0.171	0.293
	MAE	0.191	0.287	0.333	0.415	0.250	0.328
$c = 2$	MSE	0.149	0.257	0.281	0.401	0.169	0.294
	MAE	0.192	0.283	0.332	0.415	0.247	0.327
$c = 4$	MSE	0.152	0.261	0.292	0.398	0.173	0.293
	MAE	0.196	0.287	0.337	0.415	0.250	0.328

1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976

Table 21: Impact of λ in loss. A lower MSE or MAE indicates a better performance.

Models	Metrics	Weather		ETTh2		ETTm2	
		96	336	96	336	96	336
$\lambda = 0.1$	MSE	0.149	0.257	0.289	0.392	0.168	0.297
	MAE	0.191	0.283	0.333	0.412	0.246	0.332
$\lambda = 0.3$	MSE	0.149	0.259	0.289	0.394	0.167	0.297
	MAE	0.192	0.284	0.332	0.411	0.246	0.332
$\lambda = 0.5$	MSE	0.149	0.259	0.286	0.394	0.169	0.298
	MAE	0.191	0.284	0.331	0.412	0.246	0.332
$\lambda = 0.7$	MSE	0.149	0.259	0.290	0.396	0.169	0.297
	MAE	0.191	0.283	0.332	0.414	0.247	0.332
$\lambda = 1$	MSE	0.148	0.256	0.280	0.393	0.165	0.289
	MAE	0.191	0.282	0.329	0.410	0.244	0.325

1993
1994
1995
1996
1997

1998 E MORE DETAILS OF COMPUTATIONAL COSTS 1999

2000 To comprehensively evaluate the efficiency and scalability of DMA-Net, we conducted controlled
2001 experiments on both synthetic and real-world datasets. Our analysis focuses on two key aspects: the
2002 computational overhead of our proposed components and the overall model’s performance compared
2003 to state-of-the-art methods.

2004 E.1 EFFICIENCY AND SCALABILITY ANALYSIS ON SYNTHETIC DATA

2007 We first use synthetic data to perform a fine-grained analysis under controlled conditions, isolating
2008 the impact of sequence length and channel dimensions. With fixed hyperparameters (look-back
2009 window=96, batch size=64, etc.), we measure inference speed (ms) and peak GPU memory (MB)
2010 under two scenarios: (1) fixing the number of channels C while varying the sequence length T , and
2011 (2) fixing T while varying C . Each experiment was repeated 500 times for stability. The results are
2012 presented in Table.22.

2013 Table 22: Inference Speed (ms) and Memory Usage (MB) Comparison Across Different Models and
2014 Configurations. Values for speed are reported as mean \pm std over 500 runs.

2016 Configuration	2017 DMA-Net		2018 w/o-ESR		2019 Chebyshev	
	2020 Speed	2021 Memory	2022 Speed	2023 Memory	2024 Speed	2025 Memory
$T = 256$	1.376 \pm 0.122	15.71	1.309 \pm 0.359	15.71	1.916 \pm 0.150	15.71
$T = 512$	1.372 \pm 0.107	31.29	1.325 \pm 0.115	31.29	1.942 \pm 0.173	31.29
$T = 1024$	1.677 \pm 0.137	65.38	1.600 \pm 0.346	65.38	2.249 \pm 0.182	65.38
$T = 2048$	2.915 \pm 0.151	146.49	2.846 \pm 0.256	146.49	3.576 \pm 0.019	146.49
$C = 48$	1.518 \pm 0.103	61.36	1.444 \pm 0.222	61.36	1.523 \pm 0.206	61.36
$C = 96$	1.982 \pm 0.141	122.40	1.882 \pm 0.154	122.40	2.640 \pm 0.187	122.40
$C = 192$	3.731 \pm 0.047	251.77	3.580 \pm 0.072	251.77	4.250 \pm 0.182	251.77
$C = 336$	7.029 \pm 0.025	471.27	6.760 \pm 0.043	471.27	7.399 \pm 0.167	471.27
2027 Configuration	2028 Linear		2029 TransConv		2030 Attention	
	2031 Speed	2032 Memory	2033 Speed	2034 Memory	2035 Speed	2036 Memory
$T = 256$	1.228 \pm 0.352	15.89	1.405 \pm 0.128	15.92	3.065 \pm 0.234	75.04
$T = 512$	1.201 \pm 0.158	32.02	1.605 \pm 0.124	31.68	3.412 \pm 0.239	280.09
$T = 1024$	1.838 \pm 0.196	68.39	2.191 \pm 0.168	66.70	8.710 \pm 0.117	1084.94
$T = 2048$	5.079 \pm 0.117	158.52	3.818 \pm 0.089	147.73	29.417 \pm 0.224	4270.15
$C = 48$	1.414 \pm 0.225	61.43	1.915 \pm 0.161	61.33	3.892 \pm 0.186	298.42
$C = 96$	1.794 \pm 0.078	122.31	2.432 \pm 0.303	119.46	5.278 \pm 1.450	332.12
$C = 192$	3.374 \pm 0.054	252.63	4.418 \pm 0.281	236.45	8.956 \pm 0.035	404.04
$C = 336$	5.642 \pm 0.150	471.27	8.116 \pm 0.019	414.28	15.971 \pm 0.102	518.38

2038 From these results, we draw two key conclusions:

2039 **1. The computational overhead of our dynamic anti-aliasing (ESR Filter) is negligible.** A
2040 direct comparison between DMA-Net and its ablated version (w/o ESR) reveals that the peak memory
2041 usage is nearly identical across all configurations. The time overhead introduced by the ESR filter
2042 is minimal, with a worst-case relative increase of only 2.4% (at $T=2048$). Furthermore, DMA-Net
2043 is consistently faster than the variant using a classical Chebyshev filter. This empirically proves
2044 that our dynamic anti-aliasing mechanism is a computationally lightweight strategy that does not
2045 introduce a performance bottleneck.

2046 **2. The efficiency and scalability of frequency-domain interpolation for upsampling.** We fur-
2047 ther validate our choice of upsampling mechanism by comparing it with common alternatives. The
2048 Attention-based method is not viable for long sequences due to the explosive, quadratic growth in
2049 its memory and time costs. While a simple Linear layer is fast, it scales poorly when processing
2050 very long sequences (e.g., at $T=2048$, its speed degrades significantly). Although Transposed Con-

2052 evolution is lightweight, our method is faster in most scenarios. In conclusion, our chosen frequency-
 2053 domain interpolation achieves an excellent balance of cost-effectiveness and scalability across dif-
 2054 ferent data shapes.

2057 E.2 EFFICIENCY COMPARISON WITH STATE-OF-THE-ART MODELS ON REAL-WORLD 2058 DATASETS

2060 Follow the TimeKAN Huang et al. (2025), we benchmark the overall efficiency of DMA-Net against
 2061 leading SOTA models on real-world datasets. We fix the input and prediction lengths ($T = 96, F =$
 2062 96) to ensure a fair comparison and report on model parameters (Params), multiply-accumulate
 2063 operations (MACs) and predictive accuracy.

2064 Table 23: A comparison of model parameters (Params) and multiply-accumulate operations (MACs)
 2065 for DMA-Net and seven other models. To ensure a fair comparison, we fix the prediction length
 2066 $F = 96$ and the input length $T = 96$.

Model	ETTm2				Weather				Electricity			
	Params	MACs	MSE	MAE	Params	MACs	MSE	MAE	Params	MACs	MSE	MAE
iTransformer	224.22 K	19.86 M	0.184	0.267	4.83 M	1.16 G	0.175	0.216	4.83 M	16.29 G	0.148	0.240
TimeMixer	77.77 K	24.18 M	0.175	0.257	104.43 K	82.62 M	0.161	0.208	106.83 K	1.26 G	0.156	0.247
TimesNet	1.19 M	36.28 G	0.189	0.266	1.19 M	36.28 G	0.169	0.219	150.30 M	4.61 T	0.168	0.272
PatchTST	10.06 M	17.66 G	0.183	0.268	6.90 M	35.30 G	0.176	0.217	6.90 M	539.68 G	0.180	0.273
DLinear	18.62 K	0.60 M	0.193	0.293	18.62 K	0.60 M	0.196	0.256	18.62 K	0.60 M	0.210	0.302
TimeKAN	38.12 K	16.66 M	0.174	0.257	20.94 K	29.86 M	0.163	0.208	23.34 K	456.50 M	0.175	0.268
FilterNet	49.61 K	1.67 M	0.175	0.257	49.64 K	1.03 M	0.166	0.210	50.24 K	15.78 M	0.167	0.256
DMA-Net	19.08 K	92.29 K	0.173	0.253	77.02 K	0.33 M	0.155	0.201	8.49 M	73.95 M	0.146	0.243

2076 As shown in Table.23, DMA-Net demonstrates a state-of-the-art balance between efficiency and
 2077 performance. Compared to Transformer-based models (e.g., iTransformer, PatchTST) and recent
 2078 computationally intensive architectures like TimeKAN, DMA-Net requires less memory and fewer
 2079 MACs while maintaining superior forecasting accuracy. While simple baselines like DLinear and
 2080 FilterNet are exceptionally fast, DMA-Net provides a substantial accuracy improvement with only
 2081 a marginal increase in computational cost. These results confirm that the lightweight and scalable
 2082 design choices validated in our synthetic experiments translate directly to a highly competitive
 2083 efficiency in real-world applications. Notably, on the high-dimensional Electricity dataset, DMA-Net
 2084 achieves the best MSE (0.146) with a computational cost of only 73.95M MACs. This is significantly
 2085 lower than that of PatchTST (539.68G MACs), iTransformer (16.29G MACs), and even TimeKAN
 2086 (456.5 M MACs). These results confirm that DMA-Net is not only a lightweight solution for simple
 2087 tasks but also a highly scalable and efficient architecture for complex real-world applications.

2106 **F MORE DETAILS OF PRE-SAMPLING FILTERING**
2107

2108 To comprehensively evaluate the robustness of our model and its generalization ability to different
2109 types of signal disturbance, we synthesized noise and superimposed it onto the original clean signals
2110 x_{clean} to generate noisy signals x_{noisy} for model testing. The synthetic noise was generated using a
2111 unified framework that supports multiple noise types, with precise control over the intensity of the
2112 noise through parameters. Specifically, we implemented the following noise types:
2113

2114

2115 - **Frequency-Domain Noise:** It includes High-frequency noise, Low-frequency noise, and
2116 Broadband noise. This type is generated by taking the Fast Fourier Transform (FFT) of the
2117 original signal, generating a band-limited or broadband random Gaussian noise spectrum
2118 in the frequency domain, and then converting it back to the time domain via Inverse Fast
2119 Fourier Transform (IFFT). The frequency band division for high- and low-frequency noise
2120 is controlled by the r_{cut} parameter, defined as the cutoff proportion in the frequency space.
2121 - **Trend Noise:** Simulates slow-varying, non-periodic disturbances. This noise is generated
2122 by creating a low-order (e.g., quadratic) polynomial with random coefficients to simulate
2123 the trend component in the time series and adding it to the original signal.
2124 - **Seasonal Noise:** Simulates periodic disturbances. This noise is generated by superimposing
2125 one or more sine waves with predefined base frequencies specified by the parameter
 f_{seasonal} , each having a random initial phase.

2126 The noise intensity is precisely controlled by ϵ , which defines the desired ratio of noise energy E_{noise}
2127 to clean signal energy E_{clean} , i.e., $E_{\text{noise}}/E_{\text{clean}}$. After generating the noise, which can be denoted as
2128 **noise**, the noise energy is calculated and scaled accordingly to ensure that the noise added to the
2129 clean signal has a relative energy level consistent with ϵ . The final noisy signal x_{noisy} is obtained by
2130 adding the scaled noise **noise**_{scaled} to the original clean signal: $x_{\text{noisy}} = x_{\text{clean}} + \mathbf{noise}_{\text{scaled}}$.
2131 Then, we systematically analyze the performance of the model when faced with various signal dis-
2132 tortions. In our experiments, concretely, we fixed the r_{cut} at 0.3, set f_{seasonal} to $\{1/24, 1/12\}$, and
2133 used ϵ values of $\{0.1, 0.2, 0.5\}$ in different experimental groups. The results are shown in Table.24.
2134 Comparative Study of Anti-Aliasing Strategies. To further investigate our proposed Equivalent Sam-
2135 pling Rate mechanism and explore efficient anti-aliasing strategies, we conducted a comparative
2136 study on the Weather dataset using a 96-step lookback to predict a 720-step horizon. We bench-
2137 marked three distinct anti-aliasing configurations:
2138

2139

2140 - **DMA_{Net} (ESR-based):** Our proposed model, which uses the architecture-aware ESR to
2141 dynamically determine the cutoff frequency for a sharp filter.
2142 - **DMA_{Net}.but (Butterworth):** A variant where the ESR-based filter is replaced by a tradi-
2143 tional 4th-order Butterworth low-pass filter, a well-established mathematical filter known
2144 for its maximally flat passband.
2145 - **DMA_{Net}.mix (Fusion-based):** A hybrid model that first uses ESR to partition the spec-
2146 trum and then processes the high- and low-frequency bands through separate convolutional
2147 layers before fusing them, designed to explore the utility of preserved high-frequency in-
2148 formation.
2149 - **DMA_{Net}.wo (No Filter):** A baseline variant that removes the anti-aliasing filter entirely,
2150 processing the raw input directly through the network to assess the necessity and impact of
2151 frequency-domain filtering.

2152 The results under various noise conditions are summarized in Table.24. Overall, most of configura-
2153 tions demonstrate notable robustness, with only graceful performance degradation as noise intensity
2154 increases. This highlights the general effectiveness of incorporating a pre-sampling filtering stage to
2155 enhance noise resistance.
2156 Our ablation study reveals a insight into the effectiveness of different anti-aliasing strategies. The-
2157oretically, one might expect the Butterworth filter (DMA_{Net}.but), with its maximally flat passband,
2158 to excel at handling low-frequency and trend noise by preserving the signal fidelity in that band Yin
2159 et al. (2024). Conversely, our ESR-based hard-cutoff filter (DMA_{Net}) should be superior against
2160 high-frequency and seasonal noise due to its removal of aliasing-prone components.

Table 24: Robustness analysis of DMA-Net variants under different types and intensities of synthetic noise on the Weather dataset. All experiments use a 96-step lookback to predict a 720-step horizon.

Model Variant	Noise Type	$\epsilon = 1\%$		$\epsilon = 5\%$		$\epsilon = 10\%$	
		MSE	MAE	MSE	MAE	MSE	MAE
DMANet	Seasonal	0.343	0.339	0.342	0.341	0.341	0.343
	Trend	0.344	0.340	0.345	0.345	0.351	0.358
	All (Broadband)	0.345	0.341	0.345	0.342	0.346	0.344
	Low-Frequency	0.345	0.340	0.347	0.342	0.349	0.347
	High-Frequency	0.344	0.340	0.343	0.340	0.343	0.341
DMANet_but	Seasonal	0.346	0.340	0.342	0.340	0.340	0.343
	Trend	0.347	0.342	0.348	0.347	0.354	0.359
	All (Broadband)	0.349	0.342	0.347	0.343	0.346	0.344
	Low-Frequency	0.352	0.344	0.349	0.345	0.350	0.347
	High-Frequency	0.345	0.341	0.343	0.340	0.343	0.343
DMANet_mix	Seasonal	0.353	0.343	0.350	0.345	0.350	0.348
	Trend	0.348	0.342	0.353	0.350	0.356	0.359
	All (Broadband)	0.352	0.344	0.353	0.344	0.357	0.348
	Low-Frequency	0.354	0.345	0.351	0.345	0.353	0.348
	High-Frequency	0.358	0.346	0.353	0.345	0.352	0.347
DMANet_wo	Seasonal	0.348	0.343	0.350	0.346	0.346	0.349
	Trend	0.348	0.343	0.351	0.351	0.357	0.361
	All (Broadband)	0.350	0.344	0.352	0.346	0.347	0.345
	Low-Frequency	0.355	0.346	0.355	0.349	0.353	0.349
	High-Frequency	0.350	0.343	0.350	0.345	0.351	0.344

Interestingly, our empirical results in Table.24 show that while performance is competitive on seasonal and high-frequency noise, DMA-Net consistently and significantly outperforms DMA-Net but on trend and low-frequency noise. This seemingly counter-intuitive result highlights a critical limitation of applying classical filters naively within a deep learning pipeline. While the Butterworth filter is static and optimally preserves its predefined passband, it is architecture-agnostic. It may still pass frequencies that, while low, are too high for the subsequent strided convolution to process without aliasing. In contrast, our ESR-based approach is architecture-aware. It does not aim to be a perfect mathematical filter in isolation; its sole purpose is to perfectly prepare the signal for the next layer. By dynamically calculating a precise cutoff based on the network's own parameters, it ensures that no aliasing occurs at any stage, even if this means a slightly more aggressive filtering. This architectural synergy proves to be more practically effective.

Furthermore, the fusion-based DMANet_mix consistently underperforms the other two variants. This result empirically supports our design rationale for employing a strict cutoff strategy: for a lightweight model, it is more effective to concentrate its limited capacity on core, learnable patterns rather than attempting to fit the complex and often noisy dynamics of high-frequency information. As observed in prior work like FITS Xu et al. (2024), removing a significant portion of high-frequency components largely preserves a time series' dominant trends. The poor performance of DMANet_mix indicates that simply preserving and processing this high-frequency content is less effective than principled filtering, likely because this band is dominated by noise that the model cannot distinguish from a true signal.

Collectively, these results validate that our ESR-based approach provides the most robust and adaptive solution. By dynamically and precisely removing only the frequencies that would cause aliasing, it not only focuses the model on the most decisive, learnable patterns but also achieves this with superior adaptability compared to static classical filters, all without the need for manual filter design.

2214 **G MORE DETAILS OF OUR METHOD**
22152216 **G.1 THE RATIONALE FOR THE EMBEDDING FIRST ARCHITECTURE**
22172218 A critical challenge in multi-scale time series analysis is the fusion of features from different scales
2219 without introducing signal distortion. A common approach, which we term multi-scale first, involves
2220 downsampling the raw signal and then embedding each scale. However, this seemingly intuitive
2221 process hides a significant pitfall: the upsampling step required for feature fusion inevitably causes
2222 spectral distortion due to its reliance on a limited reconstruction basis. To circumvent this fundamental
2223 issue, our DMA-Net adopts a principled **embedding first** architecture, ensuring all operations
2224 are conducted with high fidelity within a unified feature space.
22252226 Given this architectural choice, we must clarify the nature of operations performed in this latent
2227 space. Although our model operates on embedded latent features, we distinguish our approach
2228 from general feature dimension reduction by preserving the sequential topology. While the initial
2229 projection transforms the raw time series into a latent dimension, the subsequent incorporation of
2230 learnable positional encodings and convolutional inductive biases compels the model to organize
2231 these features into a strict sequence with local dependencies, establishing what we term a latent
2232 time axis. Unlike standard dimension reduction which treats features as unordered vectors, reducing
2233 the resolution of this organized axis via strided operations constitutes mathematical downsampling
2234 strictly governed by the Nyquist-Shannon theorem. Disregarding the sampling rate in this context
2235 leads to aliasing, where high-frequency latent patterns generate spurious correlations. So we employ
2236 the term **downsampling** to explicitly highlight this critical risk often overlooked in conventional
2237 dimension reduction perspectives.
22382239 **G.1.1 THE PITFALL OF PREMATURE MULTI-SCALE DECOMPOSITION**
22402241 The multi-scale first approach, seen in models like TimeMixer Wang et al. (2024a), begins by de-
2242 composing the raw signal X into a set of time series $\{X_m \in \mathbb{R}^{C \times s_m}, s_m < L\}$. While feasible,
2243 the core flaw lies in the subsequent step of unifying these scales for feature fusion. To restore the
2244 original length L , each short sequence s_m must be upsampled using a linear layer, $g_m : \mathbb{R}^{s_m} \rightarrow \mathbb{R}^L$.
2245 This process is inherently problematic due to its limited representational capacity:
22462247

- **Limited Basis Vectors:** The weight matrix $W \in \mathbb{R}^{L \times s_m}$ of the upsampling layer provides
2248 only s_m **column vectors**. These vectors form the *entire basis* available to reconstruct the
2249 output signal. Consequently, all reconstructed signals are confined to a very small, s_m -
2250 **dimensional subspace** of the target space \mathbb{R}^L .
- **Deformed Basis Vectors:** To approximate the diverse signals in the training data from this
2251 constrained basis, the model is forced to learn complex, **non-smooth, and oscillatory** basis
2252 vectors as a poor compromise.
- **Inevitable Spectral Distortion:** When a signal is reconstructed as a linear combination
2253 of these deformed basis vectors, it unavoidably inherits their unnatural properties. This
2254 leads to severe **spectral distortion**, corrupting the signal's fidelity and polluting the final
2255 prediction.

2256 **G.1.2 EMBED FIRST: A PRINCIPLED APPROACH IN A UNIFIED FEATURE SPACE**
22572258 Our DMA-Net architecture is designed to completely avoid the aforementioned reconstruction prob-
2259 lem by first establishing a unified workspace for all operations.
22602261

1. **Defining a Unified Workspace:** We begin by projecting the information-complete raw
2262 signal $X \in \mathbb{R}^{C \times L}$ into a new feature basis space using a linear layer. This generates a fea-
2263 ture sequence $X' \in \mathbb{R}^{C \times T}$, creating a unified and consistent workspace for all subsequent
2264 synergistic operations.
2. **High-Fidelity Operations:** Within this consistent feature space, all core operations are
2265 performed in a principled manner:
 - **Downsampling:** Our anti-aliasing downsampling module pre-filters features in the
2266 frequency domain before reducing resolution, preventing information aliasing and en-
2267 suring reliable feature transfer across scales.

2268
 2269
 2270
 2271
 2272
 2273
 2274

- **Upsampling:** To restore resolution for feature fusion, we employ zero-padding in the frequency domain. This method is equivalent to ideal interpolation and relies on the **Fourier basis (sines and cosines)**—a **fixed, universal, and complete orthogonal basis**. Adhering to the Nyquist-Shannon sampling theorem, this ensures the **smoothest possible reconstruction**, free from the uncontrolled high-frequency artifacts generated by the alternative approach.

2275 By ensuring all features are derived and processed with high-fidelity operations within the same
 2276 basis space, we maintain inherent consistency and make feature fusion fundamentally more reliable.

2277
 2278 **G.1.3 EMPIRICAL VALIDATION**

2279 To validate our theoretical analysis, we conducted a comprehensive comparison between our
 2280 DMA-Net (Embedding First) and the alternative architecture (Multi-Scale First). We also performed
 2281 an ablation study by removing the initial embedding module (w/o embed) to verify the effectiveness
 2282 of operating within a latent space.

2283 The results in Table.25 provide strong empirical support for our design.
 2284

2285 Table 25: Comparative analysis and ablation study for the Embedding First architecture. Our full
 2286 DMA-Net model is compared against the Multi-Scale First approach and a variant without the initial
 2287 embedding module.

2288

Model	Metric	ETTh1	ETTm1	Weather	Elect	Wiki	ILI	Unemp	Dowjone
DMA-Net (Embedding First)	MSE	0.428	0.373	0.236	0.172	6.506	1.763	0.064	11.957
	MAE	0.429	0.385	0.262	0.265	0.393	0.824	0.146	0.850
Multi-Scale First	MSE	0.441	0.385	0.242	0.181	6.555	2.097	0.074	12.420
	MAE	0.435	0.391	0.268	0.273	0.407	0.858	0.167	0.860
w/o embed	MSE	0.436	0.389	0.249	0.188	6.551	2.084	0.073	12.330
	MAE	0.427	0.392	0.274	0.277	0.406	0.879	0.163	0.857

2295 The Multi-Scale First approach consistently underperforms our model. This performance gap is a
 2296 direct, practical consequence of the spectral distortion introduced by its unprincipled, basis-limited
 2297 reconstruction step.

2298 Furthermore, we acknowledge that the initial linear mapping carries a potential risk of losing some
 2299 temporal dependencies. This is a deliberate design choice, and its justification is twofold. First,
 2300 we incorporate a learnable positional encoding to preserve crucial temporal context. Second, as our
 2301 ablation study will demonstrate, the benefits of analyzing the series in a latent space—where patterns
 2302 are more suitable for anti-aliasing and feature extraction—outweigh the alternative of operating
 2303 directly on the raw signal. The placeholder for the w/o embed results in Table.25 will provide strong
 2304 evidence for this superiority.

2305
 2306 **G.2 PRINCIPLED ANTI-ALIASING VIA DYNAMIC FREQUENCY CUTOFF**

2308 For any given downsampling layer l in DMA-Net, its anti-aliasing operation is the application of
 2309 a low-pass filter with a mathematically-derived, strict cutoff frequency. Given the layer’s convolu-
 2310 tional parameters—kernel size k , stride s , and channel ratio c —we first calculate its Effective
 2311 Sampling Ratio (ESR l) using Equation.3 to determine its true signal processing capability. This
 2312 allows us to establish a new Nyquist frequency, f_{Nyquist}^l . As shown in Equation.4, all frequency com-
 2313 ponents above this threshold are strictly zeroed out via a frequency-domain mask. Our method does
 2314 not partially retain or vaguely attenuate high-frequency components; it employs a principled cutoff
 2315 scheme where the threshold is dynamically determined for each layer.

2316
 2317 **G.2.1 THE RATIONALE: FOCUSING ON LEARNABLE CORE PATTERNS**

2318 The core motivation for this strict cutoff strategy is to concentrate the model’s capacity on learnable,
 2319 core patterns. High-frequency information in time series often contains significant noise or stochas-
 2320 tic fluctuations that are difficult to model, and typically exceed the learning capacity of a lightweight
 2321 model. Attempting to fit these complex dynamics can hinder the model from capturing the more
 decisive, underlying trends.

2322 As observed in prior work like FITS Xu et al. (2024), removing a significant portion of high-
 2323 frequency components largely preserves the overall shape and dominant trends of a time series. Our
 2324 strategy builds on this insight: by proactively simplifying the learning task, we focus the model’s
 2325 limited capacity on the low-frequency periodic and trend patterns that are most critical for the fore-
 2326 casting task, thereby achieving both efficient and accurate predictions.
 2327

2328 G.2.2 DYNAMIC ADAPTABILITY AND PARAMETER-FREE DESIGN

2329 A key advantage of our method is its dynamic nature. In a complex multi-scale architecture, dif-
 2330 ferent layers may employ varying downsampling parameters (k, s, c). Our framework automatically
 2331 derives a matching, optimal cutoff frequency for each specific layer. This ensures that the anti-
 2332 aliasing protection remains effective and theoretically grounded across any architectural variation,
 2333 eliminating the need for tedious, manual parameter tuning required by classical filters or the ran-
 2334 domness of heuristic approaches.

2335 Furthermore, this framework possesses theoretical flexibility. By adjusting the convolution parame-
 2336 ters, the ESR can be controlled to retain more, or even all, frequency components. For instance, if
 2337 parameters are set such that $\text{ESR} = 1$ (e.g., $s = \min(K, C_{\text{out}}/C_{\text{in}})$), the cutoff frequency matches
 2338 the original signal’s Nyquist frequency, meaning no valid frequency components are attenuated.
 2339

2340 G.2.3 ADDRESSING THE HIGH-FREQUENCY INFORMATION TRADE-OFF

2341 We acknowledge that this design is built upon a core trade-off: we filter high-frequency components
 2342 to prevent aliasing at the cost of potentially discarding useful information. This is a deliberate choice
 2343 motivated by the efficiency and robustness goals for a lightweight model.
 2344

2345 We also recognize that high-frequency information can be critical in certain scenarios, such as fore-
 2346 casting sharp spikes or in contexts where high-frequency harmonics are themselves key features. It is
 2347 precisely for this reason that we deliberately conducted extensive supplementary experiments across
 2348 a diverse range of domains (including Electricity, Weather, Transportation, Health, Web, Market,
 2349 Energy, Society, Finance, etc.). The goal was to proactively probe the application boundaries of our
 2350 method and provide a clear reference for its practical use.

2351 To further investigate this trade-off, we will conduct a controlled experiment comparing our strict
 2352 cutoff method with an alternative that handles frequencies differently. As shown in Table.26, we
 2353 will compare our standard DMA-Net against a variant where, after identifying the cutoff frequency,
 2354 both the low-frequency and the zeroed-out high-frequency components are independently passed
 2355 through linear layers and then fused. This will help quantify the practical impact of the information
 2356 contained in the high-frequency bands.

2357 Table 26: Ablation study on the handling of high-frequency components. We compare our strict
 2358 cutoff method with a variant that uses linear fusion for high and low frequencies.
 2359

Model	Metric	ETTh1	ETTm1	Weather	Elect	Wiki	ILI	Unemp	Dowjone
DMA-Net (Strict Cutoff)	MSE	0.428	0.373	0.236	0.172	6.506	1.763	0.064	11.957
	MAE	0.429	0.385	0.262	0.265	0.393	0.824	0.146	0.850
DMA-Net_mix (Fusion-based)	MSE	0.434	0.374	0.237	0.171	6.528	1.986	0.076	12.288
	MAE	0.433	0.385	0.263	0.265	0.398	0.867	0.161	0.858

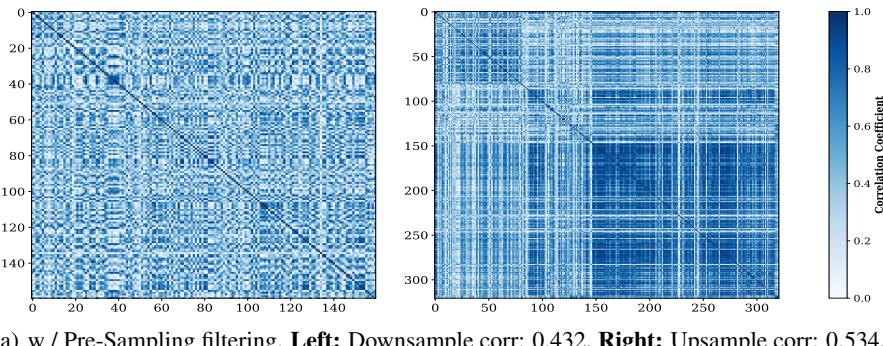
2364 In summary, DMA-Net’s anti-aliasing employs a precise, dynamic cutoff strategy tailored to each
 2365 layer’s actual sampling capability. This design combines theoretical robustness with practical,
 2366 parameter-free convenience, and its effectiveness is validated through extensive empirical analysis.
 2367

2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375

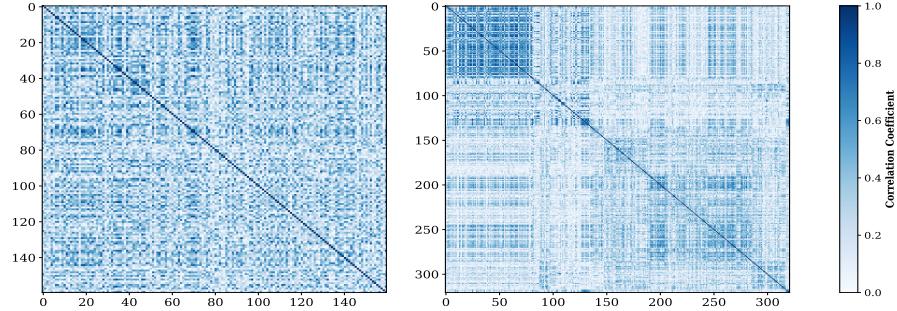
2376 H MORE DETAILS OF DEPENDENCY MODELING

2378 We visualize the temporal dependencies and channel-wise relationships within a batch of the Electricity in Figure.8 and Figure.9 and for Weather in Figure.10 and Figure.11, comparing their states
 2379 before and after processing by DMANet’s components. To further illustrate the differences between
 2380 scenarios with and without the anti-aliasing filter, we selected the Electricity dataset to visualize
 2381 the temporal dependency differences of upsampling before and after applying the anti-aliasing filter
 2382 in Figure.12, as well as the channel dependency correlation differences of downsampling with and
 2383 without the anti-aliasing filter in Figure.13.

2385 DMANet tends to leverage more effective dependencies to capture future trends. Comparing the
 2386 cases with and without the anti-aliasing filter, the figures reveal that the pre-processing anti-aliasing
 2387 operation, acting as a low-pass filter, smooths or attenuates fine-grained dependencies that are sus-
 2388 ceptible to aliasing during sampling. This process helps to highlight the main temporal dependency
 2389 patterns and channel relationships. Furthermore, convolution, leveraging its local receptive field,
 2390 focuses on local patterns at neighboring time points. Thus, the combination of filtering and convolu-
 2391 tional downsampling effectively extracts stable temporal features.

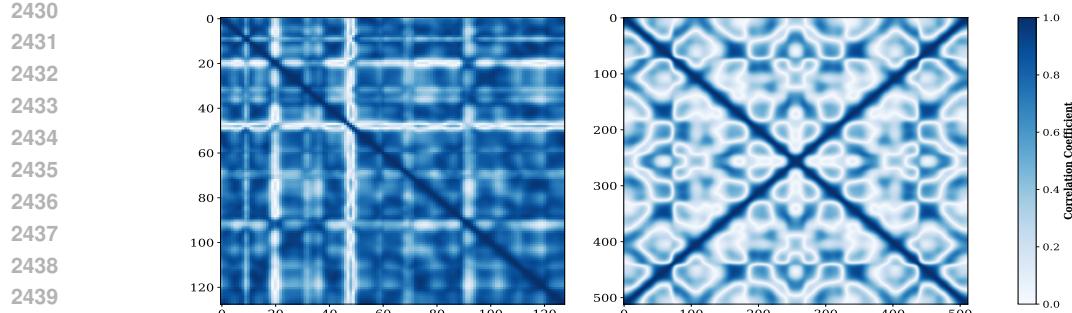
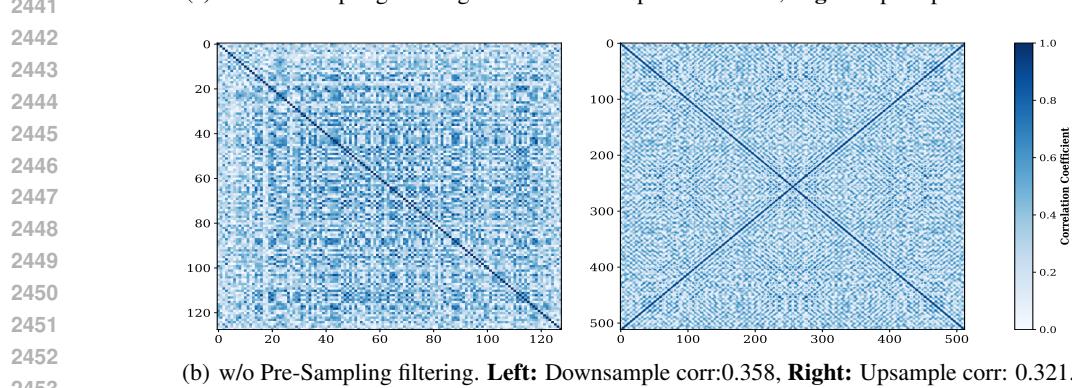


2392 (a) w / Pre-Sampling filtering. **Left:** Downsample corr: 0.432, **Right:** Upsample corr: 0.534.



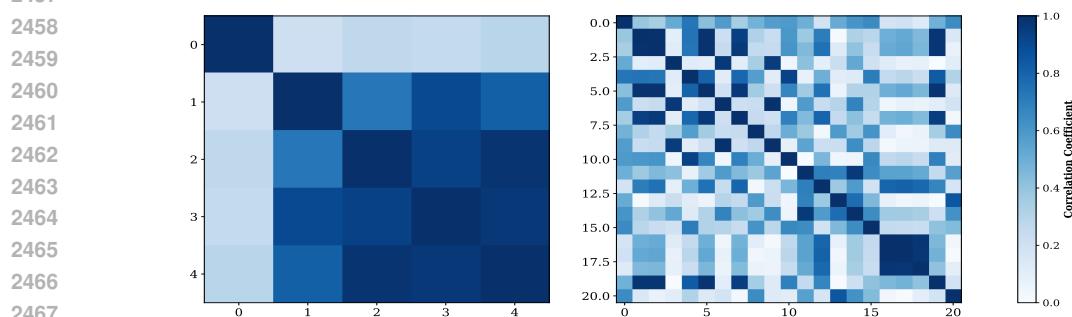
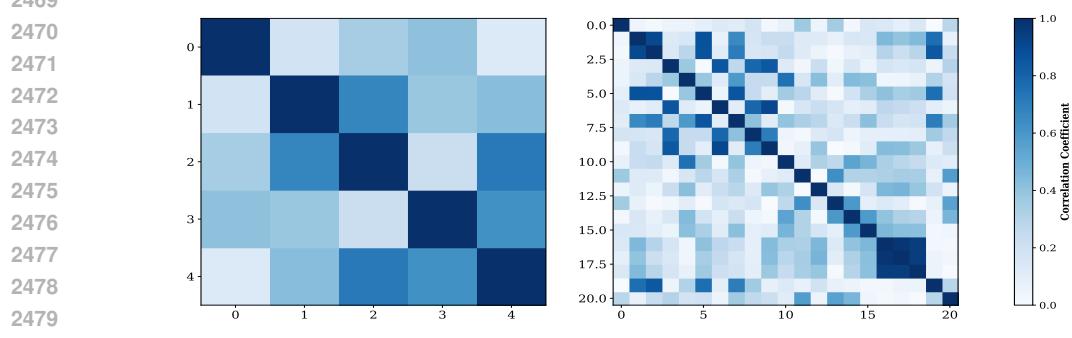
2393 (b) w/o Pre-Sampling filtering. **Left:** Downsample corr: 0.311, **Right:** Upsample corr: 0.254.

2416 Figure 8: Visualization for channel dependency modeling on Electricity in the first layer of the
 2417 second multiscale encoder block.



2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467

Figure 9: Visualization for temporal dependency modeling on Electricity in the first layer of the second multiscale encoder block.



2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500

Figure 10: Visualization for channel dependency modeling on Weather in the first layer of the first multiscale encoder block.

2484

2485

2486

2487

2488

2489

2490

2491

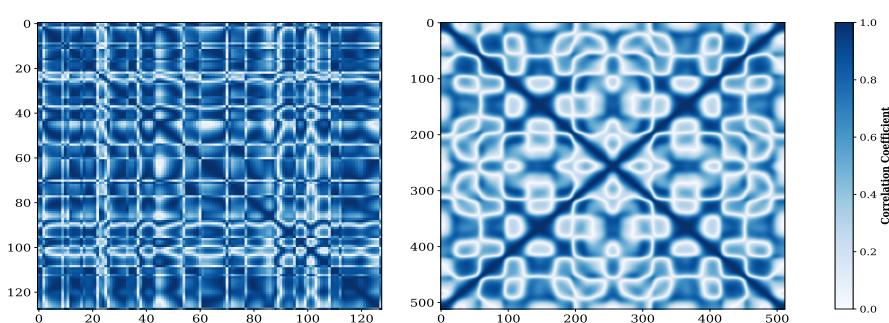
2492

2493

2494

2495

2496

(a) w / Pre-Sampling filtering. **Left:** Downsample corr: 0.679, **Right:** Upsample corr: 0.463.

2497

2498

2499

2500

2501

2502

2503

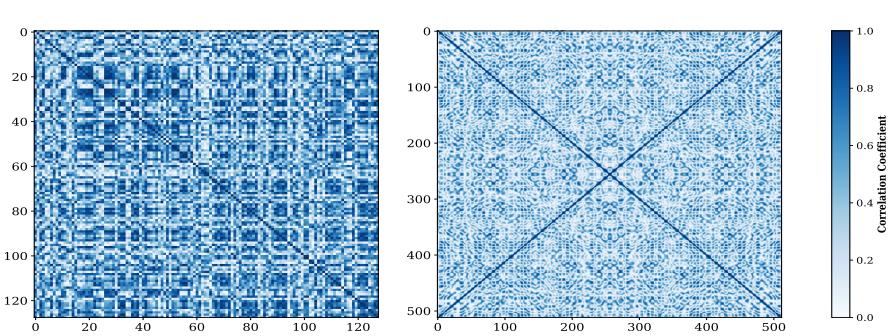
2504

2505

2506

2507

2508

(b) w/o Pre-Sampling filtering. **Left:** Downsample corr: 0.520, **Right:** Upsample corr: 0.332.

2509

2510

Figure 11: Visualization for temporal dependency modeling on Weather in the first layer of the first multiscale encoder block.

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

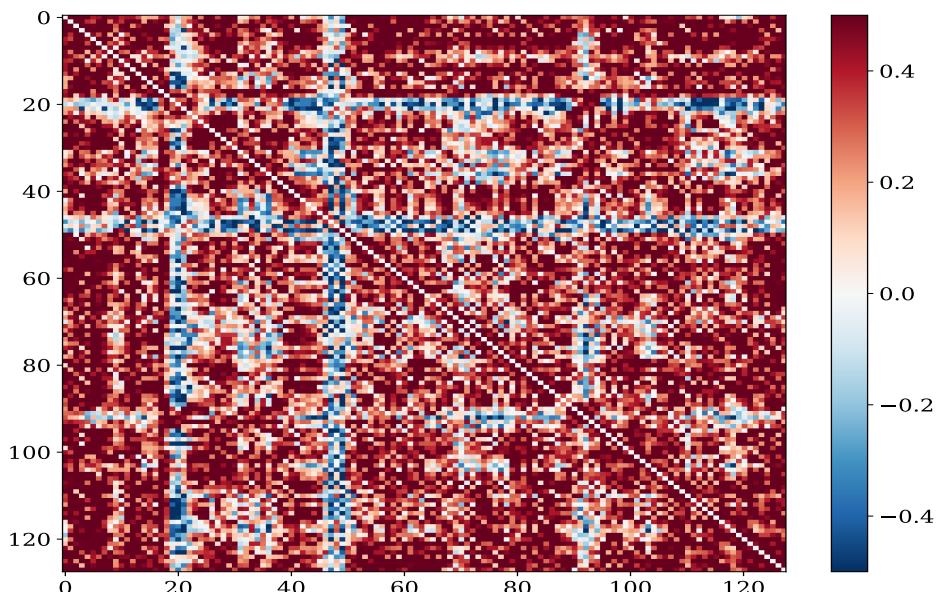


Figure 12: Temporal dependency differences in up-sampling with or without the application of an anti-alias filter on Electricity. Red indicates increased dependency after use anti-alias filter.

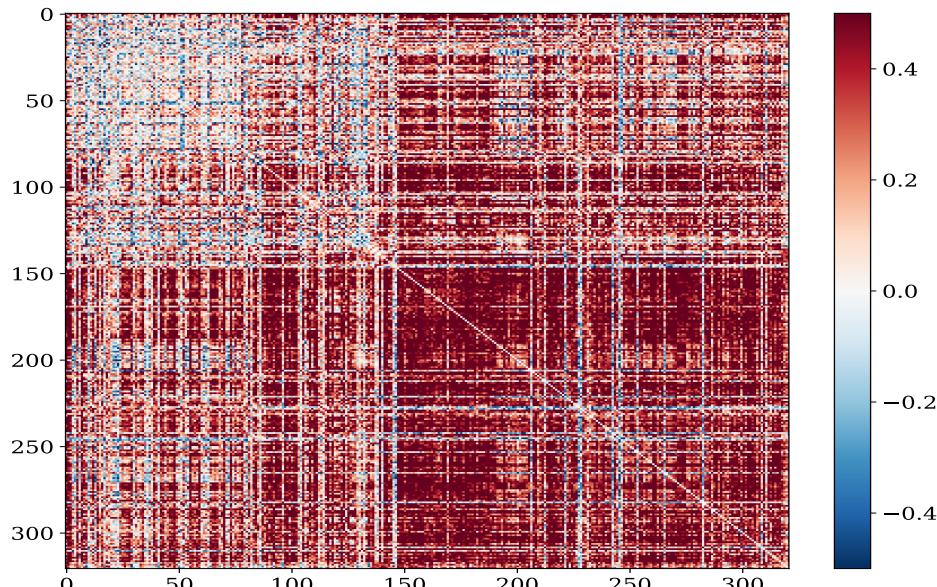


Figure 13: Channel dependency differences in down-sampling with or without the application of an anti-alias filter on Electricity. Red indicates increased dependency after use anti-alias filter.

2592 I THE USE OF LARGE LANGUAGE MODELS

2593
 2594 Large Language Models were employed as general-purpose assistive tools throughout the research
 2595 process. Specifically, LLMs were used to polish the language and improve the readability of this
 2596 manuscript, including refining grammar, improving clarity, and restructuring sentences for better
 2597 readability. The authors take full responsibility for the content of this paper.

2600 J EMPIRICAL VERIFICATION OF ALIASING RISKS VIA SPECTRAL INJECTION 2601 ATTACK

2604 J.1 MOTIVATION AND DATASET CONSTRUCTION

2605 To validate the aliasing risks discussed in the main text and quantitatively evaluate the spectral fidelity
 2606 of different architectures, we designed a controlled experiment named Spectral Injection Attack.
 2607 Specifically, we constructed a synthetic dataset based on real-world patterns to simulate scenarios
 2608 where high-frequency information is crucial for forecasting but highly susceptible to aliasing during
 2609 downsampling. The dataset is generated by injecting a specific high-frequency component into a
 2610 base time-series signal:

$$2611 \mathbf{x}_{\text{attack}}(t) = \mathbf{x}_{\text{base}}(t) + A \cdot \cos(2\pi t f_{\text{attack}}), \quad (33)$$

2612 where $\mathbf{x}_{\text{base}}(t)$ represents the background signal, and $\mathbf{x}_{\text{attack}}(t)$ represents the signal after injection
 2613 attack. We utilized the normalized ETTh1 dataset to retain the chaotic and non-stationary character-
 2614 istics of real-world time series. f_{attack} is the injected attack frequency, set to 0.38 Hz (assuming a unit
 2615 sampling rate $f_s = 1.0$ Hz). A is the amplitude of the injected signal, set to 2.5, making the high-
 2616 frequency pattern distinct in both time and frequency domains. According to the Nyquist-Shannon
 2617 Sampling Theorem, the new sampling rate becomes $f'_s = f_s/2 = 0.5$ Hz, and the correspond-
 2618 ing Nyquist frequency becomes $f'_{\text{Nyq}} = 0.25$ Hz. Since $f_{\text{attack}}(0.38 \text{ Hz}) > f'_{\text{Nyq}}(0.25 \text{ Hz})$, naive
 2619 downsampling methods, e.g., average pooling or strided convolution without filtering, theoretically
 2620 guarantee **Spectral Aliasing**. The high-frequency component will be indistinguishably folded into
 2621 a spurious low frequency $f_{\text{alias}} = |0.5 - 0.38| = 0.12$ Hz. This experiment aims to test whether
 2622 models can disentangle and preserve this high-frequency information or succumb to aliasing and
 2623 smoothing effects.

2624 J.2 EXPERIMENTAL SETTINGS

2625 To benchmark spectral fidelity, we conducted a comprehensive comparison between DMANet and
 2626 seven representative baselines spanning diverse architectures, including MLP-based (TimeMixer
 2627 Wang et al. (2024a), TimeXer Wang et al. (2024b)), Linear Decomposition (DLinear Zeng et al.
 2628 (2023)), Transformer (iTransformer Liu et al. (2024)), Frequency-domain (FreTS Yi et al. (2024b),
 2629 FilterNet Yi et al. (2024a)), and KAN-based (TimeKAN Huang et al. (2025)) models. All experi-
 2630 ments were standardized with a fixed look-back window and prediction horizon of $L = T = 96$,
 2631 employing a downsampling factor of $s = 2$ for multi-scale architectures and utilizing **MSE Loss** for
 2632 optimization. To rigorously quantify the fidelity of signal reconstruction in the frequency domain,
 2633 we denote the amplitude spectra of the ground truth and predicted signals as $S_{\text{true}}(f) = |\mathcal{F}(\mathbf{Y})|$ and
 2634 $S_{\text{pred}}(f) = |\mathcal{F}(\hat{\mathbf{Y}})|$, respectively, which serve as the basis for our spectral evaluation metrics. We
 2635 introduced two specific metrics:

- 2636 • **Spectral Distortion (SD)**: This metric measures the overall structural divergence between
 2637 the predicted and ground truth spectra. To focus on shape rather than absolute scale, we
 2638 calculate the Euclidean distance between the normalized amplitude spectra:

$$2639 \text{SD} = \sqrt{\sum_k \left(\frac{S_{\text{pred}}(f_k)}{\sum_j S_{\text{pred}}(f_j)} - \frac{S_{\text{true}}(f_k)}{\sum_j S_{\text{true}}(f_j)} \right)^2} \quad (34)$$

2640 A lower SD indicates that the model has successfully reconstructed the frequency patterns
 2641 without introducing significant noise or aliasing artifacts.

2646
 2647 • **High-Frequency Capture (HFC):** This metric specifically quantifies the preservation of
 2648 the injected high-frequency component. We define a local frequency window $\Omega = [f_{\text{attack}} -$
 2649 $\delta, f_{\text{attack}} + \delta]$ centered at the attack frequency (with $\delta = 0.02$ Hz) and calculate the energy
 2650 ratio:

$$\text{HFC} = \frac{\sum_{f \in \Omega} S_{\text{pred}}(f)^2}{\sum_{f \in \Omega} S_{\text{true}}(f)^2} \times 100\% \quad (35)$$

2651 An HFC value close to 100% indicates perfect disentanglement and reconstruction of the
 2652 high-frequency signal. Values significantly lower than 100% imply signal loss due to
 2653 smoothing or aliasing, while values exceeding 100% indicate spectral overshoot or insta-
 2654 bility.

2657 J.3 RESULTS AND OBSERVATIONS

2658 As illustrated in Figure.5, DMANet demonstrates superior spectral fidelity, achieving a near-perfect
 2659 HFC of 99.8% and the lowest SD of 0.0062, which validates the effectiveness of our ESR-based
 2660 anti-aliasing filter in cleanly disentangling high-frequency signals. In stark contrast, FilterNet and
 2661 DLinear suffered from severe signal attenuation with HFCs of only 76.9% and 82.8% respectively,
 2662 confirming that their inherent pooling or moving average mechanisms function as aggressive low-
 2663 pass filters that irreversibly erode critical high-frequency features. Meanwhile, TimeKAN exhibited
 2664 spectral instability; despite a high energy capture, its excessive HFC (114.6%) and elevated SD
 2665 (0.0206) indicate significant spectral overshoot and spurious oscillations arising from unconstrained
 2666 non-linear fitting. Furthermore, while FreTS and TimeXer managed to capture the target frequency
 2667 relatively well (103.6% and 95.8% HFC), their SD values remained over three times higher than that
 2668 of DMANet, revealing the introduction of substantial background noise and aliasing artifacts during
 2669 reconstruction.

2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699