
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A DYNAMIC MULTISCALE ANTI-ALIASING NETWORK
FOR TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world time series inherently exhibit complex temporal patterns. Within
chaotic systems, significant mixing and entanglement occur between different
time-varying modes. Given that time series exhibit distinctly different patterns at
various sampling scales, downsampling to extract multiscale features is a common
approach. However, conventional downsampling causes high-frequency compo-
nents in the original signal, those exceeding the new Nyquist frequency, to un-
dergo spectral folding. This erroneously introduces spurious low-frequency pat-
terns, perceived as low-frequency noise, thereby leading to the aliasing problem.
To address this problem, we propose a Decomposition-Prevention-Fusion archi-
tecture framework called DMANet, which introduces the Dynamic Multiscale
Anti-Aliasing Network. Specifically, DMANet comprises two key components:
Multiscale Convolutional Downsampling, designed to capture temporal depen-
dencies and inter-channel interactions, and an Anti-Aliasing Operation, which
includes Pre-Sampling Anti-Aliasing Filtering and Post-Sampling Interpolation.
These designs guarantee the fidelity of multiscale features before and after down-
sampling. We show that by mitigating the risk of aliasing, our proposed sim-
ple convolutional downsampling architecture achieves performance competitive
with common baselines and larger Transformer-based models prevalent in ex-
isting studies across multiple benchmark datasets. Our codes are available at
https://anonymous.4open.science/r/DMANet-ED7A.

1 INTRODUCTION

Time series analysis is widely applied in various fields such as health Morid et al. (2023), eco-
nomics Sezer et al. (2020), transportation Shu et al. (2021), and weather Volkovs et al. (2024). With
the widespread adoption of physical and virtual sensors, vast amounts of time series data are con-
tinuously generated, offering unprecedented opportunities for in-depth analysis and modeling. In
contrast to image, video, and text data, which often possess defined syntax or intuitive patterns, time
series data consist of scalar values continuously recorded at each time point. Semantic information
in time series data is mainly derived from temporal changes Wu et al. (2023).

The complexity and non-stationarity inherent in real-world systems mean that observed time series
often exhibit intricate temporal patterns (e.g., ascents, descents, fluctuations, sudden drifts). These
patterns interact, and such interactions become particularly pronounced in chaotic systems, where
significant overlap and aliasing can occur Wu et al. (2024). This challenge intensifies when distinct
temporal patterns emerge at multiple scales, resulting in the entanglement of various temporal vari-
ations Shang et al. (2024) Kou et al. (2025). Therefore, time series analysis must carefully consider
the intricate interactions and dynamic relationships among temporal patterns.

To address the complex time-varying entanglement in time series, an increasing number of studies
focus on leveraging prior knowledge to decompose time series into more interpretable and simpler
components that provide a basis for forecasting. For example, models such as Autoformer Wu et al.
(2021) and Dlinear Zeng et al. (2023) decompose series into seasonal and trend components. Times-
Net Wu et al. (2023) and Peri-midformer Wu et al. (2024) leverage the periodicity of time series by
dividing long sequences into shorter segments based on period length, enabling separate modeling of
inter- and intra-period dependencies. Beyond time-domain decomposition, frequency-domain anal-
ysis offers a valuable complementary perspective to understand temporal entanglement. Techniques
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Figure 1: The illustration demonstrates the occurrence of aliasing when sampling a time series
signal from the perspective of its frequency spectrum. Left:The frequency spectrum of a signal with
maximal frequency xmax. Center: After sampling at a sufficiently high rate, replicated spectra do
not overlap means that no aliasing occurs. Right: After undersampling, spectral replicas overlap,
causing aliasing due to mixed frequency components. More details in Appendix.A.3

like the Fourier transform allow signals to be decomposed into orthogonal frequency components,
where low frequencies might represent long-term periodic variations and high frequencies capture
abrupt events, revealing intrinsic patterns often obscured in the time domain.

However, as time series exhibit distinct temporal patterns at varying sampling scales Wang et al.
(2024a), future variations are jointly determined by the interplay of multiple scales Hu et al. (2025)
Liu et al. (2025). Despite the effectiveness of the aforementioned methods in decomposing specific
aspects, modeling complex time-varying entanglement remains a critical challenge. Increasingly,
multiscale decomposition approaches, exemplified by TimeMixer Wang et al. (2024a), aim to model
multiscale variations by decomposing them into different temporal granularities. These methods
often select downsampling operations, progressively reducing temporal resolution using techniques
such as strided convolutions or pooling layers to expand the models’ receptive field and capture
dependencies across different scales.

However, existing downsampling processes are susceptible to critical aliasing risks as shown in Fig-
ure.1 (see Appendix.A for a detailed explanation). When downsampling operators such as strided
convolutions or pooling are used, high-frequency components of the original signal that exceed the
new Nyquist frequency undergo spectral folding Shannon (1949); Nyquist (1928). If undersampled,
these folded components are incorrectly represented as spurious low-frequency patterns, compro-
mising the precision and reliability of the extracted multiscale features Chen et al. (2024a). In
high-sensitivity domains such as industrial fault diagnosis Ahmed et al. (2022), such distortions and
the introduction of incorrect frequency can hinder diagnostic capabilities for domain experts.

Motivated by these observations, we posit that directly addressing the aliasing problem inherent
in downsampling processes, particularly within convolutional architectures, represents a key break-
through for constructing reliable multiscale time series models capable of effectively modeling time-
varying entanglement. Technically, we introduce a novel multiscale convolutional downsampling
framework centered around a Decomposition-Prevention-Fusion architecture, designed to mitigate
aliasing during the downsampling process. Our contributions can be summarized as follows:

• We reexamine the multiscale downsampling framework for time series from a synergis-
tic time-frequency perspective, proposing a Decomposition-Prevention-Fusion architecture
that effectively disentangles time-series features to address the challenges posed by com-
plex time-varying entanglement.

• We introduce novel mechanisms for pre-emptive prevention and post-hoc suppression of
aliasing explicitly within the multiscale decomposition process, thereby further leveraging
the potential of convolutional downsampling for time-series analysis.

• Through extensive experiments, we demonstrate that our proposed method achieves state-
of-the-art performance with a parameter-efficient design across multiple benchmarks.

2 RELATED WORK

Frequency-aware Models. In time series analysis, the frequency domain can effectively capture
periodic information that is difficult to represent in the time domain, thus becoming an important
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complement to time domain modeling. Some methods aim to enhance time domain operations by in-
corporating frequency domain features as auxiliary information. For example, FEDformer performs
attention weight aggregation in the frequency domain Zhou et al. (2022b). Film separates the signal
from the noise in historical information through Fourier filtering Zhou et al. (2022a). Meanwhile,
approaches are proposed which replace time domain input with frequency domain representations
directly. FITS Xu et al. (2024) and FreTS Yi et al. (2024b) use frequency-domain MLPs for pre-
diction, significantly reducing computational complexity. FreDF Wang et al. (2025) introduces an
additional loss function in the frequency domain to supervise the alignment of the model’s spectrum
with the real values. However, the effectiveness of frequency domain methods is constrained by
the spectrum utilization bottleneck. FilterNet Yi et al. (2024a) through simple filters demonstrates
that traditional feature selection strategies in the frequency domain, such as top-K or random-K,
may lead to the loss of key frequency band information. Although Fredformer Piao et al. (2024b)
and proposes a frequency band equal learning mechanism and CFPT Kou et al. (2025) introduced a
dual-branch architecture featuring a cross-frequency interaction module, it still does not address the
issue of modeling dynamic interactions between frequency bands.

Decomposition-based Models. Real-world time series are often composed of various underlying
patterns. To take advantage of the features of different patterns, recent methods tend to decompose
the sequence into multiple subcomponents, including trend-seasonal decomposition, multiperiod de-
composition, and multiscale decomposition Huang et al. (2025). Methods such as Autoformer Wu
et al. (2021) and DLinear Zeng et al. (2023) use moving averages to decouple seasonal and trend
components, followed by modeling with attention mechanisms or MLP layers. TimesNet Wu et al.
(2023) and PDF Dai et al. (2024) utilize Fourier analysis to decouple the sequence into multiple
subperiodic sequences based on computational periods. FRENet Zhang et al. (2024) introduces
a frequency-based rotation network that can capture the features of dynamically complex periods.
Furthermore, TimeMixer Wang et al. (2024a) uses past decomposable mixes for multiscale represen-
tation learning and future multi-prediction mixes to enhance forecasting with complementary skills.
TimeStacker Liu et al. (2025) progressively stacks features from patches of varying sizes and em-
ploys a frequency-based self-attention mechanism. However, the information fidelity of multiscale
decomposition is facing challenges. Downsampling operations may lead to the loss of fine-grained
features due to spectral aliasing. To address the limitations, this paper proposes a multiscale decom-
position framework based on frequency domain adaptive filtering, which automatically suppresses
aliasing noise through frequency band masking, ensuring the integrity of multiscale feature transfer.

3 MODEL FRAMEWORK

3.1 OVERALL ARCHITECTURE

In this section, we explain the workflow of DMANet based on a single sample for clarity. The over-
all architecture adopts a Decomposition-Prevention-Fusion paradigm shown in Figure.2. The input
sequence is initially normalized and projected into the latent space. Then, a hierarchical extractor
progressively decomposes the sequence into multiscale representations through stacked depth-wise
and point-wise convolutions, with gradual downsampling of temporal resolution to capture both
intra-variable and inter-variable interactions, respectively. Adhering to the prevention design prin-
ciple, anti-aliasing filters are performed before each downsampling step. Next, in the upsampling
phase, learnable spectral filters are adopted to expand the channel, while zero-padding expands the
temporal length, effectively suppressing aliasing distortions. In the fusion stage, multiscale features
are integrated using Softmax, while residual connections are made between stacked encoder blocks.
Finally, the hierarchical representations are decoded. This architecture fully leverages the potential
of convolutional downsampling through joint time-frequency operations.

3.2 NORMALIZATION AND EMBEDDING

First, we apply RevIN to the input data X ∈ RC×L to reduce the discrepancy between the training
and testing data distributions Kim et al. (2022). Following this, an initial linear embedding layer
re-encodes the normalized series into a latent space that is more suitable for pattern extraction and
anti-aliasing. During this encoding process, we add a learnable positional encoding to preserve
crucial temporal context by providing an absolute positional reference. The resulting embedded
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Figure 2: The overall architecture of DMANet. The input time series is first projected into a latent
space via an Embedding Layer. The framework then employs a Downsampling Block to extract
multiscale features using depth-wise and point-wise convolutions. Crucially, before each downsam-
pling step, a Pre-Sampling Anti-Aliasing operation is performed: features are transformed to the
frequency domain using FFT, filtered with a dynamic low-pass mask, and transformed back via iFFT
to mitigate aliasing. Subsequently, in the Post-Sampling Interpolation phase, multiscale features
are restored to the original resolution and fused in the frequency domain using a learnable matrix
and zero-padding. Finally, a linear layer decodes the features to produce the forecast.

representation is denoted as X
′
= Linear(RevIN(X)) + W , X

′ ∈ RC×T , where T represents
the dimension of the embedded representation and W represents the positional encoding. This X ′

serves as the input to the subsequent multiscale extracting layers. The detailed rationale for this
embedding-first approach is provided in the Appendix.G.1.

3.3 MULTISCALE CONVOLUTIONAL DOWNSAMPLING

To capture features at varying temporal resolutions, we process the embedded X ′ through a hier-
archy of H downsampling layers. Unlike methods relying solely on pooling Wang et al. (2024a),
we employ convolutions for efficient multiscale feature extraction. This process generates a set of
downsampled feature maps Xdown = {x(0), x(1), x(2), . . . , x(H)}, where x(0) is the initial input X ′

and x(l) ∈ RCl×Tl . The temporal dimension decreases at each layer: T0 = T and Tl = ⌊Tl−1/s⌋
for l ≥ 1, with s being the fixed downsampling stride. The number of channels Cl can also vary
across layers.

Depth-wise Convolution. In the l-th layer, the input x(l−1) ∈ RCl−1×Tl−1 first undergoes a depth-
wise convolution (DWConv). This operation applies distinct filters to each input channel, focusing
on modeling temporal dependencies within channels without cross-channel interference:

f (l) = DWConv(x(l−1); stride = s, groups = Cl−1) ∈ RCl−1×Tl . (1)

Point-wise Convolution. Following the depth-wise convolution, a point-wise convolution (PW-
Conv, that is, a 1× 1 convolution) performs a linear transformation across channels. This enhances
inter-channel communication and maps the feature from Cl−1 channels to Cl channels:

x(l) = PWConv(f (l)) ∈ RCl×Tl . (2)

When iterating this process up to the H-th layer, we can obtain the produced multiscale feature set
Xdown = {x(0), x(1), x(2), . . . , x(H)}. This design efficiently separates the learning of temporal pat-
terns and channel interactions while significantly reducing parameters and computation, providing
rich hierarchical information for subsequent interpolation and fusion.
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(a) Common Downsample (b) Expansion Downsample

Figure 3: Illustration of how a larger kernel and channel expansion preserve sampling information
during downsampling. Left: Pointwise downsampling with a stride of 2 and no channel expansion
results in a sampling rate of 1/2, discarding half the input information. This leads to aliasing, where
high-frequency content is misrepresented as low frequencies. Right: Downsampling with 2×1 iden-
tity kernels and 2× channel expansion ensures that every input element is sampled and preserved in
separate channels. This approach maintains the effective sampling rate at 1,as all pixels are sampled.

3.4 ANTI-ALIASING OPERATION

In Section.3.3, the depth-wise convolution and point-wise convolution are proposed. To reduce
the negative effect of aliasing, a Pre-Sampling Filtering and Post-Sampling Interpolation should be
performed before feeding x(l−1) and after acquiring x(l), respectively.

Pre-Sampling Filtering. Downsampling inevitably introduces the risk of aliasing, where high-
frequency components fold into lower frequency bands, potentially corrupting the signal or los-
ing critical information, especially with larger strides s. Inspired by the work in computer vi-
sionGrabinski et al. (2022a)Chen et al. (2024a), we introduce the concept of Equivalent Sampling
Rate (ESR) to dynamically compute the appropriate Nyquist frequency for anti-aliasing filtering
during downsampling. We provide a detailed proof for ESR in Appendix.B. As shown in Figure.3,
the size of the convolutional kernel and the transformation of channels play a role in determining the
sampling ability. Concretely, the ESR at the l-th layer can be calculated with the following strategy:

ESR(l) =
min (K,Cl/Cl−1)

s
, (3)

where K is the kernel size of the depth-wise convolution, Cl−1 and Cl are the input and output
channels for the layer’s point-wise convolution, and s is the stride. Before applying the down-
sampling convolution, we use FFT (F) to transform the input x(l−1) into the frequency domain:
X (l−1) = F(x(l−1)). The layer-specific Nyquist frequency is f

(l)
Nyquist = ESR(l)/2. Based on

f
(l)
Nyquist, we construct a low-pass frequency mask M(l):

M(l)[i] =

{
1, fi ≤ f

(l)
Nyquist

0, fi > f
(l)
Nyquist

, (4)

where fi is the i-th frequency compotent in X (l−1). Then, we apply the mask in an element-wise
strategy (⊙), and transform back using IFFT (F−1):

X̃ (l−1) = X (l−1) ⊙M(l), x
(l−1)
filtered = F−1(X̃ (l−1)). (5)

This filtered signal x(l−1)
filtered, which serves as the real x(l−1), is then fed into the depth-wise convolu-

tion, effectively suppressing high frequencies prone to aliasing during downsampling.

Post-Sampling Interpolation. After obtaining the downsampled feature x(l) ∈ RCl×Tl , we pro-
pose an anti-aliasing interpolation method and frequency domain channel expansion to restore the
temporal resolution to a target length T and expand channels to the model dimension C.

5
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First, the downsampled feature is transformed to the frequency domain using F . Inspired by fre-
quency domain filtering strategies Yi et al. (2024a), we introduce our designed learnable complex-
valued filters H(l)

ϕ ∈ CC×Cl×Fl , which are also transformed to the frequency domain. We then
perform channel expansion through a weighted sum in the frequency domain, effectively imple-
menting channel mixing. This operation computes each output channel c as a learned combination
of all Cl input channels at each frequency f , fusing cross-channel information while preserving the
spectral structure:

X (l) = F(x(l)) ∈ CCl×Fl , Fl = ⌊Tl/2⌋+ 1, (6)

S(l)[c, f ] =

Cl∑
k=1

X (l)[k, f ]⊙H(l)
ϕ [c, k, f ], for c ∈ [1, C] and f ∈ [1, Fl], (7)

where S(l) ∈ CC×Fl . To restore the sequence length to T , we calculate the corresponding target
frequency count F = ⌊T/2⌋+ 1. We apply zero-padding (Pad) in the frequency domain to extend
the spectrum S(l) from Fl components to F components. This zero-padding primarily serves to in-
terpolate the signal in the time domain while implicitly acting as a low-pass filter, further mitigating
potential aliasing introduced during the process. Finally, F−1 transforms the padded spectrum back
to the time domain, producing the interpolated feature map for level l:

S̃(l) = Pad(l)(S(l)) ∈ CC×F , Y (l) = F−1(S̃(l), n = T ) ∈ RC×T . (8)

Executing channel expansion before zero-padding ensures that the spectral information for each
expanded channel is complete before interpolation, avoiding potential spectral leakage or distortion
and contributing to high-fidelity reconstruction in multi-channel time series tasks.

3.5 MULTISCALE FEATURE FUSION AND DECODING OUTPUT

Feature Fusion. The above operations are processed in a single encoder block, and the inter-
polation step generates a set of feature maps {Y (1), Y (2), . . . , Y (H)}, each residing at the target
resolution T , but derived from different temporal scales. To integrate these multiscale information,
we employ adaptive weighting. A learnable weight vector w ∈ RH is introduced, and its Softmax
normalization yields attention scores αp for each scale. The final output Ŷ e of the e-th encoder
block is the weighted sum of these multiscale features:

αp =
exp(wp)∑H
k=1 exp(wk)

, Ŷ e =

H∑
p=1

αp · Y (p) ∈ RC×T . (9)

Our model stacks E such multiscale encoder blocks. To facilitate the training of this deep archi-
tecture and preserve information flow, we incorporate residual connections around each encoder
block, where Ŷ (0) = X ′ means the initial embedded representation, and Ŷ e is the output of the e-th
encoder layer:

Ŷ e = MultiScaleEncoder(Ŷ e−1) + Ŷ e−1, for e = 1, 2, 3, . . . , E. (10)

Decoding Output. The output Ŷ E from the final encoder block, representing rich multiscale fea-
tures, first passes through a Layer Normalization step, Y ∗ = LayerNorm(Ŷ E). Then a simple
Feed-Forward Network (FFN) decoder projects these features into the future prediction horizon
Lnext. Then we apply the inverse RevIN transformation (iRevIN) to obtain the final forecast X̂o:

X̂o = iRevIN(FFN(Y ∗)) ∈ RC×Lnext . (11)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on many real-world public datasets for long-term forecasting:
ETT (four subsets), Weather, ECL, Solar-Energy, PEMS (four subsets). For short-term forecasting,
we adopt the ILI, COVID-19, NASDAQ, Wiki, SP500, DowJones, CarSales, Power, Website, Un-
emp. These datasets are standard benchmarks Wang et al. (2024a) Liu et al. (2024) Yue et al. (2025).
Details and statistics of these multivariate time series datasets are summarized in Appendix.C.
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Table 1: Long-term forecasting results (L = 96). All results are averaged across four forecasting
horizon: T ∈ {96, 192, 336, 720}. The best and second-best results are highlighted in bold and
underlined, respectively. See Appendix.D (Table.11 and Table.12) for full results.

Models DMANet iTransformer TimeMixer FilterNet Fredformer FITS FreTS TimePro FreDF SOFTS TimeXer
Ours 2024 2024a 2024a 2024a 2024 2024b 2025 2025 2024 2024b

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.428 0.429 0.454 0.447 0.447 0.440 0.440 0.432 0.445 0.432 0.447 0.448 0.488 0.474 0.438 0.438 0.437 0.435 0.449 0.442 0.437 0.437
ETTh2 0.361 0.388 0.383 0.407 0.364 0.395 0.378 0.397 0.367 0.396 0.383 0.408 0.550 0.515 0.377 0.403 0.371 0.396 0.373 0.400 0.368 0.396
ETTm1 0.373 0.385 0.407 0.410 0.381 0.395 0.384 0.398 0.393 0.403 0.387 0.408 0.407 0.415 0.391 0.400 0.392 0.399 0.393 0.403 0.382 0.397
ETTm2 0.268 0.310 0.288 0.332 0.275 0.323 0.276 0.322 0.279 0.324 0.286 0.328 0.335 0.379 0.281 0.326 0.278 0.319 0.287 0.330 0.274 0.322
Weather 0.236 0.262 0.258 0.279 0.240 0.271 0.248 0.278 0.246 0.272 0.249 0.276 0.255 0.363 0.251 0.276 0.254 0.274 0.255 0.278 0.241 0.271

Electricity 0.170 0.264 0.178 0.270 0.182 0.272 0.201 0.285 0.175 0.269 0.217 0.295 0.202 0.290 0.169 0.262 0.170 0.259 0.174 0.264 0.171 0.270
Solar-Energy 0.227 0.249 0.233 0.262 0.216 0.280 0.263 0.286 0.232 0.274 0.397 0.398 0.283 0.338 0.232 0.266 0.279 0.292 0.229 0.256 0.237 0.302

Baseline. Our primary analysis focuses on long-term forecasting with a 96-step lookback window
(Table 11, Table 12 and Table 15). In addition to this main task, we also conducted evaluations
on univariate long-term forecasting (Table 16), short-term forecasting (Table 17), and long-term
forecasting with an extended 720-step lookback window (Tables 13 and 14). Across these diverse
settings, we chose a comprehensive set of recent state-of-the-art models to serve as baselines. This
includes MLP-based models (SOFTS Han et al. (2024), TimeMixer Wang et al. (2024a), DLinear
Zeng et al. (2023)), CNN-based models (TVNet Li et al. (2025), ModernTCN Donghao & Xue
(2024), PDF Dai et al. (2024)), frequency-based models (FreDF Wang et al. (2025), FilterNet Yi
et al. (2024a) etc.), Transformer-based models (TimeXer Wang et al. (2024b), iTransformer Liu
et al. (2024), etc.), and recent architectures based on Mamba (TimePro Ma et al. (2025)) and KAN
(TimeKAN Huang et al. (2025)). To ensure a clear and focused presentation in the main text, our
primary results tables (Table.1, Table.2 and Table.3) feature a curated selection of the most com-
petitive and representative SOTA models. A complete list of all evaluated baselines is described in
Appendix.C, with their comprehensive results available in Appendix.D for a thorough comparison.

Implementation Details. The experiments in this paper were conducted using an NVIDIA
GeForce RTX 3090 24GB GPU. Inspired by FreDF Wang et al. (2025), we uses the Mean Ab-
solute Error (MAE) in the frequency domain. For details on the hyperparameter settings of the
models presented in Appendix.C.

4.2 MAIN RESULTS

Long-term Forecasting. The long-term forecasting results, reported in Table.1 (more results in
Appendix.D), demonstrate that DMANet consistently achieves optimal or near-optimal performance
across all datasets. Its performance is comparable to TimeMixer, highlighting the general effective-
ness of time-series decomposition architectures. However, a key distinction lies in their downsam-
pling mechanisms: while TimeMixer’s reliance on average pooling is susceptible to information
loss, DMANet’s spectral preservation mechanism effectively suppresses aliasing artifacts, enabling
a more faithful layer-wise learning of multi-granularity representations. Conversely, when com-
pared to models with channel-wise self-attention like iTransformer, DMANet’s reliance on simpler
convolutional operations for dependency modeling suggests a potential area for future optimization,
particularly on high-dimensional datasets. Furthermore, guided by the principles of scaling laws
in Time Series Forecasting (TSF), we extended the lookback window L to 720 in Table.2 (full re-
sults can be found in Table.13 and Table.14). In this long-context setting, DMANet exhibits robust
noise resilience, maintaining state-of-the-art performance and surpassing other convolutional coun-
terparts like ModernTCN and TVNet. This result further validates DMANet’s superior adaptability
in capturing multi-scale temporal dependencies, even with extended input lengths.

Table 2: Long-term forecasting results (L = 720). For baseline, the input length L is searched from
{192, 336, 512, 720}, while DMANet is fixed 720. The best and second-best results are highlighted
in bold and underlined, respectively. See Appendix.D (Table.13 and Table.14) for full results.

Models DMANet iTransformer TimeMixer ModernTCN TVNet TSLANet PDF PatchTST FITS TimesNet DLinear

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.338 0.369 0.361 0.390 0.356 0.380 0.351 0.381 0.348 0.379 0.348 0.383 0.342 0.376 0.349 0.381 0.357 0.377 0.408 0.415 0.356 0.378

ETTm2 0.248 0.307 0.269 0.327 0.257 0.318 0.253 0.314 0.256 0.316 0.256 0.316 0.250 0.313 0.256 0.314 0.254 0.313 0.292 0.331 0.259 0.324

Weather 0.218 0.252 0.232 0.270 0.226 0.264 0.224 0.264 0.221 0.261 0.325 0.337 0.227 0.263 0.224 0.261 0.244 0.280 0.255 0.282 0.242 0.293

Electricity 0.154 0.252 0.163 0.258 0.169 0.265 0.156 0.253 0.165 0.254 0.165 0.257 0.160 0.253 0.171 0.270 0.169 0.265 0.190 0.290 0.167 0.264
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Short-term Forecasting. The short-term forecasting results, presented in Table.3, validate the su-
periority of DMANet in handling non-stationary time series. Across a diverse set of challenging
datasets such as ILI, COVID-19, and DowJones, DMANet consistently achieves the best perfor-
mance. It significantly outperforms other methods, including strong frequency-domain baselines
like Fredformer and FilterNet. These results underscore DMANet’s exceptional capability in short-
term and non-stationary forecasting, attributable to its synergistic design: the convolutional archi-
tecture excels at preserving local features, while the anti-aliasing structure effectively mitigates dis-
ruptive high-frequency noise.

Table 3: Short-term forecasting results. The best and second-best results are highlighted in bold and
underlined, respectively. See Appendix.D (Table.17) for full results and setting details.

Models DMANet TimeMixer FilterNet FITS DLinear Fredformer PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ILI 1.763 0.824 2.020 0.878 2.073 0.885 4.130 1.465 3.083 1.217 1.947 0.899 2.128 0.885
COVID-19 1.910 0.670 2.234 0.782 2.088 0.780 2.875 0.979 3.483 1.102 1.902 0.765 2.221 0.820
NASDAQ 0.177 0.273 0.186 0.281 0.197 0.289 0.210 0.302 0.228 0.331 0.194 0.285 0.198 0.286

Wiki 6.506 0.393 6.572 0.409 6.572 0.411 8.515 0.553 6.634 0.481 6.705 0.406 6.523 0.404
SP500 0.225 0.329 0.241 0.353 0.254 0.365 0.291 0.412 0.277 0.391 0.261 0.378 0.246 0.361

DowJones 11.957 0.850 13.948 0.877 13.439 0.873 13.755 0.893 12.688 0.857 12.992 0.858 12.916 0.862
CarSales 0.338 0.333 0.338 0.336 0.336 0.335 0.379 0.365 0.373 0.368 0.340 0.338 0.338 0.335

Power 1.373 0.899 1.484 0.937 1.614 0.986 1.711 1.028 1.549 0.972 1.588 0.981 1.650 0.998
Website 0.137 0.252 0.143 0.261 0.136 0.255 0.278 0.383 0.204 0.319 0.135 0.254 0.141 0.259
Unemp 0.064 0.146 0.094 0.183 0.079 0.166 0.308 0.394 0.154 0.292 0.075 0.163 0.078 0.160

4.3 ABLATION STUDY

In this section, we investigate key components of DMANet, including our novel Anti-aliasing Filter,
the Convolutional Downsampling and Frequency Upsampling Mechanisms, and the Basic Settings.

Table 4: Ablation study of DMANet. All results are averaged across four different forecasting
horizon. The best and second-best results are highlighted in bold and underlined, respectively.

Catagories Downsampling Replace Upsampling Replace Basic Settings

Cases DMANet Linear Down Self-Attention Standard Conv Linear Up Interpolate Trans Conv w/o ReVIN MSE Loss

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.172 0.265 0.176 0.271 0.180 0.276 0.179 0.274 0.174 0.268 0.184 0.274 0.179 0.271 0.215 0.316 0.173 0.268

ETTm1 0.373 0.385 0.379 0.389 0.379 0.389 0.377 0.388 0.377 0.388 0.377 0.388 0.378 0.388 0.423 0.445 0.381 0.393

Unemp 0.064 0.146 0.081 0.171 0.076 0.161 0.075 0.163 0.077 0.164 0.073 0.161 0.068 0.155 0.759 0.414 0.076 0.166

NASDAQ 0.177 0.273 0.190 0.283 0.184 0.279 0.185 0.281 0.183 0.279 0.182 0.277 0.184 0.278 2.337 1.132 0.195 0.288

Basic Settings. Ablation analysis showed that removing DMANet’s ReVIN significantly hurts
performance by failing to mitigate distribution shift. The frequency-domain MAE loss is also pre-
ferred over MSE for anti-aliasing due to enabling direct frequency adjustment.

Convolution Downsampling. To evaluate the effectiveness of convolutional downsampling, we
experimented with the following alternative strategies: (1) LinearDown: two separate linear for
downsampling; (2) Standard Conv: standard convolution with stride; (3) Self-attention: employ-
ing self-attention to capture temporal dependencies, combined with average pooling along the tem-
poral and convolutional downsampling along the channel. The results are summarized in Table.4.

Overall, the combination of depth-wise convolution and point-wise convolution demonstrates the
best performance. Notably, replacing convolution with linear or with self-attention followed by
average pooling results in a performance drop, which highlights the capability of depthwise convo-
lution in learning temporal dependencies. In addition, using standard convolution alone leads to a
substantial increase in parameter count and a worsening of most metrics, suggesting that focusing
solely on depthwise convolution to extract temporal dependencies is a more reasonable design.

Frequency Upsamping. To validate the unique advantages of frequency-domain upsampling, we
conducted experiments comparing our approach with three alternative upsampling methods that do
not explicitly target frequency information: (1) Linear Up: two separate linear for upsampling;
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Table 5: Results on generic baseline.
More details are in Appendix.C.6

Models DMANet Base w/o-Pre w/o-Post
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Unemp 0.064 0.146 0.082 0.173 0.075 0.161 0.069 0.155
DowJones 11.957 0.850 13.294 0.871 12.379 0.853 12.423 0.855

ETTm1 0.373 0.385 0.384 0.393 0.378 0.387 0.377 0.388
Weather 0.236 0.262 0.239 0.265 0.239 0.264 0.238 0.264

Table 6: Results on plug-in design. † denotes integration
with ESR filter. ↓ indicates reduction vs. vanilla models.

Models TimeMixer† MICN† SCINet†

Metric MSE MAE MSE MAE MSE MAE

Power 1.444 (↓ 0.004) 0.922 (↓ 0.015) 1.976 (↓ 0.005) 0.973 (↓ 0.013) 0.182 (↓ 0.023) 0.278 (↓ 0.003)
NASDAQ 0.182 (↓ 0.004) 0.278 (↓ 0.003) 0.198 (↓ 0.003) 0.295 (↓ 0.002) 0.234 (↓ 0.005) 0.335 (↓ 0.004)

ETTh1 0.448 (↓ 0.010) 0.439 (↓ 0.005) 0.511 (↓ 0.069) 0.503 (↓ 0.031) 0.506 (↓ 0.027) 0.478 (↓ 0.019)
Electrity 0.181 (↓ 0.003) 0.271 (↓ 0.002) 0.193 (↓ 0.003) 0.304 (↓ 0.005) 0.217 (↓ 0.002) 0.319 (↓ 0.002)

Table 7: Ablation study on different filter designs. Performance is compared against our DMANet
(utilizing the ESR filter), heuristic filters (Max, Random), and classical filters (Ideal, Chebyshev,
Gaussian, Butterworth). All results are averaged over four horizons. Details are in Appendix.C.5.

Models DMANet Max Random Ideal Chebyshev Gaussian Butterworth

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ILI 1.763 0.824 1.957 0.855 2.043 0.872 1.994 0.849 1.990 0.855 1.974 0.862 1.940 0.849
Unemp 0.064 0.146 0.073 0.157 0.074 0.159 0.073 0.159 0.075 0.164 0.071 0.154 0.072 0.158

DowJones 11.957 0.850 12.300 0.852 12.261 0.851 12.397 0.855 12.382 0.855 12.351 0.854 12.402 0.855
ETTm1 0.373 0.385 0.376 0.387 0.376 0.387 0.375 0.387 0.375 0.387 0.374 0.385 0.375 0.387

PEMS08 0.090 0.198 0.117 0.218 0.113 0.210 0.109 0.206 0.110 0.207 0.108 0.205 0.109 0.206

(2) Interpolate: simply interpolation along the temporal and channel; (3) Trans Conv: utilizes
transposed convolution mirroring the structure of the downsampling counterpart. As shown clearly
in Table.4, replacing our frequency-domain upsampling with any of these alternatives resulted in a
significant performance degradation. This indicates that these methods fail to effectively preserve or
reconstruct the crucial frequency components of time series during the upsampling process.
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Figure 4: Visualization of dependency differences, comparing feature
representations with and without the anti-aliasing filter. Red indicates
an increase, while blue indicates a decrease. (a) Left: Channel-wise
dependency. (b) Right: Temporal dependency differences.

In contrast, our strategy
first performs expansion in
the channel dimension, fol-
lowed by high-frequency
truncation in the frequency
domain. This carefully
designed approach ensures
the structural integrity
and independence of each
channel in the frequency
domain and completely
avoids the spectral leakage
and the aliasing problem
inherent to interpolation-
based methods. As a result,
our method demonstrates outstanding performance in the high-fidelity reconstruction of time series.

Anti-aliasing Design Analysis. We conducted a multi-dimensional analysis to validate the ef-
fectiveness and universality of our anti-aliasing mechanisms. First, regarding generalizability, we
integrated our ESR-based filter as a plug-in module into other downsampling-based models (e.g.,
TimeMixer, MICN) in Table.6. The consistent performance gains suggest the potential of our anti-
aliasing approach to serve as a generic enhancement for existing methods. Second, regarding com-
ponent contribution in Table.5, we constructed a generic baseline to rigorously disentangle the ef-
fects of Pre-Sampling Filtering and Post-Sampling Interpolation. The results demonstrate that both
components provide distinct and synergistic benefits: the pre-sampling filter effectively prevents
high-frequency corruption, while the frequency-domain interpolation ensures high-fidelity recon-
struction (see Appendix.H for detailed analysis). Finally, regarding filter superiority in Table.7,
we benchmarked DMANet against heuristic (Max, Random) and classical filters (Ideal, Chebyshev,
etc.). DMANet outperforms all competing filters, validating that our dynamic, architecture-aware
cutoff strategy offers superior adaptability compared to static or manual designs.

4.4 MODEL ANALYSIS

Efficiency and Robustness. We provide comprehensive results on real-world datasets (Ap-
pendix.E, Table.23) , including the Params and MACs. DMANet demonstrates a balance between
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Figure 5: Analysis of Aliasing Risks via Spectral Injection Attack. Spectral Distortion (SD) mea-
sures the Euclidean distance between the predicted and actual spectral distributions, while High-
Frequency Capture (HFC) quantifies the model’s ability to preserve the injected signal energy.

performance and efficiency. Compared to others, it requires fewer MACs and less params while
achieving better accuracy. Meanwhile, on synthetic data (Appendix.E, Table.22), we performed a
fine-grained analysis of computational costs. An ablation study revealed that our anti-aliasing filter
is not a performance bottleneck, introducing negligible overhead (a worst-case latency increase of
only 2.4%). The robustness of our model was validated through a series of noise injection experi-
ments, detailed in Appendix.F. We introduced five types of synthetic noise (e.g., high-frequency) at
various intensities ϵ. Our anti-aliasing architecture demonstrated great resilience, as its performance
degraded with increasing noise, thereby validating its ability to mitigate signal disturbances.

Dependency Modeling. Figure.4 presents feature dependency heatmaps from the ECL dataset,
which reveal the effect of anti-aliasing filter. The filter smooths fine-grained dependencies that are
susceptible to aliasing during downsampling. By suppressing these potentially noisy or misleading
correlations, the filtering process accentuates the underlying structural patterns in both the temporal
and channel. It allows the subsequent layers to more easily extract stable and meaningful features
from a cleaner, more coherent representation. Detailed dependency passing analysis in Appendix.H.

Analysis of Aliasing Risks. To verify the aliasing risks, we conducted a Spectral Injection Attack
experiment by injecting a high-frequency signal into the ETTh1 dataset. This frequency exceeds
the Nyquist limit of standard downsampling, theoretically inducing aliasing. Figure 5 illustrates the
spectral reconstruction results: DMANet achieves superior fidelity with the lowest Spectral Distor-
tion (0.0062) and HFC rate of 99.8%, accurately reconstructing the signal without artifacts. In stark
contrast, FilterNet (76.9% HFC) and DLinear (82.8% HFC) suffer from the signal attenuation, act-
ing as uncontrolled low-pass filters. Meanwhile, FreTS and TimeXer, despite capturing the target
frequency (> 95% HFC), exhibit high spectral distortion (SD > 0.017), indicating that they fail
to disentangle the signal from aliasing noise. Similarly, TimeKAN exhibits spectral instability and
overshoot (114.6% HFC). This experiment demonstrates the limitations of existing architectures
in handling Nyquist sampling, and highlights DMANet’s unique capability to maintain spectral fi-
delity.More details can be found in Appendix.I.

5 CONCLUSION

This paper presents DMANet, a novel architecture that tackles the critical aliasing problem in
multiscale time series forecasting through a Decomposition-Prevention-Fusion framework, employ-
ing pre-sampling anti-aliasing based on Equivalent Sampling Rate and post-sampling interpolation
for high-fidelity features. Extensive experiments on diverse benchmarks demonstrate DMANet’s
state-of-the-art performance and robustness, validating the significance of the anti-aliasing design.
DMANet offers a promising direction by explicitly integrating signal processing principles to en-
hance time series analysis robustness.
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6 ETHICS STATEMENT

Our research is primarily foundational, focusing on a technical challenge within time series analysis,
i.e., the problem of aliasing in multiscale deep learning models. We have considered the ethical
implications of our work and believe that it follows the scientific standards.

6.1 SOCIETAL IMPACT

The primary goal of DMANet is to improve the fidelity and reliability of time series forecasting
models by mitigating the spectral distortion caused by aliasing. This has a positive social impact
by enhancing the trustworthiness of predictive systems in high-sensitivity domains. For example,
in industrial fault diagnosis, preventing the introduction of spurious frequency patterns can improve
the accuracy of diagnostic tools and support expert decision-making. Similarly, more reliable mod-
els are beneficial in fields such as economics, transportation planning, and weather forecasting. We
acknowledge that, like any advanced forecasting technology, our methods could potentially be mis-
used. However, our work is a general-purpose technical improvement, not an application-specific
tool, and we advocate for its responsible use in future research and applications.

6.2 DATA USAGE

All experiments were carried out on publicly available and well-established benchmark datasets,
e.g., ETT, Weather, ECL, PEMS, ILI, COVID-19. A complete list and description of these datasets
are provided in the Appendix.C. In this study, no sensitive or private user data was used, thus avoid-
ing concerns related to privacy and data protection.

6.3 BIAS AND FAIRNESS

Although our work does not directly address dataset bias, it contributes to model fairness by tackling
a source of technical error. By avoiding the aliasing problem, our model is less likely to learn from
misleading artifacts in the data. This enhances the model’s robustness and ensures its predictions
are based on a more faithful representation of the underlying signal, which is a prerequisite for fair
and reliable decision-making.

7 REPRODUCIBILITY STATEMENT

7.1 CODE

The complete source codes for DMANet, including model implementations and scripts to repro-
duce experimental results, are available in our anonymous repository at https://anonymous.
4open.science/r/DMANet-ED7A. The repository includes instructions for setting up the en-
vironment, preparing the data, and running the training and evaluation scripts. Upon acceptance, the
repository will be made public and accessible.

7.2 DATASETS

Our study utilizes multiple publicly available real-world datasets for long-term and short-term fore-
casting, including ETT, Weather, ECL, Solar-Energy, PEMS, ILI, COVID-19, and others. Detailed
descriptions, statistics, sources, and data-splitting protocols (Train/Validation/Test ratios) for each
dataset are provided in Appendix.C. The data processing follows the established protocols of previ-
ous benchmark studies to ensure fair comparison.

7.3 EXPERIMENTAL SETUP

The Section.4.1 outlines the overall setup, while Appendix.C provides more implementation details,
including the hyperparameter search spaces for all tasks, the specific configurations for each dataset,
detailed descriptions of the baseline models, and the fair comparison settings. All experiments
were conducted on a single NVIDIA GeForce RTX 3090 24GB GPU using the PyTorch framework
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with the same version. In addition, the full results shown in Appendix.D complement the summary
tables in the main text. Furthermore, we rigorously validate our results through statistical tests on
experiments conducted with five random seeds, confirming that DMANet’s superior performance is
statistically significant with 99% confidence.
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A PRELIMINARIES

A.1 PROBLEM STATEMENT

Time Series. Time series X ∈ RC×N refers to a sequence of data points ordered by time, where
N denotes the total number of timestamps and C represents the number of channels at each times-
tamp. Time series forecasting involves predicting future data points based on historical time series
observations. The historical observations can be represented as X = [x1,x2, . . . ,xL] ∈ RC×L,
and L is the length of the historical look-back window. The future data for the next Lnext

time steps, denoted as X̂o = [xL+1,xL+2, . . . ,xL+Lnext ] ∈ RC×Lnext , correspond to the fore-
cast horizon. Given these, time series forecasting models are required to learn mapping functions
F : X ∈ RC×L → X̂o ∈ RC×Lnext .

Aliasing. This issue arises when different high-frequency components in a continuous signal
are indistinguishably mapped to the same low-frequency components after sampling or improper
downsampling. Formally, let the sampling interval be ∆t, with the Nyquist frequency defined as
fNyquist = 1

2∆t . Any frequency component f > fNyquist in the signal will alias to a spurious fre-
quency f̃ = |f − k · fs| in the sampled sequence X , where fs = 1

∆t is the sampling rate, and
k ∈ Z+ ensures f̃ ≤ fNyquist. This may occur when the sampling rate or downsampling operations
fail to meet the Nyquist criterion, that is, the sampling frequency must be at least twice the highest
frequency in the original signal. If not resolved, high-frequency components would fold back into
lower frequencies during downsampling, creating spurious artifacts.

A.2 PROBLEM DESCRIPTION: ALIASING IN MULTI-SCALE TIME SERIES DOWNSAMPLING

New Aliased 
Frequency

New Aliased 
Frequency

Figure 6: Left: filtering effect of the anti-aliasing filters; Right: emergence of new aliased frequen-
cies.

In Figure.6, we present a case study exploring the critical role of anti-aliasing filters in signal preser-
vation during multi-scale downsampling. By downsampling a synthetic signal containing both high-
frequency and low-frequency components, we demonstrate the occurrence of aliasing during the
reduction of the sampling rate.

The synthetic time series signal used in the study consists of several frequency components: low-
frequency components (3 Hz and 5 Hz), high-frequency components (30 Hz and 80 Hz), and Gaus-
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sian noise. The signal is initially sampled at a rate of 400 Hz. Subsequently, we perform multi-scale
downsampling at different levels (each with a window size of 3), resulting in sampling rates of
400 Hz, 133 Hz, and 44 Hz.

According to the Nyquist sampling theorem, the Nyquist frequency is half of the sampling rate.
Therefore, a 400 Hz sampling rate is sufficient to accurately sample the frequency components of
the original signal. The calculation of aliasing frequencies is derived from the spectral periodicity
characteristics of the Nyquist sampling theorem Nyquist (1928), based on the formula:

falias = |fo − k · fs| , (12)

where falias is the aliased frequency, fo is the original high-frequency component, k is an integer
representing the multiple mapping to the sampling frequency, and fs is the sampling rate.

In the first layer, the Nyquist frequency is 200 Hz, corresponding to a sampling rate of 400 Hz. Given
that the highest frequency component of the signal is 80 Hz, which is well below the Nyquist fre-
quency, no aliasing occurs; all frequency components can be accurately sampled and reconstructed.
In practical applications, an anti-aliasing filter limits frequency components above 66 Hz, thereby
preventing aliasing and removing high-frequency noise.

In the second layer, the Nyquist frequency is reduced to 66.67 Hz (corresponding to a sampling
rate of approximately 133.33 Hz), which results in aliasing of the original 80 Hz high-frequency
component. According to the aliasing formula (12), for fo = 80 Hz and with k = 1:

falias = |80− 1× 133.33| ≈ 53.33Hz. (13)

This calculation indicates that the 80 Hz component folds into the lower frequency region, specifi-
cally within the 50–60 Hz range, thereby introducing non-original frequency components and caus-
ing spectral distortion. The anti-aliasing filter in this layer effectively removes frequencies above
22 Hz to mitigate this issue.

In the third layer, the Nyquist frequency further decreases to 22.22 Hz (with a corresponding sam-
pling rate of approximately 44.44 Hz), leading to the aliasing of the original 30 Hz component.
Using the aliasing formula with k = 1:

falias = |30− 1× 44.44| ≈ 14.44Hz, (14)

indicating that the 30 Hz component folds around 14 Hz. Additionally, due to the interaction between
the sampling rate and the sampling process, frequency components in the 10–15 Hz range cannot be
accurately represented, even though they lie below the Nyquist frequency. This aliasing phenomenon
becomes particularly significant as the frequencies approach the Nyquist limit. Nevertheless, the
anti-aliasing filter is still able to extract the true frequency information with reasonable accuracy,
thereby alleviating the impact of aliasing.

A.3 AN INTUITIVE EXPLANATION OF ALIASING-RELATED CONCEPTS

This appendix provides a detailed explanation of the core signal processing concepts illustrated
in Figure.7, which motivate the design of DMANet. We structure this explanation to clarify the
relationship between sampling, spectral overlap, aliasing, and our proposed solution.

A.3.1 THE CORE PROBLEM: SPECTRAL OVERLAP AND ALIASING

The central challenge DMANet addresses is aliasing, a form of signal distortion that occurs during
downsampling. To fully understand this phenomenon, it is crucial to distinguish between its phys-
ical cause spectral overlap and its perceptual consequence aliasing. These two terms describe
different links in a cause-and-effect chain, where aliasing is the direct result of spectral overlap due
to improper sampling Zhou et al. (2025).

• Sampling and Spectral Replicas: When a signal is sampled, its original spectrum is peri-
odically replicated along the frequency axis, creating what are known as spectral replicas.
Grabinski et al. (2022b) The act of sampling also limits the frequency range we can observe
without distortion to a new, narrower baseband (from 0 Hz to the new Nyquist frequency).
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Figure 7: A conceptual illustration of the sampling process in the frequency domain. Top-left:
Oversampling provides a wide guard band, preventing aliasing. Top-right: Undersampling causes
spectral replicas to overlap, leading to aliasing where high frequencies (hatched areas) are misrep-
resented as low frequencies. Bottom-left: Proper (or critical) sampling meets the Nyquist criterion
exactly, with replicas touching but not overlapping. Bottom-right: An anti-aliasing filter removes
high-frequency content before sampling, ensuring that even with a lower sampling rate, no overlap
occurs.

• The Cause: Spectral Overlap. If the sampling rate is too low to satisfy the Nyquist
criterion, the separation between these spectral replicas becomes insufficient. This prevents
the formation of a safety margin (Guard Band), causing them to physically overlap. This
physical overlap, illustrated in the undersampled signal panel of Figure 7, is the root cause
of the problem.

• The Consequence: Aliasing. This overlap is the direct cause of aliasing. Any high-
frequency component from the original signal that exceeds the new Nyquist frequency is
folded back into the new, observable low-frequency baseband. This process causes the
original high-frequency information to appear as a spurious low frequency. This spurious
frequency then mixes with the true low-frequency components within the baseband, be-
coming indistinguishable from them. Ultimately, this misrepresentation of high-frequency
information as low-frequency information corrupts the signal’s fidelity and is the core prob-
lem we address in our paper.

A.3.2 A DEEPER DIVE INTO THE SCENARIOS OF FIGURE.7

Figure.7 visualizes four key scenarios:

• The Undesirable Case (Top-Right): The undersampled scenario is precisely the adverse
outcome our work aims to prevent. The resulting aliasing (hatched areas) erroneously
introduces spurious low-frequency patterns, a distortion that can severely hinder analysis
and forecasting.

• The Ideal and Safe Case (Top-Left): The oversampled scenario is ideal because it suc-
cessfully avoids aliasing. The empty space between the spectral replicas is a Guard Band,
which does not imply information loss but rather a safe margin ensuring that the original
spectrum can be unambiguously recovered.

• The Theoretical Boundary (Bottom-Left): Proper sampled (or Critical Sampling) occurs
when the sampling rate is exactly twice the signal’s maximum frequency (fs = 2 · fmax).
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The spectral replicas touch edge-to-edge without overlapping. While theoretically sound,
operating at this exact boundary is risky in practice.

• The DMANet Approach (Bottom-Right): The Anti-Aliasing signal panel illustrates the
core principle of our work. Before an operation that would otherwise cause undersam-
pling, an anti-aliasing filter is applied. This low-pass filter removes the high-frequency
components (the part of the spectrum above xmax/2) that would cause overlap. After this
pre-filtering, even a lower sampling rate can be safely applied without generating aliasing
artifacts.
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B PROOFS OF THE EQUIVALENT SAMPLING RATE (ESR)

B.1 NOTATIONS AND SIGNAL MODELING

B.1.1 ORIGINAL DISCRETE-TIME SIGNAL

First, we define X[n] ∈ RCi as a discrete-time signal with Ci channels. The i-th channel of X[n],
that is, Xi[n], is obtained by sampling a continuous-time signal xi(t):

Xi[n] = xi(nTs), Ts =
1

fs
, i = 1, . . . , Ci, (15)

where fs is the original sampling rate and Ts is the sampling period. It is assumed that each
continuous-time signal xi(t) is band-limited to |ω| ≤ ωB .

B.1.2 MODULE STRUCTURE

The input signal X[n] passes sequentially through a depth-wise convolution and a point-wise con-
volution defined in the architecture of DMANet:

X[n]
DepthwiseConv1d(K,S)−−−−−−−−−−−−−→ U [m]

PointwiseConv1d−−−−−−−−−→ V [m]. (16)
First, the DepthwiseConv1d operation, characterized by a kernel hi[k] of length K for each i-th
input channel, where 1 ≤ k ≤ K, and a stride S, transforms X[n] into an intermediate signal
U [m] ∈ RCi . Subsequently, this intermediate signal U [m] is processed by a PointwiseConv1d
operation. This second stage uses a convolution matrix W ∈ RCo×Ci , with elements wj,i, to map
the Ci channels of U [m] to the Co output channels, producing the final output signal V [m] ∈ RCo .
Consequently, the output sampling rate of the entire module is f ′

s = fs/S.

B.2 DOWNSAMPLING AND ALIASING CONDITIONS

As a baseline reference, consider directly downsampling the original signal X[n] by a factor S
without any convolution filtering to obtain the signal Y [m]:

Y [m] = X[Sm]. (17)
The new sampling rate is f ′

s = fs/S. To avoid aliasing caused directly by downsampling, the
bandwidth B = ωB/(2π) of the original continuous-time signal must satisfy the Nyquist-Shannon
sampling theorem requirement, which is defined as:

B ≤ f ′
s

2
=

fs
2S

. (18)

Expressed in terms of normalized angular frequency ΩB = ωBTs = 2πBTs, we solve this equation
and represent the condition to avoid aliasing as:

ΩB ≤ π

S
. (19)

This condition applies to ideal direct downsampling, assuming that perfect anti-aliasing filtering has
been performed before downsampling to remove frequency components above π/S, corresponding
to fs

2S . Our proposed DMANet contains depth-wise and point-wise modules which perform filtering
in its workflow, and its behaviors are more complex.

B.3 LINEAR MAPPING WITH DEPTH-WISE CONVOLUTION AND POINT-WISE CONVOLUTION

The operations of these two modules can be expressed as a series of linear mappings.

B.3.1 DEPTH-WISE CONVOLUTION

The output of the depth-wise convolution for the i-th channel, Ui[m], is computed as follows:

Ui[m] =

K−1∑
k=0

hi[k]Xi[mS + k]. (20)

Here, m is the index for the output sequence. Due to the stride S, the output Ui[m] depends on the
input Xi[n] in the range from n = mS to n = mS +K − 1.
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B.3.2 POINT-WISE CONVOLUTION

The j-th output channel Vj [m] is obtained by a linear combination of Ui[m]:

Vj [m] =

Ci∑
i=1

wj,iUi[m]. (21)

Then, we substitute equation 20 into the above equation to get the expression of Vj [m]:

Vj [m] =

Ci∑
i=1

wj,i

(
K∑

k=1

hi[k]Xi[mS + k]

)
=

Ci∑
i=1

K∑
k=1

wj,ihi[k]Xi[mS + k]. (22)

B.3.3 UNIFIED LINEAR MAPPING

To form a unified linear transformation at each output time m, we construct an input vector xm that
contains all original input samples involved in computing V [m]:

xm =



X1[mS]
...

X1[mS +K − 1]
...

XCi
[mS]
...

XCi
[mS +K − 1]


∈ RCiK .

This is a column vector formed by stacking K consecutive samples, starting from mS, from each of
the Ci channels. Concurrently, a weight matrix G ∈ RCo×(CiK) is constructed. For the j-th row of
G, its elements correspond to wj,ihi[k] and are arranged according to the order of the elements in
xm. Specifically, if the p-th element of xm is Xi[mS + k], then the weight in G corresponds to the
output Vj [m] and this input element is Gj,p = wj,ihi[k]. Thus, the output V [m] can be defined as:

V [m] = Gxm, V [m] ∈ RCo . (23)

This equation shows that at each output time m, the output vector V [m] is a linear mapping of a
local window xm of the input signal.

B.4 RANK CONSTRAINT AND DEGREES OF FREEDOM COUNTING

A fundamental property of linear algebra states that the rank of the matrix G, denoted as rank(G),
is limited by its dimensions:

rank(G) ≤ min{number of rows, number of columns} = min{Co, CiK}. (24)

We assume that the values of the weights hi[k] and wj,i are generic. They can be learned and are not
overly sparse or linearly dependent, so that matrix G can achieve its theoretically maximum possible
rank. Then, the dimension of independent information, also named the degrees of freedom, that the
module extracts from the CiK-dimensional input window xm and transmits to the Co-dimensional
output V [m] at each output time m is:

D = rank(G) = min{CiK,Co}. (25)

This D represents the maximum dimension of linearly independent information from the input seg-
ment xm that the system can distinguish or represent, without considering noise or specific signal
statistics.

To relate this total degree of freedom D to each channel of the input signal, we can average it over
the Ci input channels. Thus, the equivalent temporal degrees of freedom α contributed by each input
channel to produce one output sample V [m] is:

α =
D

Ci
=

min{CiK,Co}
Ci

= min

{
CiK

Ci
,
Co

Ci

}
= min

{
K,

Co

Ci

}
. (26)
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Here, α can be understood as: for each input channel, its information, under the combined effect
of temporal processing through kernel length K and inter-channel mapping via Co/Ci , is refined
or compressed to be equivalent to α independent information units. These units contribute to the
final output sample V [m]. The bottleneck here is determined by the smaller of K (temporal context
length per channel) and Co/Ci (channel transformation ratio).

B.5 DEFINITION OF EQUIVALENT SAMPLING RATE

The actual output sampling rate of the module for each output channel is f ′
s = fs/S. At each output

sampling instant, we have determined that each input channel contributes α = min{K,Co/Ci}
equivalent temporal degrees of freedom.

The Equivalent Sampling Rate fESR is defined as a rate such that if each of the original Ci input
channels were sampled at fESR, and each sample carried one independent degree of freedom, then
its total degrees of freedom throughput would match that of the current depth-wise and point-wise
modules.

The total rate of generating degrees of freedom is: D = min{CiK,Co} × fs
S . If Ci channels each

operate at an equivalent sampling rate of fESR, their total degrees of freedom rate is Ci × fESR:

Ci × fESR = min{CiK,Co} ×
fs
S
. (27)

Then, we can get the solve for fESR:

fESR =
min{CiK,Co}

Ci
× fs

S
= min

{
K,

Co

Ci

}
× fs

S
. (28)

If we normalize the original sampling rate fs to 1, we obtain the normalized ESR:

ESRnorm =
1

S
min

{
K,

Co

Ci

}
. (29)

Based on this equivalent sampling rate fESR, we can define an equivalent Nyquist frequency
fNyq ESR. This frequency represents the maximum bandwidth that the input signal can accom-
modate without information loss due to module structural limitations:

fNyq ESR =
fESR

2
=

fs
2S

min

{
K,

Co

Ci

}
. (30)

We can use fESR to quantify the information processing capability or information retention degree of
the downsampling module consisting of depth-wise convolution and point-wise convolution relative
to each input channel. It provides a useful metric to compare the effective information through-
put of modules with different parameter configurations with K, S, Ci, and Co. It is important to
note that the anti-aliasing significance of fNyq ESR also depends on whether the depth-wise convo-
lution kernel hi[k] can effectively act as a low-pass filter to attenuate frequency components above
fNyq ESR. If hi[k] is not an ideal low-pass filter, the frequency components of the original signal
above fNyq ESR, even if not completely filtered out by hi[k], may not be accurately represented by
the output V [m] due to subsequent dimensionality reduction.

B.6 THEORETICAL ANALYSIS: ORTHOGONALITY OF DMANET ARCHITECTURE AND
FREQUENCY LOSS

To clarify that the effectiveness of DMANet stems from its architectural design rather than sole
reliance on the loss function, we mathematically decompose the total forecasting error Etotal into
two orthogonal components: Feature Representation Error (Efeat) and Optimization Objec-
tive Bias (Eloss). First, regarding Efeat, theoretically, an ideal downsampling operation with stride
s truncates the spectrum using a low-pass filter (LPF), yielding an ideal feature hideal such that
F(hideal)(ω) = F(X)(ω) · I(|ω| ≤ π/s). However, standard strided convolutions lack this LPF,
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causing high-frequency components to fold into the baseband and resulting in an aliased spectrum
F(htrad)(ω) =

∑∞
k=−∞ F(X)(ω − kω′

s). Here, k is the spectrum replication index and ω′
s equals

to 2π/s. Consequently, by Parseval’s Theorem Blu & Unser (2001), the representation error is
dominated by these aliasing terms (k ̸= 0):

Efeat = ||htrad − hideal||2 ≈ 1

2π

∫
|ω|≤π/s

∣∣∣∣∣∣
∑
k ̸=0

F(X)(ω − kω′
s)

∣∣∣∣∣∣
2

dω, (31)

DMANet directly minimizes this term by applying an ESR-based dynamic filter before downsam-
pling to physically eliminate the aliasing sums (

∑
k ̸=0 · · · → 0), ensuring the latent feature struc-

turally approximates the ideal signal independent of the loss function. Conversely, regarding Eloss,
time-domain MSE minimization often suffers from gradient bias due to the strong autocorrelation
(ρ ̸= 0) in time series labels; FreDF minimizes this bias by exploiting the Theorem of Spectral
Decorrelation, which effectively decouples error terms in an orthogonal basis (Eloss Freq ≪ Eloss MSE)
Wang et al. (2025). Thus, the total error is unified as:

Etotal ≈ L(p(hideal + Efeat), Y )︸ ︷︷ ︸
Feature Fidelity (Architecture-dependent)

+ Eloss︸︷︷︸
Gradient Quality (Loss-dependent)

, (32)

where p(·) denotes the predictor head mapping latent features to forecasts, and L is the loss func-
tion. This formulation demonstrates that while removing Frequency Loss degrades performance by
increasing Eloss, the DMANet architecture remains essential for minimizing Efeat (spectral aliasing),
proving their relationship is orthogonal and synergistic.
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C IMPLEMENTATION DETAILS

We summarized details of datasets, evaluation metrics, experiments in this section.

C.1 DATASETS DETAILS

We evaluated the performance of different models on several well-established datasets for long-
term forecasting, including Weather, Electricity, Solar-Energy, PeMS(PEMS03, PEMS04, PEMS07,
PEMS08), and the ETT series (ETTh1, ETTh2, ETTm1, ETTm2). Furthermore, to demonstrate
DMANet’s capability in handling highly non-stationary data, we conducted an extensive series of
supplementary experiments on short-term forecasting across datasets from various domains. These
include Health & Medical (ILI, COVID-19), Web Events (Wiki, Website), Finance (NASDAQ,
SP500, DowJones), Market (CarSales), Energy (Power), and Society (Unemp). We detail the de-
scriptions of the dataset in Table.8.

C.2 BASELINE DETAILS

Acknowledging that the performance of different methods varies across scenarios, we conducted
a comprehensive comparison of various approaches under three distinct settings: long-term fore-
casting with a lookback window of 96, long-term forecasting with a lookback window of 720, and
short-term forecasting. The evaluated methods are categorized as follows:

• Frequency-domain methods: TimeStacker Liu et al. (2025), FilterNet Yi et al. (2024a),
FITS Xu et al. (2024), Fredformer Piao et al. (2024a), FEDformer Zhou et al. (2022b).

• CNN-based methods: ModernTCN Donghao & Xue (2024), TVNet Li et al. (2025),
TSLANet Eldele et al. (2024), TimesNet Wu et al. (2023), PDF Dai et al. (2024), MICN
Wang et al. (2023).

• MLP-based methods: SOFTS Han et al. (2024), TimeMixer Wang et al. (2024a), DLinear
Zeng et al. (2023), TiDE Das et al. (2023), RLinear Li et al. (2023b), MTS-Mixer Li et al.
(2023c)

• Transformer-based methods: TimeXer Wang et al. (2024b),iTransformer Liu et al.
(2024), Crossformer Zhang & Yan (2022), Pathformer Chen et al. (2024b), Stationary Liu
et al. (2022b), Pyraformer Liu et al. (2022a), Autoformer Wu et al. (2021)

• LLM-based methods: GPT4TS Zhou et al. (2023), Time-LLM Jin et al. (2024)

• KAN-based methods: TimeKAN Huang et al. (2025)

• Mamba-based methods: TimePro Ma et al. (2025)

• Retrieval-Augmented methods: RAFT Han et al. (2025)

C.3 IMPLEMENTATION DETAILS.

Regarding evaluation metrics, we used mean square error (MSE) and mean absolute error (MAE)
for both long-term and short-term forecasting. All experiments were conducted using PyTorch on
a single NVIDIA GeForce RTX 3090 24GB GPU. We applied an early stopping strategy to all
baselines when the validation loss did not decrease for three consecutive epochs. Notably, inspired
by FreDF Wang et al. (2025), we argue that formulating the loss function in the frequency domain
is advantageous for learning an anti-aliasing architecture. Consequently, we directly adopted the
frequency-domain MAE as the loss function for both long-term and short-term forecasting. More
detailed settings can be found in Appendix.C.5.

C.4 FAIR COMPARISON SETTINGS.

To ensure a fair comparison and address challenges related to scaling laws, we maintained a consis-
tent lookback window of 96 for all experiments in Table.11 and Table 12, and 720 for all experiments
in Table.13 and Table.14. Our baseline comparisons mimic the experimental protocols established
in TimesNet Wu et al. (2023), including same data processing and splitting procedures. For most
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Table 8: Detailed dataset descriptions and statistics. Dim denotes the number of variates for each
dataset. Frequency refers to the time interval between consecutive steps. Split indicates the data
partitioning ratio (Train/Validation/Test). Prediction len. represents the prediction lengths. Our
long-term forecasting employs a fixed input length of 96 or 720. For the majority of datasets, we
evaluate across prediction horizons of 96, 192, 336, 720. A distinct setting is applied to the PeMS
datasets, which are evaluated on shorter horizons of 12, 24, 48. For short-term forecasting, we adopt
two settings: one with an input of 12 steps to predict 3, 6, 9, 12 steps, and another with an input of
36 steps to predict 24, 36, 48, 60 steps.

Dataset Dim Frequency Total len. Split Prediction len. Information

ETTh1, ETTh2 7 Hourly 17420 6:2:2 {96,192,336,720} Electricity

ETTm1, ETTm2 7 15 mins 69680 6:2:2 {96,192,336,720} Electricity

Weather 21 10 mins 52696 7:1:2 {96,192,336,720} Weather

ECL 321 Hourly 26304 7:1:2 {96,192,336,720} Electricity

Solar-Energy 137 10 mins 52560 7:1:2 {96,192,336,720} Energy

PEMS03 358 5 mins 26209 6:2:2 {12,24,48} Transportation

PEMS04 307 5 mins 16992 6:2:2 {12,24,48} Transportation

PEMS07 883 5 mins 28224 6:2:2 {12,24,48} Transportation

PEMS08 170 5 mins 17856 6:2:2 {12,24,48} Transportation

ILI 7 Weekly 966 7:1:2 {24,36,48,60} Health

COVID-19 55 Daily 335 7:1:2 {3,6,9,12} Health

NASDAQ 12 Daily 3914 7:1:2 {24,36,48,60} Finance

SP500 5 Daily 8077 7:1:2 {24,36,48,60} Finance

DowJones 27 Daily 6577 7:1:2 {24,36,48,60} Finance

CarSales 10 Daily 6728 7:1:2 {24,36,48,60} Market

Power 2 Daily 1186 7:1:2 {24,36,48,60} Energy

Website 4 Daily 2167 7:1:2 {3,6,9,12} Web

Wiki 99 Daily 730 7:1:2 {3,6,9,12} Web

Unemp 53 Monthly 531 6:2:2 {3,6,9,12} Society
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methods, we adopted the results reported in their original papers. For some methods that did not
report results on the Solar-Energy dataset, we reproduced their performance using their official code
repositories. The results for FITS Xu et al. (2024) and FreTSWang et al. (2025) were replicated
from the FilterNet report Yi et al. (2024a); for other methods, we used the long-term prediction
results provided in the iTransformer repository Liu et al. (2024). These results are based on the ex-
perimental configurations provided in the original paper or official code for each model. We verified
that all hyperparameters for these baselines were selected from their respective official repositories,
ensuring consistency with our fair comparison setup, where the only variations were the input and
output sequence lengths.

For the experiments with the lookback window extended to 720, we referred to established baseline
results: results in Table.13 were replicated from DUET Qiu et al. (2024), the results for GPT4TS
Zhou et al. (2023) and TimeLLM Jin et al. (2024) in Table.14 were replicated from TSLANet Eldele
et al. (2024), and the remaining results in Table.14 were replicated from TVNet Li et al. (2025). For
short-term forecasting, we followed the results from the FreEformer repository Yue et al. (2025).

C.5 HYPERPARAMETER SETTINGS.

Primary Long-term Forecasting Task For our model hyperparameter selection, in 96 lookback
window long-term forecasting, we fixed dmodel = 512, downsampling layer l to 2, depth-wise con-
volution kernal size K to 3, stride s to 2, and set the proportion of channel changes c to 0.5. And we
only performed a limited search on the encoder layers E, learning rate LR, and batch size. Detailed
configurations for each dataset can be found in Table.9.

Other Long-term Forecasting Tasks For long-term forecasting with an extended 720 lookback
window, as well as for the 96 lookback forecasting on PEMS datasets and 336 lookback uni-
variate forecasting tasks, we implemented a more extensive hyperparameter search. This search
was conducted for each forecast horizon within a given dataset to find the optimal configura-
tion. The search space was defined as follows: dmodel ∈ {256, 512}, Learning Rate LR ∈
{1×10−3, 2×10−3, 5×10−3, 1×10−2, 2×10−2}, Encoder Layers E ∈ {1, 2, 3}, Downsampling
Layers l ∈ {2, 3, 4}, Batch Size ∈ {8, 16, 32, 64}. Other hyperparameters, such as the convolutional
kernel size and stride, remained fixed across all experiments, consistent with the settings used in the
primary 96 lookback forecasting task. In contrast to all baseline lookback windows searched from
{192,336,512,672,720} etc., We provide long-term forecasting for the fixed 720 lookback window.

Short-term Forecasting We implemented a more extensive hyperparameter search like Other
Long-term Forecasting Tasks. This search was conducted for each forecast horizon within a given
dataset to find the optimal configuration. The search space was defined as follows: Downsampling
Layers is fixed 2, dmodel ∈ {256, 512}, Learning Rate LR ∈ {1 × 10−3, 2 × 10−3, 5 × 10−3, 1 ×
10−2, 2 × 10−2}, Encoder Layers E ∈ {1, 2},Batch Size ∈ {2, 4, 8, 16}. Other hyperparameters,
such as the convolutional kernel size and stride, remained fixed across all experiments, consistent
with the settings used in the primary 96-lookback forecasting task.

Ablation Study on Pre-Sampling Filtering To validate our ESR-based filtering approach, we
conducted an ablation study comparing it against alternatives that do not adhere to the Nyquist sam-
pling theorem. Each experimental group differs from our full DMANet only in the cutoff frequency
determination method within the Pre-Sampling Filtering module; all other structures and parame-
ters remain identical. We categorize the compared methods into two groups: heuristic and classical
filters.

HEURISTIC FILTERS These methods serve as simple, non-theoretical baselines. They are designed
to mimic intuitive or simplistic approaches to filtering that one might adopt without a rigorous signal
processing foundation.

• Max: For each time series in the batch, this filter identifies the frequency bin with the
maximum amplitude and sets the cutoff frequency to twice its index. All components
below this dynamic cutoff are preserved, while those above are zeroed out.

• Random: This filter applies a stochastic mask to the frequency spectrum, where each
frequency component is independently dropped with a probability of p = 0.5.
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CLASSICAL FILTERS These methods serve as benchmarks against well-established, theoretically-
grounded filtering techniques. To ensure a fair comparison, a normalized cutoff frequency of 0.4
was used across all classic filter variants, preserving the lowest 80% of the frequency band.

• Ideal: A sharp cutoff filter where all frequency components above the cutoff frequency are
set to zero.

• Butterworth: Known for its maximally flat passband, providing high-fidelity signal preser-
vation. We used a 4th-order filter.

• Gaussian: A smooth filter often used to avoid ringing artifacts, with a sigma of 0.15.

• Chebyshev (Type I): Achieves a steeper rolloff than Butterworth at the cost of introducing
ripples in the passband. We used a 4th-order filter with 0.5 dB of passband ripple.

Table 9: Experiment configuration of DMANet in 96 lookback window. All the experiments use the
ADAM optimizer with the default hyperparameter configuration for (β1, β2) as (0.9, 0.999).

Dataset / Configurations Model Hyper-parameter Training Process

E l dmodel LR∗ Loss Batch Size Epochs

ETTh1 1 2 512 2 ∗ 10−2 MAE 8 15

ETTh2 1 2 512 1 ∗ 10−2 MAE 8 15

ETTm1 1 2 512 2 ∗ 10−3 MAE 16 15

ETTm2 2 2 512 5 ∗ 10−3 MAE 32 15

Weather 1 2 512 5 ∗ 10−3 MAE 16 15

Electricity 2 2 512 1 ∗ 10−3 MAE 8 15

Solar-Energy 2 2 512 5 ∗ 10−3 MAE 16 15

∗ LR means the initial learning rate.

C.6 ABLATION STUDY ON COMPONENT CONTRIBUTIONS

To thoroughly investigate the individual and synergistic contributions of the Anti-Aliasing Down-
sampling and Frequency-Domain Upsampling modules, we conducted a rigorous component disen-
tanglement experiment. As presented in Table.5, we designed four distinct configurations to isolate
the effect of each module.

• Base: Represents a standard convolutional architecture without our specific anti-aliasing
designs. It employs standard strided convolution for downsampling and linear interpolation
for upsampling.

• w/o-Post: Retains the proposed Pre-Sampling Anti-Aliasing filter but reverts the upsam-
pling mechanism to standard linear interpolation. This setup isolates the net benefit of
preventing aliasing during the feature extraction stage.

• w/o-Pre: Removes the Pre-Sampling filter (using standard strided convolution) but retains
the proposed Post-Sampling Frequency Interpolation. This setup isolates the contribution
of high-fidelity signal reconstruction in the frequency domain.

Here is the Analysis of Results. First, regarding the individual effectiveness of each component,
comparing the variants against the Base model reveals that both modules independently contribute
to significant performance gains. Specifically, the benefit of Anti-Aliasing Downsampling is evident
as the w/o-Post variant consistently outperforms the Base model (e.g., on the Unemp dataset, MAE
decreases from 0.173 to 0.155). This confirms that proactively filtering high-frequency noise before
downsampling enables the encoder to learn cleaner, non-aliased latent representations, even when
reconstructed with a suboptimal upsampler. Simultaneously, the w/o-Pre variant demonstrates the
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benefit of Frequency Upsampling, showing clear improvement over the Base model (e.g., Unemp
MAE reduces to 0.161). This validates that our frequency-domain zero-padding strategy, which ad-
heres to the Nyquist-Shannon sampling theorem, offers a more mathematically sound reconstruction
basis than linear interpolation.

Furthermore, regarding the synergistic superiority, the full DMANet achieves the lowest error across
all datasets (e.g., Unemp MAE drops to 0.146), crucially surpassing both w/o-Pre and w/o-Post.
This result highlights the architectural synergy: high-quality reconstruction is most effective only
when the input features are initially free from aliasing artifacts. Conversely, clean downsampled
features are best utilized when restored without the spectral distortion introduced by linear interpo-
lation. Consequently, the combination of these two modules is not merely additive but essential for
achieving state-of-the-art performance.
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D FULL RESULTS

D.1 ERROR BARS

To evaluate the performance stability and robustness of DMANet, we conducted multiple indepen-
dent runs with five different random seeds and compared its performance against the second-best
model, TimeMixer. The results, averaged over four prediction horizons (96, 192, 336, and 720),
are presented in Table 10. We report the mean and standard deviation of the MSE and MAE
metricsacross the five experiments, as well as the confidence level of DMANet’s superiority over
TimeMixer. This performance improvement is statistically significant, with a 99% confidence level
in all evaluated scenarios.

Table 10: Standard deviation and statistical tests for our DMANet method and second-best method
(TimeMixer) on five datasets.

Metric MSE MAE

Dataset DMANet TimeMixer Confidence DMANet TimeMixer Confidence

ETTm1 0.376±0.005 0.386±0.003 99% 0.388±0.003 0.399±0.001 99%
ETTm2 0.269±0.007 0.278±0.001 99% 0.311±0.005 0.325±0.001 99%
Weather 0.238±0.005 0.245±0.001 99% 0.263±0.005 0.276±0.001 99%

Electricity 0.171±0.002 0.182±0.002 99% 0.264±0.002 0.272±0.002 99%
Solar-Energy 0.228±0.003 0.235±0.001 99% 0.249±0.002 0.292±0.001 99%

D.2 LONG-TERM FORECASTING

Here, Table.11, Table.12, Table.13 and Table.14 present comprehensive evaluation results for long-
term forecasting, including both configurations with fixed lookback windows L = 96 and extended
window settings L = 720 designed to adhere to the scaling law inherent to TSF. In the L = 96
fixed-window experiments, consistent hyperparameters were maintained across all forecast hori-
zons within each dataset. By contrast, the L = 720 experiments employed horizon-specific hyperpa-
rameter adjustments to enhance model adaptability while preserving scaling law compliance. Under
both experimental paradigms, DMANet consistently demonstrates superior performance with statis-
tically significant margins, thereby empirically validating its effectiveness and robustness. Notably,
even when handling extended sequence lengths through augmented lookback windows, DMANet
retains its inherent capability to adaptively model critical dependencies within extended temporal
sequences.

The results for PESM dataset forecasting, presented in Table.15 for a lookback window of L = 96
and the forecasting horizon T ∈ {12, 24, 48}, demonstrate the exceptional capability of DMANet.
Across all four PEMS datasets, DMANet consistently outperforms all baselines. This superiority is
quantified by average reductions of 14.4% in MSE and 5.7% in MAE compared to a strong base-
line, iTransformer. We attribute this robust performance to our convolutional architecture’s inherent
proficiency in preserving localized features and mitigating the interference of high-frequency noise,
which are critical for high-dimensional short-term prediction.

D.3 SHORT-TERM FORECASTING

The short-term forecasting results, presented in Table.17, validate the superiority of DMANet in
handling highly non-stationary time series. Across a diverse set of challenging datasets including
ILI (health), COVID-19 (pandemic), DowJones (finance), and Unemp (society), DMANet consis-
tently achieves state-of-the-art performance, securing the top rank in 17 out of 20 metrics. It sig-
nificantly outperforms other methods, including strong frequency-domain baselines like Fredformer
and FilterNet. We attribute this exceptional capability in short-term and non-stationary forecasting
to DMANet’s synergistic design: its convolutional architecture excels at preserving local features,
while the anti-aliasing structure effectively mitigates disruptive high-frequency noise. This robust
performance on volatile, real-world data underscores the effectiveness of our approach in capturing
the transient and complex patterns inherent to non-stationary signals.
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D.4 UNIVARIATE FORECASTING

Here we provide the univariate forecasting results on ETT datasets. There is a target feature oil
temperature within those datasets, which is the univariate time series that we are trying to fore-
cast. As shown in Table.16 , the anti-aliasing depth-wise convolution has better temporal modelling
capabilities, allowing DMANet to achieve better performance than the state-of-the-art CNN-based
ModerTCN in univariate forecasting tasks.
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Table 11: Full results of long-term forecasting with a 96-step lookback window (Part I). The input
sequence length L is set to 96 for all baselines. All results are averaged across four different fore-
casting horizon: T ∈ {96, 192, 336, 720}. The best and second-best results are highlighted in bold
and underlined, respectively. Among them, - means that the code has not yet been open sourced. We
will put the summary table in the appendix of the next version.

Models DMANet TimeStacker TimeXer iTransformer TimeMixer FilterNet Fredformer FITS FreTS
Ours 2025 2024b 2024 2024a 2024a 2024a 2024 2024b

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.308 0.343 0.311 0.337 0.318 0.356 0.334 0.368 0.320 0.357 0.318 0.358 0.326 0.361 0.355 0.375 0.339 0.374
192 0.354 0.372 0.364 0.367 0.362 0.383 0.377 0.391 0.361 0.381 0.364 0.383 0.363 0.380 0.392 0.393 0.382 0.397
336 0.384 0.394 0.389 0.391 0.395 0.407 0.426 0.420 0.390 0.404 0.396 0.406 0.395 0.403 0.424 0.414 0.421 0.426
720 0.447 0.431 0.460 0.428 0.452 0.441 0.491 0.459 0.454 0.441 0.456 0.444 0.453 0.438 0.487 0.449 0.485 0.462

Avg. 0.373 0.385 0.381 0.381 0.382 0.397 0.407 0.410 0.381 0.395 0.384 0.398 0.393 0.403 0.387 0.408 0.407 0.415

E
T

T
m

2

96 0.165 0.244 0.171 0.250 0.171 0.256 0.180 0.264 0.175 0.258 0.174 0.257 0.177 0.259 0.183 0.266 0.190 0.282
192 0.231 0.288 0.235 0.292 0.237 0.299 0.250 0.309 0.237 0.299 0.240 0.300 0.241 0.300 0.247 0.305 0.260 0.329
336 0.289 0.325 0.293 0.329 0.296 0.338 0.311 0.348 0.298 0.340 0.297 0.339 0.302 0.340 0.307 0.342 0.373 0.405
720 0.385 0.383 0.395 0.391 0.392 0.394 0.412 0.407 0.391 0.396 0.392 0.393 0.397 0.396 0.407 0.399 0.517 0.499

Avg. 0.268 0.310 0.274 0.316 0.274 0.322 0.288 0.332 0.275 0.323 0.276 0.322 0.279 0.324 0.286 0.328 0.335 0.379

E
T

T
h1

96 0.370 0.391 0.379 0.385 0.382 0.403 0.386 0.405 0.375 0.400 0.375 0.394 0.376 0.394 0.386 0.396 0.399 0.412
192 0.417 0.420 0.429 0.416 0.429 0.435 0.441 0.436 0.429 0.421 0.436 0.422 0.440 0.425 0.436 0.423 0.453 0.443
336 0.457 0.440 0.459 0.436 0.468 0.448 0.487 0.458 0.484 0.458 0.476 0.443 0.472 0.440 0.478 0.444 0.503 0.475
720 0.468 0.465 0.464 0.455 0.469 0.461 0.503 0.491 0.498 0.482 0.474 0.469 0.490 0.467 0.502 0.495 0.596 0.565

Avg. 0.428 0.429 0.433 0.423 0.437 0.437 0.454 0.447 0.447 0.440 0.440 0.432 0.445 0.432 0.447 0.448 0.488 0.474

E
T

T
h2

96 0.280 0.329 0.280 0.327 0.286 0.338 0.297 0.349 0.289 0.341 0.292 0.343 0.292 0.343 0.295 0.350 0.350 0.403
192 0.349 0.374 0.373 0.385 0.363 0.389 0.380 0.400 0.372 0.392 0.369 0.395 0.370 0.390 0.381 0.396 0.472 0.475
336 0.393 0.410 0.407 0.416 0.414 0.423 0.428 0.432 0.386 0.414 0.420 0.432 0.385 0.413 0.426 0.438 0.564 0.528
720 0.418 0.437 0.412 0.431 0.408 0.432 0.427 0.445 0.412 0.434 0.430 0.446 0.419 0.439 0.431 0.446 0.815 0.654

Avg. 0.361 0.388 0.368 0.390 0.367 0.396 0.383 0.407 0.364 0.395 0.378 0.397 0.367 0.396 0.383 0.408 0.550 0.515

W
ea

th
er

96 0.148 0.191 0.161 0.198 0.157 0.205 0.174 0.214 0.163 0.209 0.164 0.210 0.163 0.207 0.166 0.213 0.184 0.239
192 0.199 0.238 0.207 0.241 0.204 0.247 0.221 0.254 0.208 0.250 0.214 0.252 0.211 0.251 0.213 0.254 0.223 0.275
336 0.256 0.282 0.261 0.281 0.261 0.290 0.278 0.296 0.251 0.287 0.268 0.293 0.267 0.292 0.269 0.294 0.272 0.316
720 0.339 0.336 0.343 0.334 0.340 0.341 0.358 0.349 0.339 0.341 0.344 0.342 0.343 0.341 0.346 0.343 0.340 0.363

Avg. 0.236 0.262 0.243 0.264 0.241 0.271 0.258 0.279 0.240 0.271 0.248 0.278 0.246 0.272 0.249 0.276 0.255 0.363

E
le

ct
ri

ci
ty

96 0.139 0.234 0.168 0.251 0.140 0.242 0.148 0.240 0.153 0.247 0.176 0.264 0.147 0.241 0.200 0.278 0.183 0.269
192 0.157 0.250 0.176 0.262 0.157 0.256 0.162 0.253 0.166 0.256 0.185 0.270 0.165 0.258 0.200 0.280 0.187 0.276
336 0.175 0.269 0.195 0.278 0.176 0.275 0.178 0.269 0.185 0.277 0.202 0.286 0.177 0.273 0.214 0.295 0.202 0.292
720 0.210 0.301 0.235 0.310 0.211 0.306 0.225 0.317 0.225 0.310 0.242 0.319 0.213 0.304 0.255 0.327 0.237 0.325

Avg. 0.170 0.264 0.194 0.275 0.171 0.270 0.178 0.270 0.182 0.272 0.201 0.285 0.175 0.269 0.217 0.295 0.202 0.290

So
la

r-
E

ne
rg

y 96 0.184 0.217 - - 0.215 0.295 0.203 0.237 0.189 0.241 0.224 0.264 0.200 0.275 0.328 0.396 0.252 0.319
192 0.220 0.242 - - 0.236 0.301 0.233 0.261 0.222 0.283 0.259 0.284 0.226 0.259 0.397 0.387 0.283 0.338
336 0.247 0.266 - - 0.252 0.307 0.248 0.273 0.231 0.292 0.284 0.298 0.254 0.277 0.433 0.410 0.299 0.344
720 0.257 0.270 - - 0.244 0.305 0.249 0.275 0.223 0.285 0.284 0.298 0.249 0.284 0.429 0.396 0.298 0.351

Avg. 0.227 0.249 - - 0.237 0.302 0.233 0.262 0.216 0.280 0.263 0.286 0.232 0.274 0.397 0.398 0.283 0.338
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Table 12: Full results of long-term forecasting with a 96-step lookback window (Part II). The input
sequence length L is set to 96 for all baselines. All results are averaged across four different fore-
casting horizon: T ∈ {96, 192, 336, 720}. The best and second-best results are highlighted in bold
and underlined, respectively.

Models DMANet TimePro TimeKAN SOFTS FreDF PatchTST TimesNet DLinear MICN
Ours 2025 2025 2024 2025 2023 2023 2023 2023

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.308 0.343 0.326 0.364 0.322 0.361 0.325 0.361 0.324 0.362 0.329 0.367 0.338 0.375 0.346 0.374 0.365 0.387
192 0.354 0.372 0.367 0.383 0.357 0.383 0.375 0.389 0.373 0.385 0.367 0.385 0.374 0.387 0.382 0.391 0.403 0.408
336 0.384 0.394 0.402 0.409 0.382 0.401 0.405 0.412 0.402 0.404 0.399 0.410 0.410 0.411 0.415 0.415 0.436 0.431
720 0.447 0.431 0.469 0.446 0.445 0.435 0.466 0.447 0.469 0.444 0.454 0.439 0.478 0.450 0.473 0.451 0.489 0.462

Avg. 0.373 0.385 0.391 0.400 0.376 0.395 0.393 0.403 0.392 0.399 0.415 0.400 0.400 0.406 0.404 0.408 0.423 0.422

E
T

T
m

2

96 0.165 0.244 0.178 0.260 0.174 0.255 0.180 0.261 0.173 0.252 0.175 0.259 0.187 0.267 0.193 0.293 0.197 0.296
192 0.231 0.288 0.242 0.303 0.239 0.299 0.246 0.306 0.241 0.298 0.241 0.302 0.249 0.309 0.284 0.361 0.284 0.361
336 0.289 0.325 0.303 0.342 0.301 0.340 0.319 0.352 0.298 0.334 0.305 0.343 0.321 0.351 0.382 0.429 0.381 0.429
720 0.385 0.383 0.400 0.399 0.395 0.396 0.405 0.401 0.398 0.393 0.402 0.400 0.408 0.403 0.558 0.525 0.549 0.522

Avg. 0.268 0.310 0.281 0.326 0.277 0.322 0.287 0.330 0.278 0.319 0.281 0.326 0.291 0.333 0.354 0.402 0.305 0.349

E
T

T
h1

96 0.370 0.391 0.375 0.398 0.367 0.395 0.381 0.399 0.382 0.400 0.414 0.419 0.384 0.402 0.397 0.412 0.426 0.446
192 0.417 0.420 0.427 0.429 0.414 0.420 0.435 0.431 0.430 0.427 0.460 0.445 0.436 0.429 0.446 0.441 0.454 0.464
336 0.457 0.440 0.472 0.450 0.445 0.434 0.480 0.452 0.474 0.451 0.501 0.466 0.491 0.469 0.489 0.467 0.493 0.487
720 0.468 0.465 0.476 0.474 0.444 0.459 0.499 0.488 0.463 0.462 0.500 0.488 0.521 0.500 0.513 0.510 0.526 0.526

Avg. 0.428 0.429 0.438 0.438 0.417 0.427 0.449 0.442 0.437 0.435 0.469 0.454 0.458 0.450 0.461 0.457 0.475 0.480

E
T

T
h2

96 0.280 0.329 0.293 0.345 0.290 0.340 0.297 0.347 0.289 0.337 0.302 0.348 0.340 0.374 0.340 0.394 0.372 0.424
192 0.349 0.374 0.367 0.394 0.375 0.392 0.373 0.394 0.363 0.385 0.388 0.400 0.402 0.414 0.482 0.479 0.492 0.492
336 0.393 0.410 0.419 0.431 0.423 0.435 0.410 0.426 0.419 0.426 0.426 0.433 0.452 0.452 0.591 0.541 0.607 0.555
720 0.418 0.437 0.427 0.445 0.443 0.449 0.411 0.433 0.415 0.437 0.431 0.446 0.462 0.468 0.839 0.661 0.824 0.655

Avg. 0.361 0.388 0.377 0.403 0.383 0.404 0.373 0.400 0.371 0.396 0.387 0.407 0.414 0.427 0.563 0.519 0.574 0.531

W
ea

th
er

96 0.148 0.191 0.166 0.207 0.162 0.208 0.166 0.208 0.164 0.202 0.177 0.218 0.172 0.220 0.195 0.252 0.198 0.261
192 0.199 0.238 0.216 0.254 0.207 0.249 0.217 0.253 0.220 0.253 0.225 0.259 0.219 0.261 0.237 0.295 0.239 0.299
336 0.256 0.282 0.273 0.296 0.263 0.290 0.282 0.300 0.275 0.294 0.278 0.297 0.280 0.306 0.282 0.331 0.285 0.336
720 0.339 0.336 0.351 0.346 0.338 0.340 0.356 0.351 0.356 0.347 0.354 0.348 0.365 0.359 0.345 0.382 0.351 0.388

Avg. 0.236 0.262 0.251 0.276 0.242 0.272 0.255 0.278 0.254 0.274 0.259 0.281 0.259 0.287 0.265 0.315 0.268 0.321

E
le

ct
ri

ci
ty

96 0.139 0.234 0.139 0.234 0.174 0.266 0.143 0.233 0.144 0.233 0.195 0.285 0.168 0.272 0.210 0.302 0.180 0.293
192 0.157 0.250 0.156 0.249 0.182 0.273 0.158 0.248 0.159 0.247 0.199 0.289 0.184 0.289 0.210 0.305 0.189 0.302
336 0.175 0.269 0.172 0.267 0.197 0.286 0.178 0.269 0.172 0.263 0.215 0.305 0.198 0.300 0.223 0.319 0.198 0.312
720 0.210 0.301 0.209 0.299 0.236 0.320 0.218 0.305 0.204 0.294 0.256 0.337 0.220 0.320 0.258 0.350 0.217 0.330

Avg. 0.170 0.264 0.169 0.262 0.197 0.286 0.174 0.264 0.170 0.259 0.216 0.304 0.193 0.295 0.225 0.319 0.196 0.309

So
la

r-
E

ne
rg

y 96 0.184 0.217 0.196 0.237 0.254 0.318 0.200 0.230 0.232 0.256 0.234 0.286 0.250 0.292 0.290 0.378 0.257 0.325
192 0.220 0.242 0.231 0.263 0.285 0.326 0.229 0.253 0.276 0.288 0.267 0.310 0.296 0.318 0.320 0.398 0.278 0.354
336 0.247 0.266 0.250 0.281 0.315 0.338 0.243 0.269 0.301 0.306 0.290 0.315 0.319 0.330 0.353 0.415 0.298 0.375
720 0.257 0.270 0.253 0.285 0.313 0.340 0.245 0.272 0.308 0.316 0.289 0.317 0.338 0.337 0.357 0.413 0.299 0.379

Avg. 0.227 0.249 0.232 0.266 0.292 0.331 0.229 0.256 0.279 0.292 0.270 0.307 0.301 0.319 0.330 0.401 0.283 0.358
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Table 13: Full results of long-term forecasting with a 720-step lookback window (Part I) The input
length L is fixed 720 for optimal horizon in the scaling law of TSF Shi et al. (2024). All results are
averaged across four different forecasting horizon: T ∈ {96, 192, 336, 720}. The best and second-
best results are highlighted in bold and underlined, respectively.

Models DMANet PDF iTransformer Pathformer FITS TimeMixer PatchTST Crossformer TimesNet Dlinear Stationary
Ours 2024 2024 2024b 2024 2024a 2023 2022 2023 2023 2022b

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.287 0.340 0.286 0.340 0.300 0.353 0.290 0.335 0.303 0.345 0.293 0.345 0.289 0.343 0.314 0.367 0.340 0.378 0.300 0.345 0.415 0.410
192 0.322 0.364 0.321 0.364 0.341 0.380 0.337 0.363 0.337 0.365 0.335 0.372 0.329 0.368 0.374 0.410 0.392 0.404 0.336 0.366 0.494 0.451
336 0.352 0.381 0.354 0.383 0.374 0.396 0.374 0.384 0.368 0.384 0.368 0.386 0.362 0.390 0.413 0.432 0.423 0.426 0.367 0.386 0.577 0.490
720 0.403 0.410 0.408 0.415 0.429 0.430 0.428 0.416 0.420 0.413 0.426 0.417 0.416 0.423 0.753 0.613 0.475 0.453 0.419 0.416 0.636 0.535

Avg. 0.341 0.374 0.342 0.376 0.361 0.390 0.357 0.375 0.357 0.377 0.356 0.380 0.349 0.381 0.464 0.456 0.408 0.415 0.356 0.378 0.531 0.472

E
T

T
m

2

96 0.158 0.246 0.163 0.251 0.175 0.266 0.164 0.250 0.165 0.254 0.165 0.256 0.165 0.255 0.296 0.391 0.189 0.265 0.164 0.255 0.210 0.294
192 0.214 0.287 0.219 0.290 0.242 0.312 0.219 0.288 0.219 0.291 0.225 0.298 0.221 0.293 0.369 0.416 0.254 0.310 0.224 0.304 0.338 0.373
336 0.264 0.320 0.269 0.330 0.282 0.337 0.267 0.319 0.272 0.326 0.277 0.332 0.276 0.327 0.588 0.600 0.313 0.345 0.277 0.337 0.432 0.416
720 0.345 0.373 0.349 0.382 0.375 0.394 0.361 0.377 0.359 0.381 0.360 0.387 0.362 0.381 0.750 0.612 0.413 0.402 0.371 0.401 0.554 0.476

Avg. 0.245 0.307 0.250 0.313 0.269 0.327 0.253 0.308 0.254 0.313 0.257 0.318 0.256 0.314 0.501 0.505 0.292 0.331 0.259 0.324 0.383 0.390

W
ea

th
er

96 0.141 0.188 0.147 0.196 0.157 0.207 0.148 0.195 0.172 0.225 0.147 0.198 0.149 0.196 0.143 0.210 0.168 0.214 0.170 0.230 0.188 0.242
192 0.189 0.237 0.193 0.240 0.200 0.248 0.191 0.235 0.215 0.261 0.192 0.243 0.191 0.239 0.198 0.260 0.219 0.262 0.216 0.273 0.241 0.290
336 0.239 0.275 0.245 0.280 0.252 0.287 0.243 0.274 0.261 0.295 0.247 0.284 0.242 0.279 0.258 0.314 0.278 0.302 0.258 0.307 0.341 0.341
720 0.303 0.327 0.323 0.334 0.320 0.336 0.318 0.326 0.326 0.341 0.318 0.330 0.312 0.330 0.335 0.385 0.353 0.351 0.323 0.362 0.403 0.388

Avg. 0.218 0.257 0.227 0.263 0.232 0.270 0.225 0.257 0.244 0.280 0.226 0.264 0.224 0.261 0.234 0.292 0.255 0.282 0.242 0.293 0.293 0.315

E
le

ct
ri

ci
ty

96 0.130 0.227 0.128 0.222 0.134 0.230 0.135 0.222 0.139 0.237 0.153 0.256 0.143 0.247 0.134 0.231 0.169 0.271 0.140 0.237 0.171 0.274
192 0.145 0.242 0.147 0.242 0.154 0.250 0.157 0.253 0.154 0.250 0.168 0.269 0.158 0.260 0.146 0.243 0.180 0.280 0.154 0.251 0.180 0.283
336 0.160 0.258 0.165 0.260 0.169 0.265 0.170 0.267 0.170 0.268 0.189 0.291 0.168 0.267 0.165 0.264 0.204 0.304 0.169 0.268 0.204 0.305
720 0.182 0.280 0.199 0.289 0.194 0.288 0.211 0.302 0.212 0.304 0.228 0.320 0.214 0.307 0.237 0.314 0.205 0.304 0.204 0.301 0.221 0.319

Avg. 0.154 0.252 0.160 0.253 0.163 0.258 0.168 0.261 0.169 0.265 0.184 0.284 0.171 0.270 0.171 0.263 0.190 0.290 0.167 0.264 0.194 0.295

So
la

r

96 0.159 0.205 0.181 0.247 0.190 0.244 0.218 0.235 0.208 0.255 0.179 0.232 0.170 0.234 0.183 0.208 0.198 0.270 0.199 0.265 0.381 0.398
192 0.183 0.230 0.200 0.259 0.193 0.257 0.196 0.220 0.229 0.267 0.201 0.259 0.204 0.302 0.208 0.226 0.206 0.276 0.220 0.282 0.395 0.386
336 0.195 0.243 0.208 0.269 0.203 0.266 0.195 0.220 0.241 0.273 0.190 0.256 0.212 0.293 0.212 0.239 0.208 0.284 0.234 0.295 0.410 0.394
720 0.193 0.244 0.212 0.275 0.223 0.281 0.208 0.237 0.248 0.277 0.203 0.261 0.215 0.307 0.215 0.256 0.232 0.294 0.243 0.301 0.377 0.376

Avg. 0.183 0.231 0.200 0.263 0.202 0.262 0.204 0.228 0.232 0.268 0.193 0.252 0.200 0.284 0.205 0.232 0.211 0.281 0.224 0.286 0.391 0.389

Table 14: Full results of long-term forecasting with a 720-step lookback window (Part II).The input
length L is fixed 720 for optimal horizon in the scaling law of TSF Shi et al. (2024). All results are
averaged across four different forecasting horizon: T ∈ {96, 192, 336, 720}. The best and second-
best results are highlighted in bold and underlined, respectively.

Models DMANet TVNet RLinear MTS-Mixer MICN ModernTCN FEDformer RAFT TSLANet GPT4TS Time-LLM
(Ours) (2025) (2023a) (2023c) (2023) (2024) (2022b) (2025) (2024) (2023) (2024)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.287 0.340 0.288 0.343 0.301 0.342 0.314 0.358 0.314 0.360 0.292 0.346 0.326 0.390 0.302 0.349 0.289 0.349 0.292 0.346 0.272 0.334
192 0.322 0.364 0.326 0.367 0.355 0.363 0.354 0.386 0.359 0.387 0.332 0.368 0.365 0.415 0.329 0.367 0.328 0.370 0.332 0.372 0.310 0.358
336 0.352 0.381 0.365 0.391 0.370 0.383 0.384 0.405 0.398 0.413 0.365 0.391 0.392 0.425 0.355 0.383 0.355 0.389 0.366 0.394 0.352 0.384
720 0.403 0.410 0.412 0.413 0.425 0.414 0.427 0.432 0.459 0.464 0.416 0.417 0.446 0.458 0.406 0.413 0.421 0.425 0.417 0.421 0.383 0.411

Avg. 0.341 0.374 0.348 0.379 0.358 0.376 0.370 0.395 0.383 0.406 0.351 0.381 0.382 0.422 0.348 0.378 0.348 0.383 0.348 0.383 0.329 0.372

E
T

T
m

2

96 0.158 0.246 0.161 0.254 0.164 0.253 0.177 0.259 0.167 0.260 0.166 0.256 0.180 0.271 0.164 0.256 0.169 0.259 0.173 0.262 0.161 0.253
192 0.214 0.287 0.220 0.293 0.219 0.290 0.241 0.303 0.245 0.316 0.222 0.293 0.252 0.318 0.219 0.296 0.224 0.297 0.229 0.301 0.219 0.293
336 0.264 0.320 0.272 0.316 0.273 0.326 0.297 0.338 0.295 0.350 0.272 0.324 0.324 0.364 0.275 0.336 0.275 0.329 0.286 0.341 0.271 0.329
720 0.345 0.373 0.349 0.379 0.366 0.385 0.396 0.398 0.389 0.406 0.351 0.381 0.410 0.420 0.359 0.392 0.354 0.380 0.378 0.401 0.352 0.379

Avg. 0.245 0.307 0.251 0.311 0.256 0.314 0.277 0.325 0.277 0.336 0.253 0.314 0.292 0.343 0.254 0.320 0.256 0.316 0.226 0.326 0.251 0.313

W
ea

th
er

96 0.141 0.188 0.147 0.198 0.175 0.225 0.156 0.206 0.161 0.226 0.149 0.200 0.238 0.314 0.165 0.222 0.148 0.197 0.162 0.212 0.147 0.201
192 0.189 0.237 0.194 0.238 0.218 0.260 0.199 0.248 0.220 0.283 0.196 0.245 0.275 0.329 0.211 0.264 0.193 0.241 0.204 0.248 0.189 0.235
336 0.239 0.275 0.235 0.277 0.265 0.294 0.249 0.291 0.275 0.328 0.238 0.277 0.339 0.377 0.260 0.302 0.245 0.282 0.254 0.286 0.262 0.279
720 0.303 0.327 0.308 0.331 0.329 0.339 0.336 0.343 0.311 0.356 0.314 0.334 0.389 0.409 0.327 0.355 0.325 0.337 0.326 0.337 0.304 0.316

Avg. 0.218 0.257 0.221 0.261 0.247 0.279 0.235 0.272 0.242 0.298 0.224 0.264 0.310 0.357 0.241 0.286 0.325 0.337 0.237 0.270 0.225 0.257

E
le

ct
ri

ci
ty

96 0.130 0.227 0.142 0.223 0.140 0.235 0.141 0.243 0.159 0.267 0.129 0.226 0.186 0.302 0.133 0.232 0.136 0.229 0.139 0.238 0.131 0.224
192 0.145 0.242 0.165 0.241 0.154 0.248 0.163 0.261 0.168 0.279 0.143 0.239 0.197 0.311 0.149 0.247 0.152 0.244 0.153 0.251 0.160 0.248
336 0.160 0.258 0.164 0.269 0.171 0.264 0.176 0.277 0.196 0.308 0.161 0.259 0.213 0.328 0.161 0.259 0.168 0.262 0.169 0.266 0.160 0.248
720 0.182 0.280 0.190 0.284 0.209 0.297 0.212 0.308 0.203 0.312 0.191 0.286 0.233 0.344 0.197 0.297 0.205 0.293 0.206 0.297 0.192 0.298

Avg. 0.154 0.252 0.165 0.254 0.169 0.261 0.173 0.272 0.182 0.292 0.156 0.253 0.207 0.321 0.160 0.259 0.165 0.257 0.167 0.263 0.158 0.252
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Table 15: Full results of long-term forecasting with a 96-step lookback window (Part III). The
input sequence length L is set to 96 for all baselines. All results are averaged across four different
forecasting horizon: T ∈ {96, 192, 336, 720}. The best and second-best results are highlighted in
bold and underlined, respectively.

Models DMANet iTransformer Fredformer TimeMixer PatchTST Crossformer TimesNet TIDE DLinear FreTS FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PE
M

S0
3

12 0.064 0.167 0.071 0.174 0.068 0.174 0.076 0.188 0.099 0.216 0.090 0.203 0.085 0.192 0.178 0.305 0.122 0.243 0.083 0.194 0.126 0.251
24 0.086 0.193 0.093 0.201 0.094 0.205 0.113 0.226 0.142 0.259 0.121 0.240 0.118 0.223 0.257 0.371 0.201 0.317 0.127 0.198 0.241 0.275
48 0.132 0.239 0.125 0.236 0.152 0.262 0.191 0.292 0.211 0.319 0.202 0.317 0.155 0.260 0.379 0.463 0.333 0.425 0.202 0.310 0.227 0.348

Avg. 0.094 0.200 0.096 0.204 0.105 0.214 0.127 0.235 0.151 0.265 0.138 0.253 0.119 0.271 0.271 0.380 0.219 0.295 0.137 0.234 0.167 0.291

PE
M

S0
4

12 0.069 0.168 0.078 0.183 0.085 0.189 0.092 0.204 0.105 0.224 0.098 0.218 0.087 0.195 0.219 0.340 0.148 0.272 0.097 0.209 0.138 0.262
24 0.082 0.185 0.095 0.205 0.117 0.224 0.128 0.243 0.153 0.257 0.131 0.256 0.103 0.215 0.292 0.398 0.224 0.340 0.144 0.258 0.177 0.293
48 0.107 0.216 0.120 0.233 0.174 0.276 0.213 0.315 0.229 0.339 0.205 0.326 0.136 0.250 0.409 0.478 0.335 0.437 0.223 0.328 0.270 0.368

Avg. 0.086 0.190 0.098 0.207 0.125 0.215 0.144 0.254 0.162 0.273 0.145 0.267 0.109 0.220 0.307 0.405 0.236 0.350 0.148 0.265 0.195 0.308

PE
M

S0
7

12 0.057 0.152 0.067 0.165 0.063 0.158 0.073 0.184 0.095 0.207 0.094 0.200 0.082 0.181 0.173 0.304 0.115 0.242 0.078 0.185 0.109 0.225
24 0.074 0.174 0.088 0.190 0.089 0.192 0.111 0.219 0.150 0.262 0.139 0.247 0.101 0.204 0.271 0.383 0.210 0.329 0.127 0.239 0.125 0.244
48 0.109 0.211 0.110 0.215 0.136 0.241 0.237 0.328 0.253 0.340 0.311 0.369 0.134 0.238 0.446 0.495 0.398 0.458 0.220 0.317 0.165 0.288

Avg. 0.080 0.179 0.088 0.190 0.096 0.197 0.140 0.244 0.166 0.270 0.181 0.272 0.106 0.208 0.297 0.394 0.241 0.343 0.142 0.247 0.133 0.282

PE
M

S0
8

12 0.066 0.167 0.079 0.182 0.081 0.185 0.091 0.201 0.168 0.232 0.165 0.214 0.112 0.212 0.227 0.343 0.154 0.276 0.096 0.204 0.173 0.273
24 0.085 0.192 0.115 0.219 0.112 0.214 0.137 0.246 0.224 0.281 0.215 0.260 0.141 0.238 0.318 0.409 0.248 0.353 0.152 0.256 0.210 0.310
48 0.121 0.235 0.186 0.235 0.174 0.267 0.265 0.343 0.321 0.354 0.315 0.335 0.198 0.283 0.497 0.510 0.440 0.470 0.247 0.331 0.320 0.394

Avg. 0.090 0.198 0.127 0.212 0.122 0.222 0.164 0.263 0.238 0.289 0.232 0.270 0.150 0.244 0.347 0.421 0.281 0.366 0.165 0.264 0.234 0.326

Table 16: Univariate long-term forecasting results on ETT datasets. Following PatchTST and Mod-
erTCN, input length is fixed as 336 and prediction lengths are T ∈ {96, 192, 336, 720}. The best
and second-best results are highlighted in bold and underlined, respectively.

Models DMANet ModernTCN iTransformer TimeMixer PatchTST DLinear Pyraformer FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.026 0.122 0.026 0.121 0.029 0.127 0.029 0.128 0.029 0.126 0.028 0.123 0.127 0.281 0.033 0.140 0.056 0.183
192 0.039 0.150 0.040 0.152 0.045 0.162 0.044 0.160 0.043 0.158 0.045 0.156 0.205 0.343 0.058 0.186 0.081 0.216
336 0.052 0.172 0.053 0.173 0.059 0.189 0.058 0.185 0.056 0.183 0.061 0.182 0.302 0.457 0.084 0.231 0.076 0.218
720 0.072 0.203 0.073 0.206 0.080 0.218 0.081 0.218 0.080 0.217 0.080 0.210 0.387 0.485 0.102 0.250 0.110 0.267

Avg. 0.047 0.162 0.048 0.163 0.053 0.174 0.053 0.173 0.052 0.171 0.054 0.168 0.255 0.392 0.069 0.202 0.081 0.221

E
T

T
m

2

96 0.063 0.182 0.065 0.183 0.071 0.193 0.068 0.187 0.071 0.192 0.063 0.183 0.074 0.208 0.067 0.198 0.065 0.189
192 0.093 0.228 0.095 0.232 0.109 0.248 0.101 0.236 0.102 0.237 0.092 0.227 0.116 0.252 0.102 0.245 0.118 0.256
336 0.117 0.260 0.119 0.261 0.141 0.289 0.133 0.278 0.130 0.274 0.119 0.261 0.143 0.295 0.130 0.279 0.154 0.305
720 0.167 0.317 0.173 0.323 0.190 0.343 0.183 0.332 0.179 0.328 0.175 0.320 0.197 0.338 0.178 0.325 0.182 0.335

Avg. 0.110 0.247 0.113 0.250 0.128 0.268 0.121 0.258 0.121 0.258 0.112 0.248 0.133 0.273 0.119 0.262 0.130 0.271

E
T

T
h1

96 0.054 0.176 0.055 0.179 0.059 0.185 0.057 0.181 0.056 0.181 0.056 0.180 0.099 0.277 0.079 0.215 0.071 0.206
192 0.066 0.200 0.070 0.205 0.073 0.208 0.072 0.204 0.076 0.210 0.071 0.204 0.174 0.346 0.104 0.245 0.114 0.262
336 0.073 0.215 0.074 0.214 0.084 0.223 0.085 0.227 0.094 0.242 0.098 0.244 0.198 0.370 0.119 0.270 0.107 0.258
720 0.082 0.227 0.086 0.232 0.089 0.236 0.083 0.227 0.101 0.250 0.189 0.359 0.209 0.348 0.142 0.299 0.126 0.283

Avg. 0.069 0.205 0.071 0.206 0.076 0.213 0.074 0.210 0.082 0.221 0.104 0.247 0.170 0.335 0.111 0.257 0.105 0.252

E
T

T
h2

96 0.121 0.269 0.124 0.274 0.136 0.287 0.133 0.283 0.130 0.276 0.131 0.279 0.152 0.303 0.128 0.271 0.153 0.306
192 0.154 0.310 0.164 0.321 0.187 0.342 0.190 0.341 0.181 0.331 0.176 0.329 0.197 0.370 0.185 0.330 0.204 0.351
336 0.174 0.336 0.171 0.336 0.219 0.374 0.226 0.379 0.226 0.379 0.209 0.367 0.238 0.385 0.231 0.378 0.246 0.389
720 0.211 0.371 0.228 0.384 0.253 0.403 0.241 0.396 0.253 0.406 0.276 0.426 0.274 0.435 0.278 0.420 0.268 0.409

Avg. 0.165 0.322 0.172 0.329 0.199 0.352 0.198 0.350 0.198 0.348 0.198 0.350 0.215 0.373 0.206 0.350 0.218 0.364
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Table 17: Full results of short-term forecasting on supplementary datasets from domains includ-
ing Health & Medical (ILI, COVID-19), Web Events (Wiki, Website), Finance (NASDAQ, SP500,
DowJones), Market (CarSales), Energy (Power), and Society (Unemp). The best and second-best
results are highlighted in bold and underlined, respectively.

Model DMANet TimeMixer FilterNet FITS DLinear Fredformer PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

IL
I

24 1.746 0.813 2.110 0.879 2.190 0.870 4.265 1.523 3.158 1.243 2.098 0.894 2.046 0.849
36 1.718 0.817 2.084 0.890 1.902 0.862 3.718 1.363 3.009 1.200 1.712 0.867 2.344 0.912
48 1.744 0.826 1.961 0.866 2.051 0.882 3.994 1.422 2.994 1.194 2.054 0.922 2.123 0.883
60 1.842 0.839 1.926 0.878 2.151 0.925 4.543 1.554 3.172 1.232 1.925 0.913 2.001 0.895

Avg 1.763 0.824 2.020 0.878 2.073 0.885 4.130 1.465 3.083 1.217 1.947 0.899 2.128 0.885

C
ov

id
19

3 1.098 0.489 1.237 0.547 1.195 0.555 2.039 0.790 2.386 0.909 1.165 0.548 1.220 0.573
6 1.735 0.625 2.003 0.739 1.839 0.711 2.683 0.919 3.220 1.053 1.465 0.685 1.982 0.762
9 2.167 0.722 2.594 0.860 2.537 0.897 3.147 1.050 3.803 1.160 2.145 0.845 2.633 0.916
12 2.640 0.843 3.103 0.981 2.782 0.956 3.630 1.156 4.524 1.288 2.833 0.984 3.050 1.030

Avg 1.910 0.670 2.234 0.782 2.088 0.780 2.875 0.979 3.483 1.102 1.902 0.765 2.221 0.820

N
A

SD
A

Q

24 0.118 0.214 0.122 0.221 0.130 0.230 0.140 0.244 0.155 0.274 0.128 0.226 0.127 0.224
36 0.158 0.260 0.183 0.279 0.175 0.273 0.184 0.284 0.196 0.306 0.170 0.268 0.174 0.269
48 0.200 0.296 0.200 0.298 0.224 0.314 0.234 0.324 0.244 0.344 0.218 0.306 0.225 0.314
60 0.233 0.323 0.238 0.328 0.259 0.340 0.282 0.357 0.318 0.401 0.262 0.339 0.265 0.339

Avg 0.177 0.273 0.186 0.281 0.197 0.289 0.210 0.302 0.228 0.331 0.194 0.285 0.198 0.286

W
ik

i

3 6.116 0.372 6.209 0.392 6.234 0.402 7.470 0.496 6.254 0.438 6.190 0.387 6.112 0.380
6 6.419 0.388 6.475 0.402 6.460 0.401 8.326 0.544 6.579 0.467 6.696 0.404 6.425 0.395
9 6.665 0.402 6.702 0.418 6.697 0.416 8.869 0.564 6.776 0.508 6.768 0.411 6.743 0.426
12 6.824 0.411 6.902 0.426 6.899 0.426 9.394 0.608 6.927 0.513 7.168 0.424 6.814 0.414

Avg 6.506 0.393 6.572 0.409 6.572 0.411 8.515 0.553 6.634 0.481 6.705 0.406 6.523 0.404

SP
50

0

24 0.153 0.271 0.159 0.288 0.181 0.317 0.193 0.334 0.189 0.330 0.181 0.315 0.164 0.298
36 0.205 0.315 0.218 0.343 0.224 0.341 0.259 0.389 0.250 0.363 0.239 0.365 0.221 0.341
48 0.250 0.348 0.264 0.367 0.280 0.384 0.324 0.439 0.291 0.398 0.283 0.394 0.278 0.397
60 0.293 0.383 0.322 0.416 0.332 0.416 0.391 0.486 0.377 0.475 0.341 0.438 0.321 0.409

Avg 0.225 0.329 0.241 0.353 0.254 0.365 0.291 0.412 0.277 0.391 0.261 0.378 0.246 0.361

D
ow

Jo
ne

s 24 7.325 0.666 8.327 0.683 8.000 0.683 7.974 0.690 7.590 0.670 7.758 0.672 7.641 0.670
36 10.422 0.800 11.192 0.813 12.011 0.823 11.907 0.837 10.986 0.803 11.456 0.808 11.210 0.807
48 13.975 0.917 15.278 0.945 14.814 0.933 15.821 0.969 14.157 0.922 14.696 0.921 14.866 0.935
60 16.106 1.016 20.997 1.067 18.932 1.054 19.320 1.077 18.018 1.035 18.058 1.032 17.947 1.036

Avg 11.957 0.850 13.948 0.877 13.439 0.873 13.755 0.893 12.688 0.857 12.992 0.858 12.916 0.862

C
ar

Sa
le

s 24 0.318 0.314 0.320 0.318 0.318 0.319 0.359 0.347 0.354 0.350 0.319 0.326 0.319 0.319
36 0.332 0.327 0.332 0.331 0.331 0.330 0.373 0.360 0.368 0.365 0.333 0.335 0.332 0.330
48 0.346 0.340 0.345 0.343 0.342 0.341 0.385 0.370 0.382 0.379 0.349 0.344 0.347 0.344
60 0.357 0.352 0.355 0.351 0.352 0.349 0.399 0.385 0.388 0.380 0.359 0.349 0.355 0.348

Avg 0.338 0.333 0.338 0.336 0.336 0.335 0.379 0.365 0.373 0.368 0.340 0.338 0.338 0.335

Po
w

er

24 1.293 0.865 1.341 0.881 1.410 0.916 1.491 0.944 1.390 0.916 1.410 0.913 1.468 0.935
36 1.334 0.875 1.420 0.914 1.590 0.968 1.621 0.994 1.518 0.957 1.538 0.953 1.593 0.972
48 1.408 0.917 1.567 0.963 1.680 1.009 1.775 1.052 1.610 0.995 1.652 1.008 1.710 1.020
60 1.456 0.940 1.609 0.988 1.776 1.053 1.958 1.122 1.679 1.020 1.752 1.049 1.829 1.064

Avg 1.373 0.899 1.484 0.937 1.614 0.986 1.711 1.028 1.549 0.972 1.588 0.981 1.650 0.998

W
eb

si
te

3 0.083 0.209 0.086 0.215 0.084 0.213 0.191 0.320 0.159 0.288 0.080 0.207 0.089 0.217
6 0.112 0.238 0.124 0.248 0.116 0.242 0.235 0.356 0.182 0.302 0.116 0.241 0.121 0.246
9 0.154 0.265 0.159 0.275 0.151 0.269 0.276 0.372 0.220 0.330 0.150 0.268 0.157 0.273
12 0.199 0.294 0.204 0.306 0.194 0.297 0.409 0.484 0.255 0.355 0.196 0.301 0.200 0.302

Avg 0.137 0.252 0.143 0.261 0.136 0.255 0.278 0.383 0.204 0.319 0.135 0.254 0.141 0.259

U
ne

m
p

3 0.010 0.052 0.015 0.074 0.012 0.062 0.161 0.289 0.072 0.200 0.013 0.068 0.012 0.060
6 0.036 0.117 0.057 0.154 0.043 0.130 0.229 0.345 0.115 0.255 0.046 0.139 0.043 0.127
9 0.081 0.180 0.109 0.213 0.107 0.216 0.369 0.443 0.191 0.329 0.095 0.198 0.093 0.190
12 0.127 0.234 0.195 0.293 0.155 0.255 0.475 0.500 0.240 0.386 0.148 0.250 0.164 0.261

Avg 0.064 0.146 0.094 0.183 0.079 0.166 0.308 0.394 0.154 0.292 0.075 0.163 0.078 0.160
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D.5 RESULTS FOR HYPERPARAMETER ANALYSIS

In this section, we also explore the effect of the hyperparameters used in our experiments, includ-
ing the depth-wise convolution kernal size K, the depth-wise convolution kernal stride size s, the
channel change c and λ on the loss function.

The channel change c signifies the alteration in the number of channels during the downsampling
process, where values below 1 denote a reduction in channel quantity, whereas values exceeding 1
indicate channel expansion.

For λ, according to FreDF Wang et al. (2025), the loss function is a weighted sum of the time-
domain MSE and the frequency-domain MAE. λ represents the proportion of the frequency MAE
in the loss function, and (1− λ) represents the proportion of the time-domain MSE.

We show the experimental results from Table.18 to Table.21.

Table 18: Impact of kernal size. A lower MSE or MAE indicates a better performance.

Models Metrics Weather ETTh2 ETTm2

96 336 96 336 96 336

K = 1 MSE 0.151 0.274 0.289 0.393 0.169 0.289
MAE 0.194 0.325 0.334 0.411 0.248 0.326

K = 3 MSE 0.148 0.256 0.280 0.393 0.165 0.289
MAE 0.191 0.282 0.329 0.410 0.244 0.325

K = 5 MSE 0.149 0.259 0.286 0.393 0.168 0.296
MAE 0.192 0.285 0.332 0.410 0.247 0.331

K = 7 MSE 0.150 0.258 0.286 0.394 0.167 0.292
MAE 0.193 0.283 0.331 0.411 0.245 0.327

Table 19: Impact of stride size. A lower MSE or MAE indicates a better performance.

Models Metrics Weather ETTh2 ETTm2

96 336 96 336 96 336

s = 1 MSE 0.151 0.259 0.281 0.423 0.170 0.297
MAE 0.194 0.284 0.331 0.421 0.247 0.331

s = 2 MSE 0.148 0.256 0.280 0.393 0.165 0.289
MAE 0.191 0.282 0.329 0.410 0.244 0.325

s = 3 MSE 0.149 0.259 0.274 0.393 0.167 0.290
MAE 0.192 0.284 0.325 0.410 0.246 0.326

s = 4 MSE 0.148 0.257 0.279 0.395 0.167 0.291
MAE 0.190 0.282 0.326 0.411 0.246 0.327
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Table 20: Impact of channel change. A lower MSE or MAE indicates a better performance.

Models Metrics Weather ETTh2 ETTm2

96 336 96 336 96 336

c = 0.25 MSE 0.149 0.259 0.278 0.396 0.167 0.291
MAE 0.193 0.284 0.326 0.412 0.245 0.327

c = 0.5 MSE 0.148 0.256 0.280 0.393 0.165 0.289
MAE 0.191 0.282 0.329 0.410 0.244 0.325

c = 1 MSE 0.149 0.261 0.284 0.408 0.171 0.293
MAE 0.191 0.287 0.333 0.415 0.250 0.328

c = 2 MSE 0.149 0.257 0.281 0.401 0.169 0.294
MAE 0.192 0.283 0.332 0.415 0.247 0.327

c = 4 MSE 0.152 0.261 0.292 0.398 0.173 0.293
MAE 0.196 0.287 0.337 0.415 0.250 0.328

Table 21: Impact of λ in loss. A lower MSE or MAE indicates a better performance.

Models Metrics Weather ETTh2 ETTm2

96 336 96 336 96 336

λ = 0.1 MSE 0.149 0.257 0.289 0.392 0.168 0.297
MAE 0.191 0.283 0.333 0.412 0.246 0.332

λ = 0.3 MSE 0.149 0.259 0.289 0.394 0.167 0.297
MAE 0.192 0.284 0.332 0.411 0.246 0.332

λ = 0.5 MSE 0.149 0.259 0.286 0.394 0.169 0.298
MAE 0.191 0.284 0.331 0.412 0.246 0.332

λ = 0.7 MSE 0.149 0.259 0.290 0.396 0.169 0.297
MAE 0.191 0.283 0.332 0.414 0.247 0.332

λ = 1 MSE 0.148 0.256 0.280 0.393 0.165 0.289
MAE 0.191 0.282 0.329 0.410 0.244 0.325
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E MORE DETAILS OF COMPUTATIONAL COSTS

To comprehensively evaluate the efficiency and scalability of DMANet, we conducted controlled
experiments on both synthetic and real-world datasets. Our analysis focuses on two key aspects: the
computational overhead of our proposed components and the overall model’s performance compared
to state-of-the-art methods.

E.1 EFFICIENCY AND SCALABILITY ANALYSIS ON SYNTHETIC DATA

We first use synthetic data to perform a fine-grained analysis under controlled conditions, isolating
the impact of sequence length and channel dimensions. With fixed hyperparameters (look-back
window=96, batch size=64, etc.), we measure inference speed (ms) and peak GPU memory (MB)
under two scenarios: (1) fixing the number of channels C while varying the sequence length T , and
(2) fixing T while varying C. Each experiment was repeated 500 times for stability. The results are
presented in Table.22.

Table 22: Inference Speed (ms) and Memory Usage (MB) Comparison Across Different Models and
Configurations. Values for speed are reported as mean ± std over 500 runs.

DMANet w/o-ESR Chebyshev

Configuration Speed Memory Speed Memory Speed Memory

T = 256 1.376±0.122 15.71 1.309±0.359 15.71 1.916±0.150 15.71
T = 512 1.372±0.107 31.29 1.325±0.115 31.29 1.942±0.173 31.29
T = 1024 1.677±0.137 65.38 1.600±0.346 65.38 2.249±0.182 65.38
T = 2048 2.915±0.151 146.49 2.846±0.256 146.49 3.576±0.019 146.49

C = 48 1.518±0.103 61.36 1.444±0.222 61.36 1.523±0.206 61.36
C = 96 1.982±0.141 122.40 1.882±0.154 122.40 2.640±0.187 122.40
C = 192 3.731±0.047 251.77 3.580±0.072 251.77 4.250±0.182 251.77
C = 336 7.029±0.025 471.27 6.760±0.043 471.27 7.399±0.167 471.27

Linear TransConv Attention

Configuration Speed Memory Speed Memory Speed Memory
T = 256 1.228±0.352 15.89 1.405±0.128 15.92 3.065±0.234 75.04
T = 512 1.201±0.158 32.02 1.605±0.124 31.68 3.412±0.239 280.09
T = 1024 1.838±0.196 68.39 2.191±0.168 66.70 8.710±0.117 1084.94
T = 2048 5.079±0.117 158.52 3.818±0.089 147.73 29.417±0.224 4270.15

C = 48 1.414±0.225 61.43 1.915±0.161 61.33 3.892±0.186 298.42
C = 96 1.794±0.078 122.31 2.432±0.303 119.46 5.278±1.450 332.12
C = 192 3.374±0.054 252.63 4.418±0.281 236.45 8.956±0.035 404.04
C = 336 5.642±0.150 471.27 8.116±0.019 414.28 15.971±0.102 518.38

From these results, we draw two key conclusions:

1. The computational overhead of our dynamic anti-aliasing (ESR Filter) is negligible. A
direct comparison between DMANet and its ablated version (w/o ESR) reveals that the peak memory
usage is nearly identical across all configurations. The time overhead introduced by the ESR filter
is minimal, with a worst-case relative increase of only 2.4% (at T=2048). Furthermore, DMANet
is consistently faster than the variant using a classical Chebyshev filter. This empirically proves
that our dynamic anti-aliasing mechanism is a computationally lightweight strategy that does not
introduce a performance bottleneck.

2. The efficiency and scalability of frequency-domain interpolation for upsampling. We fur-
ther validate our choice of upsampling mechanism by comparing it with common alternatives. The
Attention-based method is not viable for long sequences due to the explosive, quadratic growth in
its memory and time costs. While a simple Linear layer is fast, it scales poorly when processing
very long sequences (e.g., at T=2048, its speed degrades significantly). Although Transposed Con-
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volution is lightweight, our method is faster in most scenarios. In conclusion, our chosen frequency-
domain interpolation achieves an excellent balance of cost-effectiveness and scalability across dif-
ferent data shapes.

E.2 EFFICIENCY COMPARISON WITH STATE-OF-THE-ART MODELS ON REAL-WORLD
DATASETS

Follow the TimeKAN Huang et al. (2025), we benchmark the overall efficiency of DMANet against
leading SOTA models on real-world datasets. We fix the input and prediction lengths (T = 96, F =
96) to ensure a fair comparison and report on model parameters (Params), multiply-accumulate
operations (MACs) and predictive accuracy.

Table 23: A comparison of model parameters (Params) and multiply-accumulate operations (MACs)
for DMANet and seven other models. To ensure a fair comparison, we fix the prediction length
F = 96 and the input length T = 96.

Model ETTm2 Weather Electricity
Params MACs MSE MAE Params MACs MSE MAE Params MACs MSE MAE

iTransformer 224.22 K 19.86 M 0.184 0.267 4.83 M 1.16 G 0.175 0.216 4.83 M 16.29 G 0.148 0.240
TimeMixer 77.77 K 24.18 M 0.175 0.257 104.43 K 82.62 M 0.161 0.208 106.83 K 1.26 G 0.156 0.247
TimesNet 1.19 M 36.28 G 0.189 0.266 1.19 M 36.28 G 0.169 0.219 150.30 M 4.61 T 0.168 0.272
PatchTST 10.06 M 17.66 G 0.183 0.268 6.90 M 35.30 G 0.176 0.217 6.90 M 539.68 G 0.180 0.273
DLinear 18.62 K 0.60 M 0.193 0.293 18.62 K 0.60 M 0.196 0.256 18.62 K 0.60 M 0.210 0.302

TimeKAN 38.12 K 16.66 M 0.174 0.257 20.94 K 29.86 M 0.163 0.208 23.34 K 456.50 M 0.175 0.268
FilterNet 49.61 K 1.67 M 0.175 0.257 49.64 K 1.03 M 0.166 0.210 50.24 K 15.78 M 0.167 0.256

DMANet 19.08 K 92.29 K 0.173 0.253 77.02 K 0.33 M 0.155 0.201 8.49 M 73.95 M 0.146 0.243

As shown in Table.23, DMANet demonstrates a state-of-the-art balance between efficiency and
performance. Compared to Transformer-based models (e.g., iTransformer, PatchTST) and recent
computationally intensive architectures like TimeKAN, DMANet requires less memory and fewer
MACs while maintaining superior forecasting accuracy. While simple baselines like DLinear and
FilterNet are exceptionally fast, DMANet provides a substantial accuracy improvement with only
a marginal increase in computational cost. These results confirm that the lightweight and scalable
design choices validated in our synthetic experiments translate directly to a highly competitive ef-
ficiency in real-world applications. Notably, on the high-dimensional Electricity dataset, DMANet
achieves the best MSE (0.146) with a computational cost of only 73.95M MACs. This is significantly
lower than that of PatchTST (539.68G MACs), iTransformer (16.29G MACs), and even TimeKAN
(456.5M MACs). These results confirm that DMANet is not only a lightweight solution for simple
tasks but also a highly scalable and efficient architecture for complex real-world applications.
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F MORE DETAILS OF PRE-SAMPLING FILTERING

To comprehensively evaluate the robustness of our model and its generalization ability to different
types of signal disturbance, we synthesized noise and superimposed it onto the original clean signals
xclean to generate noisy signals xnoisy for model testing. The synthetic noise was generated using a
unified framework that supports multiple noise types, with precise control over the intensity of the
noise through parameters. Specifically, we implemented the following noise types:

• Frequency-Domain Noise: It includes High-frequency noise, Low-frequency noise, and
Broadband noise. This type is generated by taking the Fast Fourier Transform (FFT) of the
original signal, generating a band-limited or broadband random Gaussian noise spectrum
in the frequency domain, and then converting it back to the time domain via Inverse Fast
Fourier Transform (IFFT). The frequency band division for high- and low-frequency noise
is controlled by the rcut parameter, defined as the cutoff proportion in the frequency space.

• Trend Noise: Simulates slow-varying, non-periodic disturbances. This noise is generated
by creating a low-order (e.g., quadratic) polynomial with random coefficients to simulate
the trend component in the time series and adding it to the original signal.

• Seasonal Noise: Simulates periodic disturbances. This noise is generated by superimpos-
ing one or more sine waves with predefined base frequencies specified by the parameter
fseasonal, each having a random initial phase.

The noise intensity is precisely controlled by ϵ, which defines the desired ratio of noise energy Enoise
to clean signal energy Eclean, i.e., Enoise/Eclean. After generating the noise, which can be denoted as
noise, the noise energy is calculated and scaled accordingly to ensure that the noise added to the
clean signal has a relative energy level consistent with ϵ. The final noisy signal xnoisy is obtained by
adding the scaled noise noisescaled to the original clean signal: xnoisy = xclean + noisescaled.

Then, we systematically analyze the performance of the model when faced with various signal dis-
tortions. In our experiments, concretely, we fixed the rcut at 0.3, set fseasonal to {1/24, 1/12}, and
used ϵ values of {0.1, 0.2, 0.5} in different experimental groups. The results are shown in Table.24.

Comparative Study of Anti-Aliasing Strategies. To further investigate our proposed Equivalent Sam-
pling Rate mechanism and explore efficient anti-aliasing strategies, we conducted a comparative
study on the Weather dataset using a 96-step lookback to predict a 720-step horizon. We bench-
marked three distinct anti-aliasing configurations:

• DMANet (ESR-based): Our proposed model, which uses the architecture-aware ESR to
dynamically determine the cutoff frequency for a sharp filter.

• DMANet but (Butterworth): A variant where the ESR-based filter is replaced by a tradi-
tional 4th-order Butterworth low-pass filter, a well-established mathematical filter known
for its maximally flat passband.

• DMANet mix (Fusion-based): A hybrid model that first uses ESR to partition the spec-
trum and then processes the high- and low-frequency bands through separate convolutional
layers before fusing them, designed to explore the utility of preserved high-frequency in-
formation.

• DMANet wo (No Filter): A baseline variant that removes the anti-aliasing filter entirely,
processing the raw input directly through the network to assess the necessity and impact of
frequency-domain filtering.

The results under various noise conditions are summarized in Table.24. Overall, most of configura-
tions demonstrate notable robustness, with only graceful performance degradation as noise intensity
increases. This highlights the general effectiveness of incorporating a pre-sampling filtering stage to
enhance noise resistance.

Our ablation study reveals a insight into the effectiveness of different anti-aliasing strategies. The-
oretically, one might expect the Butterworth filter (DMANet but), with its maximally flat passband,
to excel at handling low-frequency and trend noise by preserving the signal fidelity in that band Yin
et al. (2024). Conversely, our ESR-based hard-cutoff filter (DMANet) should be superior against
high-frequency and seasonal noise due to its removal of aliasing-prone components.
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Table 24: Robustness analysis of DMANet variants under different types and intensities of synthetic
noise on the Weather dataset. All experiments use a 96-step lookback to predict a 720-step horizon.

Model Variant Noise Type ϵ = 1% ϵ = 5% ϵ = 10%

MSE MAE MSE MAE MSE MAE

DMANet

Seasonal 0.343 0.339 0.342 0.341 0.341 0.343
Trend 0.344 0.340 0.345 0.345 0.351 0.358
All (Broadband) 0.345 0.341 0.345 0.342 0.346 0.344
Low-Frequency 0.345 0.340 0.347 0.342 0.349 0.347
High-Frequency 0.344 0.340 0.343 0.340 0.343 0.341

DMANet but

Seasonal 0.346 0.340 0.342 0.340 0.340 0.343
Trend 0.347 0.342 0.348 0.347 0.354 0.359
All (Broadband) 0.349 0.342 0.347 0.343 0.346 0.344
Low-Frequency 0.352 0.344 0.349 0.345 0.350 0.347
High-Frequency 0.345 0.341 0.343 0.340 0.343 0.343

DMANet mix

Seasonal 0.353 0.343 0.350 0.345 0.350 0.348
Trend 0.348 0.342 0.353 0.350 0.356 0.359
All (Broadband) 0.352 0.344 0.353 0.344 0.357 0.348
Low-Frequency 0.354 0.345 0.351 0.345 0.353 0.348
High-Frequency 0.358 0.346 0.353 0.345 0.352 0.347

DMANet wo

Seasonal 0.348 0.343 0.350 0.346 0.346 0.349
Trend 0.348 0.343 0.351 0.351 0.357 0.361
All (Broadband) 0.350 0.344 0.352 0.346 0.347 0.345
Low-Frequency 0.355 0.346 0.355 0.349 0.353 0.349
High-Frequency 0.350 0.343 0.350 0.345 0.351 0.344

Interestingly, our empirical results in Table.24 show that while performance is competitive on sea-
sonal and high-frequency noise, DMANet consistently and significantly outperforms DMANet but
on trend and low-frequency noise. This seemingly counter-intuitive result highlights a critical lim-
itation of applying classical filters naively within a deep learning pipeline. While the Butterworth
filter is static and optimally preserves its predefined passband, it is architecture-agnostic. It may
still pass frequencies that, while low, are too high for the subsequent strided convolution to process
without aliasing. In contrast, our ESR-based approach is architecture-aware. It does not aim to be
a perfect mathematical filter in isolation; its sole purpose is to perfectly prepare the signal for the
next layer. By dynamically calculating a precise cutoff based on the network’s own parameters, it
ensures that no aliasing occurs at any stage, even if this means a slightly more aggressive filtering.
This architectural synergy proves to be more practically effective.

Furthermore, the fusion-based DMANet mix consistently underperforms the other two variants.
This result empirically supports our design rationale for employing a strict cutoff strategy: for a
lightweight model, it is more effective to concentrate its limited capacity on core, learnable pat-
terns rather than attempting to fit the complex and often noisy dynamics of high-frequency infor-
mation. As observed in prior work like FITS Xu et al. (2024), removing a significant portion of
high-frequency components largely preserves a time series’ dominant trends. The poor performance
of DMANet mix indicates that simply preserving and processing this high-frequency content is less
effective than principled filtering, likely because this band is dominated by noise that the model
cannot distinguish from a true signal.

Collectively, these results validate that our ESR-based approach provides the most robust and adap-
tive solution. By dynamically and precisely removing only the frequencies that would cause aliasing,
it not only focuses the model on the most decisive, learnable patterns but also achieves this with su-
perior adaptability compared to static classical filters, all without the need for manual filter design.
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G MORE DETAILS OF OUR METHOD

G.1 THE RATIONALE FOR THE EMBEDDING FIRST ARCHITECTURE

A critical challenge in multi-scale time series analysis is the fusion of features from different scales
without introducing signal distortion. A common approach, which we term multi-scale first, involves
downsampling the raw signal and then embedding each scale. However, this seemingly intuitive
process hides a significant pitfall: the upsampling step required for feature fusion inevitably causes
spectral distortion due to its reliance on a limited reconstruction basis. To circumvent this funda-
mental issue, our DMANet adopts a principled embedding first architecture, ensuring all operations
are conducted with high fidelity within a unified feature space.

Given this architectural choice, we must clarify the nature of operations performed in this latent
space. Although our model operates on embedded latent features, we distinguish our approach
from general feature dimension reduction by preserving the sequential topology. While the initial
projection transforms the raw time series into a latent dimension, the subsequent incorporation of
learnable positional encodings and convolutional inductive biases compels the model to organize
these features into a strict sequence with local dependencies, establishing what we term a latent
time axis. Unlike standard dimension reduction which treats features as unordered vectors, reducing
the resolution of this organized axis via strided operations constitutes mathematical downsampling
strictly governed by the Nyquist-Shannon theorem. Disregarding the sampling rate in this context
leads to aliasing, where high-frequency latent patterns generate spurious correlations. So we employ
the term downsampling to explicitly highlight this critical risk often overlooked in conventional
dimension reduction perspectives.

G.1.1 THE PITFALL OF PREMATURE MULTI-SCALE DECOMPOSITION

The multi-scale first approach, seen in models like TimeMixer Wang et al. (2024a), begins by de-
composing the raw signal X into a set of time series {Xm ∈ RC×sm , sm < L}. While feasible,
the core flaw lies in the subsequent step of unifying these scales for feature fusion. To restore the
original length L, each short sequence sm must be upsampled using a linear layer, gm : Rsm → RL.
This process is inherently problematic due to its limited representational capacity:

• Limited Basis Vectors: The weight matrix W ∈ RL×sm of the upsampling layer provides
only sm column vectors. These vectors form the entire basis available to reconstruct the
output signal. Consequently, all reconstructed signals are confined to a very small, sm-
dimensional subspace of the target space RL.

• Deformed Basis Vectors: To approximate the diverse signals in the training data from this
constrained basis, the model is forced to learn complex, non-smooth, and oscillatory basis
vectors as a poor compromise.

• Inevitable Spectral Distortion: When a signal is reconstructed as a linear combination
of these deformed basis vectors, it unavoidably inherits their unnatural properties. This
leads to severe spectral distortion, corrupting the signal’s fidelity and polluting the final
prediction.

G.1.2 EMBED FIRST: A PRINCIPLED APPROACH IN A UNIFIED FEATURE SPACE

Our DMANet architecture is designed to completely avoid the aforementioned reconstruction prob-
lem by first establishing a unified workspace for all operations.

1. Defining a Unified Workspace: We begin by projecting the information-complete raw
signal X ∈ RC×L into a new feature basis space using a linear layer. This generates a fea-
ture sequence X ′ ∈ RC×T , creating a unified and consistent workspace for all subsequent
synergistic operations.

2. High-Fidelity Operations: Within this consistent feature space, all core operations are
performed in a principled manner:

• Downsampling: Our anti-aliasing downsampling module pre-filters features in the
frequency domain before reducing resolution, preventing information aliasing and en-
suring reliable feature transfer across scales.
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• Upsampling: To restore resolution for feature fusion, we employ zero-padding in the
frequency domain. This method is equivalent to ideal interpolation and relies on the
Fourier basis (sines and cosines)—a fixed, universal, and complete orthogonal ba-
sis. Adhering to the Nyquist-Shannon sampling theorem, this ensures the smoothest
possible reconstruction, free from the uncontrolled high-frequency artifacts gener-
ated by the alternative approach.

By ensuring all features are derived and processed with high-fidelity operations within the same
basis space, we maintain inherent consistency and make feature fusion fundamentally more reliable.

G.1.3 EMPIRICAL VALIDATION

To validate our theoretical analysis, we conducted a comprehensive comparison between our
DMANet (Embedding First) and the alternative architecture (Multi-Scale First). We also performed
an ablation study by removing the initial embedding module (w/o embed) to verify the effectiveness
of operating within a latent space.

The results in Table.25 provide strong empirical support for our design.

Table 25: Comparative analysis and ablation study for the Embedding First architecture. Our full
DMANet model is compared against the Multi-Scale First approach and a variant without the initial
embedding module.

Model Metric ETTh1 ETTm1 Weather Elect Wiki ILI Unemp Dowjone
DMANet (Embedding First) MSE 0.428 0.373 0.236 0.172 6.506 1.763 0.064 11.957

MAE 0.429 0.385 0.262 0.265 0.393 0.824 0.146 0.850
Multi-Scale First MSE 0.441 0.385 0.242 0.181 6.555 2.097 0.074 12.420

MAE 0.435 0.391 0.268 0.273 0.407 0.858 0.167 0.860
w/o embed MSE 0.436 0.389 0.249 0.188 6.551 2.084 0.073 12.330

MAE 0.427 0.392 0.274 0.277 0.406 0.879 0.163 0.857

The Multi-Scale First approach consistently underperforms our model. This performance gap is a
direct, practical consequence of the spectral distortion introduced by its unprincipled, basis-limited
reconstruction step.

Furthermore, we acknowledge that the initial linear mapping carries a potential risk of losing some
temporal dependencies. This is a deliberate design choice, and its justification is twofold. First,
we incorporate a learnable positional encoding to preserve crucial temporal context. Second, as our
ablation study will demonstrate, the benefits of analyzing the series in a latent space—where patterns
are more suitable for anti-aliasing and feature extraction—outweigh the alternative of operating
directly on the raw signal. The placeholder for the w/o embed results in Table.25 will provide strong
evidence for this superiority.

G.2 PRINCIPLED ANTI-ALIASING VIA DYNAMIC FREQUENCY CUTOFF

For any given downsampling layer l in DMANet, its anti-aliasing operation is the application of
a low-pass filter with a mathematically-derived, strict cutoff frequency. Given the layer’s convo-
lutional parameters—kernel size k, stride s, and channel ratio c—we first calculate its Effective
Sampling Ratio (ESRl) using Equation.3 to determine its true signal processing capability. This
allows us to establish a new Nyquist frequency, f l

Nyquist. As shown in Equation.4, all frequency com-
ponents above this threshold are strictly zeroed out via a frequency-domain mask. Our method does
not partially retain or vaguely attenuate high-frequency components; it employs a principled cutoff
scheme where the threshold is dynamically determined for each layer.

G.2.1 THE RATIONALE: FOCUSING ON LEARNABLE CORE PATTERNS

The core motivation for this strict cutoff strategy is to concentrate the model’s capacity on learnable,
core patterns. High-frequency information in time series often contains significant noise or stochas-
tic fluctuations that are difficult to model, and typically exceed the learning capacity of a lightweight
model. Attempting to fit these complex dynamics can hinder the model from capturing the more
decisive, underlying trends.
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As observed in prior work like FITS Xu et al. (2024), removing a significant portion of high-
frequency components largely preserves the overall shape and dominant trends of a time series. Our
strategy builds on this insight: by proactively simplifying the learning task, we focus the model’s
limited capacity on the low-frequency periodic and trend patterns that are most critical for the fore-
casting task, thereby achieving both efficient and accurate predictions.

G.2.2 DYNAMIC ADAPTABILITY AND PARAMETER-FREE DESIGN

A key advantage of our method is its dynamic nature. In a complex multi-scale architecture, dif-
ferent layers may employ varying downsampling parameters (k, s, c). Our framework automatically
derives a matching, optimal cutoff frequency for each specific layer. This ensures that the anti-
aliasing protection remains effective and theoretically grounded across any architectural variation,
eliminating the need for tedious, manual parameter tuning required by classical filters or the ran-
domness of heuristic approaches.

Furthermore, this framework possesses theoretical flexibility. By adjusting the convolution parame-
ters, the ESR can be controlled to retain more, or even all, frequency components. For instance, if
parameters are set such that ESR = 1 (e.g., s = min(K,Cout/Cin)), the cutoff frequency matches
the original signal’s Nyquist frequency, meaning no valid frequency components are attenuated.

G.2.3 ADDRESSING THE HIGH-FREQUENCY INFORMATION TRADE-OFF

We acknowledge that this design is built upon a core trade-off: we filter high-frequency components
to prevent aliasing at the cost of potentially discarding useful information. This is a deliberate choice
motivated by the efficiency and robustness goals for a lightweight model.

We also recognize that high-frequency information can be critical in certain scenarios, such as fore-
casting sharp spikes or in contexts where high-frequency harmonics are themselves key features. It is
precisely for this reason that we deliberately conducted extensive supplementary experiments across
a diverse range of domains (including Electricity, Weather, Transportation, Health, Web, Market,
Energy, Society, Finance, etc.). The goal was to proactively probe the application boundaries of our
method and provide a clear reference for its practical use.

To further investigate this trade-off, we will conduct a controlled experiment comparing our strict
cutoff method with an alternative that handles frequencies differently. As shown in Table.26, we
will compare our standard DMANet against a variant where, after identifying the cutoff frequency,
both the low-frequency and the zeroed-out high-frequency components are independently passed
through linear layers and then fused. This will help quantify the practical impact of the information
contained in the high-frequency bands.

Table 26: Ablation study on the handling of high-frequency components. We compare our strict
cutoff method with a variant that uses linear fusion for high and low frequencies.

Model Metric ETTh1 ETTm1 Weather Elect Wiki ILI Unemp Dowjone
DMANet (Strict Cutoff) MSE 0.428 0.373 0.236 0.172 6.506 1.763 0.064 11.957

MAE 0.429 0.385 0.262 0.265 0.393 0.824 0.146 0.850
DMANet mix (Fusion-based) MSE 0.434 0.374 0.237 0.171 6.528 1.986 0.076 12.288

MAE 0.433 0.385 0.263 0.265 0.398 0.867 0.161 0.858

In summary, DMANet’s anti-aliasing employs a precise, dynamic cutoff strategy tailored to each
layer’s actual sampling capability. This design combines theoretical robustness with practical,
parameter-free convenience, and its effectiveness is validated through extensive empirical analysis.
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H MORE DETAILS OF DEPENDENCY MODELING

We visualize the temporal dependencies and channel-wise relationships within a batch of the Elec-
tricity in Figure.8 and Figure.9 and for Weather in Figure.10 and Figure.11, comparing their states
before and after processing by DMANet’s components. To further illustrate the differences between
scenarios with and without the anti-aliasing filter, we selected the Electricity dataset to visualize
the temporal dependency differences of upsampling before and after applying the anti-aliasing filter
in Figure.12, as well as the channel dependency correlation differences of downsampling with and
without the anti-aliasing filter in Figure.13.

DMANet tends to leverage more effective dependencies to capture future trends. Comparing the
cases with and without the anti-aliasing filter, the figures reveal that the pre-processing anti-aliasing
operation, acting as a low-pass filter, smooths or attenuates fine-grained dependencies that are sus-
ceptible to aliasing during sampling. This process helps to highlight the main temporal dependency
patterns and channel relationships. Furthermore, convolution, leveraging its local receptive field,
focuses on local patterns at neighboring time points. Thus, the combination of filtering and convo-
lutional downsampling effectively extracts stable temporal features.
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(a) w / Pre-Sampling filtering. Left: Downsample corr: 0.432, Right: Upsample corr: 0.534.

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

0

50

100

150

200

250

300
0.0

0.2

0.4

0.6

0.8

1.0

Co
rr

el
at

io
n 

Co
ef

fic
ie

nt

(b) w/o Pre-Sampling filtering. Left: Downsample corr: 0.311, Right: Upsample corr: 0.254.

Figure 8: Visualization for channel dependency modeling on Electricity in the first layer of the
second multiscale encoder block.
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(a) w / Pre-Sampling filtering. Left: Downsample corr: 0.678, Right: Upsample corr: 0.370.
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(b) w/o Pre-Sampling filtering. Left: Downsample corr:0.358, Right: Upsample corr: 0.321.

Figure 9: Visualization for temporal dependency modeling on Electricity in the first layer of the
second multiscale encoder block.
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(a) w / Pre-Sampling filtering. Left: Downsample corr: 0.707, Right: Upsample corr: 0.432.
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(b) w/o Pre-Sampling filtering. Left: Downsample corr: 0.531, Right: Upsample corr: 0.298.

Figure 10: Visualization for channel dependency modeling on Weather in the first layer of the first
multiscale encoder block.
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(a) w / Pre-Sampling filtering. Left: Downsample corr: 0.679, Right: Upsample corr: 0.463.
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(b) w/o Pre-Sampling filtering. Left: Downsample corr: 0.520, Right: Upsample corr: 0.332.

Figure 11: Visualization for temporal dependency modeling on Weather in the first layer of the first
multiscale encoder block.

0 20 40 60 80 100 120

0

20

40

60

80

100

120
0.4

0.2

0.0

0.2

0.4

Figure 12: Temporal dependency differences in up-sampling with or without the application of an
anti-alias filter on Electricity. Red indicates increased dependency after use anti-alias filter.
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Figure 13: Channel dependency differences in down-sampling with or without the application of an
anti-alias filter on Electricity. Red indicates increased dependency after use anti-alias filter.
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I THE USE OF LARGE LANGUAGE MODELS

Large Language Models were employed as general-purpose assistive tools throughout the research
process. Specifically, LLMs were used to polish the language and improve the readability of this
manuscript, including refining grammar, improving clarity, and restructuring sentences for better
readability. The authors take full responsibility for the content of this paper.

J EMPIRICAL VERIFICATION OF ALIASING RISKS VIA SPECTRAL INJECTION
ATTACK

J.1 MOTIVATION AND DATASET CONSTRUCTION

To valid the aliasing risks discussed in the main text and quantitatively evaluate the spectral fidelity
of different architectures, we designed a controlled experiment named Spectral Injection Attack.
Specifically, we constructed a synthetic dataset based on real-world patterns to simulate scenarios
where high-frequency information is crucial for forecasting but highly susceptible to aliasing during
downsampling. The dataset is generated by injecting a specific high-frequency component into a
base time-series signal:

xattack(t) = xbase(t) +A · cos(2πtfattack), (33)

where xbase(t) represents the background signal, and xattack(t) represents the signal after injection
attack. We utilized the normalized ETTh1 dataset to retain the chaotic and non-stationary character-
istics of real-world time series. fattack is the injected attack frequency, set to 0.38 Hz (assuming a unit
sampling rate fs = 1.0 Hz). A is the amplitude of the injected signal, set to 2.5, making the high-
frequency pattern distinct in both time and frequency domains.According to the Nyquist-Shannon
Sampling Theorem, the new sampling rate becomes f ′

s = fs/2 = 0.5 Hz, and the correspond-
ing Nyquist frequency becomes f ′

Nyq = 0.25 Hz. Since fattack(0.38 Hz) > f ′
Nyq(0.25 Hz), naive

downsampling methods, e.g., average pooling or strided convolution without filtering, theoretically
guarantee Spectral Aliasing. The high-frequency component will be indistinguishably folded into
a spurious low frequency falias = |0.5 − 0.38| = 0.12 Hz. This experiment aims to test whether
models can disentangle and preserve this high-frequency information or succumb to aliasing and
smoothing effects.

J.2 EXPERIMENTAL SETTINGS

To benchmark spectral fidelity, we conducted a comprehensive comparison between DMANet and
seven representative baselines spanning diverse architectures, including MLP-based (TimeMixer
Wang et al. (2024a), TimeXer Wang et al. (2024b)), Linear Decomposition (DLinear Zeng et al.
(2023)), Transformer (iTransformer Liu et al. (2024)), Frequency-domain (FreTS Yi et al. (2024b),
FilterNet Yi et al. (2024a)), and KAN-based (TimeKAN Huang et al. (2025)) models. All experi-
ments were standardized with a fixed look-back window and prediction horizon of L = T = 96,
employing a downsampling factor of s = 2 for multi-scale architectures and utilizing MSE Loss for
optimization. To rigorously quantify the fidelity of signal reconstruction in the frequency domain,
we denote the amplitude spectra of the ground truth and predicted signals as Strue(f) = |F(Y)| and
Spred(f) = |F(Ŷ)|, respectively, which serve as the basis for our spectral evaluation metrics. We
introduced two specific metrics:

• Spectral Distortion (SD): This metric measures the overall structural divergence between
the predicted and ground truth spectra. To focus on shape rather than absolute scale, we
calculate the Euclidean distance between the normalized amplitude spectra:

SD =

√√√√∑
k

(
Spred(fk)∑
j Spred(fj)

− Strue(fk)∑
j Strue(fj)

)2

(34)

A lower SD indicates that the model has successfully reconstructed the frequency patterns
without introducing significant noise or aliasing artifacts.
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• High-Frequency Capture (HFC): This metric specifically quantifies the preservation of
the injected high-frequency component. We define a local frequency window Ω = [fattack−
δ, fattack + δ] centered at the attack frequency (with δ = 0.02 Hz) and calculate the energy
ratio:

HFC =

∑
f∈Ω Spred(f)

2∑
f∈Ω Strue(f)2

× 100% (35)

An HFC value close to 100% indicates perfect disentanglement and reconstruction of the
high-frequency signal. Values significantly lower than 100% imply signal loss due to
smoothing or aliasing, while values exceeding 100% indicate spectral overshoot or insta-
bility.

J.3 RESULTS AND OBSERVATIONS

As illustrated in Figure.5, DMANet demonstrates superior spectral fidelity, achieving a near-perfect
HFC of 99.8% and the lowest SD of 0.0062, which validates the effectiveness of our ESR-based
anti-aliasing filter in cleanly disentangling high-frequency signals. In stark contrast, FilterNet and
DLinear suffered from severe signal attenuation with HFCs of only 76.9% and 82.8% respectively,
confirming that their inherent pooling or moving average mechanisms function as aggressive low-
pass filters that irreversibly erode critical high-frequency features. Meanwhile, TimeKAN exhibited
spectral instability; despite a high energy capture, its excessive HFC (114.6%) and elevated SD
(0.0206) indicate significant spectral overshoot and spurious oscillations arising from unconstrained
non-linear fitting. Furthermore, while FreTS and TimeXer managed to capture the target frequency
relatively well (103.6% and 95.8% HFC), their SD values remained over three times higher than that
of DMANet, revealing the introduction of substantial background noise and aliasing artifacts during
reconstruction.
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