Under review as a conference paper at ICLR 2025

VISUAL REPRESENTATIONS IN HUMANS AND MA-
CHINES: A COMPARATIVE ANALYSIS OF ARTIFICIAL
AND BIOLOGICAL NEURAL RESPONSES TO NATURAL-
ISTIC DYNAMIC VISUAL STIMULI

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual representations in the human brain are shaped by the pressure to support
planning and interactions with the environment. Do visual representations in deep
network models converge with visual representations in humans? Here, we inves-
tigate this question for a new class of effective self-supervised models: Masked
Autoencoders (MAEs). We compare image MAEs and video MAEs to neural re-
sponses in humans as well as convolutional neural networks. The results reveal
that representations learned by MAEs diverge from neural representations in hu-
mans and convolutional neural networks. Fine-tuning MAEs with a supervised
task improves their correspondence with neural responses but is not sufficient
to bridge the gap that separates them from supervised convolutional networks.
Finally, video MAEs show closer correspondence to neural representations than
image MAEs, revealing an important role of temporal information. However, con-
volutional networks based on optic flow show a closer correspondence to neural
responses in humans than even video MAEs, indicating that while masked au-
toencoding yields visual representations that are effective at multiple downstream
tasks, it is not sufficient to learn representations that converge with human vision.

1 INTRODUCTION

Human vision is not an end in itself, but a means to an end. It has been shaped by evolutionary
pressure to support our ability to interact with our surrounding environment (Lyon, 2007). This
pressure has resulted in a visual system endowed with the ability to learn representations that can
be used to perform a wide variety of tasks — from recognizing people to segmenting events, from
estimating distances to detecting abnormalities in medical images. Machine vision aims to develop
models with the ability to learn similarly flexible representations: Foundation Models of Vision
(Awais et al., |2023). Testing the convergence between representations learned by machine vision
models and representations in the human brain can offer a measure of the degree to which the
models are approaching the human visual system.

A recent class of machine vision models — masked autoencoders (MAEs, [He et al.| (2022); (Cao
et al.| (2022)) — have demonstrated a remarkable ability to support a variety of visual tasks. These
models achieve high performance at object detection, object segmentation, and classification tasks
(He et al., 2022)). MAEs can be extended naturally to the processing of video inputs (Feichtenhofer
et al., 2022; Tong et al., [2022; |Wang et al., 2023a), yielding competitive performance on action
classification (Feichtenhofer et al.,[2022; Tong et al}|2022)) and effective transfer of features to new
datasets (Tong et al., 2022). More recently, MAEs have been used in conjunction with knowledge
distillation techniques |[Hinton| (2015); |Gou et al.[| (2021)) to learn representations that outperform
vanilla MAEs on datasets such as the Something-Something V2 (Goyal et al.l [2017), following an
approach known as Masked Video Distillation (MVD, (Wang et al.,[2023b)).

Given the effectiveness of MAEs at learning flexible visual representations, here we ask whether
their representations converge with the representations in the human visual system. This work com-
pared representations in image based and video based MAE:s, as well as masked video distillation,
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Table 1: Models of visual cortex

Model Input Output g;?;lslgtlg f;Syezgcted
Supervised static image object identity Image-net 11
Supervised static image action identity HAA-500 11
Self-supervised dynamic  video optic flows HAA-500 11
Self-supervised dynamic  video optic flows Kinetics-400 11
Supervised dynamic optic flow action identity HAA-500 11
pDrien—(t)r_ii; ed image image Image-net 12
K/i:stlizidnz(iltoenco der (masked) image (unmasked) image Image-net 12
fine-tuned image object identity Image-net 12

Masked Autoencoder

pre-trained

Masked Autoencoder Kinetics-400 12

(masked) image (unmasked) image
pre-trained Masked

Video Autoencoder

fine-tuned Masked
Video Autoencoder

(masked) video  (unmasked) video Kinetics-400 12

video action identity Kinetics-400 12

MAE & VideoMAE
high-level features

pre-trained Masked

Video Distillation Kinetics-400 12

(masked) video

to neural responses in different parts of the human visual system. The convergence between MAEs
and neural representations was compared to the the convergence between the latter and convolu-
tional neural networks using image (He et al.||2016) and video (Zhu et al.|[2019) inputs. All models
were compared to fMRI responses in different visual streams and functional regions of interests,
using as input a quasi-naturalistic video (the Forrest Gump movie, (Hanke et al.,[2016)).

2 METHODS

2.1 VISION MODELS

To study representations of quasi-naturalistic visual stimuli, we used a variety of vision models,
including feed-forward convolutional neural networks, as well as state-of-the-art foundation vision
models. The models vary in architecture, learning objective, and training data (Table[I)). Here, we
propose an overview of the models. Training details for the HAA-trained CNNs are presented in
supplementary materials. The trained versions of all other models are adopted from their official
implementation repository. For model details, refer to the original papers.

Supervised (sup) static net is the spatial stream of the hidden two-stream convolutional neural
network model Zhu et al.| (2019)). The sup static net has a resnet18 architecture and encodes static
features of visual stimulus. Two versions of the model were included in the models’ pool: one is
trained on Image-Net Deng et al.| (2009) and predicts object identity, and the other is trained on
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HAA-500 action dataset |Chung et al.| (2021)) and predicts action label. Both versions take a single
frame as input.

Self-supervised (s-sup) dynamic net is the first part of the temporal stream (i.e., motion net) in
the hidden two-stream convolutional neural network model Zhu et al.| (2019). The self-supervised
dynamic net takes 11 consecutive frames as input and infers the optic flow between each pair of con-
secutive frames. The network is trained to minimize an self-supervised learning objective obtained
by combining three loss functions:1) a pixel-wise reconstruction error, 2) a smoothness loss ad-
dressing the ambiguity problem of optic flow estimation (also known as the aperture problem), and
3) a structural dissimilarity between the original and the reconstructed image patches (see|Zhu et al.
(2019) for details of loss functions). The models’ pool contains two versions of the self-supervised
dynamic net, trained on the HAA-500|Chung et al.| (2021)), and Kinetics-400 Kay et al.|(2017) action
datasets Chung et al.| (2021)).

Supervised (sup) dynamic net is the second part of the temporal stream in the hidden two-stream
convolutional neural network model |Zhu et al.| (2019). The model has resnetl8 architecture and
takes optic flows from the self-supervised dynamic net as input. We used the HAA-500 dataset
Chung et al.| (2021) and trained the supervised dynamic net to predict action labels using optic
flows.

Dino-v2 is a self-supervised vision model that uses self-distillation to learn robust visual features
by optimizing a contrastive learning objective between a student and teacher network, each having a
transformer architecture ?. We included a pre-trained version of Dino-v2 trained on Imagenet|Deng
et al.|(2009).

Masked Autoencoders (MAE) learn representations of the images they receive as input that can be
used to reconstruct original uncorrupted images from corrupted (masked) input through a series of
transformer blocks|He et al.|(2022). The models’ pool contains three versions of the MAE model: 1)
a pre-trained version, where the model is trained to reconstruct pixel values of each frame (image),
2) a fine-tuned version, where the pre-trained model is further fine-tuned to predict object identities
from images and 3) a pre-trained version, where the model is trained to reconstruct pixel values of
randomly masked space-time patches in a video |[Feichtenhofer et al.| (2022). The first two versions
were trained on Image-net|Deng et al.|(2009), and the third on Kinetics-400 Kay et al.|(2017).
Video Masked Autoencoder (VMAE) learns a spatiotemporal representation of videos, required
to reconstruct original uncorrupted videos, from corrupted (tube masked) input through a series of
transformer blocks [Tong et al.[(2022)). We added two versions of the VMAE to our models’ pool.
The first is a pre-trained version, where the model is trained to reconstruct missing pixels of the input
set of frames. The second version is the fine-tuned version obtained by fine-tuning the pre-trained
version to predict action labels of input videos. Both models take a consecutive set of frames as
input, and were trained on the Kinetics-400 action dataset Kay et al.|(2017)).

Masked Video Distillation (MVD) learns a higher-level spatial and spatiotemporal representation
of the input video, required to reconstruct the representation of teacher MAE and VMAE while
taking corrupted (tube-masked) videos as input Wang et al|(2023b). Unlike VMAE and MAE,
the MVD model does not use pixel-level errors as learning signals. Rather, it uses learning signals
based on high-level features of the input video using pre-trained MAE and VMAE models’ features
as masked prediction targets. Using the Kinetics-400 action dataset|Kay et al.|(2017), a pre-trained
version was obtained and added to the models’ pool.

2.2 COMPARISON BETWEEN MODELS AND NEURAL RESPONSES

Models were compared to neural responses using Representational Dissimilarity Matrices (RDMs,
Kriegeskorte et al.| (2008)). In this study, RDMs are matrices whose rows and columns correspond
to timepoints in the movie, such that the element of the matrix at a given row and column is the
dissimilarity between the representation of the video at the timepoints that correspond to that row and
column. Neural RDMs and model RDMs were compared by computing their Pearson correlation.
The movie was divided into eight runs of similar length. The dimension of the RDMs obtained for
the eight segments were 451, 441, 438, 488, 462, 439, 542, 338.

The match between neural RDMs and RDMs for an entire model were calculated by first computing
RDMs for each layer of the model and then computing a linear combination of the layer RDMs that
best matches the neural RDM. In order to prevent circularity in the analysis, the weights attributed
to each layer in the linear combination were calculated using 7 of the 8 experimental runs, and were
applied to the model RDMs in the left-out run to compute a “predicted” RDM. We then evaluated
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Figure 1: Pearson’s correlation between actual and predicted brain regions’ RDMs, averaged over
participants for a) early ventral and dorsal visual regions and b) visual category-selective regions.
Predicted RDMs were obtained by training and testing a leave-one-out cross-validation linear re-
gression model using a linear combination of each model’s layers. Error bars show standard de-
viation over participants. Gray bands display noise ceiling. For each participant, the noise ceiling
is calculated by averaging over all other participants prediction of the target participant’s neural
response (sup: supervised, s-sup: self-supervised, {: Image-net-trained, : HAA-500-trained, +:
Kinetics-400-trained, *: fine-tuned; MVD was trained on pre-trained MAE (Image-net) and Video-
MAE (Kinetics-400))

the correlation between the “predicted” RDM and the neural RDM in the corresponding run (Figure
1.

To evaluate the joint neural predictivity for each pair of models, we computed a linear combination
of the layer RDMs from both models that best matches neural responses. The weights for each layer
were calculated using 7 of the 8 experimental runs, and the correspondence between the models and
neural responses was then evaluated on the left-out run. This analysis enabled us to test whether
and to which extent using two models jointly yielded a better match to neural responses than using
a single model (Figure [Zh).

Finally, we wanted to test more directly the unique variance in a neural RDM that was explained by
a model above and beyond each other model. To compute this, we regressed out a control model
RDM from a neural RDM, and predicted the residual neural RDM with a target model, obtaining the
unique variance explained by the target model. Matrices in Figure[Zp show these difference values,
with the target models as the columns and the control models as the rows.

3 RESULTS

The contribution of this work is to compare the representations in masked autoencoders (including
video MAE:s) to visual representations in the human brain. The human visual system learns a rich
set of visual representations, that enable us to perform a wide variety of tasks. Similarly, MAEs
have been remarkably effective at a variety of tasks, ranging from object and action classification
to segmentation [He et al.[ (2022); Wang et al.| (2023a). Previous work found that models with more
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accurate performance are also characterized by greater similarity with neural responses|Yamins et al.
(2014). If this phenomenon extends to MAEs, their effectiveness might make them more similar to
the brain. Alternatively, comparing MAEs to the brain can reveal ways in which the models diverge
from human vision.

The human visual system is organized into distinct regions with different response properties, includ-
ing regions with selectivity for different object categories. This work takes into account the structure
of the visual system, evaluating separately the correspondence between representations in different
category-selective regions and the models. The first set of analyses (Figure|l]) quantifies the corre-
spondence between different models and early visual as well as category-selective brain regions. For
comparison purposes, we include multiple variants of MAEs as well as feedforward convolutional
networks. The second set of analyses determine the extent to which each model explains unique
variance in neural responses (Figure[2), that is not accounted for by other models. Finally, the third
set of analyses study layer-to-layer variation in the models’ representations. We identify dimensions
that capture the differences between the representations in different layers and models, and search
for interpretable properties that explain why different models vary in their correspondence with the
brain.

3.1 SIMILARITY BETWEEN MODELS AND NEURAL RESPONSES

Representations of rich quasi-naturalistic video stimuli (the movie Forrest Gump) were extracted
from masked autoencoders |He et al.| (2022); (Cao et al.| (2022), video masked autoencoders |Fe-
ichtenhofer et al.|(2022); Wang et al.[ (2023a), and masked video distillation |Wang et al.| (2023b)).
Representations of the same video stimuli were also extracted from a set of convolutional neural
network models. The models varied along two key dimensions: 1) whether they encoded dynamic
(hidden two-stream networks [Zhu et al.| (2019), video-masked autoencoders [Wang et al.| (2023al),
and masked video distillation [Wang et al.| (2023b)) or static (standard convolutional ResNets [He
et al.| (2016), masked autoencoders |[He et al.[(2022)) information and 2) whether they were trained
with or without supervised learning objectives.

Neural responses to the same quasi-naturalistic videos were measured in human participants using
functional magnetic resonance imaging (fMRI, |Hanke et al.| (2016)). The human visual system in-
cludes regions showing selectivity for faces, bodies, scenes, and artifacts (Kanwisher et al., 2002}
Epstein and Kanwisher} |1998; |Chao et al.,|1999; Downing et al.,[2001). These regions were identi-
fied using independent data (a “functional localizer”), to then study their responses during the videos.
The correspondence between neural representations in different regions and representations in the
models was determined by calculating the correlation between their representational dissimilarity
matrices (RDMs, see supplementary materials).

3.1.1 STATIC AND DYNAMIC INFORMATION IN CNNS AND THE BRAIN

Functional MRI responses recorded during the observation of naturalistic videos in category-
selective regions were compared to the representations in feed-forward convolutional neural net-
works. The same dataset (HAA-500) was used to train the different branches of a hidden-two-stream
network: the “supervised static” branch (a ResNet that takes as input individual frames of a video
and computes as output the action category), the “unsupervised dynamic” branch (a convolutional
network trained to compute optic flow by minimizing a self-supervised loss), and the “supervised
dynamic” branch (a ResNet that takes as input optic flow and computes as output the action cate-
gory). In addition, to facilitate parallels with prior work, we compared neural responses to a widely
studied feed-forward model: a ResNet trained with Image-net (Figure|[I).

Comparing deep network models trained with the same dataset (HAA-500) showed that the self-
supervised dynamic model containing optic flow information correlated with neural responses more
than the supervised static model in fSTS and OFA from the face-selective network, EBA from the
body-selective network, and all regions of the scene-selective network—PPA, RSP, and TOS (Fisher-
transformed t-test with Bonferroni-corrected threshold). A supervised learning objective (in the
supervised dynamic model) improved the similarity of the dynamic model in FFA and TOS (Fisher-
transformed t-test with Bonferroni-corrected threshold)

ResNets trained with Image-Net performed well (Figure[T] first bar from the left), achieving corre-
spondence with neural responses that in some cases surpassed that of HAA-trained models. Analyz-
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Figure 2: a) Model combination similarity with brain category-selective regions. The similarity
was calculated using Pearson’s correlation between a brain region’s actual and predicted RDMs.
These predictions were obtained by combining layers from two models (corresponding to the row
and column names), and averaged across participants. A linear regression model was trained and
tested using leave-one-out cross-validation to generate the predictions. b) Models unique similarity
with brain regions. The similarity was calculated using Pearson’s correlation between the actual
RDM of a brain region and the RDM predicted by a target model while controlling for the variation
explained by a control model in the brain region. Correlations were averaged across participants.
Each row corresponds to a control model and each column to a target model used for neural RDM
prediction. (sup: supervised, s-sup: self-supervised, {: Image-net-trained, £: HAA-500-trained,
+: Kinetics-400-trained, *: fine-tuned; MVD was trained on pre-trained MAE (Image-net) and
VideoMAE (Kinetics-400))

ing the differences between distinct brain regions revealed variation in the relative performance of
Image-Net trained ResNets and optic-flow-based models trained on HAA. For example, responses
in the extrastriate body area (EBA) were predicted equally well by dynamic models trained with
HAA as well as static models trained with ImageNet, whereas responses in the fusiform body area
(FBA) showed greater correspondence with the supervised static model. When the training dataset
was held constant (HAA), dynamic models outperformed static models across all regions. In sum-
mary, the use of dynamic vs static information and the choice of the training dataset both affected
the correspondence between models and neural representations.

Static models trained with ImageNet and of dynamic models trained on HAA achieved similar cor-
respondence with neural responses. Therefore, we sought to determine the extent to which they
accounted for unique or overlapping variance in neural responses (in section 3.2).
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3.1.2 STATIC AND DYNAMIC INFORMATION IN MAES AND THE BRAIN

Masked Autoencoders (MAE, He et al.|(2022)) and Video Masked Autoencoders (VideoMAE, [Tong
et al.[ (2022)); |[Feichtenhofer et al.|(2022))) models are trained to reconstruct masked pixels of input
(image or video) during pre-training and are further fine-tuned to predict object/action labels. MAE
and VideoMAE models are very effective in learning visual representations and have been shown to
outperform competing models in several visual tasks |He et al.|(2022)); Tong et al.| (2022); |Feichten-
hofer et al.| (2022)); [Wang et al.| (2023a)); |Venkatesh et al.. However, it is still unknown whether the
representations learned by models based on masked autoencoding are similar to visual representa-
tions in the human brain. Here we investigated this question, quantifying the correlation between
neural responses measured with fMRI while participants watched naturalistic videos, and represen-
tations learned by models trained with masked autoencoding.

We compared the correspondence between neural responses and MAEs trained with images (which
learn spatial relationships between component of an image, [Wang et al|(2023b)) as well as Video-
MAESs (which learn temporal relationships in videos, Wang et al.| (2023b)). Finally, we also com-
pared neural responses to masked video distillation (MVD, |Wang et al.| (2023b))), which combines
image MAEs and videoMAEs to better capture both spatial and temporal relationships. Unlike MAE
and VideoMAE, the MVD model does not aim to reconstruct missing patches at the level of pixel
values. Instead, MVD adopts a knowledge-distillation approach, reconstructing missing information
at the level of features extracted from pre-trained MAE and VideoMAE teachers.

As in the case of supervised models trained with the HAA dataset, models that included dynamic
information (VideoMAESs) outperformed models using only static information (Image MAEs). This
pattern was observed across all category-selective regions. Image MAEs did not correlate well
with neural responses, even compared to HAA-trained supervised models trained with static in-
puts. Additionally, object identity information (in fine-tuned MAE) did not improve correlation
with neural responses. Overall, the representations learned by Image MAEs were very different
from neural representations. By contrast, VideoMAEs showed greater correspondence with neu-
ral responses. In particular, fine-tuning with an action recognition task (Figure[I] VideoMAE fine-
tuned) improved the correspondence between VideoMAE representations and neural representations
across all streams (Fisher-transformed t-values with Bonferroni-corrected threshold). Across all the
pre-trained models, pre-trained MVD showed the highest similarity to neural representations in all
brain streams. Further, MVD showed comparable similarity with brain streams to that of fine-tuned
VideoMAE.

To further expand our investigation into the correspondence between neural representations and rep-
resentations in vision Transformers, we additionally compared neural RDMs to the RDMs obtained
with Dino v2, a self-supervised vision Transformer trained with a different self-supervised objective.
The results revealed that worse alignment with neural responses was not restricted to Image MAE:s,
but extended to the Dino v2 model as well. This suggests that multiple types of self-supervised
vision Transformers do not provide high correspondence with neural responses. More research will
be needed to determine whether this result is due to the Transformer architecture itself.

3.2 DIFFERENT MODELS CAPTURE SHARED AND UNIQUE VARIANCE IN NEURAL RESPONSES

The results described in show that representations from models trained with dynamic infor-
mation are more correlated with neural representations compared to representations from models
trained with static information. This overall pattern is broken by the exception of ResNets trained
with ImageNet, which performed on par with models trained with supervised objective on dynamic
information. This raises the question of whether ResNets trained with ImageNet and dynamic mod-
els explain overlapping variance in neural responses or whether, instead, they are complementary,
capturing non-overlapping portions of the variance. This question can be posed more generally for
any pair of models studied in section [3.1] We investigated this first by combining layers from two
models and measuring whether a combination of models can better predict the pattern of neural
activity in high-level visual brain regions. Second, we measured the correspondence between a “tar-
get” model’s representations and the representations in each category-selective brain region while
controlling for the representations encoded in a “control” model. To this end, we predicted neural
representations using the representations of the control model and obtained the residuals. Then, we
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predicted the residuals using the representations in the target model (see supplementary materials
for details).

Each matrix in Figure Zh shows how well a combination of models’ layers can predict the pat-
tern of neural activity in a category-selective brain region. Each column of each row in a matrix
demonstrates the correlation between the neural response pattern of a brain region and the combined
models’ layers’ prediction of that region’s neural activity pattern. When features from static and dy-
namic models were combined, model-to-brain similarity increased in all brain regions. Notably, the
correspondence between combined models’ features and at least one region in the face, body, and
scene-selective network increased substantially in two cases: 1) combined features from Image-net-
trained static supervised models with dynamic features from self-supervised model and 2) features
from the combination of the HAA-trained dynamic model with either VidleoMAE or MVD. These
cases show that, first, the combination of static and dynamic visual features better accounts for
the variation in category-selective regions, and second, different types of dynamic information are
represented in OFA (face-selective), EBA (body-selective), and TOS (scene-selective).
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Figure 3: Principal Components (PC) of model layers’” RDMs. PCs were extracted using all the
layer RDMs of all the models. Each dot displays the corresponding model’s layer RDM in the
2-dimensional space of PCs. Numbers on the dot (0 and 10) show the corresponding model layer
number.

Figure[Zb demonstrates the correspondence between a target model’s features and each brain region
when we controlled for the features of a control model in the region’s neural responses. The results
are visualized as a matrix in which each row corresponds to a control model and each column to a tar-
get model. The first row of a matrix displays the correlations between models and neural responses
after controlling for the Image-net-trained static model. The high values for the columns correspond-
ing to the self-supervised dynamic and the supervised dynamic models indicate that these models
and the Image-net-trained static model capture non-overlapping variance in neural responses. Repre-
sentations learned by the HAA-trained self-supervised and supervised dynamic model also capture
non-overlapping variance with those learned by the masked autoencoder self-supervised dynamic
models: the VideoMAEs. This finding shows that despite VideoMAEs exhibit relatively high corre-
lations with neural responses (outperforming Image MAEs), they nonetheless fail to capture some
variance in human visual representations that is accounted for by self-supervised and supervised dy-
namic models. Importantly, the self-supervised dynamic model accounts for unique neural variance
compared to the Video MAEs even when trained on the same dataset: Kinetics (FigureZp matrices,
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column 3, rows 10-12). This indicates that the difference in performance between s-sup dynamic
and Video MAEs cannot be fully attributed to differences in the visual diet.

VideoMAEs and MVD accounted for additional variance in neural responses compared to MAEs
(as expected given the results in Figure [I) but also compared to the HAA-trained static and self-
supervised dynamic models. However, they accounted for a minimal amount (if any) of additional
variance compared to the supervised dynamic model, suggesting some degree of convergence on
common representations across models trained with different learning objectives.

The additional unique variance explained by the optic flow models (s-sup dynamic and sup dynamic)
varied across regions, being strongest in EBA and TOS and weakest in FFA. The effect was observed
widely, in regions previously associated with the processing of dynamic information (such as STS),
but also in ventral temporal regions that have not been typically associated with the representation
of dynamics (such as PPA). This observation is consistent with recent work suggesting that dynamic
information is represented in a broader range of brain regions than previously thought

(2023)).

As a key takeaway, the results show that the CNN models using optic flow (namely, s-sup dynamic
and sup dynamic) explain unique neural variance that is not captured by MAE models (Figure 2p,
columns 3-5 and rows 7-12 of the matrices). Importantly, they also explain unique variance that is
not captured by other CNNs — even when they are trained with the same dataset (HAA, Figure 2p,
columns 4-5, row 2 of the matrices). The results therefore indicate that the difference between CNN
and Transformer architectures alone is not sufficient to account for the unique variance in neural
responses explained by the models using optic flow.

Frame 1

Flow 1

Flow 2

Frame 2

Figure 4: Visualization of pairs of frames with very different loadings along the second principal
component in the space of the models’ representational dissimilarity matrices. Each column illus-
trates the frames’ appearance and their optic flow. Images with different loadings along the second
principal component typically show large differences in the overall amount of optic flow.

3.3 MODELS WITH OPTIC FLOW INFORMATION BETTER CONVERGE WITH NEURAL
RESPONSES

To better understand the difference between the representational pattern of models, we extracted
components using the Principle Component Analysis (PCA) algorithm that best captures variation
in the RDMs of all layers of all models across two dimensions. Figure [3|demonstrates the trajectory
of layer-to-layer change in the representational pattern of each model across two PCs. The variation
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in the layers” RDMs of HA A-trained dynamic models that process optic-flow information is largely
captured with the second PC.

In other words, the results of principal component analysis (Figure[3)) reveal that layers in the models
using optic flow representations encode representations with a fundamentally different representa-
tional geometry compared to the other models. This is evidenced by the higher loadings of the optic
flow models on the second principal component. By contrast, layers in the MAE models as well
as in the CNNs that do not use optic flow information have lower loadings on the second principal
component.

Figure [4] displays eight example pairs of timepoints showing high degree of dissimilarity along the
second principal component. The timepoints in the pairs vary substantially in terms of the overall
amount of optic flow present at the two timepoints.

4 CONCLUSION

Despite the effectiveness of MAEs at several vision tasks, their correspondence with neural re-
sponses was relatively low compared to convolutional neural networks, making MAEs an exception
to the previously observed correlation between a model’s categorization performance and its ability
to account for neural responses |Yamins et al.| (2014). Video MAEs substantially outperformed im-
age MAE:s in their correspondence to human representations. Similarly, convolutional models using
optic flow outperformed convolutional models based on static features, highlighting the importance
of dynamic information for human visual representations. This phenomenon was observed even in
brain regions traditionally associated with the processing of static information, in line with recent
work showing that these regions also respond to dynamic stimuli (Robert et al., [2023)). In future
work, it will be important to enrich the analyses by comparing neural responses to models using
additional metrics, such as Brain Score |Schrimpf et al.| (2018)).

Convolutional models based on optic flow explained unique variance in neural responses that was not
accounted for by any other model, not even video MAEs. Analysis of the representational geometry
in the different layers of the models revealed that the second principal component in the space of
representational dissimilarity matrices (RDMs) distinguished between convolutional models based
on optic flow on one hand (which scored highly on the component) and all the other models on the
other hand, suggesting a critical role of optic flow representations in human vision. We probed this
conclusion further by examining the loadings of this component, and identifying pairs of scenes in
the movie that were differentiated by the models based on optic flow but not by the other models.
These included scenes with similar entities and backgrounds, that differed in the presence or absence
of overall background flow (e.g. due to movement of the camera), further supporting the conclusion
that video MAEs do not encode a set of dynamic features that are instead computed by both optic
flow models and by human vision.

The difference in alignment with neural responses between MAEs and CNN:ss is likely also driven in
part by additional factors above and beyond optic flow. In particular, the comparison between Im-
ageMAEs and the static net trained with ImageNet indicates that differences in architecture and task
also play an important role for the differences in alignment with neural responses. In conclusion, the
results converge to indicate that the lack of optic flow representations and the use of self-supervised
Vision Transformer architectures are jointly responsible to account for decreased alignment between
models and neural representations.
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A SUPPLEMENTARY MATERIALS

A.1 DATA

BOLD fMRI responses (3x3x3 mm) to eight movie segments of ‘Forrest Gump’ were obtained
from the publicly available studyforrest audiovisual dataset (http://studyforrest.org).
Fifteen right-handed participants took part in the study (6 females; age range 21-39 years, mean
29.4 years). The data was acquired with a T2*-weighted echo-planar imaging sequence, using a
whole-body 3 Tesla Philips Achieva dStream MRI scanner equipped with a 32 channel head coil.

A.2 PREPROCESSING

Data were first preprocessed using fMRIPrep (https://fmriprep.readthedocs.io/en/
latest/index.html): a robust pipeline for the preprocessing of diverse fMRI data. Anatom-
ical images were skull-stripped with ANTs (http://stnava.github.io/ANTs/), and FSL
FAST was used for tissue segmentation. Functional images were corrected for head movement with
FSL MCFLIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT), and were
subsequently coregistered to their anatomical scan with FSL. FLIRT. Finally, the skull-stripped
anatomical images were normalized to the MNI template using SPM. We denoised the data with
CompCor Behzadi et al.| (2007) using 5 principal components extracted from the union of cere-
brospinal fluid and white matter.
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Face Artifact Scene

Figure 5: Masks of visual category-selective regions in the human brain projected on an inflated
cortical surface in MNI space.

A.3 REGIONS OF INTEREST (ROI)

We used the first block-design run from the category localizer session (Fig. 1a), to identify four
sets of category-selective brain regions: face-selective areas (occipital face area - OFA, fusiform
face area - FFA, face-selective posterior superior temporal sulculs - fSTS), body-selective areas
(extrastriate body area - EBA, fusiform body area - FBA, body-selective posterior superior temporal
sulcus - bSTS), artifact-selective areas (medial fusiform gyrus - MFG, medial temporal gyrus MTG),
and scene-selective areas (transverse occipital sulcus - TOS, parahippocampal place area - PPA,
retrosplenial cortex - RSC). The analysis was conducted using a standard GLM with FSL FEAT
Woolrich et al.| (2001)), where each seed ROI was defined as a sphere with a 9mm radius centered on
the peak of the corresponding contrast (e.g., faces > bodies, objects, scenes, and scrambled images
for face-selective regions). For each ROI, we combined data from the left and right hemispheres
and selected the 80 voxels with the highest t-values for the preferred category compared to other
categories.

To identify the early visual regions, we used an atlas of probabilistic maps of visual topography in the
human cortex from a previous studyWang et al.| (2015). A list of probabilities is associated with each
voxel to reflect the likelihood of that voxel being part of each of the brain regions. We calculated the
transformation from MNI space to each participant’s native space and co-registered the probability
maps with each participant’s anatomy. To prevent overlap between the regions of interest in the
participant’s native space, we followed a procedure analogous to[Wang et al.| (2015). Specifically, we
calculated the maximum probability map for each participant, using which we exclusively classified
each voxel as either belonging to a specific ROI or as being outside of all the ROIs.

A.4 MODELS’ REPRESENTATIONAL DISSIMILARITY MATRICES (RDM)

In order to compare the models and the fMRI data, we computed representational dissimilarity
matrices (RDMs) for the models’ layers with a multi-step procedure. First, since the temporal
resolution of the models’ representations (25Hz) is much higher than the temporal resolution of
fMRI data, we down-sampled each layer’s activation timecourses over time by selecting one data
point every five time points(down to 5 Hz). Then, we convolved the layer’s activations with a
standard Hemodynamic Response Function (HRF). Given that the fMRI data’s repetition time (TR)
is 2 seconds, we took a layer’s activation every 25 x 2 = 50 time points.

Finally, for each layer we computed the dissimilarities between all pairs of timepoints, obtaining
RDMs in which the entry at column j and row ¢ contains correlation dissimilarity (1-Pearson’s r)
between the layer activations at time ¢ and time j. We repeated this procedure for BOLD responses
to all eight movie segments, resulting in eight RDMs.

A.5 BRAIN REPRESENTATIONAL DISSIMILARITY MATRICES (RDM)

RDMs were constructed separately for each ROI in the subject’s native space. For each region, we
calculated the correlation dissimilarity (1 — r where r is Pearson’s correlation) of fMRI response
patterns for all pairs of TRs. This yielded eight RDMs, corresponding to BOLD responses in eight
video segments.
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A.6 MEASURING MODELS SIMILARITY WITH BRAIN DATA

To evaluate how well each model accounts for the activity in the ROIs, we used a cross-validated
linear regression to predict the left-out movie segment brain region RDM and computed the corre-
lation between the predicted and the true RDM in each brain region. The correlation captures how
well a model’s layers can predict a brain region’s responses to visual stimuli. First, we used each
model’s layers’ RDMs corresponding to seven (out of eight) video segments to train a linear regres-
sion model that predicts the corresponding seven RDMs in each brain region. Then, we averaged
the linear regression model’s coefficients along the seven segments and used the averaged coeffi-
cients to predict the brain region RDM of the left-out segment, using the model layers’ RDMs of
the corresponding segment. Finally, we calculated the Pearson’s correlation between the predicted
and the true RDMs. We repeated the leave-one-out cross-validation process for all the segments and
averaged over the obtained correlations.

A.7 MEASURING COMBINED MODELS SIMILARITY WITH BRAIN DATA

We sought to study whether a combination of features from two models can improve similarity with
brain data. We followed the procedure in[A.6 and used RDMs of all the layers in a pair of combined
models to estimate the coefficients of a linear regression model that best predicts the RDM of a
brain region in seven (out of eight) of the video segments. Using leave-one-out cross-validation, we
predicted the brain region RDM of the left-out video segment using the average of the coefficients
obtained from the seven video segments during training. Finally, we measured the correlation be-
tween the predicted RDM and the actual brain region RDM to measure the correspondence between
the combined models’ features and the brain activity.

A.8 MEASURING UNIQUE AND SHARED SIMILARITY OF A PAIR OF MODELS WITH BRAIN
DATA

To evaluate how well unique and shared features among a pair of computational models correspond
to the brain data, we used Pearson’s r to measure the accuracy of a ’target” model’s layers prediction
of a brain region RDM while controlling for the variation of a ”control” model layers. Using leave-
one-out cross-validation, first, we estimated the coefficients of a linear regression model that predicts
a brain region’s RDM from the control model’s layers in training video segments (seven out of eight).
Second, we subtracted the predicted from the actual brain region RDM in the training and the left-
out video segments to obtain training and left-out residuals. Third, we estimated the coefficients
of a linear regression model that predicts training residuals of each video segment using the target
model layers. Finally, we measured Pearson’s correlation between the target model’s prediction of
the left-out video segment residuals and the residuals obtained from the prediction of the control
model.

A.8.1 TRAINING AND TESTING THE TWO-STREAM CNN FOR ACTION RECOGNITION

We adopted the models inZhu et al.| (2019) and trained on the HAAS500 dataset Chung et al.[(2021])).
The dataset contains over 591k labeled frames with 500 action classes. 85% of the data points were
used for training, 5% for validation, and 10% for testing [A.8.1] The training dataset was converted
to the Webdataset format, i.e., shards of tar files. We used 4 V100 GPUs and 8 workers to load the
dataset and train the models. All the analyses were performed on the same version of the movie that
was used to acquire fMRI responses in the StudyForrest dataset Hanke et al.| (2016)).

The supervised static model have a ResNetl18 architecture He et al.| (2016), and were trained for
47 epochs with a batch size of 128. The training was done with the stochastic gradient descent
algorithm with a 0.001 initial learning rate and a 0.0001 weight decay. During training, the gradients
were accumulated and backpropagated for every two batches. Each frame in an input batch is a
224 x 224 frame and was randomly flipped horizontally.

The unsupervised dynamic model was trained for 12 epochs with a batch size of 32 and an initial
learning rate of 0.01. No weight decay was used during training. Input to this model consists of a
set of 11 frames each with dimensions of 224 x 224.

The supervised dynamic model was trained for 50 epochs with a batch size of 128 and an initial
learning rate of 0.001. A weight decay of 0.0005 was used to train the models, and the gradients
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Table 2: Test performance of models on the HAAS500 dataset
Performance

Model | epochs [ Top-1 [ Top-3

sup static 47 30.80% | 49.38%

Unsup L SUP 12,50 | 22.72% | 37.90%
dynamic = dynamic

were accumulated and backpropagated every 5 batches.
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