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Abstract

In lifelong learning, data are used to improve performance not only on the current task,
but also on previously encountered, and as yet unencountered tasks. In contrast, classical
machine learning which we define as starting from a blank slate, or tabula rasa and using
data only for the single task at hand. While typical transfer learning algorithms can im-
prove performance on future tasks, their performance on prior tasks degrades upon learning
new tasks (called forgetting). Many recent approaches for continual or lifelong learning
have attempted to maintain performance on old tasks given new tasks. But striving to
avoid forgetting sets the goal unnecessarily low. The goal of lifelong learning should be
not only to improve performance on future tasks (forward transfer) but also on past tasks
(backward transfer) with any new data. Our key insight is that we can synergistically
ensemble representations—that were learned independently on disparate tasks—to enable
both forward and backward transfer. This generalizes ensembling decisions (like in decision
forests) and complements ensembling dependently learned representations (like in multitask
learning). Moreover, we can ensemble representations in quasilinear space and time. We
demonstrate this insight with two algorithms: representation ensembles of (1) trees and (2)
networks. Both algorithms demonstrate forward and backward transfer in a variety of simu-
lated and benchmark data scenarios, including tabular, image, and spoken, and adversarial
tasks. This is in stark contrast to the reference algorithms we compared to, most of which
failed to transfer either forward or backward, or both, despite that many of them require
quadratic space or time complexity.

1 Introduction

Learning is the process by which an intelligent system improves performance on a given task by leveraging
data (Mitchell, |1999)). In classical machine learning, the system is often optimized for a single task (Vapnik &
Chervonenkis, {1971} |Valiant| [1984). While it is relatively easy to simultaneously optimize for multiple tasks
(multi-task learning) (Caruanal [1997)), it has proven much more difficult to sequentially optimize for multiple
tasks (Thrunl [1996; Thrun & Pratt], 2012). Specifically, classical machine learning systems, and natural
extensions thereof, exhibit “catastrophic forgetting” when trained sequentially, meaning their performance
on the prior tasks drops precipitously upon training on new tasks (McCloskey & Cohenl {1989 [McClelland
et al., [1995)). However, learning could be lifelong, with agents continually building on past knowledge and
experiences, improving on many tasks given data associated with any task. For example, learning a second
language often improves performance in an individual’s native language (Zhao et al.l [2016]).

In the past 30 years, a number of sequential task learning algorithms have attempted to overcome catas-
trophic forgetting. These approaches naturally fall into one of two camps. In one, the algorithm has fixed
resources, and so must reallocate resources (essentially compressing representations) in order to incorporate
new knowledge [Kirkpatrick et al|(2017);|Zenke et al.| (2017)); [Li & Hoiem| (2017)); \Schwarz et al. (2018)); Finn
et al.| (2019). Biologically, this corresponds to adulthood, where brains have a nearly fixed or decreasing
number of cells and synapses. In the other, the algorithm adds (or builds) resources as new data arrive
(essentially ensembling representations) (Ruvolo & Eatonl 2013 Rusu et al., 2016} [Lee et al., [2019)). Biologi-
cally, this corresponds to development, where brains grow by adding cells, synapses, etc. A close resemblance
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to this resource growing approach can be found in |Sodhani et al.| (2020) where the model adaptively expands
the capacity when the capacity of the model saturates.

Approaches from both camps demonstrate some degree of continual (or lifelong) learning (Parisi et al., 2019).
In particular, they can sometimes learn new tasks while not catastrophically forgetting old tasks. However,
as we will show, many state of the art lifelong learning algorithms are unable to transfer knowledge forward
(to future unseen tasks) and most of them do not transfer backward (to previously seen tasks). With high
enough sample sizes, some of them are able to transfer forward or backward, but transfer is more important
in low sample size regimes (Chen & Liul 2016 [Lee et al.l |2019)). This inability to effectively transfer in
low-sample size regimes has been identified as one of the key obstacles limiting the capabilities of artificial
intelligence (Pearl, 2019; Marcus & Davis, [2019). Our work falls into the (arguably simpler) resource growing
camp in which each new task is learned with additional representational capacity.

Prior work illustrates that ensembling learners can yield huge advantages in a wide range of applications. For
example, in classical machine learning, ensembling trees leads to state-of-the-art random forest (Breiman,
2001) and gradient boosting tree algorithms (Chen & Guestrin, [2016)). Similarly, ensembling networks shows
promising results in various real-world applications (Qiu et al.,|2014;|Potes et al., 2016)). In continual learning
scenarios, previous works built on these ideas by ensembling dependent representations (as in ProgNN (Rusu
et al.,[2016) and DF-CNN (Lee et al; [2019)). Our key innovation is that one can ensemble independent rep-
resentations, thereby benefiting from past representations without biasing future representations. Moreover,
we introduce a channel layer to enable the representations to interact with one another, thereby enabling
computationally efficient forward and backward transfer.

Specifically, we introduce two complementary lifelong learning algorithms, one based on ensembling decision
forests (Syngeristic Forests, SYNF), and another based on ensembling deep networks (Synergistic Networks,
SynN). Both decision forests and deep networks learn a task representation in terms of polytopes that partition
the feature space (Priebe et al., 2020). SYNF and SynN ensemble sets of polytopes learned from each task by
aggregating discriminative information across tasks via a channel layer. Additionally, we propose learning
metrics which are crucial in quantifying lifelong learning capabilities. We use simulation study to explore
some key properties of our proposed algorithms. In our experiments, we consider a simplified learning
environment akin to those previously published (Kirkpatrick et al., |2017; |Schwarz et al.l 2018} Zenke et al.)
2017; |Li & Hoiem| [2017; |Rusu et al.l |2016; Lee et al.| [2019]), where we know the task identities and the tasks
are streaming but the data within task are batched. Moreover, when we desire to transfer backward, we
keep the prior data, like replay approaches (van de Ven et al., [2020; |Robins, [1995; |Shin et al.l 2017} van de
Ven et al.| [2020). However, previously proposed replay algorithms do not demonstrate backward transfer
in our experiments. On the contrary, both SYNF and SynN demonstrate forward and backward transfer,
while maintaining computational efficiency in vision and language benchmark applications. Although the
algorithms presented here are primarily resource building, we illustrate that they can effectively leverage
prior representations to operate in resource constrained scenarios. This ability implies that the algorithm
can convert from a “juvenile" resource building state to the “adult" resource recruiting state — all while
maintaining key lifelong learning capabilities and efficiencies.

2 Background

2.1 Classical Machine Learning

Classical supervised learning (Mohri et al., |2018|) considers random variables (X,Y) ~ D, where X is an
X-valued input, Y is a Y-valued label (or response), and D is the joint distribution of (X,Y’). Given a
loss function £ : ¥ x ¥ — [0,00), the goal is to find the hypothesis (also called predictor), h : X — Y
that minimizes expected loss, or risk, R(h) = E(x,y)~p [((h(X),Y)]. A learning algorithm is a function f
that maps data sets (n training samples) to a hypothesis, where a data set S,, = {X;,Y;}; is a set of
n input/response pairs. Assume n samples of (X,Y) pairs are independently and identically distributed
from some true but unknown D (Mohri et al., 2018). A learning algorithm is evaluated on its generalization

error (or expected risk): E[R(f(S,))] =E {R(ﬁn)} , where the expectation is taken with respect to the true
but unknown distribution governing the training data, D,. The goal is to choose a learner f that learns a
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hypothesis b using n training samples that has a small generalization error for the given task (Bickel &
Doksum), 2015)).

2.2 Lifelong Learning

Lifelong supervised learning generalizes classical supervised machine learning in a few ways: (i) instead of
one task, there is an environment 7 of (possibly infinitely) many tasks, (ii) evaluation data-label pair (X,Y)
for each task sampled from some distribution D arrive sequentially, rather than in batch mode, and (iii)
there are computational complexity constraints on the learning algorithm and hypotheses. In supervised
lifelong learning settings, one can consider the following risk for a particular task ¢ with n random training
samples S,, distributed as D,,:

R'(f(Sy)) = R (hn) = E(x,y)~p[l(hn(X),Y)]. (1)

Note that the data S,, is a random variable and it may contain data from any number of tasks (potentially
all the tasks) in the environment. One may take expectation with respect to D,, for averaging out the
randomness in the risk due to S,, and consider the generalization error for the task as:

5}(871) = ESHNDTL [Rt(f(sn))] (2)

We are given the error 5]3(Sn) fort =1,---,T and a weight for each task g; corresponding to the extent the

learner prioritizes task ¢ such that Zthl gt =1 and ¢; > 0. Letting f)fT(Sn) = Y ter @ £5(Sy) and given a
class of learners F, the goal of a lifelong learner is to find an f € F such that:

minimize E')T(Sn) (3)
subject to feF

Implicit in the above equation is that we are not only concerned not just with past tasks, but also all possible
future tasks. That said, we are not explicitly solving Objective equation [3]in our proposed approach.

The computational complexity constraints for lifelong learning are crucial, though often implicit. For exam-
ple, consider the algorithm that stores all the data, and then retrains everything from scratch each time a
new sample arrives. Without computational constraints, such an algorithm could be classified as a lifelong
learner; we do not think such a label is appropriate for that algorithm. Thus, we only consider learners f
lifelong learners assuming their performance scales sub-quadratically with sample size (see below for details).
The goal in lifelong learning therefore is, given new data and a new task, use all the existing data to achieve
lower generalization error on this new task, while also using the new data to obtain a lower generalization
error on the previous tasks. This is distinct from classical online learning scenarios (Cesa-Bianchi & Lugosi,
2006), because the previously experienced tasks may recur, so we are concerned about maintaining and
improving performance on those tasks as well. In “task-aware” scenarios, the learner is aware of all task
details for all tasks, meaning that the hypotheses are of the form h : X x T — Y. In “task-unaware” (or
agnostic (Zeno et all [2018)) scenarios the learner may not know that the task has changed at all, which
means that the hypotheses are of the form h : X — ). We only address task-aware scenarios here.

2.3 Reference algorithms

We compared our approaches to 11 reference lifelong learning methods. These algorithms can be classified
into two groups based on whether they add capacity resources per task, or not. Among them, ProgNN (Rusu
et al. 2016) and Deconvolution-Factorized CNNs (DF-CNN) (Lee et al., 2019)) learn new tasks by building
new resources. For ProgNN, for each new task a new “column” of network is introduced. In addition to
introducing this column, lateral connections from all previous columns to the new column are added. These
lateral connections are computationally costly, as explained in Subsection DF-CNN (Lee et al., |2019))
is a lifelong learning algorithm that improves upon ProgNN by introducing a knowledge base with lateral
connections to each new column, thereby avoiding all pairwise connections, and dramatically reducing com-
putational costs. We also compare two variants of exact replay (Total Replay and Partial Replay) (Rolnick
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. Both store all the data they have ever seen, but Total Replay replays all of it upon acquiring
a new task, whereas Partial Replay replays M samples, randomly sampled from the entire corpus, when-
ever we acquire a new task with M samples. We have also compared our appraoch with more constrained
ways of replaying old task data like- Model Zoo (Ramesh & Chaudharil [2021]), Averaged Gradient Episodic
Memory (A-GEM) (Chaudhry et all 2018), Experience Replay (ER) (Chaudhry et all |2019) and Task-based
Accumulated Gradients (TAG) (Malviya et al., 2021)) for lifelong learning. Among them Model Zoo builds on
our approach and ensembles multiple representations using the boosting approach. In Model Zoo, the total
number of models within the ensemble (the number of episodes) was capped at the total number of tasks
to make it comparable with our approach. For A-GEM and ER, the size of episodic memory is set to store 1
example per class. On the other hand, TAG stores the gradients or directions the model took while learning
a specific task instead of storing past examples.

The other five algorithms, Elastic Weight Consolidation (EWC) (Kirkpatrick et al) 2017), Online-EWC
(0-EWC) (Schwarz et al. [2018), Synaptic Intelligence (SI) (Zenke et al. 2017), Learning without Forget-
ting (LwF) (Li & Hoiem, 2017), and “None,” all have fixed capacity resources. For the baseline “None”, the
network was incrementally trained on all tasks in the standard way while always only using the data from
the current task. The implementations for all of the algorithms are adapted from open source codes
let all, [2019} [van de Ven & Tolias, [2019)); for implementation details, see Appendix [D]

3 Evaluation Criteria

Others have previously introduced criteria to evaluate transfer, including forward and backward trans-
fer (Lopez-Paz & Ranzato), 2017; Benavides-Prado et all 2018; Diaz-Rodriguez et al., 2018). These defini-
tions typically compare the difference, rather than the ratio, between learning with and without transfer.
Pearl introduced the transfer benefit ratio, which builds directly off relative efficiency from
classical statistics (Bickel & Doksuml [2015). Our definitions are closely related to Pearl’s definition. In
Subsection we compare our proposed metrics with the existing ones by providing a concrete example.
Here, we first formally define our metrics. Learning efficiency is the ratio of the generalization error of an
algorithm that has learned on one dataset, as compared to the generalization error of that same algorithm
on a different dataset. Typically, we are interested in situations where the former dataset is a subset of the
latter dataset. Consider a lifelong learning environment with total 7' tasks introduced to the learning agent
sequentially. Let R’ be the risk associated with Task ¢, and S’ be the data that is specifically associated
with any Task ¢ with sample size n;, so R*(f(S?)) is the risk on Task ¢ of the hypothesis learned by f only
using Task ¢ data, and R'(f (U;il S?%)) denotes the risk on Task ¢ of the hypothesis learned on all the data
up to Task T'. Note that, Zszl n; = n.

Definition 1 (Learning Efficiency) The learning efficiency of algorithm f for given Task t with total
sample size n is:

__&6)
£4UL, 8)

We say that algorithm f has transferred across all the tasks up to T with data S if and only if LE! (f) > 1
for all the tasks up to T.

LE,(f) : (4)

To evaluate a lifelong learning algorithm while respecting the streaming nature of the tasks, it is convenient
to consider two extensions of learning efficiency. Forward learning efficiency is the expected ratio of the
generalization error of the learning algorithm with (i) access only to Task ¢ data, to (ii) access to the data
up to and including the last observation from Task ¢. This quantity measures the relative effect of previously
seen out-of-task data on the performance on Task ¢.

Definition 2 (Forward Learning Efficiency) The forward learning efficiency of f for task t given n
samples is :
Eﬁ(St)

FLE! (f) := m
f\Ui=1

(5)
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We say an algorithm (positively) forward transfers for task ¢ if and only if FLE! (f) > 1. In other words, if
FLEfL( f) > 1, then the algorithm has used data associated with past tasks to improve performance on task
t. Note that a learner has only forward transfer from the past tasks to a specific task only when the task is
introduced to the learner.

One can also determine the rate of backward transfer by comparing the generalization error 5}(U§=1 S to
the generalization error of the hypothesis learned having seen the entire training dataset up to Task T'. More
formally, backward learning efficiency is the ratio of the generalization error of the learned hypothesis with
(i) access to the data up to and including the last observation from task ¢, to (ii) access to the entire dataset.

Thus, this quantity measures the relative effect of future task data on the performance on Task t.

Definition 3 (Backward Learning Efficiency) The backward learning efficiency of f for Task t given n
samples is

BLE,,(f) := (6)

We say an algorithm (positively) backward transfers to Task ¢ from all the tasks T if and only if BLE! (f) > 1.
We can report BLE! (f) for each t as we gradually increase the number of total task 7" in the environment or
we can report the final BLE', (f) for each t after we are done adding task to the environment as a summary.
The former measure shows the dynamics of the task specific performance whereas the latter one shows an
average performance from all the tasks. In summary, if BLEZ( f) > 1, then the algorithm has used data
associated with future tasks to improve performance on past tasks.

After observing T tasks, the extent to which the LE for the i*" task comes from forward transfer versus from
backward transfer depends on the order of the tasks. If we have a sequence in which tasks do not repeat,
learning efficiency for the first task is all backward transfer, for the last task it is all forward transfer, and
for the middle tasks it is a combination of the two. In general, LE factorizes into FLE and BLE:

_ U EsH Es) &S
EH UL ) EHUL S EHUL, S

LE,,(f)

Throughout, we will report log LE so that positive learning corresponds to LE > 1. In a lifelong learning
environment having 7" tasks drawn with replacement from 7, learner f m-lifelong learns tasks ¢ € T if the
log of the convex combination of learning efficiencies is greater than 0, that is,

log y my - LEL(f) >0 (7)

teT

where m; corresponds to the extent to which the learner prioritizes a certain task t. Note that when m;
is equal for each task, the learner has to excel equally in each task. We say an agent has synergistically
learned in an environment of T tasks if the agent has positively learned, i.e., the quantity in equation [7] is
positive for all of the possible convex combinations of all the tasks up to T'.

3.1 A concrete example on lifelong learning metrics

In this section, we propose that it is desirable for lifelong learning metrics to have a few properties that are
not currently present in the existing metrics. First, the amount of overall transfer should be decomposable
into forward and backward components. This enables one to report an overall level of transfer if desired
as a summary, rather than requiring yet a third metric to quantify the amount of overall transfer. Please
see figure [f] last row first panel where we report final learning efficiency after 10 tasks as a summary of the
overall performance of the model.

Second, one should be able to generally define transfer learning, and then obtain forward and backward as
two specific interesting cases. This is because both forward and backward transfer are special cases of transfer
learning achieved from two different streams of data, i.e., past task data and future task data, respectively.
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In our proposed metrics, both BLE and FLE are defined by the same exact function, just with different data
streams in the numerator and the denominator.

Third, the amount of transfer should be dependent on the accuracy level of the algorithms. This is because
in general, once we get to high accuracy levels (e.g., 98% or so), we care deeply about gains in relative
performance, that is, reducing error from 2% to 1% is a big deal. In contrast, if one reduces error from
49% to 48%, that is relatively less interesting and impactful. Recall that for Bernoulli random variables,
the variance of the estimator is a function of how close it is to 50%. In both of the cases, the change
in accuracy is 1% whereas learning efficiencies (LE) are 2 and 1.02, respectively. Therefore, our proposed
metrics automatically account for the relative difficulties of transfer learning at different accuracy levels.

Fourth, the metrics should be able to resolve the overall transfer learning into individual tasks. For ex-
ample, while reporting an average overall transfer a task with extremely high transfer may mask the poor
performance over the other tasks.

Fifth, the metrics should validly quantify the amount of actual transfer of information from one (set of)
data to another, rather than merely improvement. The overall accuracy over the tasks can improve simply
because subsequent tasks are easier, for example. This improvement in accuracy does not indicate whether
there has been any transfer. We will elaborate the aforementioned phenomenon further on a benchmark
dataset in Figure 3] The metrics that we propose here satisfy all five of the above desiderata; we show below
that existing metrics do not satisfy some of them.

The following example justifies how our proposed metrics satisfy all the five aforementioned desiderata. We
compare and contrast our proposed metrics with the metrics proposed in |Diaz-Rodriguez et al.| (2018]) on a
hypothetical scenario, including accuracy, backward transfer (BWT), and forward transfer (FWT). Consider
a lifelong learning environment with two tasks each having two classes. The tasks are introduced sequentially
with n; samples from Task 1 and then ny samples from Task 2. The agent has a generalization error of
RY(f(S')) = 0.3 on Task 1 while it has access to the Task 1 dataset only, and a generalization error of
R%*(f(5%)) = 0.4 on Task 2, while it has access to the Task 2 dataset only. Now consider the scenario
when the agent has the same hyper-parameters and sequential access to all the task datasets. Suppose the
model has the generahzatlon error on two tasks enumerated as in table[l} Note that the FLEs are given by:

FLEL(f) = % =1 and FLE2(f) = % = 0.89. The performance metrics can be summarized
as in table [l

Table 1: Learning metrics summarized on a hypothetical scenario.

Metrics g—gT D‘a‘gas:etSl Us?
RY(f(9)) 0.30 0.32
RZ(f(S)) 0.5 0.45
BLE, (f) 1 0.94
FLE1 T f) 1 1
En(f) = BLE,(f) x FLE,(f) | 1 0.94
BLEQ( f) — 1
FLEZ(f) — 0.89
LEZ(f) = BLEZ(f) x FLEZ(f) | — 0.89
Average global accuracy 0.60 0.62
BWT 0 —0.02
FWT 0 0.5

As evident in Table [I] the transfer learning for Task 1 comes from backward transfer from Task 2 whereas
for Task 2 it comes from forward learning from Task 1. As a summary, one can look at the final LEs over all
the tasks after all tasks have been introduced. Note that in Table [I| the learning efficiencies are never greater
than 1. However, the global accuracy increased from 60% to 62%. Therefore, only using multi-task accuracy
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Figure 1: Schemas of composable hypotheses. A. Single task learner. B. Ensembling decisions (as output
by the channels) is a well-established practice, including random forests and gradient boosted trees. C.
Learning a joint representation or D. Ensembling representations (learned by the encoders) was previously
used in lifelong learning scenarios, but were not trained independently as in E, thereby causing interference
or forgetting. Note that the new encoders interact with the previous encoders through the channel layer
(indicated by red arrows), thereby, enabling backward transfer. Again the old encoders interact with the
future encoders (indicated by black arrows), thereby, enabling forward transfer.

may falsely detect positive transfer. In Table [I,, BWT can correctly identify an overall negative backward
transfer or forgetting. However, being an average quantity, it can not resolve the overall backward transfer
into individual task. As a result, a task with extremely high backward transfer may mask all the negative
backward transfer from the other tasks giving a net positive transfer.

4 Representation ensembling algorithms

In this section, we provide an abstract idea of our approach and we refine the details of the algorithms further
in Subsection [f.1] and [£:2] Our approach to lifelong learning is based on decomposition of the hypothesis
learned b a model into an encoder, a channel, and a decoder (Cover & Thomas, 2012; |Cho et al., |2014))
(Figure |1 = wowvou(:). The encoder, u : X — X, maps an X-valued input into an internal
representatlon space X (Vaswani et al. 2017 |Devlin et al., |2018[). The channel v : X — Ay maps the
transformed data into a posterior distribution (or, more generally, a score). For example, consider we have
a dataset partitioned into a training and a held-out set. Now we can learn a decision tree using the training
data which will give us the encoder. Next, by pushing the held-out dataset through the tree, we can learn
the channel, i.e., posteriors in the leaf-nodes. The channel thus gives scores for each data point denoting
the probability of that data point belonging to a specific class. Finally, a decoder w : Ay +— Y, produces a
predicted label. See Appendix [A] for a detailed and concrete example using a decision tree.

One can generalize the above decomposition by allowing for multiple encoders. Given B different encoders,
one can attach a single channel to each encoder, yielding B different channels (Figure ) Doing so requires
generalizing the definition of a decoder, which would operate on multiple channels. Such a decoder ensembles
the decisions, because here each channel provides the final output based on the encoder. This is the learn-
ing paradigm behind boosting and bagging [1996)—indeed, decision forests are a
canonical example of a decision function operating on a collection of B outputs . A decision
forest learns B different decision trees, each of which has a tree structure corresponding to an encoder. Each
tree is assigned a channel that outputs each tree’s vote that an observation is in any class. The decoder
outputs the most likely class averaged over the trees.

Although the task specific structure in Figure[I]B can provide useful decision on the corresponding task, they
can not, in general, provide meaningful decisions on other tasks because those tasks might have completely
different class labels, for example. Therefore, in the multi-head structure (Figure ) a single encoder is used
to learn a joint representation from all the tasks and a separate channel is learned for each task to get the
score or class conditional posteriors for each task which is followed by each task specific decider
let all [2017; [Schwarz et all, 2018} [Zenke et all [2017)). Further modification of the multi-head structure
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allows ProgNN to learn separate encoder for each task with forward connections from the past encoders to
the current one (Figure ) This creates the possibility of having forward transfer while freezing backward
transfer. Note that if the encoders are learned independently across different tasks, they may have learned
useful representations that the tasks can mutually leverage. Thus, a generalization of the decomposition in
Figure allows for each channel to ensemble the encoders (Figure [1E). Doing so requires generalizing the
definition of the channel, so that it can operate on multiple distinct encoders. The result is that the channels
ensemble representations (learned by the encoders), rather than decisions (learned by the channels). The
channels ensemble all the existing representations, regardless of the order in which they were learned. In
this scenario, like with bagging and boosting, the ensemble of channels then feeds into the single decoder.
When each encoder has learned complementary representations, this latter approach has certain appealing
properties, particularly in multiple task scenarios, including lifelong learning.

For example, Model Zoo (Ramesh & Chaudhari, 2021) which builds on our approach ensembles multiple
encoders learned over different subsets of tasks using the boosting approach. On the other hand, we developed
two different representation ensembling algorithms based on bagging of models trained on individual task.
As we will show empirically, these two ensemble methods tend to outperform the existing state-of-the-art
algorithms. It is shown in |Wyner et al.| (2017) that both bagging and boosting asymptotically converge to
the Bayes optimal solution. However, for finite sample size and similar model complexity, we empirically find
bagging approach to lifelong learning performs better than that of boosting when the training sample size
is low (see Figure [4)) whereas boosting performs better on large training sample size (See main text Figure
@ |Z| and Appendix Figure .

The key to both of our algorithms is the realization that both forests and networks partition feature space
into a union of polytopes (Priebe et all [2020). Thus, the internal representation learned by each can
be considered a sparse vector encoding which polytope a given sample resides in. We can combine the
discriminative information over different sets of polytopes learned over different tasks by populating the
polytopes with the corresponding task data and thereby, learn a channel for that specific task (see Appendix

and |B| for details).

In either of the algorithms, as new data from a new task arrives, our algorithm first builds a new independent
encoder, i.e., a set of polytopes (using forests or networks), mapping each data point to a sparse vector
encoding which polytope it is in. Then, it builds the channel for this new task, which integrates information
across all existing encoders using the new task data, thereby enabling forward transfer. At the same time, it
can push old task data through the new encoders to update the channels from the old tasks, thereby enabling
backward transfer. In either case, new test data are passed through all existing encoders and corresponding
channels to make a prediction.

4.1 Synergistic Forests

Synergistic Forests (SYNF) ensembles decision trees or forests. For each task, the encoder u; of a SYnF is the
representation learned by a decision forest (Amit & Geman, [1997; [Breiman, |2001). The leaf nodes of each
task corresponding decision forest partition the input space X into polytopes (Breiman et al., |[1984). The
channel then learns the class-conditional posteriors by populating the polytopes with out-of-bag samples
and taking class votes, as in “honest trees” (Breiman et al. |[1984; |Denil et all 2014} |Athey et al., |2019).
Each channel outputs the posteriors averaged across the collection of forests learned over different tasks.
The decoder w; outputs the argmax to produce a single prediction. Recall that honest decision forests are
universally consistent classifiers and regressors (Athey et al., 2019), meaning that with sufficiently large
sample sizes, under suitable though general assumptions, they will converge to minimum risk. Thus, the
single task version of this approaches simplifies to an approach called “Uncertainty Forests” (Mehta et al.)
2019). Table [1|in the appendix lists the hyperparameters used in the CIFAR experiments.

4.2 Synergistic Networks

A Synergistic Network (SynN) ensembles deep networks. For each task, the encoder w; in an SynN is the
“backbone” of a deep network (DN), including all but the final layer. Thus, each u; maps an element of X
to an element of R?, where d is the number of neurons in the penultimate layer of the DN. The channels are
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learned via k-Nearest Neighbors (k-NN) (Stone| [1977) over the d dimensional representations of X'. Recall
that a k-NN, with & chosen such that as the number of samples goes to infinity, k£ also goes to infinity,
while % — 0, is a universally consistent classifier (Stone, |1977)). We use k = 16 log, n, which satisfies these
conditions.The decoder is the same as above.

SyYnN differs from ProgNN in two key ways. First, recall that ProgNN builds a new neural network “column”
for each new task, and also builds lateral connections between the new column and all previous columns.
In contrast, SYNN excludes those lateral connections, thereby greatly reducing the number of parameters and
train time. Moreover, this makes each representation independent, thereby potentially avoiding interference
across representations. Second, for inference on task j data, assuming we have observed tasks up to J > 7,
ProgNN only leverages representations learned from tasks up to j, thereby excluding tasks j +1,...,J. In
contrast, SYNN leverages representations from all J tasks, a key difference which enables backward transfer.
SYNF adds yet another difference as compared to SYNN by replacing the deep network encoders with random
forest encoders. This has the effect of making the capacity, space complexity, and time complexity scale with
the complexity and sample size of each task. In contrast, both ProgNNand SynN have a fixed capacity for
each task, even if the tasks have very different sample sizes and complexities.

5 Results

5.1 A computational taxonomy of lifelong learning

Lifelong learning approaches can be divided into those with fixed computational space resources, and those
with growing space resources. We, therefore, quantify the computational space and time complexity of
the internal representation of a number of algorithms. We also study the representation capacity of these
algorithms. We use the soft-O notation O to quantify complexity (van Rooij et al., 2019). Letting n be
the sample size and T be the number of tasks, we write that a lifelong learning algorithm is f(n,t) =
O(g(n,T)) when |f| is bounded above asymptotically by a function g of n and T up to a constant factor and
polylogarithmic terms. Again, while calculating the space complexity, we have ignored the space required
for growing a new head for the new task. Table [2| summarizes the capacity, space and time complexity of
several reference algorithms, as well as our SYNN and SYNF. For the deep learning methods, we assume that
the number of iterations is proportional to the number of samples. For space and time complexity, the table
shows results as a function of n and T', as well as the common scenario where sample size per task is fixed
and therefore proportional to the number of tasks, n oc T

Table 2: Capacity, space, and time constraints of the representation learned by various lifelong learning
algorithms. We show soft-O notation (O(-, ) defined in main text) as a function of n = ZtT ng and T, as well
as the common setting where n is proportional to 7. Our algorithms and DF-CNN are the only algorithms
whose space and time both grow quasilinearly with capacity growing.

Parametric Capacity Space Time Examples
(n,T) n,T) | mxT) | (n,T) | (noxT)

parametric 1 1 1 n n 0-EWC, SI, LwF

parametric 1 T n nT n? EWC

parametric 1 n n nT n? Total Replay

semi-parametric | T T2 n? nT n? ProgNN

semi-parametric | T T n n n DF-CNN

semi-parametric | T TH+n|n n n SYNN, Model Zoo

non-parametric n n n n n SYNF

Parametric lifelong learning methods have a representational capacity is invariant to sample size and task
number. Although the space complexity of some of these algorithms grow (because the size of the constraints
grows, or they continue to store more and more data), their capacity is fixed. Thus, given a sufficiently large
number of tasks, without placing constraints on the relationship between the tasks, eventually all parametric
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methods will catastrophically forget at least some things. EWC, ONLINE EWC, SI, and LwF are all examples of
parametric lifelong learning algorithms.

Semi-parametric algorithms’ representational capacity grows slower than sample size. For example, if T
is increasing slower than n (e.g., T x logn), then algorithms whose capacity is proportional to T are
semi-parametric. ProgNN is semi-parametric, nonetheless, its space complexity @(TQ) due to the lateral
connections. Moreover, the time complexity for ProgNN also scales quadratically with n when n oc T'. Thus,
an algorithm that literally stores all the data it has ever seen, and retrains a fixed size network on all those
data with the arrival of each new task, would have smaller space complexity and the same time complexity as
ProgNN. For comparison, we implement such an algorithm and refer to it as Total Replay. DF-CNN improves
upon ProgNN by introducing a “knowledge base” with lateral connections to each new column, thereby
avoiding all pairwise connections. Because these semi-parametric methods have a fixed representational
capacity per task, they will either lack the representation capacity to perform well given sufficiently complex
tasks, and/or will waste resources for very simple tasks. SynN eliminates the lateral connections between
columns of the network, thereby reducing space complexity down to O(T'). SYNN stores all the data to enable
backward transfer, but retains linear time complexity.

SYNF is the only non-parametric lifelong learning algorithm to our knowledge. Its capacity, space and time
complexity are all O(n), meaning that its representational capacity naturally increases with the complexity
of each task.

5.2 Providing intuition of synergistic learning through simulations

In this section, we explore how relative position of the decision boundaries between two classes in two tasks
can affect our proposed approach using simple toy simulations. For simulation study, we have used a deep
network (DN) architecture with two hidden layers each having 10 nodes.

5.2.1 Synergistic learning in a simple environment

Consider a very simple two-task environment: Gaussian XOR and Gaussian Exclusive NOR (XNOR) (Figure
, see Appendix for details). The two tasks share the exact same discriminant boundaries: the coordinate
axes. Thus, transferring from one task to the other merely requires learning a bit flip of the class labels. We
sample a total 750 samples from XOR, followed by another 750 samples from XNOR.

SYNF and random forests (RF) achieve the same generalization error on XOR when training with XOR
data (Figure i). But because RF does not account for a change in task, when XNOR data appear,
RF performance on XOR, deteriorates (it catastrophically forgets). In contrast, SYNF continues to improve
on XOR given XNOR data, demonstrating backward transfer. Now consider the generalization error on
XNOR (Figure [2Bii). Both SynF and RF are at chance levels for XNOR when only XOR data are available.
When XNOR data are available, RF must unlearn everything it learned from the XOR data, and thus its
performance on XNOR starts out nearly maximally inaccurate, and quickly improves. On the other hand,
because SYNF can leverage the encoder learned using the XOR data, upon getting any XNOR data, it
immediately performs quite well, and then continues to improve with further XNOR data, demonstrating
forward transfer (Figure |2Biii). SYNF demonstrates positive forward and backward transfer for all sample
sizes, whereas RF fails to demonstrate forward or backward transfer, and eventually catastrophically forgets
the previous tasks. Qualitatively similar results are visible for SynN and DN in Figure [2]

5.2.2 Synergistic learning in adversarial environments

Statistics has a rich history of robust learning (Huber, 1996} |Ramoni & Sebastiani, 2001), and machine
learning has recently focused on adversarial learning (Szegedy et al., 2014} |Zhang et al.l |2018;2020; Lowd &
Meekl,12005). However, in both cases the focus is on adversarial examples, rather than adversarial tasks. In the
context of synergistic learning, we informally define a task ¢ to be adversarial with respect to task ¢ if the true
joint distribution of task ¢, without any domain adaptation, impedes performance on task ¢’. In other words,
training data from task ¢ can only add noise, rather than signal, for task ¢’. An adversarial task for Gaussian
XOR is Gaussian XOR rotated by 45° (R-XOR) (Figure [2Aiii). Training on R-XOR therefore impedes
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Figure 2: Synergistic Forest and Synergistic Network demonstrate forward and backward trans-
fer. The learner is trained from scratch for each sample size so that we can observe the impact of increasing
sample size on our algorithms. (A4) 750 samples from: (A7) Gaussian XOR, (4ii) XNOR, which has the
same optimal discriminant boundary as XOR, and (Aiii) R-XOR, which has a discriminant boundary that
is uninformative, and therefore adversarial, to XOR. (Bi) Generalization error for XOR, and (Bii) XNOR of
both SYNF (red), RF (green), SYnN(blue), DN(dark orange). SYNF outperforms RF on XOR when XNOR data
is available, and on XNOR when XOR data are available. The same result is true for SYnN sand DN. (Biii)
Forward and backward learning efficiency of SyNF are positive for all sample sizes, and are negative for all
sample sizes for RF. Again, FLE and BLE is higher for SynNcompared to those of DN. (C%) In an adversarial
task setting (100 samples of XOR followed by 100 samples of R-XOR), SynFand SynN gracefully forgets XOR,
whereas RFand DN demonstrate catastrophic forgetting and interference. (Cii) log BLE with respect to XOR
is positive when the optimal decision boundary of 6-XOR is similar to that of XOR (e.g. angles near 0°
and 90°), and negative when the discriminant boundary is uninformative, and therefore adversarial, to XOR
(e.g. angles near 45°). (Ciii) BLE is a nonlinear function of the source training sample size (XOR sample
size is fixed at 500). For SYNN experiments we did 100 repetitions and reported the results after smoothing
it using moving average with a window size of 5. For the SYNF experiments we used 1000 repetitions and
reported the mean of these repetitions.

the performance of SYNF and SynN on XOR, and thus backward transfer becomes negative, demonstrating
graceful forgetting (Aljundi et al 2018) (Figure [2Ci). Because R-XOR is more difficult than XOR for
SYNF (because the discriminant boundaries are oblique (Tomita et al.,[2020)), and because the discriminant
boundaries are learned imperfectly with finite data, data from XOR can actually improve performance on
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R-XOR, and thus forward transfer is positive. In contrast, both forward and backward transfer are negative
for RF and DN.

To further investigate this relationship, we design a suite of R-XOR examples, generalizing R-XOR, from
only 45° to any rotation angle between 0° and 90°, sampling 100 points from XOR, and another 100 from
each R-XOR (Figure ii). As the angle increases from 0° to 45°, log BLE flips from positive (= 0.18)
to negative (= —0.11) for SYNF. A similar trend is also visible for SynN. The 45°-XOR is the maximally
adversarial R-XOR. Thus, as the angle further increases, log BLE increases back up to =~ 0.18 at 90°, which
has an identical discriminant boundary to XOR. Moreover, when 6 is fixed at 25°, BLE increases at different
rates for different sample sizes of the source task (Figure |2Ciii).

Together, these experiments indicate that the amount of transfer can be a complicated function of (i) the
difficulty of learning good representations for each task, (ii) the relationship between the two tasks, and (iii)
the sample size of each. Appendix [E] further investigates this phenomenon in a multi-spiral environment.

5.3 Benchmark data experiments

Lifelong Learners Single Task Learners

Resource Growing

§0‘4 §0.4 —— SynN
5 5 —— SynF
o [} ProgNN
<03 03 —— DF-CNN
g g EWC
gO.Z 50.2 —— Total Replay
S S —— Partial Replay
<01 <01 —+— Model Zoo
123456780910 123456780910 chance
Number of tasks seen Number of tasks seen
Resource Constrained
f = —— SynF
Boa ? LwF
oS 304 0-EWC
©c © ©c ©
o b — b Sl
Sn Swn — ER
Y < 0.3 S < 0.3
<9 <9 —— A-GEM
58 58 o me
g *8—0.2 g §O.2 —— N:ne
chance
) 24 |2
Zo.1 = Zo0.1
12345678910 12345678910

Number of tasks seen Number of tasks seen

Figure 3: Average accuracy over 10 tasks as the learners (lifelong and single task learners) see
more tasks. For single task learners, a new stand-alone learner is trained as a new task is seen and the
average accuracy over all the task specific learners is reported. LwF has the highest multitask accuracy
(bottom left) on CIFAR 10X10 while it the best single task accuracy and SYNF has the lowest single task
accuracy (bottom right). Therefore, only accuracy can falsely detect positive transfer. The error bar (£1.96x
std) is shown as a faded color spread centering the mean curve.

For benchmark data, we build SYNN encoders using the network architecture described in [van de Ven et al.
(2020)) as “5 convolutional layers followed by two fully-connected layers each containing 2000 nodes with ReLU
non-linearities and a softmax output layer”. We use the same network architecture for all the benchmarking
models as well. For the following experiments, we consider two modalities of real data: vision and language.
Our language experiments have qualitatively similar results as those of vision experiments illustrating that
SYNF and SYNN are modality agnostic, sample and computationally efficient lifelong learning algorithms. In
addition to the CIFAR 100 dataset, we provide additional vision experiments on larger datasets which show
the relative performance gain of Model Zoo (boosting) compared to that of our approach (bagging) on large
datasets. However, under the lifelong learning framework, a learning agent, constrained by capacity and

12



Under review as submission to TMLR

03 0.2 )
w . X 0.2
w - wn
- 0.2 © J—
° T o1 Ic—) 0.1 —
o 0.1 ';u t 0.0
g S 0.0 &-o01
g 00 2 2 -
m_o_l w —0.2
(@] e}
©-0.1 2 >-03 -
—-0.2 2 . L
0295345678910 123456780910 —
Number of tasks seen Number of tasks seen = 77§ € 5 ¢ S

w L

- —

. om . . —_—
2 0.1 2 Rgcrwtment Experiment on Task 10

= - s

8 8 0.1 5 0.75

£ 0.0 k= g o
g | g 5 0.65 o
7] % 0.0 S

5 S = o ——
O O 50.55 [ -
g7 | go1 o
] ; 3 0.45

b 12345678910 3 678910 100 500 5000

& Number of tasks seen ) Number of tasks seen Number of Task 10 Samples

Resource Growing
SynN

SynF

ProgNN

DF-CNN

EWC

Total Replay
Partial Replay
Model Zoo
chance

Resource Constrained
SynF

LwF

O-EwWC

Sl

Figure 4: Performance of different algorithms on the CIFAR 10x10 vision experiments. Top left
and middle: Forward and backward transfer efficiency for various resource building algorithms. SynF and
SYNN consistently demonstrate both forward and backward transfer for each task, whereas ProgNN and DF-
CNN do not. In all of the plots, the performance of the chance algorithm which chooses a label at random
is shown as a horizontal dashed line along 0. Bottom left and middle: Same as above but comparing each
algorithm with a fixed amount of resources. SyNF is the only approach that demonstrate forward or backward
transfer. Top right: Transfer efficiencies of various algorithms for the 10 tasks after seeing the 10-th task.
Both SynN and SYNF synergistically learn over all the 10 tasks whereas other algorithms (except ProgNN)
catastrophically forget. Bottom right: Building and recruiting ensembles are two boundaries of a continuum,
with hybrid models in the middle. SYNF achieves lower (better) generalization error than other approaches
until 5,000 training samples on the new task are available, but eventually a hybrid approach wins.
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computational time, is sequentially trained on multiple tasks. For each task, it has access to limited training
samples (Chen & Liu, 2016; [Lee et all 2019)), and it improves on a particular task by leveraging knowledge
from the other tasks. If a learner has enough single task data, it can achieve close to the optimal performance
as a single task learner without any doing any sorts of transfer learning and thereby, will not be motivated to
look for transfer of knowledge from other task data. Therefore, we are particularly interested in the behavior
of our representation ensembling algorithms in the low training sample size regime using CIFAR 100 dataset.
The CIFAR 10x10 experiments use only 500 training samples per task. For the corresponding experiments
using higher training samples per task (5,000 samples), see Appendix Figure

5.3.1 CIFAR 10x10 dataset

The CIFAR 100 challenge (Krizhevsky, |2012)), consists of 50,000 training and 10,000 test samples, each a
32x32 RGB image of a common object, from one of 100 possible classes, such as apples and bicycles. CIFAR
10x10 divides these data into 10 tasks, each with 10 classes (Lee et al., [2019) (see Appendix [F| for details).
We compare SYNF and SynN to the deep lifelong learning algorithms discussed above. In the subsequent
experiments, we have reported the average accuracy over all the tasks as more tasks are seen as proposed
in (Lomonaco & Maltoni, 2017; [Maltoni & Lomonaco, |2019) for both lifelong and single task learners along
with our proposed learning efficiencies. However, only multitask accuracy cannot ascertain the superiority
of an algorithm. For example, note that in Figure [ bottom left, LwF has better average global accuracy
compared to that of SYNF. However, as shown in the bottom right of Figure[3] LwF has relatively higher single
task accuracy compared to that of SyYnF, i.e., accuracy when the learner has access to a single task data only.
Therefore, LwF improves accuracy for each task without doing meaningful transfer of information between
the tasks. This is evident from the forward and the backward learning efficiency curves in the middle row of
Figure (4. For the FLE curves, we report forward learning efficiency on the corresponding task as that task
is introduced. For backward learning efficiency, we evaluate the backward learning efficiency on all of the
tasks introduced so far as a new task is introduced. Therefore, for each task the log(BLE) curve starts from
0 when the corresponding task is introduced and goes upward (positive) or downward (negative) as more
tasks are seen.

5.3.2 Resource growing experiments

We first compare SYNF and SyNN to state-of-the-art resource growing algorithms: Model Zoo, ProgNN and
DF-CNN (Figure {4} top panels). Both SynF and SynN demonstrate positive forward transfer for every task
(SYNF increases nearly monotonically), indicating they are robust to distributional shift in ways that ProgN-
Nand DF-CNN are not. SYnN, SYNF and Model Zoo demonstrate positive backward transfer, SYnN is actually
monotonically increasing, indicating that with each new task, performance on all prior tasks increases (and
SYNF nearly monotonically increases BLE as well). In contrast, neither ProgNN nor DF-CNN exhibit any
positive backward transfer. Final learning efficiency per task in the third row first plot is the learning effi-
ciency associated with that task having seen all the data. SynNF and SyNN both demonstrate positive final
learning efficiency for all tasks (synergistic learning), whereas ProgNN and DF-CNN both exhibit negative
final learning efficiency for at least one task.

5.3.3 Resource constrained experiments

It is possible that the above algorithms are leveraging additional resources to improve performance without
meaningfully transferring information between representations. To address this concern, we devised a “re-
source constrained” variant of SYNF. In this constrained variant, we compare the lifelong learning algorithm
to its single task variant, but ensure that they both have the same amount of resources. For example, on
Task 2, we would compare SYNF with 20 trees (10 trained on 500 samples from Task 1, and another 10
trained on 500 samples from Task 2) to RF with 20 trees (all trained on 500 samples Task 2). If SYNF is
able to meaningfully transfer information across tasks, then its resource-constrained FLE and BLE will still
be positive. Indeed, FLE remains positive after enough tasks, and BLE is actually invariant to this change
(Figure |4} bottom left and center). In contrast, all of the reference algorithms that have fixed resources
exhibit negative forward and backward transfer. Moreover, the reference algorithms also all exhibit negative
final transfer efficiency on each task, whereas our resource constrained SyNF maintains positive final transfer

14



Under review as submission to TMLR

on every task (Figure top right). Interestingly, when using 5,000 samples per task, total and partial replay
methods are able to demonstrate positive forward and backward transfer (Supplementary Figures]), although
they require quadratic time. Note that in this experiment, building the single task learners actually requires
substantially more resources, specifically, 10 + 20 + --- 4+ 100 = 550 trees, as compared with only 100 trees
in the prior experiments. In general, to ensure single task learners use the same amount of resources per
task as omnidirectional learners requires @(nQ) resources, where as SYNF only requires @(n), a polynomial
reduction in resources.

In both cases, resource growing or resource constrained, both SYNF and SYnNN show synergistic learning over all
the 10 tasks (Figure |4} top right panel) whereas all other algorithms except ProgNNsuffer from catastrophic
forgetting.

5.3.4 Resource Recruiting Experiments

The binary distinction we made above, algorithms either build resources or reallocate them, is a false
dichotomy, and biologically unnatural. In biological learning, systems develop from building (juvenile) to
constrained (adult) resources (which requires recruiting some resources for new tasks). We therefore train
SYNF on the first nine CIFAR 10x10 tasks using 50 trees per task, with 500 samples per task. For the tenth
task, we could (i) select the 50 trees (out of the 450 existing trees) that perform best on task 10 (recruiting),
(ii) train 50 new trees, as SYNF would normally do (building), (iii) build 25 and recruit 25 trees (hybrid),
or (iv) ignore all prior trees (RF). SYNF outperforms other approaches except when 5,000 training samples
are available, but the recruiting approach is nearly as good as SYNF (Figure [4] bottom right). This result
motivates future work to investigate optimal strategies for determining how to optimally leverage existing
resources given a new task, and task-unaware settings.

5.3.5 Adversarial experiments

Consider the same CIFAR 10x10 experiment above, but, for tasks two through nine, randomly permute
the class labels within each task, rendering each of those tasks adversarial with regard to the first task
(because the labels are uninformative). Figure indicates that BLE for both SynF and SynN is invariant
to such label shuffling (the other algorithms also seem invariant to label shuffling, but did not demonstrate
positive backward transfer). Now, consider a Rotated CIFAR experiment, which uses only data from the
first task, divided into two equally sized subsets (making two tasks), where the second subset is rotated by
different amounts (Figure |5} right). Learning efficiency of both SynF and SynN is nearly invariant to rotation
angle, whereas the other approaches are far more sensitive to rotation angle. Note that zero rotation angle
corresponds to the two tasks having identical distributions.

A. Label Shuffled CIFAR 01 B. Rotation Experiment
0.2 : > —— SynN
0.0] 5L oAny ’ —— SynF
5 0.1 H W —+— Model Zoo
° ° LwF
g g-O-l EWC
~ 0.0 - = O-EWC
3 8.0.2 WWW si
m m e ER
(o)} (2]
-0.1
° =04 /\/\/JVM/\/\M\ e
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0.2 05 —— Totall Replay
1 2 3 45 6 7 8 910 0 30 60 90 120 150 180 —— Partial Replay
Number of tasks seen Angle of Rotation (Degrees) —— None

Figure 5: Extended CIFAR 10x10 experiments. A. Shuffling class labels within tasks two through nine
with 500 samples each demonstrates both SYNF and SynN can still achieve positive backward transfer, and
that the other algorithms still fail to transfer. B. SyNF and SynN are nearly invariant to rotations, whereas
other approaches are more sensitive to rotation.
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Table 3: 5-dataset details.
Training samples Testing samples

CIFAR-10 50000 10000
MNIST 60000 10000
SVHN 73257 26032
notMNSIT 16853 1873

Fashion-MNIST 60000 10000
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Figure 6: Model Zoo performs the best and SYNF performs the second best compared to all other algorithms
in high sample size regimes (first row third panel). Sample size for each task is provided in Table

5.3.6 Five Dataset

In this experiment, we have used the 5-dataset provided in/https://github.com/pranshu28/TAG. It consists
of 5 tasks from five different dataset- CIFAR-10 (Krizhevsky, 2012), MNIST, SVHN (Netzer et al., 2011)),
notMNIST (Bulatov} [2011)), Fashion-MNIST (Xiao et al.,2017). All the monochromatic images are converted
to RGB format depending on the dataset. All images are then resized to 3 x 32 x 32. As shown in table
training samples per task in 5-dataset is relatively higher than that of low data regime ideally considered
in lifelong learning setting. However, SYNN and SynFshow less forgetting than most of the benchmarking
algorithms. On the other hand, model zoo shows comparatively better performance in relatively high task
data size setup.

5.3.7 Split Mini-lmagenet

In this experiment, we have used the mini-imagenet dataset provided in https://www.kaggle.com/
datasets/whitemoon/miniimagenet. The dataset was split into 20 tasks each 5 each. Each task has 2400
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Figure 7: We have qulitatively similar results on Split Mini-Imagenet tasks as those of Five Dataset tasks.
Note that each task in Mini-Imagnet has 2400 training samples which is lower than that of Five Dataset
tasks. This relatively lower sample size results in a bit better performance for SYNF and SYNN compared to
those on Five Dataset (first row third panel).

training samples and 600 testing samples. In this case, we get positive FLE and BLE for both SynN and
SYnNF. However, model zoo outperforms all the algorithms in this experiment.

5.3.8 Spoken Digit experiment

In this experiment, we used the spoken digit dataset provided in https://github.com/Jakobovski/
free-spoken-digit-dataset. The dataset contains audio recordings from 6 different speakers with 50
recordings for each digit per speaker (3000 recordings in total). The experiment was set up with 6 tasks
where each task contains recordings from only one speaker. For each recording, a spectrogram was extracted
using Hanning windows of duration 16 ms with an overlap of 4 ms between the adjacent windows. The
spectrograms were resized down to 28 x 28. The extracted spectrograms from 8 random recordings of ‘5’ for
6 speakers are shown in Figure[8] For each Monte Carlo repetition of the experiment, spectrograms extracted
for each task were randomly divided into 55% train and 45% test set. We have provided benchmarking for
seven algorithms out of the 11 algorithms as mentioned in Subsection As shown in Figure [9 both
SYNF and SYNN show positive transfer and synergistic learning between the spoken digit tasks, in contrast to
other methods, some of which show only forward transfer, others show only backward transfer, with none
showing both, and some showing neither.

6 Discussion

We introduced quasilinear representation ensembling as an approach to synergistic lifelong learning. Two
specific algorithms, SYNF and SynN, achieve both forward and backward transfer, due to leveraging resources
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Figure 8: Spectrogram extracted from 8 different recordings of 6 speakers uttering the digit ‘5’
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Figure 9: Both SYnF and SynN show positive forward and backward transfer as well as synergistic learning
for the spoken digit tasks, in contrast to other seven methods, some of which show only forward transfer,
others show only backward transfer, with none showing both, and some showing neither.
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(encoders) learned for other tasks without undue computational burdens. Recruitment experiment with
CIFAR 10x10 shows that Forest-based representation ensembling approaches can easily add new resources
when appropriate. This work therefore motivates additional work on deep learning to enable dynamically
adding resources when appropriate (Yoon et al., [2017)).

To achieve backward transfer, SYNF and SynN stored old data to vote on the newly learned transformers.
Because the representation space scales quasilinearly with sample size, storing the data does not increase the
space complexity of the algorithm, and it remains quasilinear. It could be argued that by keeping old data and
training a model with increasing capacity from scratch (a sequential multitask learning approach), it would
be straightforward to maintain performance (TE = 1) in a particular task. However, it is not obvious how
to achieve backward transfer with quasilinear time and space complexity even if we are allowed to store all
the past data, because computational time would naively become quadratic. For example, both ProgNN and
Total Replay have quadratic time complexity, unlike SYNF and SynN. Thus, one natural extension of this
work that could mitigate the need to store all the data by using a generative model or subsampling.

While we employed quasilinear representation ensembling to address catastrophic forgetting, the paradigm of
ensembling representations rather than decisions can be readily applied more generally. For example, “batch
effects” (sources of variability unrelated to the scientific question of interest) have plagued many fields of
inquiry, including neuroscience (Bridgeford et al 2020 and genomics (Johnson et al., |2007). Similarly, fed-
erated learning is becoming increasingly central in artificial intelligence, due to its importance in differential
privacy (Dwork} [2008)). This may be particularly important in light of global pandemics such as COVID-
19, where combining small datasets across hospital systems could enable more rapid discoveries (Vogelstein
et al., 2020).

Finally, our quasilinear representation ensembling approach closely resembles the constructivist view of
brain development (Quartz, [1999; [Karmiloff-Smith, 2017)). According to this view, the brain goes through
progressive elaboration of neural circuits resulting in an augmented cognitive representation while maturing in
a certain skill. In a similar way, representation ensembling algorithms can mature in a particular skill such as
vision tasks by learning a rich encoder dictionary from different vision datasets and thereby, transfer forward
to future or yet unseen vision dataset (see CIFAR 10x10 recruitment experiment as a proof). However,
there is also substantial pruning during development and maturity in the brain circuitry which is important
for performance (Sakai, [2020). This motivates future work for pruning adversarial encoders to enhance
the transferability among tasks even more. Moreover, by carefully designing experiments in which both
behaviors and brain are observed while learning across sequences of tasks (possibly in multiple stages of
neural development or degeneration), we may be able to learn more about how biological agents are able
to synergistically learn so efficiently, and transfer that understanding to building more effective artificial
intelligences.
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A Decision Tree as a Compositional Hypothesis

Consider learning a decision tree for a two class classification problem. The input to the decision tree is
a set of n feature-vector/response pairs, (z;,y;). The learned tree structure corresponds to the encoder wu,
because the tree structure maps each input feature vector into an indicator encoding in which leaf node
each feature vector resides. Formally, u : X — [L], where [L] = {1txe;}, Iixel,},---> Lixe, ) and L is
the total number of leaf nodes. In other words, u maps from the original data space, to a L-dimensional
one-hot encoded sparse binary vector, where the sole non-zero entry indicates in which leaf node a particular
observation falls, that is, # := u(z) € {0,1}¥ where ||Z|| = 1.

Learning the channel is simply a matter of counting the fraction of observations in each leaf per class. So,
the channel is trained using n pairs of transformed feature-vector/response pairs (Z;,y;), and it assigns a
probability of each class in each leaf: v, ;= Ply; = 1|@; = 1],V € {1,2,--- ,L} and v(&) = Ulel v;. In other
words, for two class classification, v maps from the L-dimensional binary vector to the probability that x is
in class 1. The decider is simply w (v(Z)) = 1{yz)>0.5}, that is, it outputs the most likely class label of the
leaf node that x falls into.

For inference, the tree is given a single x, and it is passed down the tree until it reaches a leaf node, where
it is represented by its leaf identifier Z. The channel takes T as input, and outputs the estimated posterior
probability of being in class 1 for the leaf node in which # resides: v(Z) = Py = 1|Z]. If v(Z) is bigger than
0.5, the decider decides that x is in class 1, and otherwise, it decides it is in class 0.

B Compositional Representation Ensembling

Consider a scenario in which we have two tasks, one following the other. Assume that we already learned a
single decomposable hypothesis for the first task: w; o v o uy, and then we get new data associated with a
second task. Let n; denote the sample size for the first task, and no denote the sample size for the second
task, and n = nj + ne. The representation ensembling approach generally works as follows. First, since we
want to transfer forward to the second task, we push all the new data through the first encoder u;, which

yields jglll)_ﬂ, .., 29 Second, we learn a new encoder uy using the new data, {(zs,9i)}ip, 4 1- We then
push the new data through the new encoder, yielding 5;5?1) ST ,5:5?). Third, we train a new channel, vo. To

do so, vg is trained on the outputs from both encoders, that is, {(igj),yi)}?:nﬁl for 5 = 1,2. The output
of ve for any new input x is the posterior probability (or score) for that point for each potential response in
task two (class label). Thus, by virtue of ensembling these representations, this approach enables forward

transfer (Rusu et al.l |2016; |Dhillon et al.| 2020]).

Now, we would also like to improve performance on the first task using the second task’s data. While many
lifelong methods have tried to achieve this kind of backward transfer, to date, they have mostly failed (Ruvolo
& Eaton, [2013). Recall that previously we had already pushed all the first task data through the first task
encoder, which had yielded £§1)7 . ,fcslll). Assuming we kept any of the first task’s data, or can adequately
simulate it, we can push those data through us to get a second representation of the first task’s data:
5952), . ,fgi). Then, v; would be trained on both representations of the first task’s data. This ‘replay-like’
procedure facilitates backward transfer, that is, improving performance on previous tasks by leveraging data
from newer tasks. Both the forward and backward transfer updates can be implemented every time we
obtain data associated with a new task. Enabling the channels to ensemble omnidirectionally between all
sets of tasks is the key innovation of our proposed synergistic learning approaches.

C Synergistic Algorithms

In this paper, we have proposed two concrete synergistic algorithms, Synergistic Forests (SYNF) and Syner-
gistic Networks (SynN). The two algorithms differ in their detais of how to update representers and voters,
but abstracting a level up they are both special cases of the same procedure. Let SynX refer to any possible
synergistic algorithm. Algorithms [I] 2} B} and [] provide pseudocode for adding representers, updating
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Algorithm 1 Add a new SynX encoder for a task. OOB = out-of-bag.

Require:
(1) ¢ > current task number
(2) D!, = (xt,y') e R™P x {1,...,K}" > training data for task ¢
Ensure:
(1) w > an encoder trained on task ¢
(2) Zhon > a set of the indices of OOB data
1: function SYNX.FIT(¢, (x!,y?))
2: u, Ihop + encoder.fit(x’, y*) > train an encoder on partitioned data
3. return u, ZHop
4: end function

Algorithm 2 Add a new SynX channel for the current task.

Require:
(1) ¢ > current task number
(2) wr = {w}l 4 > the set of encoders
(3) Dl = (x,y') e R"*P x {1,...,K}" > training data for task ¢
(4) Thon > a set of the indices of OOB data for the current task
Ensure: v, = {v; ¢}, > in-task (¢’ =t) and cross-task (¢’ # t) channels for task ¢
1: function SYNX.ADD CHANNEL(¢, u, (X¢t,¥t), Zbop)
2: v < up.add channel((x¢,y¢), Zhop) > add the in-task channel using OOB data
3 fort' =1,...,t —1do > update the cross task channels for task ¢
4: v < up.add_channel(xy,y;)
5: end for
6 return v,
7. end function

voters, and making predictions for any SynX algorithm; the below sections provide SYNF and SYNN specific
details.

Table 1: Hyperparameters for SYNF in CIFAR experiments. n_ estimators is denoted by B, the number of
trees, above.

Hyperparameters Value
n_estimators (500 training samples per task) | 10
n__estimators (5000 training samples per task) | 40

max_ depth 30
max_samples (OOB split) 0.67
min_ samples_ leaf 1

D Reference Algorithm Implementation Details

The same network architecture was used for all compared deep learning methods. Following [van de Ven et al.
(2020)), the ‘base network architecture’ consisted of five convolutional layers followed by two-fully connected
layers each containing 2000 nodes with ReLLU non-linearities and a softmax output layer. The convolutional
layers had 16, 32, 64, 128 and 254 channels, they used batch-norm and a ReLLU non-linearity, they had a 3x3
kernel, a padding of 1 and a stride of 2 (except the first layer, which had a stride of 1). This architecture was
used with a multi-headed output layer (i.e., a different output layer for each task) for all algorithms using a
fixed-size network. For ProgNN and DF-CNN the same architecture was used for each column introduced
for each new task, and in our SynN this architecture was used for the transformers u; (see above). In these
implementations, ProgNN and DF-CNN have the same architecture for each column introduced for each
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Algorithm 3 Update SynX channel for the previous tasks.

Require:
(1) ¢ > current task number
(2) uy > encoder for the current task
3) D={D"}, > training data for tasks ¢/ =1,--- ¢t — 1
Ensure: v = {vy }5_ > all previous task voters
1: function SYNX.UPDATE__CHANNEL(Z, ut, D)
2: fort' =1,...,t—1do > update the cross task channels
3 vy < ug.get__channel(xy, yy )
4: end for
5 return v
6: end function

Algorithm 4 Predicting a class label using SynX.

Require:
(1) z eRP > test datum
(2) ¢ > task identity associated with z
(3) u > all T" reperesenters
(4) v, > channel for task ¢
Ensure: g > a predicted class label
1: function § = SYNX.PREDICT(¢, =, v;)
2: T <+ SynX.get_ task number() > get the total number of tasks
3: pP:=0 > P; is a K-dimensional posterior vector
4: fort’'=1,...,T do > aggregate the posteriors calculated from T-th task channel
5: Dt < Dt + v .predict__proba(uy (z))
6: end for
& p: < Pe/T
8: 9 = arg max; (P¢) > find the index i of the elements in the vector p; with maximum probability
9: return §

10: end function

task. Each column has an input layer followed by 4 convolutional layer with size 3 x 3 x 32, 3 x 3 x 32,
3 x 3 x 64 and 3 x 3 x 64, respectively. It is followed by a fully-connected layer with 64 nodes and an
output layer with 10 nodes. ReLU activation was used after each layer. The other algorithms use a common
architecture with input layers defined by the size of the input data, two hidden layers with 400 nodes each
and a multi-headed output layer (different output layers for different tasks). Different algorithms only differ
in the way they penalize the update of network parameters for the current task based on the previous tasks.
Each of these algorithms has 1.4M parameters in total.

E Simulated Results

In each simulation, we constructed an environment with two tasks. For each, we sample 750 times from the
first task, followed by 750 times from the second task. These 1,500 samples comprise the training data. We
sample another 1,000 hold out samples to evaluate the algorithms. We fit a random forest (RF) (technically,
an uncertainty forest which is an honest forest with a finite-sample correction (Mehta et al. 2019)) and a
SYNF. We repeat this process 30 times to obtain errorbars. Errorbars in all cases were negligible.

E.1 Gaussian XOR

Gaussian XOR is two class classification problem with equal class priors. Conditioned on being in class 0,

. . . . T . .
a sample is drawn from a mixture of two Gaussians with means + [0.5, 0.5] , and variances proportional
to the identity matrix. Conditioned on being in class 1, a sample is drawn from a mixture of two Gaussians
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Figure 1: Top: 750 samples from 3 spirals (left) and 5 spirals (right). Bottom left: SYNF outperforms RF
on 3 spirals when 5 spirals data is available, demonstrating backward transfer in SYNF. Bottom center: SYNF
outperforms RF on 5 spirals when 3 spirals data is available, demonstrating forward transfer in SYnF. Bottom
right: Transfer Efficiency of SyNF. The forward (solid) and backward (dashed) curves are the ratio of the
generalization error of SYNF to RF in their respective figures. SYNF demonstrates decreasing forward transfer
and increasing backward transfer in this environment.

with means =+ [0.5, —O.5]T, and variances proportional to the identity matrix. Gaussian XNOR is the
same distribution as Gaussian XOR with the class labels flipped. Rotated XOR (R-XOR) rotates XOR by
0° degrees.

E.2 Spirals

A description of the distributions for the two tasks is as follows: let K be the number of classes and S ~
multinomial( %TK, n). Conditioned on S, each feature vector is parameterized by two variables, the radius
r and an angle 6. For each sample, r is sampled uniformly in [0,1]. Conditioned on a particular class, the
angles are evenly spaced between 4”(k;(1)tK and 4”(?1‘“ where tx controls the number of turns in the spiral.
To inject noise along the spiral, we add Gaussian noise to the evenly spaced angles 6 : § = §' + N (0,0%).
The observed feature vector is then (r cos(#),r sin(6)). In Figure [I| we set t3 = 2.5, t5 = 3.5, 02 = 3 and
o2 = 1.876.

Consider an environment with a three spiral and five spiral task (Figure. In this environment, axis-aligned
splits are inefficient, because the optimal partitions are better approximated by irregular polytopes than by
the orthotopes provided by axis-aligned splits. The three spiral data helps the five spiral performance because
the optimal partitioning for these two tasks is relatively similar to one another, as indicated by positive
forward transfer. This is despite the fact that the five spiral task requires more fine partitioning than the
three spiral task. Because SYNF grows relatively deep trees, it over-partitions space, thereby rendering tasks
with more coarse optimal decision boundaries useful for tasks with more fine optimal decision boundaries.
The five spiral data also improves the three spiral performance.
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Table 2: Hyperparameters for SYNF in spoken digit experiment.

Hyperparameters Value
n_estimators (275 training samples per task) | 10
max_ depth 30
max_ samples (OOB split) 0.67
min_ samples_ leaf 1

Table 3: Task splits for CIFAR 10x10.

3
~
BIS

Image Classes

apple, aquarium fish, baby, bear, beaver, bed, bee, beetle, bicycle, bottle

bowl, boy, bridge, bus, butterfly, camel, can, castle, caterpillar

chair, chimpanzee, clock, cloud, cockroach, couch, crab, crocodile, cup, dinosaur

dolphin, elephant, flatfish, forest, fox, girl, hamster, house, kangaroo, keyboard

lamp, lawn mower, leopard, lion, lizard, lobster, man, maple tree, motor cycle, mountain
mouse, mushroom, oak tree, orange, orchid, otter, palm tree, pear, pickup truck, pine tree
plain, plate, poppy, porcupine, possum, rabbit, raccoon, ray, road, rocket

rose, sea, seal, shark, shrew, skunk, skyscraper, snail, snke, spider

squirrel, streetcar, sunflower, sweet pepper, table, tank, telephone, television, tiger, tractor
0 train, trout, tulip, turtle, wardrobe, whale, willow tree, wolf, woman, worm

=[O0 | O U | W N —

F Real Data Extended Results

F.1 CIFAR 10x10

Supplementary Table [3] shows the image classes associated with each task number. Supplementary Figure
is the same as Figure 4] but with 5,000 training samples per task, rather than 500. Notably, with 5,000
samples, replay methods and Model Zoo are able to transfer both forward and backward as well. However,
note that although total replay outperforms both SyYnF and SynN with large sample sizes, it is not a bona
fide lifelong learning algorithm, because it requires n? time. Moreover, the replay methods will eventually
forget as more tasks are introduced because it will run out of capacity.

F.2 CIFAR Label Shuffling

Supplementary Figure[3|shows the same result as the label shuffling from Figure[5] but with 5,000 samples per
class. The results for SYnN and SYNF are qualitatively similar, in that they transfer backward. The replay
methods are also able to transfer when using this larger number of samples, although with considerably
higher computational cost.

F.3 CIFAR 10x10 Repeated Classes

We also considered the setting where each task is defined by a random sampling of 10 out of 100 classes with
replacement. This environment is designed to demonstrate the effect of tasks with shared subtasks, which is
a common property of real world lifelong learning tasks. Supplementary Figure [4] shows transfer efficiency
of SyNF and SynN on Task 1.
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Figure 2: Performance of different algorithms on CIFAR 10x10 vision dataset for 5,000 training samples
per task. SYNN maintains approximately the same forward transfer (top left and middle left) and backward
transfer (top and middle row second column) efficiency as those for 500 samples per task whereas other
algorithms show reduced or nearly unchanged transfer. SYnF still demonstrates positive forward, backward,
and final transfer, unlike most of the state-of-the-art algorithms, which demonstrate forgetting. The replay
methods, however, do demonstrate transfer, albeit with significantly higher computational cost.
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Figure 3: Label shuffle experiment on CIFAR 10x10 vision dataset for 5,000 training samples per task.
Shuffling class labels within tasks two through nine with 5000 samples each demonstrates both SYnNF and
SYNN can still achieve positive backward transfer, and that the other algorithms that do not replay the

previous task data fail to transfer.
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Figure 4: SynF and SynN transfer knowledge effectively when tasks share common classes. Each task is a
random selection of 10 out of the 100 CIFAR-100 classes. Both SYNF and SYnN demonstrate monotonically
increasing transfer efficiency for up to 20 tasks.
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