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ABSTRACT

During periods of quiescence, such as sleep, neural activity in many brain circuits
resembles that observed during periods of task engagement. However, the precise
conditions under which task-optimized networks can autonomously reactivate the
same network states responsible for online behavior is poorly understood. In this
study, we develop a mathematical framework that outlines sufficient conditions for
the emergence of neural reactivation in circuits that encode features of smoothly
varying stimuli. We demonstrate mathematically that noisy recurrent networks
optimized to track environmental state variables using change-based sensory in-
formation naturally develop denoising dynamics, which, in the absence of input,
cause the network to revisit state configurations observed during periods of online
activity. We validate our findings using numerical experiments on two canonical
neuroscience tasks: spatial position estimation based on self-motion cues, and head
direction estimation based on angular velocity cues. Overall, our work provides
theoretical support for modeling offline reactivation as an emergent consequence
of task optimization in noisy neural circuits.

1 INTRODUCTION

It has been widely observed that neural circuits in the brain recapitulate task-like activity during
periods of quiescence, such as sleep (Tingley & Peyrache, 2020). For example, the hippocampus
“replays” sequences of represented spatial locations akin to behavioral trajectories during wakefulness
(Nádasdy et al., 1999; Lee & Wilson, 2002; Foster, 2017). Furthermore, prefrontal (Euston et al.,
2007; Peyrache et al., 2009), sensory (Kenet et al., 2003; Xu et al., 2012), and motor (Hoffman &
McNaughton, 2002) cortices reactivate representations associated with recent experiences; and sleep
activity in the anterior thalamus (Peyrache et al., 2015) and entorhinal cortex (Gardner et al., 2022) is
constrained to the same neural manifolds that represent head direction and spatial position in those
circuits during wakefulness.

This neural reactivation phenomenon is thought to have a number of functional benefits, including
the formation of long term memories (Buzsáki, 1989; McClelland et al., 1995), abstraction of general
rules or “schema” (Lewis & Durrant, 2011), and offline planning of future actions (Ólafsdóttir et al.,
2015; Igata et al., 2021). Similarly, replay in artificial systems has been shown to be valuable in
reinforcement learning, when training is sparse or expensive (Mnih et al., 2015), and in supervised
learning, to prevent catastrophic forgetting in continual learning tasks (Hayes et al., 2019). However,
where machine learning approaches tend to save sensory inputs from individual experiences in an
external memory buffer, or use external networks that are explicitly trained to generate artificial
training data (Hayes & Kanan, 2022), reactivation in the brain is autonomously generated in the same
circuits that operate during active perception and action. Currently, it is unknown how reactivation
can emerge in the same networks that encode information during active behavior, or why it is so
widespread in neural circuits.

Previous approaches to modeling reactivation in neural circuits fall into two broad categories: genera-
tive models that have been explicitly trained to reproduce realistic sensory inputs (Deperrois et al.,
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2022), and models in which replay is an emergent consequence of the architecture of network models
with a particular connectivity structure (Shen & McNaughton, 1996; Azizi et al., 2013; Milstein
et al., 2023) or local synaptic plasticity mechanism (Hopfield, 2010; Litwin-Kumar & Doiron, 2014;
Theodoni et al., 2018; Haga & Fukai, 2018; Asabuki & Fukai, 2023). Other approaches have modeled
replay and theta sequences as emergent consequences of firing rate adaptation (Chu et al., 2024)
or input modulation (Kang & DeWeese, 2019) in continuous attractor network models. Generative
modeling approaches have strong theoretical guarantees that reactivation will occur, because networks
are explicitly optimized to provide this functionality. However, modeling approaches that argue for
emergent reactivation typically rely on empirical results, and lack rigorous mathematical justification.

In this study, we demonstrate that a certain type of reactivation—diffusive reactivation—can emerge
from a system attempting to optimally encode features of its environment in the presence of internal
noise. We trained continuous-time recurrent neural networks (RNNs) to optimally integrate and track
perceptual variables based on sensations of change (motion through space, angular velocity, etc.),
in the context of two ethologically relevant tasks: spatial navigation and head direction integration.
Critically, training in this manner has been shown to produce grid cell (Cueva & Wei, 2018; Sorscher
et al., 2019) and head direction cell representations (Cueva et al., 2020; Uria et al., 2022), which
correspond to neural systems in which reactivation phenomena have been observed (Gardner et al.,
2022; Peyrache et al., 2015). We see that these networks exhibit reactivation during quiescent states
(when subject to noise but in the absence of perceptual inputs), and we explain these phenomena by
demonstrating that noise compensation dynamics naturally induce diffusion on task-relevant neural
manifolds in optimally trained networks.

2 MATHEMATICAL RESULTS

2.1 SETUP AND VARIABLES

In this study, we will consider a noisy discrete-time approximation of a continuous-time RNN,
receiving change-based information ds(t)

dt about an Ns-dimensional environmental state vector s(t).
The network’s objective will be to reconstruct some function of these environmental state variables,
f
(
s(t)

)
: RNs → RNo , where Ns is the number of stimulus dimensions and No is the number of

output dimensions (for a schematic, see Fig. 1a). An underlying demand for this family of tasks is
that path integration needs to be performed, possibly followed by some computations based on that
integration. These requirements are often met in natural settings, as it is widely believed that animals
are able to estimate their location in space s(t) through path integration based exclusively on local
motion cues ds(t)

dt , and neural circuits in the brain that perform this computation have been identified
(specifically the entorhinal cortex (Sorscher et al., 2019)). For our analysis, we will assume that
the stimuli the network receives are drawn from a stationary distribution, such that the probability
distribution p

(
s(t)

)
does not depend on time—for navigation, this amounts to ignoring the effects of

initial conditions on an animal’s state occupancy statistics, and assumes that the animal’s navigation
policy remains constant throughout time. The RNN’s dynamics are given by:

r(t+∆t) = r(t) + ∆r(t) (1)

∆r(t) = ϕ

(
r(t), s(t),

ds(t)

dt

)
∆t+ ση(t), (2)

where ∆r(t) is a function that describes the network’s update dynamics as a function of the stimulus,
ϕ(·) is a sufficiently expressive nonlinearity, η(t) ∼ N (0,∆t) is Brownian noise, and ∆t is taken to
be small as to approximate corresponding continuous-time dynamics. We work with a discrete-time
approximation here for the sake of simplicity, and also to illustrate how the equations are implemented
in practice during simulations. Suppose that the network’s output is given by o = Dr(t), where D is
an No ×Nr matrix that maps neural activity to outputs, and Nr is the number of neurons in the RNN.

We formalize our loss function for each time point as follows:

L(t) = Eη

∥∥f(s(t))−Dr(t)
∥∥
2
, (3)

so that as the loss is minimized over timesteps, the system is optimized to match its target at every
timestep while compensating for its own intrinsic noise. Our analysis proceeds as follows. First,
we will derive an upper bound for this loss that partitions the optimal update ∆r into two terms:
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Figure 1: Reactivation in a spatial position estimation task. a) Schematic of task. b) Test metrics
as a function of training batches for the place cell tuning mean squared error loss used during training
(gray) and for the position decoding spatial distance error (black). c) Explained variance as a function
of the number of principal components (PCs) in population activity space during task engagement
(blue) and during quiescent noise-driven activity (red). d) Sample decoded outputs during active
behavior. Circles indicate the initial location, triangles indicate the final location. e) Same as (d), but
for decoded outputs during quiescence. f) Neural activity projected onto the first two PCs during
the active phase. Color intensity measures the decoded output’s distance from the center in space.
g) Neural activity during the quiescent phase projected onto the same active PC axes as in (f). h)
Two-dimensional kernel density estimate (KDE) plot measuring the probability of state-occupancy
over 200 decoded output trajectories during active behavior. i-k) Same as (h), but for decoded outputs
during quiescence (i), neural activity projected onto the first two PCs during the active phase (j), and
during the quiescent phase (k). Error bars (b-c) indicate ±1 standard deviation over five networks.

one which requires the RNN to estimate the predicted change in the target function, and one which
requires the RNN to compensate for the presence of noise. Second, we derive closed-form optimal
dynamics for an upper bound of this loss, which reveals a decomposition of neural dynamics into
state estimation and denoising terms. Lastly, we show that under certain conditions, these optimal
dynamics can produce offline sampling of states visited during training in the absence of stimuli but
in the presence of noise.

2.2 UPPER BOUND OF THE LOSS

To derive our upper bound, we first assume that ϕ
(
r(t), s(t), ds(t)

dt

)
can be decomposed into two

different functions so that Eq. 2 becomes:

∆r(t) = ∆r1
(
r(t)

)
+∆r2

(
r(t), s(t),

ds(t)

dt

)
+ ση(t), (4)
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where we will ultimately show that both functions scale with ∆t. We are assuming that these two terms
have different functional dependencies; however, for notational conciseness, we will subsequently
refer to both updates as ∆r1(t) and ∆r2(t). The first, ∆r1(t), is a function of r(t) only, and will be
used to denoise r(t) such that the approximate equality r(t) + ∆r1(t) + ση(t) ≈ D†f

(
s(t)

)
still

holds (∆r1(t) cancels out the noise corruption ση(t)), where D† is the right pseudoinverse of D. This
maintains optimality in the presence of noise. The second, ∆r2(t), is also a function of the input, and
will build upon the first update to derive a simple state update such that D

(
r(t+∆t)

)
≈ f

(
s(t+∆t)

)
.

To construct this two-step solution, we first consider an upper bound on our original loss, which we
will label Lupper. Exploiting the fact that ∆t2 is infinitesimally small relative to other terms, we will
Taylor expand Eq. 3 to first order about a small timestep increment ∆t:

L(t+∆t) = Eη

∥∥f(s(t+∆t)
)
−D

(
r(t) + ∆r(t)

)∥∥
2

(5)

≈ Eη

∥∥∥∥f(s(t))+ df
(
s(t)

)
ds(t)

∆s(t)−D
(
r(t) + ∆r(t)

)∥∥∥∥
2

(6)

= Eη

∥∥∥∥df
(
s(t)

)
ds(t)

∆s(t)−D∆r2(t) + f
(
s(t)

)
−D

(
r(t) + ∆r1(t) + ση(t)

)∥∥∥∥
2

, (7)

where ∆s(t) = ds(t)
dt ∆t. Next, using the triangle inequality, we note that the loss is upper bounded

by a new loss L2, given by:

L ≤ L2 = Eη

[∥∥∥∥df
(
s(t)

)
ds(t)

∆s(t)−D∆r2(t)

∥∥∥∥
2

+
∥∥f(s(t))−D

(
r(t) + ∆r1(t) + ση(t)

)∥∥
2

]
(8)

=

∥∥∥∥df
(
s(t)

)
ds(t)

∆s(t)−D∆r2(t)

∥∥∥∥
2

+ Eη

∥∥f(s(t))−D
(
r(t) + ∆r1(t) + ση(t)

)∥∥
2
, (9)

which separates the loss into two independent terms: one which is a function of ∆r2(t) and the signal,
while the other is a function of ∆r1(t) and the noise. The latter, ∆r1(t)-dependent term, allows ∆r1
to correct for noise-driven deviations between f

(
s(t)

)
and Dr(t). Here, we will assume that this

optimization has been successful for previous timesteps, such that r(t) ≈ D†f
(
s(t)

)
, where D† is

the right pseudoinverse of D. By this assumption, we have the following approximation:

L2 ≈
∥∥∥∥df

(
s(t)

)
ds(t)

∆s(t)−D∆r2(t)

∥∥∥∥
2

+ Eη

∥∥f(s(t))−D
(
D†f

(
s(t)

)
+∆r1(t) + ση(t)

)∥∥
2

(10)

=

∥∥∥∥df
(
s(t)

)
ds(t)

∆s(t)−D∆r2(t)

∥∥∥∥
2

+ Eη

∥∥D(
∆r1(t) + ση(t)

)∥∥
2
. (11)

Thus, the second term in L2 trains ∆r1 to greedily cancel out noise in the system ση(t). To show
that this is similar to correcting for deviations between D†f

(
s(t)

)
and r in neural space (as opposed

to output space), we use the Cauchy-Schwarz inequality to develop the following upper bound:

L2 ≤ L3 =

∥∥∥∥df
(
s(t)

)
ds(t)

∆s(t)−D∆r2(t)

∥∥∥∥
2

+ ∥D∥2Eη∥∆r1(t) + ση(t)∥2. (12)

This allows the system to optimize for denoising without having access to its outputs, allowing for
computations that are more localized to the circuit. As our final step, we use Jensen’s inequality for
expectations to derive the final form of our loss upper bound:

L3 ≤ Lupper =

∥∥∥∥df
(
s(t)

)
ds(t)

∆s(t)−D∆r2(t)

∥∥∥∥
2

+ ∥D∥2
√

Eη∥∆r1(t) + ση(t)∥22 (13)

= Lsignal(∆r2) + Lnoise(∆r1), (14)

where Lsignal =
∥∥∥df(s(t))

ds(t) ∆s(t)−D∆r2(t)
∥∥∥
2

is dedicated to tracking the state variable s(t), and

Lnoise = ∥D∥2
√
Eη∥∆r1(t) + ση(t)∥22 is dedicated to denoising the network state. In the next

section, we will describe how this objective function can be analytically optimized in terms of ∆r1(t)
and ∆r2(t) in a way that decomposes the trajectory tracking problem into a combination of state
estimation and denoising.
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2.3 OPTIMIZING THE UPPER BOUND

Our optimization will be greedy, so that for each loss L(t+∆t) we will optimize only ∆r(t), ignoring
dependencies on updates from previous time steps. Lnoise is the only term in our loss that depends
on ∆r1(t). Ignoring proportionality constants and the square root (which do not affect the location
of minima), we have the following equivalence:

argmin∆r1(t) Lnoise ≡ argmin∆r1(t) Eη∥∆r1(t) + ση(t)∥22. (15)
Essentially, the objective of ∆r1(t) is to cancel out the noise ση(t) as efficiently as possible, given
access to information about r(t). This is a standard denoising objective function, where an input
signal is corrupted by additive Gaussian noise, with the following well-known solution (Miyasawa,
1961; Raphan & Simoncelli, 2011):

∆r∗1(t) = σ2 d

dr(t)
log p

(
r(t)

)
∆t, (16)

where p(r) =
∫
p
(
r(t)

∣∣s(t))p(s(t))ds(t) is the probability distribution over noisy network states
given input stimulus s(t), prior to the application of state updates ∆r1(t) and ∆r2(t). By assumption,
p
(
r(t)

∣∣s(t)) ∼ N
(
D†f

(
s(t)

)
, σ2∆t

)
. We note that d

dr(t) log p
(
r(t)

)
is the same function for all

time points t, because for the stimulus sets we consider, p
(
s(t)

)
does not depend on time (it is

a stationary distribution); this demonstrates that the optimal greedy denoising update is not time-
dependent. These dynamics move the network state towards states with higher probability, and do
not require explicit access to noise information η(t).

Next, we optimize for ∆r2(t). Lsignal is the only term in Lupper that depends on ∆r2(t), so we
minimize:

Lsignal =

∥∥∥∥df
(
s(t)

)
ds(t)

∆s(t)−D∆r2(t)

∥∥∥∥
2

. (17)

By inspection, the optimum is given by: ∆r∗2(t) = D† df(s(t))
ds(t) ∆s(t). Thus the full greedily optimal

dynamics, in the presence of noise, are given by:

∆r∗(t) =

[
σ2 d

dr(t)
log p

(
r(t)

)
+D† df

(
s(t)

)
ds(t)

ds(t)

dt

]
∆t+ ση(t). (18)

This heuristic solution provides interpretability to any system attempting to maintain a relationship
to a stimulus in the presence of noise. First, denoise the system (∆r∗1). Second, use instantaneous
changes in the state variable (ds(t)dt ) to update state information. In theory, this solution should hold for
any trained network capable of arbitrarily precise function approximation (Funahashi & Nakamura,
1993). In the next section, we will demonstrate that this approximately optimal solution will have
interesting emergent consequences for neural dynamics in the continuous-time limit (∆t → 0).

2.4 EMERGENT OFFLINE REACTIVATION

Having derived our greedily optimal dynamics, we are in a position to ask: what happens in the
absence of any input to the system, as would be observed in a quiescent state? We will make two
assumptions for our model of the quiescent state: 1) ds(t)

dt = 0, so that no time-varying input is being
provided to the system, and 2) the variance of the noise is increased by a factor of two (deviating from
this factor is not catastrophic as discussed below). This gives the following quiescent dynamics r̃:

∆r̃(t) =

[
σ2 d

dr(t)
log p

(
r(t)

)]
∆t+

√
2ση(t). (19)

Interestingly, this corresponds to Langevin sampling of p(r) (Besag, 1994). Therefore, we can
predict an equivalence between the steady-state quiescent sampling distribution p̃(r) and the active
probability distribution over neural states p(r) (so that p(r) = p̃(r), and consequently p(o) = p̃(o)).
There are two key components that made this occur: first, the system needed to be performing
near-optimal noisy state estimation; second, the system state needed to be determined purely by
integrating changes in sensory variables of interest. The final assumption—that noise is doubled
during quiescent states—is necessary only to produce sampling from the exact same distribution p(r).
Different noise variances will result in sampling from similar steady-state distributions with different
temperature parameters. When these conditions are present, we can expect to see statistically faithful
reactivation phenomena during quiescence in optimally trained networks.
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3 NUMERICAL SIMULATION TASK SETUP

To validate our mathematical results, we consider numerical experiments on two canonical neuro-
science tasks, both of which conform to the structure of the general estimation task considered in our
mathematical analysis (Fig. 1a). For each task, we minimize the mean squared error between the
network output o and the task-specific target given by f

(
s(t)

)
, summed across timesteps.

Spatial Position Estimation. In this task, the network must learn to path integrate motion cues
in order to estimate an animal’s spatial location in a 2D environment. We first generate an animal’s
motion trajectories sSP (t) using the model described in Erdem & Hasselmo (2012). Next, we
simulate the activities of nSP place cells for all positions visited. The simulated place cells’ receptive
field centers c(i) (where i = 1, . . . , nSP ) are randomly and uniformly scattered across the 2D
environment, and the activity of each for a position s is given by the following Gaussian tuning curve:

f
(i)
SP (s) = exp

(
−∥s− c(i)∥22

2σ2
SP

)
, (20)

where σSP is the scale. We then train our network to output these simulated place cell activities
based on velocity inputs (∆sSP (t)) from the simulated trajectories. To estimate the actual position in
the environment from the network’s outputs, we average the centers associated with the top k most
active place cells. Our implementation is consistent with prior work (Banino et al., 2018; Sorscher
et al., 2019) and all task hyperparameters are listed in Suppl. Table A.1.

Head Direction Estimation. The network’s goal in this task is to estimate an animal’s bearing
sHD(t) in space based on angular velocity cues ∆sHD(t), where s(t) is a 1-dimensional circular
variable with domain [−π, π). As in the previous task, we first generate random head rotation
trajectories. The initial bearing is sampled from a uniform distribution U(−π, π), and random turns
are sampled from a normal distribution N (0, 11.52)—this is consistent with the trajectories used in
the previous task, but we do not simulate any spatial information. We then simulate the activities of
nHD head direction cells whose preferred angles θi (where i = 1, . . . , nHD) are uniformly spaced
between −π and π, using an implementation similar to the RatInABox package (George et al., 2024).
The activity of the ith cell for a bearing s is given by the following von Mises tuning curve:

f
(i)
HD(s) =

exp
(
σ−2
HD cos

(
s− θ(i)

))
2πI0

(
σ−2
HD

) , (21)

where σHD is the spread parameter for the von Mises distribution. With these simulated trajectories,
we train the network to estimate the simulated head direction cell activities using angular velocity as
input. We estimate the actual bearing from the network’s outputs by taking the circular mean of the
top k most active cells’ preferred angles. Hyperparameters for this task are listed in Suppl. Table A.2.

Continuous-time RNNs. For our numerical experiments, we use noisy “vanilla” continuous-time
RNNs with linear readouts (further details provided in Suppl. Section A.3). The network’s activity
is transformed by a linear mapping to predicted place cell or head direction cell activities. During
the quiescent phase, we simulated network activity in the absence of stimuli, and doubled the noise
variance, as prescribed by our mathematical analysis (Section 2.4).

4 NUMERICAL RESULTS

Spatial Position Estimation. We used several different measures to compare the distributions of
neural activity in our trained networks during the spatial position estimation task in order to validate
our mathematical analysis. First, we found that the explained variance curves as a function of ordered
principal components (PCs) for both the active and quiescent phases were highly overlapping and
indicated that the activity manifold in both phases was low-dimensional (Fig. 1c). It is also clear
that decoded output activity during the quiescent phase is smooth, and tiles output space similarly to
trajectories sampled during the waking phase (Fig. 1d-e). This trend was recapitulated by quiescent
neural activity projected onto the first two PCs calculated during the active phase (Fig. 1f-g). To
quantify in more detail the similarity in the distributions of activity during the active and quiescent

6



Published as a conference paper at ICLR 2024

c d f

av
g.

 v
ar

ia
nc

e

noisy
unbiased

noiseless
unbiased

noisy
biased

noiseless
biased

0.00

0.01

0.02

1 0 1
x

1

0

1

y

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20
density

a b e quiescent

ac
tiv

e

2.5 5.0 7.5 10.0
KL divergence

U U B B R

U

U

B

B

1 0 1

1

0

1

y

x
1 0 1

x

1

0

1

y

start end

x

y

1 0 1

1

0

1

Figure 2: Biased behavioral sampling and distribution comparisons for spatial position estima-
tion. a-b) Decoded positions for networks trained under biased behavioral trajectories for the active
(a) and quiescent (b) phases. c-d) KDE plots for 200 decoded active (c) and quiescent (d) output
trajectories. e) KL divergence (nats) between KDE estimates for active and quiescent phases. U =
unbiased uniform networks, B = biased networks, U = the true uniform distribution, R = random
networks, and the σ superscript denotes noisy networks. Values are averaged over five networks. f)
Box and whisker plots of the total variance (variance summed over output dimensions) of quiescent
trajectories, averaged over 500 trajectories. Each plot (e-f) is for five trained networks.

phases, we computed two-dimensional kernel density estimates (KDEs) on the output trajectories
(Fig. 1h-i) and on neural activity projected onto the first two active phase PCs (Fig. 1j-k). As our
analysis predicts, we indeed found that the distribution of activity was similar across active and
quiescent phases, though notably in the quiescent phase output trajectories and neural activities do
not tile space as uniformly as was observed during the active phase.

Our theory additionally predicts that if the distribution of network states during the active phase is
biased in some way during training, the distribution during the quiescent phase should also be biased
accordingly. To test this, we modified the behavioral policy of our agent during training, introducing
a drift term that caused it to occupy a ring of spatial locations in the center of the field rather than
uniformly tiling space (Fig. 2a). We found again a close correspondence between active and quiescent
decoded output trajectories (Fig. 2b), which was also reflected in the KDEs (Fig. 2c-d). These results
hold whether or not we increase the variance of noise during quiescence (Suppl. Fig. C.1). We further
found that these results hold for continuous-time gated recurrent units (GRUs) (Jordan et al., 2021)
(Suppl. Section A.3 and Suppl. Fig. C.2), showing that these reactivation phenomena are not unique
to a particular network architecture or activation function. In practice, GRUs were more sensitive to
increases in quiescent noise, and other architectures would require more hyperparameter tuning.

To compare activity distributions more quantitatively, we estimated the KL divergence of the distribu-
tion of active phase output positions to the distribution of quiescent phase decoded output positions
using Monte Carlo approximation (Fig. 2e). We compared outputs from both biased and unbiased
distributions, and as baselines, we compared to a true uniform distribution, as well as decoded output
trajectories generated by random networks. By our metric, we found that unbiased quiescent outputs
were almost as close to unbiased active outputs as a true uniform distribution. Similarly, biased quies-
cent outputs closely resembled biased active outputs, while biased-to-unbiased, biased-to-random,
and unbiased-to-random comparisons all diverged. These results verify that during quiescence, our
trained networks do indeed approximately sample from the waking trajectory distribution.
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Figure 3: Reactivation in a head direction estimation task. a-b) Distribution of decoded head
direction bearing angles during the active (a) and quiescent (b) phases. c-d) Neural network activity
projected onto the first two active phase PCs for active (c) and quiescent (d) phase trajectories. Color
bars indicate the decoded output head direction.

We decided to further test the necessity of training and generating quiescent network activity in the
presence of noise. By the same KL divergence metric, we found that even trajectories generated
by networks that were not trained in the presence of noise, and also were not driven by noise in the
quiescent phase, still generated quiescent activity distributions that corresponded well to the active
phase distributions. This is likely due to the fact that even networks trained in the absence of noise
still learned attractive task manifolds that reflected the agent’s trajectory sampling statistics. However,
we found that networks without noise in the quiescent state exhibited less variable trajectories, as
measured by their steady-state total variance (Fig. 2f). This demonstrates that individual quiescent
noiseless trajectories explored a smaller portion of the task manifold than did noisy trajectories
(see Suppl. Fig. C.3a-d for a comparison of example noisy and noiseless quiescent trajectories).
This failure of exploration could not be resolved by adding additional noise to networks during the
quiescent phase: we found that without training in the presence of noise, quiescent phase activity
with an equivalent noise level generated erratic, non-smooth decoded output trajectories (Suppl. Fig.
C.3e-f), with much higher average distance between consecutive points in a trajectory than quiescent
trajectories associated with noisy training (Suppl. Fig. C.4a-b). Thus, noisy training stabilizes noisy
quiescent activity, which in turn explores more of the task manifold than noiseless quiescent activity.

Head Direction Estimation. To demonstrate the generality of our results across tasks, we also
examined the reactivation phenomenon in the context of head direction estimation. Here, as in the
previous task, we found that the distribution of decoded head direction bearings closely corresponded
across the active and quiescent phases (Fig. 3a-b). Furthermore, we found that the distributions of
neural trajectories, projected onto the first two active phase PCs, closely corresponded across both
phases (Fig. 3c-d), showing apparent sampling along a ring attractor manifold. To explore whether
reactivation dynamics also recapitulate the moment-to-moment transition structure of waking activity,
we biased motion in the head direction system to be counter-clockwise (Suppl. Fig. C.5). We found
that quiescent trajectories partially recapitulated the transition structure of active phase trajectories,
and maintained their bearing for longer periods, resembling real neural activity more closely. The
biased velocities were reflected during quiescence, but less clearly than during waking. However,
reversals in the trajectories still occurred. These results demonstrate that the type of “diffusive”
rehearsal dynamics explored by our theory are still able to produce the temporally correlated,
sequential reactivation dynamics observed in the head direction system (Peyrache et al., 2015).

5 DISCUSSION

In this study, we have provided mathematical conditions under which reactivation is expected to
emerge in task-optimized recurrent neural circuits. Our results come with several key conditions and
caveats. Our conditions are as follows: first, the network must implement a noisy, continuous-time
dynamical system; second, the network must be solving a state variable estimation task near-optimally,
by integrating exclusively change-based inputs (ds(t)dt ) to reconstruct some function of the state
variables (f

(
s(t)

)
) (for a full list of assumptions see Suppl. Section B). Under these conditions, we

demonstrated that a greedily optimal solution to the task involves a combination of integrating the
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state variables and denoising. In absence of inputs (quiescent phase), we assumed that the system
would receive no stimuli (ds(t)dt = 0) so that the system is dominated by its denoising dynamics, and
that noise variance would increase slightly (by a factor of 2). Under these conditions, we showed
that the steady-state probability distribution of network states during quiescence (p̃(r)) should be
equivalent to the distribution of network states during active task performance (p(r)). Thus, these
conditions constitute criteria for a form of reactivation to emerge in trained neural systems. Note that
though we empirically observe reactivation that mimics the moment-to-moment transition structure
of waking networks (Suppl. Fig. C.5), our theory does not yet explain how this phenomenon emerges.

We have validated our mathematical results empirically in two tasks with neuroscientific relevance.
The first, a path integration task, required the network to identify its location in space based on
motion cues. This form of path integration has been used to model the entorhinal cortex (Sorscher
et al., 2019), a key brain area in which reactivation dynamics have been observed (Gardner et al.,
2019; 2022). The second task required the network to estimate a head direction orientation based on
angular velocity cues. This function in the mammalian brain has been attributed to the anterodorsal
thalamic nucleus (ADn) and post-subiculum (PoS) (Taube et al., 1990; Taube, 1995; 2007), another
critical locus for reactivation dynamics (Peyrache et al., 2015). Previous models have been able to
reproduce these reactivation dynamics, by embedding a smooth attractor in the network’s recurrent
connectivity along which activity may diffuse during quiescence (Burak & Fiete, 2009; Khona &
Fiete, 2022). Similarly, we identified attractors in our trained networks’ latent activation space—we
found a smooth map of space in the spatial navigation task (Fig. 1f-g) and a ring attractor in the head
direction task (Fig. 3c-d). In our case, these attractors emerged from task training, and consequently
did not require hand crafting—similar to previous work positing that predictive learning could give
rise to hippocampal representations (Recanatesi et al., 2021). Furthermore, beyond previous studies,
we were able to show that the statistics of reactivation in our trained networks mimicked the statistics
of activity during waking behavior, and that manipulation of waking behavioral statistics was directly
reflected in offline reactivation dynamics (Fig. 2). Thus, our work complements these previous
studies by providing a mathematical justification for the emergence of reactivation dynamics in terms
of optimal task performance.

Our results suggest that reactivation in the brain could be a natural consequence of learning in the
presence of noise, rather than the product of an explicit generative demand (Hinton et al., 1995;
Deperrois et al., 2022). Thus, quiescent reactivation in a brain area should not be taken as evidence
for only generative modeling: the alternative, as identified by our work, is that reactivation could be
an emergent consequence of task optimization (though it could be used for other computations). Our
hypothesis and generative modeling hypotheses may be experimentally dissociable: while generative
models necessarily recapitulate the moment-to-moment transition statistics of sensory data, our
approach only predicts that the stationary distribution will be identical (Section 2.4). This, for
instance, opens the possibility for changes in the timescale of reactivation (Nádasdy et al., 1999).

While the experiments explored in this study focus on self-localization and head direction estimation,
there are many more systems in which our results may be applicable. In particular, while the early
visual system does not require sensory estimation from exclusively change-based information, denois-
ing is a critical aspect of visual computation, having been used for deblurring, occlusion inpainting,
and diffusion-based image generation (Kadkhodaie & Simoncelli, 2021)—the mathematical princi-
ples used for these applications are deeply related to those used to derive our denoising dynamics.
As a consequence, it is possible that with further development our results could also be used to
explain similar reactivation dynamics observed in the visual cortex (Kenet et al., 2003; Xu et al.,
2012). Furthermore, the task computations involved in head direction estimation are nearly identical
to those used in canonical visual working memory tasks in neuroscience (both develop ring attractor
structures) (Renart et al., 2003). In addition, evidence integration in decision making involves similar
state-variable integration dynamics as used in spatial navigation, where under many conditions
the evidence in favor of two opposing decisions is integrated along a line attractor rather than a
two-dimensional spatial map (Cain et al., 2013; Mante et al., 2013). Thus our results could potentially
be used to model reactivation dynamics observed in areas of the brain dedicated to higher-order
cognition and decision making, such as the prefrontal cortex (Peyrache et al., 2009).

In conclusion, our work could function as a justification for a variety of reactivation phenomena
observed in the brain. It may further provide a mechanism for inducing reactivation in neural circuits
in order to support critical maintenance functions, such as memory consolidation or learning.
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SUPPLEMENTARY MATERIAL

A NUMERICAL SIMULATION DETAILS

A.1 TASK HYPERPARAMETERS

Table A.1: Hyperparameters for the spatial position estimation task.

Hyperparameter Value
TASK

Environment size 2.2m × 2.2m
Border region 0.03m
Border slowdown factor 0.25
Position initialization U(−2.2, 2.2)
Rotation velocity bias 0 rad/s
Rotation velocity std. dev. 11.52 rad/s
Rayleigh forward velocity 0.2m/s
Biasing anchor point (0, 0)
Biasing drift constant 0.05
# place cells 512
σSP 0.2
Sequence length active = 100, quiescent = 200
σ 0.01√

0.02
≈ 0.0707

NETWORK

# recurrent units 512
τ 0.1

TRAINING

Batch size 200
# batches 2500
Optimizer Adam
Learning rate 0.001

Table A.2: Hyperparameters for the head direction estimation task.

Hyperparameter Value
TASK

Bearing initialization U(−π, π)
Rotation velocity bias 0 rad/s
Rotation velocity std. dev. 11.52 rad/s
# head direction cells 512
σHD

π
6

Sequence length active = 100, quiescent = 200
σ 0.1√

0.02
≈ 0.7071

NETWORK

# recurrent units 128
τ 0.04

TRAINING

Batch size 200
# batches 20000
Optimizer Adam
Learning rate 0.001
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A.2 ADDITIONAL DETAILS

Kernel Density Estimation (KDE). To compute KDEs, we used the stats.gaussian_kde()
method from scipy (Virtanen et al., 2020), with all hyperparameters set to their default values. For
all KDE plots, we computed the density estimates using 200 trajectories of 100 timesteps each for
the active phase and 200 timesteps each for the quiescent phase. For Fig. 2e, we estimated densities
using 200 trajectories of 100 timesteps each for the active phase and 1000 timesteps each for the
quiescent phase (to get a better estimate of the steady-state distribution). We used 2500 samples from
each distribution to compute the KL divergence by Monte Carlo approximation.

Quantifying exploration during quiescence. To analyze the importance of noise for exploration
during quiescence, we computed the steady-state total variance (variance summed over output
dimensions) for 200 quiescent trajectories from each trained network. For Fig. 2f, we generated
trajectories of 2000 timesteps each and truncated the first 1000 timesteps before computing the
variance, to demonstrate that noise facilitates greater and continued exploration over long timescales.

A.3 NOISY CONTINUOUS-TIME RNNS

“Vanilla” RNNs. For most of our numerical experiments, we use noisy “vanilla” continuous-time
RNNs with linear readouts. The equations for network updates and output estimates are as follows:

∆r(t) =
1

τ

[
−r(t) + ReLU

(
Wrecr(t) +Win∆s(t)

)]
∆t+ ση(t) (A.1)

o = Dr(t), (A.2)

where r(t) represents the network activity at time t, ∆s(t) is a change-based input to the network,
Wrec and Win are the recurrent and input weight matrices respectively, τ is the RNN time constant,
and η(t) ∼ N (0,∆t) is Brownian noise. The continuous-time dynamics are approximated using
the Euler-Maruyama method with integration timestep ∆t = 0.02 s. The network’s activity is
transformed by a linear mapping D to predicted place cell or head direction cell activities o. During
the quiescent phase, we simulated network activity in the absence of stimuli (∆s(t) = 0), and doubled
the noise variance, as prescribed by our mathematical analysis (Section 2.4).

We set the value of τ for each task to ensure that the RNN is able to respond quick enough to inputs
and ensure optimal performance. Further, for each task we choose different training values for σ
to scale the Brownian noise to establish an effective signal-to-noise ratio that is high enough to
accurately solve the task. From this baseline noise level, quiescent trajectories were calculated with
doubled variance.

Gated recurrent units (GRUs). We also used a continuous-time GRU formulation similar to the
one described by Jordan et al. (2021). The equations for network updates and output estimates are:

z(t) = sigmoid
(
Wrec

z r(t) +Win
z ∆s(t)

)
(A.3)

g(t) = sigmoid
(
Wrec

g r(t) +Win
g ∆s(t)

)
(A.4)

∆r(t) =
1

τ

[(
1− z(t)

)
⊙
(
tanh

(
Wrec

r

(
g(t)⊙ r(t)

)
+Win

r ∆s(t)
)
− r(t)

)]
∆t+ ση(t) (A.5)

o = Dr(t), (A.6)

where r(t) represents the network activity at time t, z(t) and g(t) are gates, ∆s(t) is a change-based
input to the network, Wrec

z , Win
z , Wrec

g , Win
g , Wrec

r and Win
r are weight matrices, τ is the time

constant, and η(t) ∼ N (0,∆t) is Brownian noise. The continuous-time dynamics are approximated
using the Euler-Maruyama method with integration timestep ∆t = 0.02 s. Just as with the vanilla
RNN, the network’s activity is transformed by a linear mapping D to predicted place cell or head
direction cell activities o. During the quiescent phase, we simulated network activity in the absence
of stimuli (∆s(t) = 0), but we do not double the noise variance due to noise-sensitivity. We set
appropriate values for τ and σ, just as with the vanilla RNNs.
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B KEY ASSUMPTIONS FOR MATHEMATICAL RESULTS

1. We consider discrete-time approximations of noisy continuous-time RNNs. Using
continuous-time RNNs is a common practice in the literature, and we use their discrete-time
approximations to be in line with our numerical simulations.

2. The network must be performing some variant of path integration, by integrating change-
based information about environmental state variables to some function of these variables.
This condition is often met in natural settings, such as spatial navigation.

3. We assume that the inputs to the network are drawn from a stationary distribution, which
amounts to ignoring the effects of initial conditions on state occupancy statistics, and also
assuming that the behavioral policy remains constant throughout time.

4. We consider greedy optimization of the loss at every timestep. Greedy optimization is a
sensible way of partitioning effort across time in this task: the network does the best that it
can at each timestep, assuming that at each previous timestep the best possible job has been
done. In the absence of noise, the greedily optimal solution is equivalent to path integration,
which is also a globally optimal solution.

5. We assume that the network is performing optimally in the presence of noise. In practice,
we train our networks until their loss reaches very low, near-zero values.

6. We assume that our network dynamics can be decomposed into two terms with different
functional dependencies. The first term depends only on the activity, while the second term
depends on all original dependencies—the activity, the state, and the change-based inputs.

7. For the quiescent phase, we assume that the change-based sensory inputs are zero. This
is reasonable because for tasks like those we have considered, which involve integrating
self-motion cues, ds(t)

dt must be zero during periods of quiescence like sleep, where the
animal is not moving and hence does not receive sensory inputs associated with self-motion.

8. While we assume that the noise variance is doubled during quiescence to show exact
equivalence with Langevin sampling, this is by no means necessary to witness reactivation
(Suppl. Fig. C.2). This noise variance is equivalent to a temperature parameter for the
sampling.
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C ADDITIONAL NUMERICAL SIMULATIONS
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Figure C.1: Spatial position estimation results without increased noise variance during quies-
cence. a-b) Decoded output trajectories during active (a) and quiescent (b) phases for a network
trained on the unbiased task. c-d) Same as (a-b) but for a network trained on the biased task. e-f)
KDE plots for 200 decoded active (e) and quiescent (f) output trajectories for the unbiased task. g-h)
Same as (e-f) but for the biased task.
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Figure C.2: Spatial position estimation results for GRU networks. a-b) Decoded output trajectories
during active (a) and quiescent (b) phases for a network trained on the unbiased task. c-d) Same as
(a-b) but for a network trained on the biased task. e-f) KDE plots for 200 decoded active (e) and
quiescent (f) output trajectories for the unbiased task. g-h) Same as (e-f) but for the biased task.
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Figure C.3: Example decoded quiescent trajectories under different noise conditions for spatial
position estimation. a-b) Example noisy quiescent trajectories for a network trained in the presence
of noise, for the unbiased (a) and biased (b) tasks. c-d) Same as (a-b), but for noiseless quiescent
trajectories for a network trained without noise. e-f) Same as (a-b), but for noisy quiescent trajectories
for a network trained without noise.
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Figure C.4: Distributions of average distances between consecutive points in output trajectories
for unbiased and biased spatial position estimation. a) Distributions for the unbiased task. NT
denotes noisy training while DT denotes deterministic (noiseless) training. b) Same as (a) but for
the biased task. In each case, the box and whisker plots show the distribution of within-trajectory
average point-to-point distances, computed for 200 output trajectories and 5 random seeds.
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Figure C.5: Biased moment-to-moment transition structure for the head direction estimation
task. a-b) Decoded trajectories from the active (a) and quiescent (b) phases, for a biased network
trained on counter-clockwise trajectories. c) Decoded trajectory from the quiescent phase for an
unbiased network. Sequence length is 50 timesteps for active phase trajectories (a) and 500 timesteps
for quiescent trajectories (b-c). d-f) Distributions of angular velocities during the active (d) and
quiescent (e) phases for a biased network, and the quiescent phase for an unbiased network (f).
Dashed line denotes the mean.
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