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Abstract—The rapid advancement of robotics and deep
learning has accelerated the use of Embodied AI, where
robots autonomously explore and reason in complex real-
world environments. With growing demand for domestic service
robots, efficient navigation in unfamiliar settings is crucial.
Object Goal Navigation (ObjectNav) is a fundamental task
for this capability, requiring a robot to find and reach a
user-specified object in an unknown environment. Solving
ObjectNav demands advanced perception, contextual reasoning,
and effective exploration strategies. Recent Vision-Language
Models (VLMs) and Large Language Models (LLMs) provide
agents with external common knowledge and reasoning capa-
bilities. This paper poses the critical question: ‘“Where should
VLM/LLM knowledge be fused into Object Goal Navigation?”
Adapted from the Perception-Prediction-Planning paradigm in
autonomous driving, we categorize knowledge integration into
these three stages, offering a structured survey of object-goal
navigation approaches shaped by the VLM era. We conclude
by discussing current dataset limitations and future directions,
such as socially interactive navigation.

[. INTRODUCTION

Object Goal Navigation (ObjectNav) tasks require an
agent to reach a user-specified object in an unseen envi-
ronment. The agent must integrate visual perception, spatial
reasoning, contextual understanding, and exploration strate-
gies to succeed. End-to-end methods [1, 2, 3, 4] rely on
visual features and reinforcement learning, whereas recent
approaches leverage Vision-Language Models (VLMs) and
Large Language Models (LLMs) to exploit external knowl-
edge and reasoning ability.

In this paper, we categorize VLM/LLM knowledge in-
tegration into three levels: III-A) Perception, I1I-B) Pre-
diction, and III-C) Planning, analyzing representative
studies and their contributions inspired by the percep-
tion—prediction—planning paradigm[5, 6, 7, 8] in autonomous
driving. Finally, we discuss the limitations of current datasets
and introduce future directions, including socially interactive
and multi-floor navigation.

II. RELATED WORKS
A. Survey of Surveys

Recent advances in VLMs and LLMs has shifted Ob-
jectNav from supervised methods to commonsense-guided
exploration. Ieong et al. [9] review goal-driven naviga-
tion tasks (e.g., PointNav, ImageNav, ObjectNav, Audio-
GoalNav) and categorize ObjectNav methods by inference
domain such as latent maps, graphs, implicit representation,
language, etc. Sun et al. [10] focus on ObjectNav, dividing
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methods into end-to-end, modular, and zero-shot. Unlike
these works, this paper examines where to fuse LLM/VLM
knowledge by framing ObjectNav methods within the Per-
ception—Prediction—Planning framework (Fig. 1).

B. The Common Core of Diverse Embodied Al Tasks

Although ObjectNav and other vision-language embodied
Al tasks differ in input modalities and goal specifications,
they share a common structure: given a goal instruction,
the agent must leverage visual observations to reach a
meaningful location.

GOAT [11] unifies ObjectNav, ImageNav, and TextNav
within a single benchmark, extending goal representa-
tions from class labels to image and natural language.
REVERIE [12] requires following natural language instruc-
tions to navigate and ground implicit object references, em-
phasizing fine-grained language—vision grounding. VQA [13]
and EQA [14] shift the output to question answering, but like
ObjectNav, EQA requires exploration-driven visual reason-
ing within embodied environments. These tasks share three
key elements:

1) Explicit, exemplar, or descriptive goal instructions
2) Active exploration for visual reasoning
3) Integration of multimodal inputs

Taken together, these elements reveal a shared problem
structure: combining linguistic, visual, and spatial informa-
tion to support goal-directed decision-making. Within this
scope, ObjectNav places particular emphasis on exploration
through such integration.

III. WHERE To FUSE?

Recent studies have integrated LLMs and VLMs into Ob-
jectNav, where robots locate user-specified object in unseen
environments. This paper examines where such knowledge
can be injected by organizing prior approaches into the
Perception, Prediction, and Planning stages.

A. Perception Level Fusion

With the multimodal capabilities of VLMs, an agent can
accurately recognize the visual and spatial information of
the current scene. This section discusses Scene Object Un-
derstanding, which focuses on identifying individual objects,
and Scene Spatial Relation Understanding, which focuses on
the structural arrangement of these objects.



“In my current view, [chair, table, oven] is visible.
With my common sense this place seems to be a [kitchen].

[Kitchen] is usually near [living room]

My target object is [sofa]. [sofa] has high relation of being in the [living room] and near [chair, tv].
Due to this, I should choose this frontier.”
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Fig. 1. The agent leverages VLM/LLM to understand the scene (Perception), predict the target object location based on context (Prediction)

and selects the most promising frontier to explore (Planning).

1) Scene Object Understanding: By leveraging VLMs, an
agent can address the question, “What objects are visible
now?” Unlike conventional ObjectNav methods limited to
a closed set of predefined objects, VLMs enable open-set
detection and allow the system to recognize novel objects.
Existing approaches can be categorized as following:

1) VLMs for Information Encoding
2) VLMs for Textual Description

Information Encoding leverages the image—text align-
ment capability of VLMs to capture relationships between
visual inputs and textual queries. CoW [15] combines
CLIP [16] similarity scores with Grad-CAM to estimate
target locations. ZSON [17] applies CLIP embeddings for
policy learning, where goals are encoded as image embed-
dings during training and replaced with textual embeddings
at inference. ESC [18] integrates GLIP [19] for object
detection. GAMap [20] queries GPT-4 for both affordance
and geometric attributes of the goal, encodes them as text
embeddings, and adds them into CLIP similarity maps.

Cosine similarity between images and target object labels
is another common strategy. BLIP-2 [21] is widely adopted.
VLFM [22] projects similarity scores onto 2D maps. Apex-
Nav [23] extends this approach by using an LLM to propose
visually similar objects, thereby reducing false detections.
SemNav [24] replaces BLIP-2 with GPT-4, while Bajpai et
al.[25] introduce uncertainty by generating multiple prompts
with LLMs, computing BLIP-2 similarities, and measuring
variance as an uncertainty signal. Shi et al.[26] describe
image sequences with LLaVA [27] and compute similarity
to the goal. WMNav [28] evaluates panoramic views, with
Gemini estimating information gain at different angles.

Textual Description directly generates natural-language
captions of observed images. PixNav [29] employs LLaMA-
Adapter [30] for object recognition. OpenFMNav [31] uses
GPT-4 to describe scene objects and forwards them to
detectors. CL-CoTNav [32] leverages Qwen [33] to identify
subgoal objects related to the target. VoroNav [34] builds

Voronoi-based maps, updating each node with 360° obser-
vations described by BLIP [35].

2) Scene Spatial Relations Understanding: This stage
captures the spatial arrangement and relations of objects, ad-
dressing the question “What is placed where, and how?” Pix-
Nav [29] and CL-CoTNav [32] adopt a question—answering
(QA) paradigm to infer object layouts. SG-Nav [36] rep-
resents relations in a graph, where commonsense co-
occurrences are first proposed by an LLM and then verified
with a VLM to build a scene graph.

Spatial relation understanding extends beyond static ob-
jects to assessing environment traversability. Unlike prior
methods that rely on detailed 2D maps, DyNaVLM [37]
adopts a vision-driven approach. As shown in Fig. 4a,
candidate waypoints are projected onto the RGB image, and
the VLM is queried: “If the agent follows this path, is a
collision likely?” Using visual reasoning, the VLM filters
unsafe candidates and excludes them from the plan.

Moreover, the concept can be extended from static objects
to dynamic agents, enabling social navigation. For instance,
Social-LLaVA [38] uses VLMs to extract social cues such as
human positions, postures, and gaze directions. This allows
the agent to avoid collisions and respect personal spaces,
resulting in socially acceptable paths.

In conclusion, Scene Spatial Relation Understanding in-
cludes object arrangements, traversability, and interactions
with dynamic agents. It enables efficient path planning and
allows socially aware, safe navigation in complex environ-
ments.

B. Prediction-Level Fusion

This stage infers unseen semantic information from partial
observations, addressing questions such as “What relations
exist among the observed objects?” and “What type of room
is this?” At this point, the commonsense knowledge and
reasoning capabilities of LLMs are fully exploited. This
stage is commonly approached from two directions: Object
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Fig. 2. Based on the objects like ‘toilet’ and ‘shower’. LLM infers
the room type as ‘Bathroom’ and predicts the layout of unobserved
areas by reasoning about common room layout adjacencies.

Relation Construction, which predicts the location of unseen
targets based on co-occurrence with observed objects, and
Semantic Layout Construction, which infers room categories
and spatial adjacencies from partial observations.

1) Object Relation Construction: Knowledge of typical
object co-occurrences supports efficient exploration. For ex-
ample, if the goal is a sofa, the robot should prioritize
areas with a detected TV over those with a bed or toilet.
LLM commonsense plays a central role in evaluating object
relations and reducing unnecessary exploration.

The most direct approach is to query an LLM about the
relationship between observed and goal objects. ESC [18]
presents observed and goal objects to the LLM and asks
whether their co-existence is plausible. LAMVN [39] extends
this idea by evaluating the likelihood of sentence completions
such as “If objects A, B, and C are observed at this frontier,
then the goal object is also present.”

Another strategy is to have the LLM generate lists of
objects commonly associated with the target and use them as
exploration cues. BeliefMapNav [40] and CL-CoTNav [32]
follow this approach, directing the agent to regions where
related objects are detected. Similarly, CogNav [41] exploits
these associations as directional signals, biasing exploration
toward promising areas.

Beyond direct associations, SGM [42] predicts unobserved
regions. It applies general knowledge of object relations
to outpaint unseen areas of a 2D map using MAE [43],
enabling proactive exploration. Incorporating such relational
knowledge reduces redundant search and improves naviga-
tion efficiency.

2) Semantic Layout Construction: Beyond object rela-
tions, LLMs can infer room types and structural context
from partial observations. For instance, if a sink and a
toilet are observed (Fig. 2), the agent may infer it is in a
bathroom. Reasoning such as “Bathrooms are often adjacent
to bedrooms or hallways, but not kitchens” further guides
exploration by suggesting likely spatial adjacencies.

ESC [18] and PixNav [29] directly prompt LLMs to infer
the current room type from observed objects. E2BA [44]
extends this by reasoning at the frontier level, combining
room classification with goal relevance. CL-CoTNav [32]
predicts likely goal-containing rooms and verifies them
against actual observations during exploration. CogNav [41]
further decomposes exploration into five stages, prioritizing
spaces with strong goal associations.

Frontier 4 contains [chair, table, sink, refrigerator]|

Scoring Selection

Direct Selection

Frontier 4 : 0.3

Fig. 3. Two distinct strategies for Frontier Selection. Scoring
Selection LLM assigns a quantitative score to each frontier based on
the semantic relevance of the objects it contains. Direct Selection
LLM acts as a high-level decision-maker, directly choosing the next
best frontier based on all available context.

Other works address broader structural understanding.
TopV-Nav [45] interprets 2D maps from a top-view perspec-
tive, while BeliefMapNav [40] infers both the current room
and its adjacent spaces. DAR [46] generates unobserved
layouts similar to SGM [42], but differs by prompting
an LLM to classify frontiers by room type and expected
objects, guiding the diffusion model to populate maps with
semantically plausible content.

C. Planning-level Fusion

This stage integrates prior information to decide “What
should the agent do next?” Frontier Selection, which chooses
among unexplored frontiers, and Re-validation, which re-
assesses decisions for robustness.

1) Frontier Selection: During exploration, the agent faces
multiple frontiers, i.e., boundaries between explored and un-
explored regions. VLMs and LLMs act as decision-makers,
selecting the frontier most likely to contain the target. They
can be grouped into Linguistic and Visual methods, based
on whether information is textual or visual.

Linguistic Methods (Fig. 3) convert accumulated ex-
ploration data into prompts for VLMs/LLMs. In Scoring
Selection, the LLM assigns quantitative values to each
frontier, and the agent selects the one with the highest
score. OpenFMNav [31], LAMVN [39], and TriHelper [47]
score frontiers by passing observed object lists to the LLM.
VoroNav [34] incorporates room type and spatial relations,
while SG-Nav [36] combines semantic relevance with dis-
tance to prioritize both meaningful and reachable frontiers.
TopV-Nav [45] encodes surrounding object information into
a text-based 2D map, from which the VLM estimates goal
likelihoods and integrates them via Gaussian-based scoring.

In Direct Selection, no explicit scoring is performed, but
the LLM directly selects the next frontier using accumulated
context. E2BA [44] and PixNav [29] adopt this approach,
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Fig. 4. Visual method for Frontier Selection
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(b) The agent continuously re-assesses its chosen path against other
options, allowing for dynamic backtracking or changes in strategy.

Fig. 5. Re-validation strategies at the Planning-Level for robust
navigation

while LLM-ZSON [26] integrates semantic value maps and
structural maps into the VLM for frontier selection.

Visual Methods leverage the visual reasoning ability
of VLMs. As shown in Fig. 4, candidate waypoints are
projected onto the agent’s current observation and selected
directly by the VLM. VLMNav[48], DyNaVLM [37], and
WDMNav [28] adopt this paradigm, enabling the VLM to act
as a high-level decision-maker that selects the most plausible
waypoint.

2) Re-validation: The agent should not rely blindly on
VLM/LLM outputs but instead re-examine results and adapt
its strategy dynamically for efficient navigation.

Some methods focus on detection re-verification to re-
duce false positives. CogNav [41] structures exploration
into five stages, re-confirming goal objects at each step.
TriHelper [47] applies binary classification to verify target
presence in the current view, while SG-Nav [36] aggregates
confidence across multiple viewpoints before committing.

Other methods emphasize strategy adjustment. CL-
CoTNav [32] introduces self-verification, allowing the LLM
to assess the reliability of its plan prior to execution.
E2BA [44] evaluates whether backtracking to previously
visited regions may be more efficient, guided by recorded
trajectories and observed objects.

Fig. 6. An example of reconstruction artifacts (or defects) found in
real-world scan datasets. The depth image (right) shows significant
data loss so called ‘holes’” or ‘black cracks’.

IV. OPEN CHALLENGES AND RESEARCH OPPORTUNITIES
A. Issues in Existing Datasets

Although HM3D and MP3D offer realistic indoor envi-
ronments, both have structural limitations: episode datasets
allow only one correct object instance per class, yielding
failures and misleading signals, while scene datasets contain
missing 3D scanning regions that produce “black cracks”
(Fig. 6), leading to inaccurate maps. HSSD[49] addresses
these issues with a synthetic alternative featuring high visual
fidelity, structural complexity, and scalable data generation.

B. Expanding ObjectNav Task

1) Beyond Single-Floor: Some episodes place the robot’s
start and goal objects on different floors. Most studies,
however, project environments onto 2D grid maps, which
effectively restricts agents from using stairs to change floors.
Recent works [50, 51] address this limitation by actively
incorporating stair traversal for multi-floor navigation.

2) Toward Socially Interactive Navigation: Conventional
ObjectNav research has focused on efficient goal-reaching
in human-free environments. Recent datasets such as Habi-
crowd [52], Social-MP3D [53], and Social-HM3D [53] intro-
duced humanoid avatars to simulate human-inhabited spaces,
but these works remain confined to simulators and overlook
real-world human expressiveness and interaction.

In contrast, real-world studies emphasize social compli-
ant navigation [54, 55, 38], where robots yield and avoid
collisions based on basic norms. Yet, both ObjectNav and
social compliant navigation often reduce humans to moving
obstacles. To succeed in everyday environments, robots must
progress toward Socially Interactable Navigation, where they
actively interpret situations and provide assistance, enabling
natural coexistence and collaborative task execution.

V. CONCLUSION

This paper examined how VLM and LLM knowledge can
be integrated into ObjectNav through perception, prediction,
and planning. VLMs enable open-set recognition and spatial
understanding, while LLMs provide commonsense reasoning
for scene inference and decision-making. These strategies
enhance zero-shot navigation and generalization beyond end-
to-end learning. We also identified key challenges—dataset
limitations, multi-floor exploration, and socially interactable
navigation—that should be explored to move ObjectNav
from simplified tasks toward practical service robots in real-
world environments.
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