GRIT: Teaching MLLMs to Think with Images
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Input image

How many eggs are in the nest?

Input query

Thinking...
The image shows a nest made of twigs containing nine eggs. The eggs are arranged in two
groups: seven in the nest and two outside. Therefore, the total number of eggs is nine.

Answer: There are nine eggs in the nest.

Pure natural language reasoning from existing visual reasoning models

Thinking...
To determine the number of eggs in the nest, we need to count visible eggs in the nest:

[150, 160, 250, 270], [280, 160, 380, 270], [390, 160, 490, 270], [500, 160, 600, 270],
[610, 160, 710, 270], [720, 160, 820, 270]
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After examination, the eggs are in various colors: blue, green, yellow, pink, and red. There
are six eggs in the nest.

6.

Grounded reasoning achieved with 20 training data samples (ours)

Figure 1: Comparison of reasoning with pure natural language and our grounded reasoning that mixes
explicit bounding boxes for image regions with a chain of natural language thoughts. Our GRIT
method enables MLLMs to perform grounded reasoning with only 20 training samples, realizing a
clear and reliable process of thinking with images.

Abstract

Recent studies have demonstrated the efficacy of using Reinforcement Learning
(RL) in building reasoning models that articulate chains of thoughts prior to pro-
ducing final answers. However, despite ongoing advances that aim at enabling
reasoning for vision-language tasks, existing open-source visual reasoning models
typically generate reasoning content with pure natural language, lacking explicit
integration of visual information. This limits their ability to produce clearly articu-
lated and visually grounded reasoning chains. To this end, we propose Grounded
Reasoning with Images and Texts (GRIT), a novel method for training MLLMs to
think with images. GRIT introduces a grounded reasoning paradigm, in which mod-
els generate reasoning chains that interleave natural language and explicit bounding
box coordinates. These coordinates point to regions of the input image that the
model consults during its reasoning process. Additionally, GRIT is equipped with
a reinforcement learning approach, GRPO for Grounded Reasoning (GRPO-GR),
built upon the GRPO algorithm. GRPO-GR employs robust rewards focused on
the final answer accuracy and format of the grounded reasoning output, which
eliminates the need for data with reasoning chain annotations or explicit bounding
box labels. As a result, GRIT achieves exceptional data efficiency, requiring as few
as 20 image-question-answer triplets from existing datasets. Comprehensive evalu-
ations demonstrate that GRIT effectively trains MLLMs to produce coherent and
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visually grounded reasoning chains, showing a successful unification of reasoning
and grounding abilities. All code, data, and checkpoints will be released.

1 Introduction

Reasoning models [[1, 2| |3} 14, S]] are trained to articulate their problem-solving process through a
"reasoning chain" which comprises a detailed, step-by-step deliberation and a final answer. Recent
studies have shown that such trained reasoning models are superior in reasoning than models directly
prompted in the zero-shot Chain-of-Thought (CoT) [6] manner, where off-the-shelf models are simply
guided to "think aloud" at inference time, often reflecting little of their true internal processes [7].
Reasoning models first became particularly prominent in the language domain [2, 16} 5} 8} 9], with
models like DeepSeek-R1 [2] showcasing capabilities for complex tasks, and subsequently extended
to the vision-language field [10, L1} [12].

Current open-source vision reasoning models yield reasoning chains consisting only of natural
language when faced with multimodal inputs. This results in reasoning that is less clear and
insufficiently grounded in the details of the visual input. To overcome this, a crucial question
is how to empower models to think with images, mirroring how humans refer to visual input in
their thoughts. However, realizing this capability presents significant technical challenges. Current
MLLMs are designed to generate language tokens, lacking the inherent mechanism to generate
images directly within a reasoning chain. Furthermore, processing and understanding reasoning
sequences that interleave multiple visual elements poses a substantial hurdle, as many MLLMs
struggle with maintaining context across numerous images in one input. Beyond these technical
challenges, data also presents a major hurdle. In most cases, there is no unique correct reasoning
path for complex multimodal questions, and human-annotated data explicitly incorporating visual
evidence in reasoning steps is severely scarce.

To address these challenges and enable more grounded visual reasoning in MLLMs, we propose
the Grounded Reasoning with Images and Text (GRIT) method. GRIT introduces a novel grounded
reasoning paradigm where the model generates natural language reasoning chains that freely mix
bounding box coordinates pinpointing relevant regions from the input image. These bounding boxes
serve to indicate the specific visual information that the model is consulting in its reasoning process.
To simplify the inference process, after the generation of bounding box coordinates, the model
does not receive additional pixel inputs in the proposed grounded reasoning paradigm; instead, the
model comprehends and utilizes the visual information indicated by these coordinates based on its
understanding of the original input image. By cropping the input image with the generated bounding
boxes, the resulting reasoning chain can be visualized as interleaved text and highlighted regions
from the input image, as illustrated in Figure[I]

To train MLLMs to produce reasoning chains in the grounded reasoning paradigm, GRIT includes a
reinforcement learning method, GRPO for Grounded Reasoning (GRPO-GR), built upon the GRPO
algorithm. It is equipped with novel rewards specifically focused on the format of not only reasoning
but also grounding, in addition to answer accuracy. Specifically, such format reward encourages
reasoning outputs structured by a thinking token pair (e.g., <think> and </think>) and a rethink token
pair (e.g., <rethink> and </rethink>); it also rewards the inclusion of syntactically valid bounding
boxes within the generated sequence. As a result, the rewards in GRPO-GR do not constrain the
specific textual content of the reasoning steps or the semantic accuracy of the grounded regions, thus
eliminating the need for data with reasoning chain annotations or explicit bounding box labels. As a
result, we find that the GRIT method is extremely data efficient: it enables MLLMs to acquire the
grounded reasoning ability with very few data samples sourced from existing VQA datasets using
only image-query-answer triplets.

With the GRIT method, we train state-of-the-art MLLMs—Qwen 2.5-VL [3] and InternVL 3 [[13]
using only 20 image—question—answer triplets drawn from existing object-relation and counting VQA
datasets, VSR [14] and TallyQA [15]. A significant outcome of GRIT is that the trained models
preserve their broad versatility, effectively handling not only visual question answering but also
grounding-heavy referring expression comprehension tasks. In our experiments with a variety of
testing data collected from benchmarks for both VQA and referring expression comprehension, we
reveal several key observations. Firstly, the trained models effectively unify the grounding and
reasoning abilities—which were originally inherent but disconnected in the base MLLMs—within



their grounded reasoning output. Secondly, through both qualitative and quantitative analysis, we
reveal a high correlation between the image regions referenced and the accompanying text in the
reasoning chain produced by GRIT-trained models. Furthermore, we demonstrate that the generation
of bounding boxes boosts the subsequent model reasoning to attend more effectively to the input
visual information. Finally, we observe that as training data increases, models trained with GRIT show
improved performance but it also reveals challenges for boosting generalizability. Our contributions
are as follows:

* We propose Grounded Reasoning with Images and Text (GRIT), a novel method that teaches
MLLMs to think with images through a grounded reasoning paradigm where models generate
reasoning chains interleaving natural language with explicit bounding box coordinates.

* We develop GRPO-GR, a reinforcement learning algorithm, which employs novel rewards
that enable the grounded reasoning ability of MLLM:s efficiently, using only image-question-
answer triplets without requiring dense reasoning chains or bounding box annotations.

* Through comprehensive evaluations, we demonstrate that MLLMs trained with GRIT, such
as Qwen 2.5-VL and InternVL 3, successfully unify their grounding and reasoning abilities
to produce accurate and coherent grounded reasoning.

2 Related Work

2.1 Reinforcement Learning for Vision-Language Reasoning

Recent studies have applied reinforcement learning (RL) with verifiable rewards to build visual
reasoning models for visual question-answering tasks, extending approaches from language-only
models, such as DeepSeek-R1 [2], to enhance Multimodal Large Language Models (MLLMs).
For instance, R1-OneVision [[12]] and R1-V [16] focus on diagram reasoning and math problems,
respectively, while Vision-R1 [11]] emphasizes symbolic reasoning tasks. However, these methods
often treat visual grounding and textual reasoning as separate or do not tightly integrate them into a
single generative process. VLM-R1 [10] applies RL to referring expression comprehension tasks,
a grounding-heavy task, rewarding bounding box, and answer accuracy. While effective for these
tasks, VLM-R1 typically outputs only bounding boxes as final answers, with an implicit reasoning
process, rather than an interpretable, interleaved trace of text and visual grounding. In contrast, our
GRIT (Grounded Reasoning with Images and Text) framework uses RL to train MLLMs to freely
mix grounding and reasoning within a single generative trace. Models trained with GRIT produce
interleaved chains of natural language and bounding box coordinates, enabling a dynamic interplay
where visual evidence informs textual logic, and vice-versa. While proprietary systems such as
ChatGPT-03/4 [177] have shown similar "thinking with images" capabilities, GRIT offers the first
open-source approach to achieve this interleaved visual-textual reasoning via lightweight RL, without
needing explicit annotations for intermediate reasoning or grounding steps.

2.2 Visual Chain-of-Thought Reasoning

The idea of Chain-of-Thought (CoT) reasoning for vision-language tasks predates the RL-focused
methods [[18L[19} 120, [21]], where models are prompted to generate reasoning chains that include visual
cues. Early approaches like Multimodal-CoT [19] used multi-stage prompting, while others like
CCoT [21] leveraged external tools like scene graphs. These often rely on prompting or auxiliary
modules rather than learning an end-to-end generative process for interleaved reasoning. Other works
aimed to learn visually grounded CoT with minimal supervision. UV-CoT [22] used self-generated
bounding boxes and an auxiliary MLLM for supervision, but still largely separated the grounding and
reasoning phases. Pioneer works such as VisCoT [23]], CogVLM [24]] and CogCoM [235]] fine-tune
models on datasets with detailed annotations for both textual rationales and corresponding bounding
boxes. However, this requires high-quality, dense annotations linking each reasoning step to specific
visual evidence. The GRIT method differs by enabling MLLMs to generate explicit, interpretable, and
visually grounded reasoning steps from task-level reward signals alone, without requiring supervisory
signals for bounding boxes or intermediate textual thoughts within the reasoning chain. Visual
grounding (via bounding box coordinates) is embedded within the continuous reasoning chain. This
allows models trained with GRIT to achieve a form of grounded CoT where visual information is



directly integrated into the thought process, enabling them to reason "with" images, not just "about"
them.

3 GRIT: Grounded Reasoning with Images and Text

3.1 Grounded Reasoning Paradigm

The GRIT framework fosters a straightforward, grounded reasoning paradigm in MLLMs, enabling
a more transparent and verifiable reasoning process. Given an image I and a textual question g,
GRIT enables the model to generate a two-part output (¢, a): first, a reasoning chain ¢ (starting with
<think>), followed by a concise final answer a (after <answer>). The reasoning chain c freely
mixes natural-language text 7" and optional bounding-box coordinates B. At any step p of the token
generation of ¢, the model can choose to generate a bounding box ¢,, € B or it can opt to continue
generating natural language text ¢, € T". The decision is based on the input and all existing reasoning
chain c¢y.,—1. When the model has finished generating one or multiple bounding box coordinates at
step ¢, these coordinates are intended to directly inform and shape the subsequent reasoning steps
Cq+1,Cq+2, - - - - Crucially, the generation of subsequent tokens does not receive additional pixel
inputs based on the generated bounding boxes. Instead, the model relies on its internal understanding,
informed by these newly generated coordinates, to continue the reasoning process. This requires
the model to learn to interpret its own grounding actions i.e. the bounding boxes, and integrate that
understanding into its ongoing textual deliberation. Leveraging the inherent grounding and reasoning
abilities in MLLMs, the proposed grounded reasoning paradigm encourages the model to unify these
existing faculties to form the new grounded reasoning ability. Compared to alternative approaches
such as generating pixel-level attention masks or adding the image region indicated by bounding
boxes as additional input for multi-turn generation, the grounded reasoning paradigm is significantly
more efficient.

3.2 Reinforcement Learning with GRPO-GR

The GRIT method trains MLLMs via a newly proposed reinforcement learning algorithm, GRPO for
Grounded Reasoning (GRPO-GR), for grounded reasoning ability. Built upon the Group-Relative
Policy Optimisation (GRPO) [26] algorithm, GRPO-GR optimizes a policy 7y to generate sequences
of reasoning (¢, a) based on rewards combining answer correctness with format adherence as shown
in Figure 2] A fixed prompt suffix is appended to the model’s input during training and inference,
please refer to the Appendix D for details.

RL Formulation. The model acts as a policy 7y that generates the output sequence (¢, a) given
the input (I, ¢). During training, for every image—question pair (I, q), we sample a group of N
candidate completions {o1,...,on} from the current policy 7y. For each completion o;, a task
reward r; = R(q, 0;) is computed based on a combination of components (detailed below). These
rewards are used to derive a group-normalised advantage:

r; —mean{ry,...,ry}

A = std{ry,...,rn}+90

; ey

where § is a small constant (e.g., 10~8) for numerical stability.

The task reward r; is a composite signal comprising three components: a grounded-reasoning-format
reward (Tformat), an optional grounded-target-counting reward (7count), and a GPT-aided answer-
accuracy reward (r,,s). These components are designed to encourage the desired grounded reasoning
behavior and accurate final answers.

Grounded-reasoning-format reward (gmat). This reward encourages reasoning outputs structured
by special token pairs and includes syntactically valid bounding boxes. It is composed of a special-
token-format signal sg and a bounding-box-format signal sy:

Tformat = Sst T Sbf, (2)

where sy rewards the correct usage and order of special reasoning-format tokens
(<think>...</think> then <rethink>...</rethink>) within the reasoning chain ¢, which
structure the reasoning, potentially across multiple steps. Each correctly placed token pair increments
the reward by 0.5: s¢ = 0.5 x I(correct think token pair) + 0.5 x I(correct rethink token pair). The
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Figure 2: Model update via GRPO-GR. During GRPO-GR training, we sample a group of model
completions and calculate the grounded-reasoning-format reward (7ormat), the optional grounded-
target-counting reward (7coun), and the GPT-aided answer-accuracy reward (r,,s). The rewards are
used to calculate the group-normalized advantage and guide the policy optimization.

bounding box format signal sy incentivizes the explicit generation of syntactically correct bounding
boxes within c. These are detected via a regex matching quadruplets of integers separated by commas,
typically expected before a rethink token. A reward of 0.5 is assigned if at least one such bounding
box is present: spr = 0.5 x I(num_bboxes > 1). This reward component encourages the required
format and presence of visual grounding elements without constraining the textual content or semantic
accuracy of the grounded regions themselves.

Grounded-target-counting reward (7 count). This optional reward component is used specifically for
training examples drawn from visual counting-related datasets (detailed in the experimental setup).
It is set to 0.5 if the number of bounding boxes generated within the reasoning exactly matches the
ground-truth count for the target object. This encourages the model to systematically generate the
correct quantity of bounding boxes as part of its counting reasoning process.

GPT-aided answer-accuracy reward (r,ps). This reward combines signals for the correctness of the
final answer, offering a more robust signal than rule-based checks alone by supplementing them with
an external Vision-Language Model judge. It is computed as: r,,s = sgpr + 0.1 sprpy, where
Sgpr 1s a binary correctness score (0 or 1) from a GPT-40 judge evaluating the question, predicted
answer, and ground truth triplet (¢, 4, a), and s, gy is the sentence-level BLEU-1 similarity between
a and a. The GPT-40 prompt is fixed and detailed in Appendix D. We down-weight spr gy due to
its sensitivity to length mismatch, ensuring the highest reward is for closely matching ground truth
answers.

Optimization Objective. The policy parameters € are updated by maximizing the GRPO objective
Jcrro () using the calculated group-normalised advantages A;:

1

N
Jareo(0) = NZ[miﬂ(Si A;, clip(s;, 1—€, 1+€)A;) — BDgr(m(:|q) Hﬁref('|Q))}, 3)
=1

where 7 is the reference policy (typically the initial pre-trained model), 5 controls the KL divergence

mo(0i]q)
o (i)’
parameters before the update. This objective balances maximizing expected reward within each group
against maintaining proximity to the reference policy, promoting stable learning.

penalty, € defines the trust region for the importance ratio s; = and 6,4 are the policy

4 Experiments

We first evaluate the grounded reasoning performance of models trained using the GRIT method in
both grounding and reasoning perspectives. Then, we further qualitatively and quantitatively analyze
the interaction between the bounding boxes and other reasoning contents generated during grounded
reasoning. Last but not least, we examine the impact of increasing the training data volume.

4.1 Setup

Testing data. We evaluate models trained with GRIT on curated testing sets derived by sampling from
six public datasets: Visual Spatial Reasoning (VSR) [[14] focusing on spatial relation verification,
TallyQA [15]] on object counting, GQA [27] on compositional object spatial questions, MME [28]] on
diverse visual tasks including counting and position, MathVista-mini [29] on mathematical reasoning
in visual contexts, and position subset of OVDEval [30] on open-vocabulary object grounding. For
assessing the quality of bounding boxes generated during grounded reasoning outputs, we leverage



Table 1: Evaluation of the grounded reasoning accuracy. GRIT-trained models are compared with
baselines across seven testing sets on GPT-as-judge answer accuracy score (ACC) and grounding IoU
(GIoU). GRIT-trained models overall outperform baselines, demonstrating a successful unification of
grounding and reasoning abilities that are originally inherent but separated in MLLMs.

| VSR | TallyQA | GQA | MathVista | MME | OVDEval
| ACC GIoU | ACC GIoU | ACC GIoU| ACC | ACC | GIoU
| Qwen2.5-VL 3B [8]

Direct query 495 000 | 408 000 | 554  0.00 58.5 88.9 0.389
Chain-of-Thought 375 0122 | 332 0113 | 395 0.269 33.0 41.3 0.388
One-shot ICL 132 0213 | 363 0268 | 204 0441 29.1 24.7 0.328
Few-shot fine-tuning | 59.7 0216 | 44.5 0.284 | 64.6 0475 45.0 68.3 0.391
GRIT 729 0325 | 47.8 0447 | 628 0.485 59.8 89.3 0.398
| InternVL3 2B [13]

Direct query 529 0.000 | 155 0.000 | 29.4  0.000 43.0 40.0 55.1

Chain-of-Thought 6.4 0428 | 68 0279 | 41 0292 7.5 14.0 219
One-shot ICL 34 0435 | 37 0275 | 26 0435 14.1 1.3 59.3
Few-shot fine-tuning | 54.0  0.381 | 225 0.116 | 468 0.114 174 62.3 7.8

GRIT 649 0495 | 442 0324 | 632 0.457 48.2 82.0 56.0

available question-related bounding box annotations from VSR, TallyQA, and GQA and manually
refine the bounding box coordinates for VSR and GQA data for our evaluation purpose. We provide
more details, including data statistics, in Appendix A.

Training Data. Demonstrating the data efficiency of our GRIT method, we train on a dataset of
only 20 unique image-query-answer triplets. This small training set is drawn from the Visual-Spatial
Reasoning (VSR) [[14] and TallyQA [15] datasets. These data focus on tasks requiring both explicit
visual grounding and multi-step reasoning, providing a suitable testbed to evaluate GRIT’s ability to
learn grounded reasoning formats with limited data. Please refer to Appendix B for more details.

Training Implementation. We train two pre-trained MLLMs, Qwen2.5-VL-3B and InternVL-3-2B,
directly using the GRIT method with reinforcement learning. We train the models for 200 steps
with a total batch size of 128. During GRPO-GR training, we generate 4 candidate reasoning traces
per input sample during training with a learning rate of 2x10 e-6. The optimizer for the training is
AdamW and a Cosine scheduler is adopted. All training is conducted on 8 NVIDIA A100 (80GB)
GPUs with Deepspeed Zero2 and the time for training each model is approximately 12 hours.

4.2 Research question 1: How accurate is the grounded reasoning from both grounding and
reasoning perspectives?

Metrics. To comprehensively assess model performance across testing sets, we evaluate two key
aspects of their output: (1) the correctness of the natural language answer, evaluated by GPT-as-judge
answer accuracy score [31]], a score between 0 (completely incorrect) and 1 (fully correct) assigned
by GPT-40 to judge the correctness of the model-generated natural language answer. The GPT-40 is
provided with the same prompt format as in the GPT-aided answer-accuracy reward during training
(Section[3.2)); (2) the accuracy of the grounding coordinates, measured by grounding IoU, the average
Intersection over Union (IoU) between the union of all bounding boxes generated by the model
(i.e., within its reasoning chain or as the direct answer for tasks like OVDEval) and the union of all
corresponding ground-truth bounding boxes. Different from metrics in traditional object detection
tasks, grounding IoU focuses on whether the collection of grounded regions in each grounded
reasoning output from the model together aligns with the annotated question-critical image regions.

Baselines. We include baselines built upon the same base MLLMs and the same data as the models
trained with GRIT: (1) Direct Query directly feeds the original MLLMs only the task query alongside
the input image in a zero-shot manner, without any specific formatting or reasoning prompts, to assess
its raw task-solving ability. (2) Chain-of-Thought (CoT) [6] feeds the original MLLMs queries with a
fixed prompt suffix, which instructs the model to generate step-by-step reasoning chains before the
answer. The prompt suffix for the CoT baseline is identical to the prompt used for models trained
with GRIT, measuring the model’s latent ability without any post-training. (3) One-shot In-Context



Learning (ICL) [32]) prefixes each test question with a single, fixed exemplar consisting of {question,
grounded-visual-thinking trace, answer}, instructing the model to imitate the format and reasoning
style. (4) Few-shot SFT fine-tunes the MLLM on the same demonstrations employed for GRPO but
with standard supervised learning, isolating the effect of reinforcement learning.

Results. The results are summarized in Table[l] In contrast to baselines, models trained with GRIT
overall achieve higher scores on the adopted testing data. Despite being trained on only 20 training
samples, models trained with GRIT not only improve on GPT-as-judge answer accuracy Scores on
VSR and TallyQA (the two datasets seen during training) but also generalize effectively to other
out-of-domain data, indicating strong reasoning ability. The results on the grounding IoU metric show
that models trained with GRIT, although not directly optimized for this metric, outperform baselines
in locating question-relevant image regions during their reasoning. Notably, on the OVDEval testing
data, models trained with GRIT achieve more accurate detection results than zero-shot MLLMs,
highlighting their emerging improvements in grounding capabilities. These results demonstrate
a more successful unification of grounding and reasoning, where their integration demonstrably
enhances the performance of both individual abilities.

From the result, we also observe that baselines based on off-the-shelf MLLMs exhibit rigidity, where
they tend to generate either only bounding boxes or the final answer. For CoT and one-shot ICL
baselines, although they are prompted or guided by ICL to produce a reasoning chain interleaved with
bounding box coordinates, their grounding and reasoning functions are forced to operate concurrently.
As a result, they generally face a severely deteriorated performance either in answer accuracy or
grounding IoU, indicating that these capabilities remain largely separated and can interfere with each
other, resulting in suboptimal performance. This suggests a general disconnect between their inherent
grounding and reasoning abilities. As for the Few-shot SFT baseline, while demonstrating more
balanced performance across grounding IoU and GPT-as-judge answer accuracy score compared
to the zero-shot baselines, it still achieves considerably lower scores than models trained with our
GRIT method. This is likely because supervised fine-tuning primarily learns to mimic the surface
form of outputting text interspersed with bounding boxes, rather than developing a deeply integrated
reasoning process where grounding logically informs each step.

4.3 Research question 2: How generated bounding boxes interact with natural-language
contents during grounded reasoning?

Qualitative Analysis of Grounded Reasoning Contents. We qualitatively showcase the grounded
reasoning produced by models trained with GRIT through a variety of input-output examples. A
major strength of training with the GRIT method is that its reward design imposes no rigid constraint
on the content of the reasoning chain. Consequently, the model learns flexible reasoning strategies
that adapt seamlessly to diverse queries. Specifically, as shown in Figure [31, GRIT-trained models
sometimes directly provide an answer while then reflecting the answer in subsequent reasoning;
while in other instances, as in Figure they perform the ground actions to identify visual evidence
initially and subsequently analyze the selected image regions in their reasoning. Crucially, our
models dynamically determine whether grounding is necessary, significantly reducing false-positive
grounding instances. For example, in Figure queries referencing non-existent entities in the input
image do not prompt erroneous groundings, showcasing a robust multimodal reasoning capability.

Cross-modal Correlation of Images Regions and Thoughts. To systematically evaluate the
coherence between image regions and the natural language contents interleaved in the grounded
reasoning chain of models trained with GRIT, we introduce the Vision-Language Reasoning Cross-
Modal Correlation metric. Given each model-generated reasoning chain (c), we extract the associated
bounding boxes {c¢;|¢c; € B}. To establish a rigorous evaluation, we randomly sample an equal
number of bounding boxes from the input image as negative candidates {ho, ...h;} € B. We draw
these two sets of boxes separately on the input image and then ask GPT-4o to identify the one from
two input images with the set of bounding boxes that corresponds most closely with the textual
reasoning with bounding box coordinates masked. Leveraging GPT-40’s strong Set-of-Mark (SoM)
capabilities [33]], this process allows us to quantitatively assess semantic coherence. We repeat this
process three times for robustness and report the average correlation score with standard deviation.
We evaluate the models trained with GRIT, Zero-shot ICL, and Few-shot SFT outputs using this cross-
modal correlation metric on six testing sets (VSR, TallyQA, GQA, MME, and MathVista), excluding
OVDEval as it primarily poses a grounding challenge. In addition to evaluating model-generated



Question: How many zebras are pictured here?

Model output:

<think> There are six zebras in the picture. The coordinates for the zebras are as follows:
1. (200, 168, 248, 202) 2. (169, 159, 214, 186) 3. (76, 167, 108, 192) 4. (24, 173, 50, 197)
5.(51, 163,70, 191) 6. (413, 159, 441, 189) 7. (463, 171, 483, 186) </think>

<rethink> The coordinates provided for the zebras are accurate and cover all the zebras
visible in the image. There are no overlapping or missing coordinates. </rethink>
<answer> 7

Ground truth answer: 7

Question: Is the truck beneath the cat?

Model output:

<think> The bounding box coordinates for the truck are approximately (0, 209, 488, 364).
The cat is positioned on top of this truck. </think>

<rethink> The cat is on top of the truck, so the truck is beneath the cat. </rethink>
<answer> Yes

Ground truth answer: Yes

(i1) Model first grounds critical image region in its reasoning and then analyze in the subsequent reasoning.

Question: Is there a knife in the image?

Model output:

<think> There is no knife present in the image. The focus is on a pot of soup with carrots
and other ingredients. The bounding box coordinates for the knife would be outside the
image area. </think>

<rethink> The image shows a pot of soup with carrots and other ingredients, but there is
no knife present. The bounding box coordinates for the knife would be outside the image
area. </rethink>

<answer> No

Ground truth answer: no

(iii) Model correctly handles queries about non-existent entities without any grounding action.

Figure 3: Inference examples of Qwen2.5-VL-GRIT.
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Figure 4: Correlation between image regions  Figure 5: Model’s average attention for image to-
and "thoughts” in grounded reasoning eval- kens during the generation of rethink segments.
uated by our Vision-Language Reasoning The overall higher curve for the original rethink
Cross-Modal Correlation metric. The result  segments of the GRIT-trained model shows that
shows that models trained with GRIT outper-  the bounding boxes generated facilitate stronger at-
form baselines. tention to the image input in subsequent reasoning.

outputs, we also manually create and evaluate 20 human-written reasoning chains with interleaved
bounding boxes using the same vision-language reasoning cross-modal correlation method to establish
a human performance baseline. As shown in Figure [d models trained with our GRIT framework
outperform both Zero-shot ICL and Few-shot SFT, showing highly correlated image region selection
with textural reasoning, while still exhibiting a gap when compared to the human-written reasoning
chains, indicating room for future improvement.

Influence of Grounding on Subsequent Reasoning. Models trained with GRIT interleave reasoning
with grounding actions when producing visually integrated thought processes. To further understand
how the bounding boxes generated impact subsequent reasoning, we examine attention scores for



input visual tokens during inference. Specifically, we split outputs of a Qwen2.5-VL model trained
with GRIT using the <rethink> token into pre-rethink and rethink segments, where pre-rethink
segments usually include bounding-box coordinates due to the optimization guided by the grounded-
reasoning-format reward detailed in Section[3.2] We then create an alternative pre-rethink segment
by removing all bounding boxes from the pre-rethink segment, simulating the situation where no
grounding action is done during the reasoning. Next, we feed the alternative pre-rethink segment
back into the Qwen2.5-VL model trained with GRIT for continuous token generation. We refer to the
newly generated content based on the modified input as the no-bounding-box rethink content. Finally,
we compute and compare average attention scores across various layers for input visual tokens
during the generation of both the original and no-bounding-box rethink content. Such comparison is
repeated for 100 randomly selected data samples in the GQA subset, and due to the various generation
lengths, we show the results for the first 50 tokens generated. From the results shown in Figure [5}
we find that the average attention scores to each visual token is overall significantly higher in the
original rethinking segment than the no-bounding-box rethink segment. This indicates the presence of
bounding boxes in the original pre-rethink segment leads to increased visual attention in the following
reasoning chain, which potentially benefits the image consistency of the reasoning process.

4.4 Research question 3: What is the effect of scaling training data?

To understand how GRIT’s performance scales with
increasing training data, beyond the data efficiency

shown with 20 samples, we trained variants of the
Qwen2.5-VL 3B model using 20, 500, and 7,000 im- 641
age—question—answer triplets. These samples were
taken from the VSR and TallyQA datasets, maintain-
ing the same mix of data sources. We evaluate these S 60
trained variants on the testing data sets introduced in <

Section [.1| with the GPT-as-judge answer accuracy 58 1
score. Figure [0] presents the results across testing ‘ —#- In-domain data
data categorized as either in-domain, sourced from > l Out-of-domain data

the same datasets as training (VSR, TallyQA), or
out-of-domain (GQA, MathVista-mini). The results
show that answer accuracy generally increases with
more training data used for GRIT. We find that the Figure 6: Effect of scaling training data on
improvements in answer accuracy are more subtle for model performance.

out-of-domain testing data compared to the growth

observed on in-domain testing data, which highlights a common challenge of generalization. Fur-
thermore, we observe that the model’s performance growth diminishes, suggesting that continued
improvement may require exponentially more data. We interpret this observation in light of recent
studies suggesting that RL with verifiable rewards primarily biases existing reasoning patterns towards
rewarded outcomes rather than fundamentally changing them [34]], with performance also heavily
influenced by pre-training [35) 36]. This implies that to significantly enhance the out-of-domain
performance of GRIT-trained models, increasing the diversity of training data is more critical than
simply scaling up the data volume, highlighting a key direction for future study.

20 500 7000
Training data size

5 Conclusion

In this paper, we propose Grounded Reasoning with Images and Text (GRIT), a novel method where
models generate visually grounded reasoning chains by interleaving natural language with explicit
bounding box coordinates referencing relevant image regions. We propose the grounded reasoning
paradigm and the GRPO-GR reinforcement learning training method. As a result, GRIT is extremely
data efficient and requires neither dense reasoning chains nor explicit bounding box annotations. Our
experiments demonstrate that GRIT effectively trains pre-trained MLLMs to produce accurate and
coherent grounded reasoning. While limited resources focus our study on smaller MLLM:s to validate
the GRIT method and efficiency, rather than exploring peak performance with full-scale scaling,
we identify key direction for further improving the generalizability of GRIT-trained model being
data variety and model pre-training. Nonetheless, GRIT’s efficacy in instilling complex grounded
reasoning with minimal data highlights its significant potential.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and intro reflect the paper’s contributions and scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussed in the Conclusion section and the Section 4.4.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There are no novel theoretical results introduced in the paper.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We include details for training and data collection in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will provide the code in the appendix.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide details in the experiment section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars for the experiment shown in Figure[d] For the experiment
result in Table 1, the efficacy of our GRIT method does not rely on a single score but rather
on the overall scores across seven testing sets, providing statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

15


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide details in the experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Authors have reviewed the NeurIPS Code of Ethics, and the paper conforms in
every respect with the NeurI[PS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the societal impact of our GRIT method in the introduction section.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses the GRIT method to teach model thinking with images, which
aims to enable a more faithful model and poses no safety risks for misuse. The models
trained in the experiments are limited in size with limited ability with also minimal risks for
misuse or dual-use.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited and discussed the terms of use of data and models
we used in the experiment section and appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our work is built upon open-source data and models, and as we mentioned in
the abstract and introduction, we will open-source our new assets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details for Testing Data

For our evaluation, we curated testing data derived from six public open-source datasets covering a
range of visual reasoning and grounding tasks. The statistic for the testing data is shown in Table 2}

* VSR [14] tests spatial relation verification. For our VSR evaluation set, we source question-
image-answer triplets from the VSR subset of the Visual CoT benchmark [23] and manually
filter out those with ambiguous answers.

* TallyQA [15] focuses on counting; we uniformly sample evaluation questions where the
target object counts range from 0 to 9 to create our TallyQA evaluation set.

* GQA [27] offers scene-graph-grounded, compositional object spatial questions. We first take
the GQA subset from the Visual CoT benchmark and then manually filter these to retain
high-quality instances for our GQA evaluation set.

* From MME [28]], we use only the counting, position, and existence subsets to broaden our
evaluation scope.

* MathVista [29] evaluates mathematical reasoning in visual contexts. Following prior works,
we adopt its TestMini split.

* Finally, OVDEval [30] is an open-vocabulary detection (OVD) testing set that requires the
model to ground fine-grained semantics from the language query to the coordinates of visual
features. We use its position subset and simplify it to object detection tasks with a single
target.

Among these evaluation sets, those derived from VSR, TallyQA, and GQA are accompanied not
only by ground-truth language answers but also by annotations of bounding boxes for image regions
critical for deriving the answer. Specifically, we manually refine the bounding box coordinates from
the Visual CoT benchmark for our VSR and GQA data. For our TallyQA evaluation sets, we adopt the
original bounding box annotations. All evaluation sets, except for OVDEval, are VQA benchmarks
where the required answer is a single word or short phrase. In contrast, OVDEval differs as grounding
is not an optional component of the reasoning chain but is explicitly required as the answer to queries.

B Details for Training data

To demonstrate the data efficiency of our GRIT method, we collect a small training dataset consisting
of only 20 unique image-query-answer triplets. These triplets are sourced from existing open-source
VQA datasets, covering both grounding and visual reasoning challenges. Specifically, we selected
ten from the Visual Spatial Reasoning (VSR) dataset [14] and ten from the TallyQA dataset [[L5]]. We
chose examples from VSR as they typically involve object localization and spatial relation reasoning
(e.g., "Is the motorcycle away from the bird?"). From TallyQA, we selected counting tasks (e.g.,
"How many signs are on the post?"), specifically ensuring the chosen examples uniformly cover object
counts from 0 to 4, as these tasks naturally lend themselves to explicit grounded counting within the
reasoning process. This curated dataset engages the models in multi-step visual analysis, serving to
evaluate GRIT’s ability to strengthen the link between visual grounding and logical deliberation.

To validate the importance of including counting-related training data and the associated grounded-
target-counting reward within the GRIT method, we conduct an ablation experiment. The standard
training utilizes data from TallyQA, which consists of queries about object quantities in images with
single-digit numerical answers. For these counting tasks, we employ the grounded-target-counting
reward (detailed in Section [3.2)), designed to encourage the generation of a flexible number of
bounding boxes matching the count in the reasoning output. In the ablation, we train the InternVL-3
2B model with a modified dataset and reward function. Instead of using 10 VSR and 10 TallyQA
samples with the full reward set, we train with a dataset of 20 VSR samples and exclude the
grounded-target-counting reward during training. This allows us to isolate the contribution of the
counting-related data and reward component. We report the GPT-as-judge answer accuracy score and
the grounding IoU of both in-domain and out-of-domain data (same as in Section4.4). The results,
presented in Table 3] show that excluding the counting-related data and grounded-target-counting
reward during training leads to a significant performance decrease in grounding, as indicated by a
lower Grounding IoU score compared to the original GRIT-trained model. Furthermore, we observe
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Table 2: Statistics for the testing data used in the experiments. We collect the testing data from six
diverse benchmarks.

Data source VSR TallyQA GQA  MathVista MME OVDEval
Counts 288 491 509 1000 240 2164

Avg question/answer length 6.7/1.0 6.0/1.0 7.1/1.0 38.2/1.2 13.3/1.0 16.4/4
Ratio of

multi-choice and yes/no 71.2 0 58.9 70.8 100 0
questions (%)

Ratio of 588 256 253 - - 17.3

annotated grounding targets (%)

Table 3: Ablation study on the importance of counting data and grounded-target-counting reward.
Comparison of the original GRIT-trained model, trained with 10 VSR + 10 TallyQA and counting
reward, with an ablated variant, trained with 20 VSR without counting reward. Results show a
performance decrease in the ablated model.

GloU ACC

In-domain  Out-of-domain In-domain  Out-of-domain
GRIT 0.387 0.437 51.8 64.4
GRIT w/o counting data & reward  0.349 0.378 53.8 60.0

that this exclusion negatively impacts the model’s answer accuracy on out-of-domain data. As a
result, this ablation study underscores the importance of including both counting-related training data
and the grounded-target-counting reward within the GRIT method.

C Ablation on Counting-related Training Data and Reward

D Prompts

We append the prompt shown in Figure [/|to the GRIT model training and model inference, as well
as for the Chain-of-Though baseline in the experiments. The prompt provides models with the
instruction to follow the grounded reasoning paradigm, however, as shown in the experiment result,
MLLMs without training will face a significant performance drop. This is due to the instruction in
the prompt requiring the MLLMs to perform grounding and reasoning at the same time, which is very
challenging for them in a zero-shot manner. It is worth noticing that although the prompt mentions
using "JSON" to show bounding boxes, the GRIT-trained model does not always adhere to such a
format. This is intentional, as the reward in GRPO-GR uses regex to identify valid bounding boxes,
rather than relying on the JSON format, providing the RL optimization of model policy with more
search space. It also indicates that the prompt suffix only provides an initialization for the policy
which can be adjusted with minimal impact as long as it includes an instruction of the grounded
reasoning paradigm.

First, think between <think> and </think> while output necessary coordinates needed to answer the question in JSON with key
’bbox_2d’. Then, based on the thinking contents and coordinates, rethink between <rethink> </rethink> and then answer the question
after <answer>.

Figure 7: Prompt suffix that is appended to the input of models during the training and inference.

Additionally, in GPT-aided answer-accuracy reward of GRPO-GR and the GPT-as-judge answer
accuracy score in the experiments, we adopt the prompt format in Figure 8]

Furthermore, in the experiments where we compute the Vision-Language Reasoning Cross-Modal
Correlation metric for model outputs, we leverage GPT-40 to determine if the bounding boxes in the
grounded reasoning chains of models are more correlated to the natural language reasoning contents
than the randomly sampled bounding boxes. The prompt format we used is in Figure[9]
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You are responsible for proofreading the answers, you need to give a score to the model’s answer by referring to the standard answer,
based on the given question. The full score is 1 point and the minimum score is O points. Please output the score in the json form
"{score: <score>}". The evaluation criteria require that the closer the model’s answer is to the standard answer, the higher the score.
Question: {$question}

Standard answer: {$answer}

Model’s answer: {$predicted_content}

Figure 8: Prompt format for GPT-as-judge answer accuracy score and GPT-aided answer-accuracy
reward. The $question and $answer are substituted with the query and ground truth in the data sample
and $predicted_content is replaced by the model output.

Please decide which image has the bounding boxes that match the following description: {$grounded_reasoning_masked }
Reply with exactly "Image 0" or "Image 1".

Figure 9: Prompt format for calculating the Vision-Language Reasoning Cross-Modal Correlation
metric. Here, the input images for GPT-4o0 are the same image drawn with two sets of bounding
boxes, one from the generated grounded reasoning chain and one from random sampling. The
$grounded_reasoning_masked is the generated grounded reasoning chain with any bounding box
coordinates removed.

E More Examples

Question: What kind of animal stands on the ground?

Model output: <think> The image shows two animals standing on the ground. The larger animal is a cow
with a white and black coat, and the smaller animal is a calf. The bounding box coordinates for the cow are
approximately (42, 73, 433, 296), and for the calf, they are approximately (199, 160, 363, 293). </think>
<rethink> The question asks about the animal that stands on the ground. Both the cow and the calf are
standing on the ground, so either could be the correct answer. However, the cow is the larger and more
prominent animal in the image. </rethink> <answer> cow

Ground truth answer: cow

(1) Our GRIT model accurately perceives the grounded target, reasons about the potential ambiguity in the
question, and finally outputs a correct answer.

Question: Is there only one person appear in the image? Please answer yes or no.

Model output: <think> There is only one person in the image. bbox_2d_1: [0, 28, 305, 364] bbox_2d_2:
[275, 0, 410, 280] </think> <rethink> The image shows two people, one in the foreground playing tennis
and another in the background. bbox_2d_1: [0, 28, 305, 364] bbox_2d_2: [275, 0, 410, 280] </rethink>
<answer> No

Ground truth answer: No

(ii) Although the bounding boxes generated during the grounded reasoning are slightly off, our GRIT model is
still able to analyze the related image regions and successfully correct its own wrong answer at the beginning
and finally generate a correct answer.
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