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Abstract

The rapid development of large language mod-001
els (LLMs) has transformed the landscape of002
natural language processing. Evaluating LLMs003
properly is crucial for understanding their po-004
tential and addressing concerns such as safety.005
However, LLM evaluation is confronted by006
various factors, among which contamination007
stands out as a key issue that undermines the008
reliability of evaluations. In this work, we intro-009
duce the concept of contamination resistance010
to address this challenge. We propose a bench-011
mark based on Caesar ciphers (e.g., “ab” →012
“bc” when the shift is 1), which, despite its013
simplicity, is an excellent example of a con-014
tamination resistant benchmark. We test this015
benchmark on widely used LLMs under var-016
ious settings, and we find that these models017
struggle with this benchmark when contamina-018
tion is controlled. Our findings reveal issues019
in current LLMs and raise important questions020
regarding their true capabilities. Our work con-021
tributes to the development of contamination022
resistant benchmarks, enabling more rigorous023
LLM evaluation and offering insights into the024
true capabilities and limitations of LLMs.1025

1 Introduction026

The advent of large language models (LLMs) has027

largely changed the field of natural language pro-028

cessing and many facets of daily life (Brown et al.,029

2020; Chung et al., 2022; Chowdhery et al., 2023;030

Dubey et al., 2024). Extensive research has as-031

serted that these models possess “human-like abili-032

ties” such as reasoning (Kojima et al., 2022; Wei033

et al., 2022a,b; Bubeck et al., 2023; Hagendorff034

et al., 2023; Itzhak et al., 2024; Xie et al., 2024).035

However, LLM evaluation is often confronted by036

various factors, and contamination, also known as037

test set contamination or data leakage, stands out038

as a key issue. Given that LLMs are trained on039

1Our code and data are available at https://anonymous.
4open.science/r/contamination-resistant-E0D4.

vast web corpora, there is concern that their appar- 040

ent reasoning skills are superficial, and that they 041

are merely retrieving memorized information from 042

their training data (Sainz et al., 2023; Dong et al., 043

2024; Jiang et al., 2024; Li and Flanigan, 2024; 044

Ravaut et al., 2024; White et al., 2024). 045

A key strategy to address contamination is to 046

create a dynamic benchmark that receives continu- 047

ous updates, with new test instances added after a 048

model’s training cutoff (Jain et al., 2024; Roberts 049

et al., 2024; Shabtay et al., 2024; White et al., 2024; 050

Zhang et al., 2024; Mahdavi et al., 2025). The 051

effectiveness of this method rests on a critical as- 052

sumption: the models in question have not been 053

trained on these newly added instances. However, 054

given the black box nature of current LLMs, es- 055

pecially commercial ones, it is almost impossible 056

to determine whether developers have continued 057

training their models after the cutoff using the up- 058

dated instances, and, if so, when this occurred. As 059

a result, the reliability and validity of the newly 060

added data still remain questionable. Furthermore, 061

creating new instances can be laborious, and main- 062

taining a consistent level of difficulty between old 063

and new instances is challenging, which is crucial 064

for preserving the fairness of model performance 065

comparisons across old and new instances. 066

Based on these considerations, we propose the 067

concept of contamination resistance. We argue that 068

a contamination resistant benchmark should meet 069

the following criteria: (a) it should assess certain 070

capabilities of LLMs; (b) it should be dynamic, 071

evolving over time to prevent contamination, and 072

ensure that contamination provides no advantage 073

in model performance; (c) while being dynamic, it 074

should consistently assess the same set of capabili- 075

ties and maintain the same level of task complexity 076

to ensure fairness in evaluation over time; (d) the 077

effort required to curate new instances should be 078

minimal, making it more update-able than existing 079

static benchmarks. 080
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(a) capabilities (b) dynamism (c) update-ability

Figure 1: We propose the concept of contamination resistance and establish a contamination resistant benchmark
based on Caesar ciphers, which meets the following criteria: (a) this benchmark tests several capabilities, including
logical deduction, arithmetic reasoning, and generalization; (b) this benchmark is dynamic, evolving over time so
that an LLM can not memorize all possible queries, and the level of task complexity is consistent; (c) it is effortless
to curate new test instances, making it more update-able than static benchmarks.

We show that a benchmark based on Caesar ci-081

phers is an excellent example of a contamination082

resistant benchmark (see Figure 1). The Caesar083

cipher is a simple substitution cipher where each084

letter in a text is shifted some places down or up the085

alphabet. Encoding or decoding a Caesar cipher086

demands multiple capabilities, including logical de-087

duction, arithmetic reasoning, and generalization.088

This benchmark is dynamic: users can generate an089

infinite number of unique texts, and it is unlikely090

that an LLM can memorize all possible queries.091

Despite its dynamic nature, this benchmark consis-092

tently evaluates the same underlying abilities and093

maintains the same level of task complexity. More-094

over, this benchmark is extremely light weight. It095

requires little effort to generate new test instances096

and to perform inference.097

Despite that solving a Caesar cipher is essen-098

tially a simple linear mapping task, and that the099

state-of-the-art LLMs perform exceptionally well100

on benchmarks that require much more complex101

reasoning abilities, they struggle with the Caesar102

cipher. We summarize our findings as inconsistent103

competence of LLMs, which add to the grow-104

ing evidence that when contamination is controlled,105

LLMs are not performing as well as expected, high-106

lighting the issue of contamination. Our findings107

also align with existing evidence of hallucination108

and the lack of generalization in LLMs.109

Our contributions are summarized as follows:110

• We propose the concept of contamination re-111

sistance and define the criteria a contamina-112

tion resistant benchmark should meet.113

• To establish a contamination resistant bench-114

mark, we propose a benchmark based on Cae-115

sar ciphers and show that LLMs struggle with116

them when contamination is controlled.117

• Our work paves the way for the development 118

of contamination resistant benchmarks, en- 119

ables more rigorous evaluation of LLMs, and 120

sheds light on their true capabilities. 121

2 Related work 122

2.1 Model capabilities 123

The exceptional performance of LLMs on vari- 124

ous tasks has led to claims that these models have 125

gained “human-like abilities”, such as reasoning 126

(Kojima et al., 2022; Wei et al., 2022a,b; Bubeck 127

et al., 2023; Saparov and He, 2023; Shi et al., 2023; 128

Webb et al., 2023). However, evidence that contra- 129

dicts these claims exists, particularly concerning 130

the phenomenon of hallucination (Bang et al., 2023; 131

McKenna et al., 2023; Mündler et al., 2023; Zhang 132

et al., 2023a). Schaeffer et al. (2023) argue that 133

LLMs’ abilities appear due to the choice of metric 134

rather than fundamental changes in model behav- 135

ior with scale. Another line of research suggests 136

that LLMs rely more on memory than genuine rea- 137

soning abilities to solve certain tasks (Reynolds 138

and McDonell, 2021; Merullo et al., 2023; Wang 139

et al., 2023; Zheng et al., 2023; Li et al., 2024; 140

Lu et al., 2024b). Štefánik and Kadlčík (2023) 141

introduce a conceptual learning method aimed at 142

disentangling models’ in-context learning ability 143

from memorization. Their findings indicate that 144

models rely heavily on their pre-trained knowledge 145

than benefiting from the in-context concepts. 146

Whether LLMs truly possess “human-like abili- 147

ties” has now gone beyond a technical problem. It 148

affects how users interact with these models and 149

has significant safety implications (Lu et al., 2024a; 150

Bengio et al., 2024). By proposing the concept of 151

contamination resistance, this work sheds light on 152

the true capabilities of LLMs and helps promote 153

better interaction between humans and LLMs. 154
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2.2 Model evaluation155

Evaluating LLMs properly is crucial to understand156

their potential as well as addressing concerns such157

as safety. The proliferation of benchmarks has led158

to a multifaceted evaluation process that covers a159

variety of abilities (Rajpurkar et al., 2018; Wang160

et al., 2019; Cobbe et al., 2021; Srivastava et al.,161

2023). However, LLM evaluation is confronted by162

various factors, among which contamination stands163

out as one of the key issues. Contamination has164

become increasingly prominent given that current165

LLMs are trained on massive web corpora and are166

scaled up to billions of parameters. Furthermore,167

investigating potential data leakage is challenging168

because the training data are often closed source.169

These factors have severely undermined the relia-170

bility of evaluations (Sainz et al., 2023; Balloccu171

et al., 2024; Dong et al., 2024; Jiang et al., 2024;172

Ravaut et al., 2024; White et al., 2024). A growing173

body of research has revealed that LLMs perform174

better on problems that released before their train-175

ing cutoff, and that some LLMs are overfitted to176

the testing sets of popular reasoning benchmarks177

(Eisenschlos et al., 2023; Li and Flanigan, 2024;178

Roberts et al., 2024; Zhang et al., 2024).179

A straight forward approach to address contami-180

nation is to ensure that the LLM has never been ex-181

posed to the evaluation data during training. Chan-182

dran et al. (2024) introduce the notion of private183

benchmarking, where the evaluation data remain184

confidential and only the evaluation results are re-185

vealed. However, this approach may raise concerns186

regarding transparency and reproducibility. An-187

other line of work focuses on dynamic benchmark-188

ing which features frequently updated questions189

from recent information sources introduced after190

a model’s training cutoff (Jain et al., 2024; Shab-191

tay et al., 2024; White et al., 2024; Mahdavi et al.,192

2025). A key assumption of this method is that193

the model has not been trained on data beyond the194

cutoff, which may not hold as model developers195

may continue training their models on newer infor-196

mation sources after the cutoff. To address these197

concerns, we propose the concept of contamination198

resistance, and we show how it contributes to more199

reliable LLM evaluations.200

3 A contamination resistant benchmark201

based on Caesar ciphers202

The Caesar cipher is a substitution cipher in which203

each letter is shifted certain places down or up the204

alphabet. Solving a Caesar cipher requires several 205

capabilities, including the following: 206

• Logical deduction: the ability to deduce, for 207

example, “a” → “g” when shift=6, given the 208

knowledge that “a” → “d” when shift=3. 209

• Arithmetic reasoning: the ability to calculate 210

a letter’s position given a shift. 211

• Generalization: the ability to extend the ca- 212

pability of solving, for example, shift=3 ci- 213

phers, to solving ciphers with other shifts. 214

We refer to the text used for encoding a Cae- 215

sar cipher as plain text, and the encoded text as 216

cipher text. Based on the observation that LLM 217

performance is influenced by the probability of 218

the task and the probability of the input/output in 219

their pre-training data (McCoy et al., 2024a,b), we 220

curated the benchmark using ciphers with differ- 221

ent shifts (i.e., different tasks) and different types 222

of plain texts that consist of natural language En- 223

glish words (natural) and random non-sense words 224

(random) (i.e., different inputs/outputs). Table 10 225

in Appendix A shows examples of the data used 226

in the benchmark. In practice, words from any al- 227

phabetical language can be used as the plain text 228

for the Caesar cipher. Even a made-up alphabet 229

can be used, provided that it is informed in the 230

prompt. Caesar ciphers are dynamic, as they allow 231

the generation of an infinite number of instances. 232

The dynamic nature of the data is a crucial as- 233

pect of this benchmark that makes it contamination 234

resistant. It is also important to note that regardless 235

of the shifts and types of plain text used to gen- 236

erate the cipher, the capabilities required to solve 237

the Caesar cipher remain the same. Intuitively, it 238

should be easy to generalize from, for example, 239

solving the Caesar cipher with shift=3 to solv- 240

ing one with shift=6. Given the linear mapping 241

nature of the Caesar cipher, solving ciphers with 242

plain texts consisting of random words is not more 243

challenging than solving those with plain texts in 244

natural language English words. Furthermore, this 245

benchmark is lightweight–it is easy to generate a 246

large number of ciphers, and since the ciphers are 247

typically not lengthy, it does not cost much time 248

during inference. 249

We have 25 plain texts in natural language En- 250

glish words and 25 in random non-sense words. 251

With 4 shift values [3, 6, 9, 12], this results in a to- 252

tal of 100 data for each type of plain text. See Table 253

10 for examples of the data in our benchmark. 254

3



4 Experimental setup255

Model We tested widely used LLMs on our256

benchmark: OpenAI GPT-4o2, LLaMA3.1-8B/70B257

(Dubey et al., 2024), Qwen2.5-7B/32B (Yang et al.,258

2024), and QwQ-32B. These models cover a range259

of sizes and different architectures. All of the mod-260

els “know” what the Caesar cipher is (see Table261

12). We utilize the OpenAI API, making requests262

without employing any external tools.263

type prompt

open
[Encode/Decode] the following [text to a Caesar
cipher/Caesar cipher text]. The shift is $#$.

base
[Encode/Decode] the following [text to a Caesar
cipher/Caesar cipher text]. The shift is $#$. Out-
put the cipher text only.

dict

[Encode/Decode] the following [text to a Cae-
sar cipher/Caesar cipher text]. The shift is $#$.
Output a lookup table and the cipher text in
a Python dictionary: {“lookup_table”: {},
“cipher_text”:..}. Output the dictionary only.

code

[Encode/Decode] the following [text to a Caesar
cipher/Caesar cipher text]. The shift is $#$. Write
a Python function and generate the answer. Out-
put the function and the cipher text only.

Table 1: The prompts used in our experiments. The
number of shifts ($#$) is given in all the prompts.

Prompt Table 1 shows the prompts used in our ex-264

periments. The open prompt is a straight forward265

one that most users may use initially. It is open-266

ended, with no specifications regarding the out-267

put format. The base prompt serves as a baseline268

where the model is instructed to generate only the269

cipher text or plain text. The dict prompt instructs270

the model to produce a lookup table as an interme-271

diate reasoning step before generating the answer.272

The code prompt instructs the model to write a273

function and then generate the answer. Intuitively,274

using programming code is an effective approach275

for solving the Caesar cipher, as it is essentially a276

linear mapping task. The number of shifts is given277

in all the prompts. We keep the prompts in their278

simplest form, specifying only the task (encoding279

or decoding), the number of shifts, and the desired280

output format. Given the simplicity of the Caesar281

cipher, we believe these prompts are adequate for282

solving it. All the prompts except for open specify283

the output format for easier processing.284

Evaluation We evaluate the output using exact285

match accuracy and character error rate. The char-286

2GPT-4o results were obtained on Dec 30, 2024.

acter error rate is a more continuous metric, allow- 287

ing us to capture any partial improvements in the 288

performance of the models. We tested our bench- 289

mark under both the zero-shot and few-shot settings 290

(see Table 11 for the few-shot prompts we used). 291

As we do not specify the output format in open, 292

we manually extracted the final answer from the 293

generated text to assess performance. 294

See Appendix B for more details regarding the 295

experimental setup. 296

5 Results 297

Table 2 shows the overall results of the experiments. 298

GPT-4o is the only model that shows some success 299

in certain cases, whereas all the other models fail 300

to solve this task almost entirely. The performance 301

of GPT-4o shows a strong negative correlation be- 302

tween the two metrics (r = −0.6395). The compar- 303

ison of character error rates between LLaMA3.1- 304

8B and LLaMA3.1-70B, as well as Qwen2.5-7B 305

and Qwen2.5-32B, indicates that larger models 306

have advantages over their smaller counterparts. 307

Though most models fail on this benchmark, 308

they still generate reasoning chains that appear cor- 309

rect, which reflects the issue of hallucination. 310

In the following sections, we analyze the perfor- 311

mance of LLMs on our benchmark across different 312

variables and show its resistance to contamination. 313

We summarize our findings as inconsistent compe- 314

tence in LLMs. Our discussion focuses on GPT-4o 315

since it is the only model that achieves some suc- 316

cess in exact match accuracy. 317

5.1 The effect of shift 318

Table 2 shows clear inconsistencies in model per- 319

formance between shift=3 and other shifts re- 320

gardless of the shift, type of plain text, or prompt. 321

We attribute these inconsistencies to contamina- 322

tion, as Caesar ciphers with shift=3 are more 323

prevalent in the web corpora than those with other 324

shifts (McCoy et al., 2024a) (see also Table 12). 325

LLMs exhibit inconsistent competence across 326

tasks, which indicates that they lack generaliza- 327

tion in these tasks. 328

When using the open prompt, GPT-4o outputs a 329

reasoning chain that verbalizes all the letter map- 330

pings regardless of the shift (see Table 14 for an 331

example). However, this occurs only in the decod- 332

ing task3, suggesting that the model was trained 333

3In the encoding task, GPT-4o outputs only the final an-
swer without reasoning chains.
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type model shift=3 shift=6 shift=9

open base dict open base dict open base dict

natural

GPT-4o 0.8200 0.6400 0.8000 0.4000 0.1100 0.1000 0.3400 0.0400 0.0200
LLaMA3.1-8B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LLaMA3.1-70B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qwen2.5-7B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qwen2.5-32B 0.1400 0.0400 0.0200 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000

random

GPT-4o 0.1600 0.1000 0.0600 0.2000 0.0000 0.0000 0.1800 0.0200 0.0200
LLaMA3.1-8B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LLaMA3.1-70B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qwen2.5-7B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qwen2.5-32B 0.0400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGE (w/o GPT-4o) 0.0225 0.0050 0.0025 0.0125 0.0000 0.0000 0.0000 0.0000 0.0000

(a) exact match accuracy↑

type model shift=3 shift=6 shift=9

open base dict open base dict open base dict

natural

GPT-4o 0.0430 0.1234 0.0802 0.2172 0.4440 0.4058 0.2357 0.5648 0.5501
LLaMA3.1-8B 0.8709 0.9076 0.9385 0.8932 0.9288 0.9648 0.9117 0.9326 0.9584
LLaMA3.1-70B 0.7208 0.7756 0.8202 0.8692 0.9056 0.9232 0.9114 0.9172 0.9112
Qwen2.5-7B 0.7972 0.8338 0.8577 0.8462 0.9052 0.9198 0.9161 0.9196 0.9176
Qwen2.5-32B 0.5630 0.6714 0.7152 0.5614 0.7873 0.8018 0.7965 0.8516 0.8307

random

GPT-4o 0.2414 0.3082 0.2490 0.2561 0.3892 0.3545 0.2747 0.4965 0.4330
LLaMA3.1-8B 0.8554 0.8868 0.9208 0.8880 0.9104 0.9506 0.9398 0.9068 0.9341
LLaMA3.1-70B 0.7931 0.8564 0.8493 0.8262 0.9067 0.8742 0.8563 0.9189 0.8957
Qwen2.5-7B 0.7765 0.8303 0.8385 0.8437 0.8744 0.8968 0.8969 0.8902 0.9116
Qwen2.5-32B 0.4830 0.6632 0.6923 0.5995 0.7773 0.7878 0.7799 0.8285 0.8374

AVERAGE (w/o GPT-4o) 0.7325 0.8031 0.8290 0.7909 0.8745 0.8899 0.8761 0.8957 0.8996

(b) character error rate↓

Table 2: Exact match accuracy and character error rate. The rest of the results can be found in Table 13.

primarily on decoding tasks. While verbalization334

generally leads to better performance (see Table 3),335

we observe cases where the generated reasoning336

chain is correct but the final answer is incorrect337

(see Table 15).338

task type shift=3 shift=6 shift=9

decoding natural 1.00 0.80 0.68

random 0.28 0.40 0.32

encoding natural 0.64 0.00 0.00

random 0.04 0.00 0.04

Table 3: Exact match accuracy; open; GPT-4o; the
zero-shot setting. Verbalization is only observed in the
decoding task.

5.2 The effect of plain text339

Table 2 and 3 indicate that using random non-sense340

words as plain text diminishes GPT-4o’s perfor-341

mance on the task, even when shift=3 where the342

model performs well with natural language English343

words as plain text. This could be attributed to 344

contamination, as the model may have memorized 345

the mappings of certain natural language words to 346

their corresponding cipher texts. This is further 347

supported by the observation that GPT-4o performs 348

much better with natural language English words 349

than with random non-sense words as plain text 350

when shift=3 with the base prompt, which in- 351

structs the model to generate only the final answer 352

with no reasoning chains. The simplest explana- 353

tion for this performance gap is that the model has 354

memorized this mappings. 355

GPT-4o exhibits inconsistent competence 356

across different types of plain text, which again 357

indicates a lack of generalization. 358

5.3 The effect of prompt 359

Table 2 suggests that GPT-4o performs best with 360

the open prompt. As noted earlier, GPT-4o em- 361

ploys a verbalization strategy, explicitly listing all 362

letter mappings in a reasoning chain, which im- 363

proves its performance. The same strategy is ob- 364
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type model legal rate↑ accuracy↑

natural

GPT-4o 0.9900 1.0000
LLaMA3.1-8B 0.4550 0.4400
LLaMA3.1-70B 0.4750 0.1100
Qwen2.5-7B 0.4200 0.1550
Qwen2.5-32B 0.8750 0.6100

random

GPT-4o 0.9750 1.0000
LLaMA3.1-8B 0.5900 0.1600
LLaMA3.1-70B 0.7900 0.4250
Qwen2.5-7B 0.5650 0.1900
Qwen2.5-32B 0.9400 0.5950

Table 4: Legal rate and accuracy of lookup tables gener-
ated using dict; the zero-shot setting.

served in Qwen2.5-32B, which also shows some365

success when shift=3 with the open prompt.366

Compared to the base prompt, only GPT-4o ben-367

efits from the dict prompt, showing improvement368

in both exact match accuracy and character error369

rate. For the other models, dict does not lead to a370

lower character error rate in general.371

We further examine the correctness of the lookup372

tables models generated using dict. Specifically,373

we look into the legal rate (i.e., whether the lookup374

table is a legitimate Python dictionary) and accu-375

racy (i.e., whether the mappings of the letters in the376

lookup table are correct) of the lookup table. For377

GPT-4o, we specified json_object as the output378

format in the API.379

As shown in Table 4, GPT-4o, and Qwen2.5-380

32B are capable of generating lookup tables that381

are correct in both format and content, and it is382

independent of the type of plain text. There is a383

huge discrepancy between the correctness of the384

lookup tables and the accuracy of the final outputs385

shown in Table 2. Though a lookup table intu-386

itively serves as an intermediate reasoning chain387

equivalent to the one produced by the open prompt,388

GPT-4o performs worse with dict than with open.389

This suggests that reasoning chains in the form of a390

lookup table are less effective than those in natural391

language. It is possible that the generated lookup ta-392

bles are not the result of reasoning but rather some-393

thing the model memorizes. Our findings suggest394

an inconsistency in LLM competence between395

generating lookup tables and final answers.396

We only experimented with the code prompt us-397

ing GPT-4o. The code prompt does not lead to su-398

perior performance compared to the other prompts399

(see Figure 2). Like other prompts, it achieves bet-400

ter performance when the plain text is natural lan-401

guage English words. To examine the correctness402

of the code generated by the model, we execute the 403

code and evaluate the accuracy of the output. We 404

find that all the generated code runs successfully 405

and produces correct outputs regardless of the type 406

of plain text and shift. Our findings suggest that 407

there is an inconsistency in LLM competence be- 408

tween generating code and final answers. Again, 409

this suggests that the model may have simply mem- 410

orized the code rather than performing true reason- 411

ing. 412

Figure 2: Exact match accuracy (EMA); GPT-4o; the
zero-shot setting.

5.4 The effect of output position 413

Table 5 shows the exact match accuracy for the first, 414

second, and third characters in the outputs. For all 415

models, the accuracy is much higher for the initial 416

characters compared to the full-sequence accuracy 417

shown in Table 2. Though plain texts consisting of 418

natural language English words lead to better per- 419

formance than those with random non-sense words, 420

the impact of plain text type is less prominent than 421

in Table 2. There is a noticeable decline in accu- 422

racy from the first character to the third character, 423

suggesting that models exhibit inconsistent com- 424

petence in handling characters in different posi- 425

tions. This also implies the autoregressive nature 426

of LLMs, that models generate higher-probability 427

tokens even in deterministic tasks like solving the 428

Caesar cipher, where the probability should not 429

matter (McCoy et al., 2024a). 430

Table 6 shows the accuracy of the initial char- 431

acters generated by GPT-4o using open, the best 432

performing prompt. Notably, when shift=3 and 433

the plain text is in natural language English words, 434

GPT-4o maintains consistent accuracy across dif- 435

ferent character positions, which is not observed 436

in any other cases. Additionally, GPT-4o’s ability 437

to decode or encode the second and third charac- 438

ters (char_id=1 and char_id=2) when shift=3 439

depends on the type of plain text. This indicates 440

that the model may memorize the plain-text-to- 441
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type model id=0 id=1 id=2

natural

GPT-4o 0.8717 0.7467 0.6483
LLaMA3-8B 0.1100 0.1467 0.0767
LLaMA3-70B 0.2650 0.2367 0.1400
Qwen2.5-7B 0.2817 0.2333 0.1100
Qwen2.5-32B 0.4900 0.3267 0.2100

random

GPT-4o 0.8350 0.6833 0.5167
LLaMA3-8B 0.0733 0.1267 0.0683
LLaMA3-70B 0.1800 0.1583 0.0733
Qwen2.5-7B 0.2350 0.1517 0.1383
Qwen2.5-32B 0.4250 0.2500 0.1683

Table 5: Exact match accuracy of the first (id=0), sec-
ond (id=1), and third output character (id=2); the zero-
shot setting. LLaMA3 is for LLaMA3.1.

cipher mappings specifically for shift=3 and nat-442

ural language English plain texts.443

shift char_id=0 char_id=1 char_id=2

3 0.98 1.00 1.00
6 0.92 0.96 0.82
9 0.92 0.88 0.76

12 0.84 0.80 0.78

(a) natural

shift char_id=0 char_id=1 char_id=2

3 0.94 0.82 0.76
6 0.98 0.88 0.76
9 0.98 0.82 0.72

12 0.92 0.84 0.64

(b) random

Table 6: Exact match accuracy of the first (char_id=0),
second (char_id=1), and third output character
(char_id=2); open; GPT-4o; the zero-shot setting.

5.5 The effect of shot444

Given that LLMs demonstrate success in in-context445

learning and can learn simple functions in-context446

at inference time (Brown et al., 2020; Garg et al.,447

2022; Akyürek et al., 2023; Zhang et al., 2023b)448

and that the Caesar cipher is essentially a linear449

mapping task, state-of-the-art LLMs should be ca-450

pable of solving the Caesar cipher with few-shot451

prompts. We include 50 demonstrations in the452

prompts (see Table 11). These demonstrations have453

already covered the mappings for all letters in the454

English alphabet. We tested GPT-4o to encode or455

decode cipher texts with shift=[6,9,12] using456

the base prompt, since it does not perform in the457

zero-shot setting under these conditions (see Table458

2). Contrary to intuition, GPT-4o does not benefit459

from the few-shot demonstrations, as shown in Ta-460

ble 7 and 8. We observe almost no improvement 461

in exact match accuracy and character error rate 462

for the full sequence, and there is only a slight im- 463

provement in GPT-4o’s performance on the second 464

and third characters. 465

task EMA↑ CER↓

zero few zero few

decoding 0.1700 0.2400 0.5521 0.5848
encoding 0.1700 0.0800 0.2961 0.4011

Table 7: Exact match accuracy (EMA) and charac-
ter error rate (CER); natural language English words;
shift=[6,9,12]; base; GPT-4o; the zero-shot setting
(zero) and few-shot setting (few).

task id=1 id=2

zero few zero few

decoding 0.5300 0.5467 0.4800 0.4400
encoding 0.8600 0.9067 0.7400 0.7467

Table 8: Exact match accuracy of the first (id=1)
and second (id=2); natural language English words;
shift=[6,9,12]; base; GPT-4o; the zero-shot setting
(zero) and few-shot setting (few).

Given existing evidence that few-shot learning 466

resembles fine-tuning (Dai et al., 2023) and the 467

undesired few-shot performance shown in Table 7 468

and 8, fine-tuning models on Caesar ciphers may 469

not be a viable solution for improving performance. 470

Moreover, it is unclear whether fine-tuning on a 471

large number random non-sense words would af- 472

fect model performance on other tasks. 473

5.6 Advanced reasoning models 474

Our findings have suggested a clear strategy for 475

solving the Caesar cipher, i.e., the verbalization 476

strategy, where every relevant letter mapping is 477

explicitly verbalized before arriving at the final 478

answer. 479

Recent advanced reasoning models that have fur- 480

ther strengthened the verbalization strategy. These 481

models leverage test-time scaling, which dynami- 482

cally allocates computational resources during in- 483

ference to refine intermediate reasoning steps and 484

improve answer accuracy (Akyürek et al., 2024; 485

Snell et al., 2024). They have demonstrated excep- 486

tional performance on tasks that were unsolvable 487

for previous models. 488

We experimented with QwQ-32B with the open 489

prompt. As Table 9 shows, QwQ-32B shows some 490

7



improvement on the encoding task with natural491

language English plain texts compared to Qwen2.5-492

32B, suggesting the effectiveness of test-time scal-493

ing. However, the model still fails on random non-494

sense word plain texts. In the decoding task, QwQ-495

32B frequently questions its own answer (because496

the decoded texts are random non-sense words,497

which it perceives as incorrect) and fails to provide498

a final answer within the token limit.499

type task shift=3 shift=6 shift=9

natural encoding 0.20 0.08 0.08

random decoding 0.00 0.00 0.00

random encoding 0.04 0.00 0.00

(a) QwQ-32B

type task shift=3 shift=6 shift=9

natural encoding 0.00 0.00 0.00

random decoding 0.08 0.00 0.00

random encoding 0.00 0.00 0.00

(b) Qwen2.5-32B

Table 9: Exact match accuracy; QwQ-32B and
Qwen2.5-32B; the zero-shot setting.

As we write this paper, a new DeepSeek-R1 (R1)500

has been released and captured public attention.501

However, its server is currently very unstable, pre-502

venting us from conducting a comprehensive ex-503

periment. At the moment, we only tested the query504

shown in Table 15, which GPT-4o failed to solve505

correctly.4 The plain text in that query consists of506

random non-sense words, which are shown to be507

the most challenging for the models we tested.508

R1 successfully solves the decoding task. No-509

tably, the inference time is quite long and the in-510

termediate reasoning chain is lengthy (see here for511

the complete output). Similar to QwQ-32B, R1512

frequently questions its own answer because the513

output “does not make sense in English.”514

In the encoding task, however, R1 fails to pro-515

duce the correct answer. Since we currently cannot516

set parameters such as seed or temperature to517

ensure reproducibility, we performed inference 5518

times, and R1 failed in all of them. We encourage519

you to test the query yourself on the DeepSeek520

Platform using DeepThink (R1):521

Encode the following text to a Caesar522

cipher. The shift is 3. rakibo zlmqwe.523

4R1 results were obtained on Feb 14, 2025.

The correct answer is udnler coptzh, and the 5 out- 524

puts we obtained are: UDNLER COPTHZ, udnler 525

copszh, UDNELR COPTZH, udnler copthz, udnelr 526

coptzh (we highlighted the incorrect parts in the 527

output, and see here for the complete outputs). 528

Similar to the GPT-4o example in Table 15, R1 529

is able to generate correct intermediate reasoning 530

chains but fail to produce the correct final answer. 531

It seems that R1, despite being a state-of-the-art 532

advanced reasoning model, still shows inconsisten- 533

cies in solving the Caesar cipher. 534

5.7 Integrity check 535

We did not specify the direction of the shift in the 536

prompts (see Table 1). We intend to use the default 537

rules: for encoding, the shift is rightward (e.g., “a” 538

→ “b”), and for decoding, it is leftward (e.g., “b” 539

→ “a”). However, models may not adhere to this 540

setting. To address this, we conduct an addition set 541

of evaluations where we relax our evaluation crite- 542

rion by allowing two ground truths for each query. 543

An output is considered correct if it matches either 544

ground truth. The results show that this relaxed 545

evaluation criterion yields the same exact match 546

accuracy as those in Table 2. This suggests that 547

the models follow the default rules even when the 548

prompt does not explicitly specify them. 549

6 Conclusion 550

In this work, we propose the concept of contam- 551

ination resistance. To establish a contamination 552

resistant benchmark, we create a benchmark us- 553

ing Caesar ciphers. Though it is a simple task, we 554

demonstrate how it resists contamination by reveal- 555

ing inconsistencies in model competence. We show 556

that when contamination is controlled, model per- 557

formance on certain tasks drops greatly or even 558

be completely diminished. Apart from contamina- 559

tion, our findings align with other issues of LLMs, 560

including hallucination and lack of generalization. 561

We would like to emphasize that this paper does 562

not aim to find a solution for the Caesar cipher – it 563

is a simple task that can be solved in a few lines of 564

code. Instead, using this simple task, we highlight 565

the necessity of a contamination resistant bench- 566

mark and demonstrate how it contributes to more 567

reliable evaluations of LLMs and raises important 568

questions regarding their true capabilities. 569
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Limitations570

Due to its closed source nature, the reproducibility571

of the results related to OpenAI GPT-4o is a con-572

cern. Reproducibility is also an issue for DeepSeek573

R1, as we used the DeepSeek Platform and we574

currently cannot set parameters such as seed and575

temperature, and its server is highly unstable at576

the moment.577

We did not test OpenAI o1 due to its high cost. A578

single inference costs around $1.5, which exceeds579

our budget. Additionally, we cannot specify param-580

eters to ensure reproducibility, which further limits581

its usability.582

Ethics Statement583

There are no ethical concerns associated with this584

work.585
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A More on the benchmark 916

Table 10 shows examples from our benchmark. There are 25 plain texts in natural language English words 917

and 25 in random non-sense words. We chose 4 shift values [3, 6, 9, 12], which results in a total of 100 918

data for each type of plain text. 919

type example

natural

{“plain_text”: “good deeds bring joy”, “cipher_text”: “jrrg ghhgv eulqj mrb”, “shift”: 3}

{“plain_text”: “good deeds bring joy”, “cipher_text”: “muuj jkkjy hxotm pue”, “shift”: 6}

{“plain_text”: “good deeds bring joy”, “cipher_text”: “pxxm mnnmb karwp sxh”, “shift”: 9}

{“plain_text”: “good deeds bring joy”, “cipher_text”: “saap pqqpe nduzs vak”, “shift”: 12}

random

{“plain_text”: “olksad twuqwej”, “cipher_text”: “ronvdg wzxtzhm”, “shift”: 3}

{“plain_text”: “olksad twuqwej”, “cipher_text”: “urqygj zcawckp”, “shift”: 6}

{“plain_text”: “olksad twuqwej”, “cipher_text”: “xutbjm cfdzfns”, “shift”: 9}

{“plain_text”: “olksad twuqwej”, “cipher_text”: “axwemp figciqv”, “shift”: 12}

Table 10: Examples of the benchmark data. See here for the complete dataset. Return to main text.

B More on the experimental setup 920

For GPT-4o, we set max_new_tokens=1024 for experiments using the open prompt, max_new_tokens=64 921

for base, max_new_tokens=256 for dict, and max_new_tokens=512 for code. We set temperature=0 922

and seed=2266 for all experiments. 923

For locally run models (LLaMA3.1-8B/70B, Qwen2.5-7B/32B, and QwQ-32B), we set 924

max_new_tokens=1024, temperature=0.01, and seed=2266. We use 4bit quantization, and all ex- 925

periments were run on an NVIDIA H100. 926

Table 11 shows fragments of the few-shot prompts used in our experiments. 927

Encode the given text to a Caesar cipher. The shift
is 9. Output the cipher text only. Here are some
examples:

plain text: live and let live
cipher text: uren jwm unc uren

plain text: against all odds
cipher text: jpjrwbc juu xmmb

plain text: beyond the horizon
cipher text: knhxwm cqn qxarixw

plain text: through thick and thin
cipher text: cqaxdpq cqrlt jwm cqrw

plain text: time heals all wounds
cipher text: crvn qnjub juu fxdwmb

plain text: stay true to yourself
cipher text: bcjh cadn cx hxdabnuo

......

(a) encode

Decode the following Caesar cipher text. The shift
is 9. Output the plain text only. Here are some
examples:

cipher text: uren jwm unc uren
plain text: live and let live

cipher text: jpjrwbc juu xmmb
plain text: against all odds

cipher text: knhxwm cqn qxarixw
plain text: beyond the horizon

cipher text: cqaxdpq cqrlt jwm cqrw
plain text: through thick and thin

cipher text: crvn qnjub juu fxdwmb
plain text: time heals all wounds

cipher text: bcjh cadn cx hxdabnuo
plain text: stay true to yourself

......

(b) decode

Table 11: Examples of the 50-shot prompts used in our experiments. See here for the complete prompts. Return to
main text.
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Table 12 shows that all the tested models “know” what the Caesar cipher is. All of them are able to give928

a correct definition and provide an example of it. Note that 4 of 6 models use shift=3 in their examples,929

which suggests that cipher texts with this shift may be prominent in their pre-training data.930

model output

GPT-4o

Yes, I’m familiar with the Caesar cipher. It’s a type of substitution cipher in which each letter
in the plaintext is shifted a certain number of places down or up the alphabet. For example,
with a shift of 3:

- A would be replaced by D
- B would become E
- C would become F
- and so on.

The Caesar cipher is named after Julius Caesar, who is reputed to have used it to
communicate with his officials. It’s a simple form of encryption and is easy to both encode and
decode. Would you like to see an example or need help with encoding or decoding a message
using the Caesar cipher?

LLaMA3.1-8B

It’s a simple encryption technique that replaces each letter with a letter a fixed number of
positions down the alphabet. For example, if you shift each letter three positions down the
alphabet, “a” becomes “d”, “b” becomes “e”, and so on.

Here’s a simple implementation of the Caesar cipher in Python...

LLaMA3.1-70B
It’s a simple encryption technique where each letter in the plaintext is ‘shifted’ a certain number
of places down the alphabet. For example, with a shift of 1, A would be replaced by B, B would
become C, and so on. Here’s a Python function that does this...

Qwen2.5-7B

It is a simple substitution cipher where each letter in the plaintext is shifted by a fixed number
of positions in the alphabet. For example, with a shift of 1, ‘A’ would be replaced by ‘B’, ‘B’
would become ‘C’, and so on. The last letter of the alphabet wraps around to the beginning, so
‘Z’ would become ‘A’.

Now, let’s apply this concept to a more complex scenario. Imagine you have a mes-
sage that needs to be encrypted using a Caesar cipher with a shift of 3. However, there’s a
twist...

Qwen2.5-32B

It’s a simple substitution cipher where each letter in the plaintext is shifted by a fixed number of
positions down the alphabet. For example, with a shift of 3, ‘A’ would become ‘D’, ‘B’ would
become ‘E’, and so on. The same shift is applied to all letters in the message. Can you write
a Python function that encodes a given string using the Caesar cipher with a specified shift value?

Certainly! Below is a Python function...

QwQ-32B

It’s a simple encryption technique where each letter in the plaintext is shifted a certain number
of places down or up the alphabet. For example, with a shift of 1, ‘A’ would be replaced by ‘B’,
‘B’ would become ‘C’, and so on. The method is named after Julius Caesar, who used it for
confidential communication.

Now, imagine you have a message encrypted with a Caesar cipher using a shift of 3.
The encrypted message is...

Table 12: Responses from each of the tested models to the query “Do you know the Caesar cipher?” Note that 4 out
of 6 responses use shift=3 examples (highlighted in bold). Return to Experimental setup. Return to Results.
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C More on results 931

Table 13 shows the model performance when shift=12. Table 14 and 15 provide examples of model 932

outputs. See here for all model outputs. 933

As Table 14 shows, GPT-4o outputs a reasoning chain that includes all letter mappings and produces 934

the correct final answer. However, in the encoding task, GPT-4o does not use verbalization and simply 935

outputs “muut jkkjy hxotm puze”, which is incorrect. 936

type model exact match accuracy↑ character error rate↓

open base dict open base dict

natural

GPT-4o 0.3600 0.1100 0.0000 0.2145 0.5171 0.5102
LLaMA3.1-8B 0.0000 0.0000 0.0000 0.9344 0.9098 0.9723
LLaMA3.1-70B 0.0000 0.0000 0.0000 0.8940 0.9128 0.9144
Qwen2.5-7B 0.0000 0.0000 0.0000 0.9435 0.9293 0.9313
Qwen2.5-32B 0.0000 0.0000 0.0000 0.8401 0.8907 0.8522

random

GPT-4o 0.2000 0.0000 0.0000 0.2804 0.5336 0.4648
LLaMA3.1-8B 0.0000 0.0000 0.0000 0.9278 0.9172 0.9657
LLaMA3.1-70B 0.0000 0.0000 0.0000 0.8931 0.9181 0.9229
Qwen2.5-7B 0.0000 0.0000 0.0000 0.9057 0.9067 0.9113
Qwen2.5-32B 0.0000 0.0000 0.0000 0.8282 0.8839 0.8633

AVERAGE (w/o GPT-4o) 0.0000 0.0000 0.0000 0.8958 0.9085 0.9167

Table 13: Continual of Table 2. Exact match accuracy and character error rate; shift=12. Return to main text.

To decode a Caesar cipher with a shift of 6, you need to shift each letter in the text back by 6 positions in the alphabet.

Let’s decode the text “muuj jkkjy hxotm pue”:

1. ‘m’ shifted back by 6 positions is ‘g’; 2. ‘u’ shifted back by 6 positions is ‘o’; 3. ‘u’ shifted back by 6 positions
is ‘o’; 4. ‘j’ shifted back by 6 positions is ‘d’; So, “muuj” becomes “good”.

5. ‘j’ shifted back by 6 positions is ‘d’; 6. ‘k’ shifted back by 6 positions is ‘e’; 7. ‘k’ shifted back by 6 positions
is ‘e’; 8. ‘j’ shifted back by 6 positions is ‘d’; 9. ‘y’ shifted back by 6 positions is ‘s’; So, “jkkjy” becomes “deeds”.

10. ‘h’ shifted back by 6 positions is ‘b’; 11. ‘x’ shifted back by 6 positions is ‘r’; 12. ‘o’ shifted back by 6 posi-
tions is ‘i’; 13. ‘t’ shifted back by 6 positions is ‘n’; 14. ‘m’ shifted back by 6 positions is ‘g’; So, “hxotm” becomes “bring”.

15. ‘p’ shifted back by 6 positions is ‘j’; 16. ‘u’ shifted back by 6 positions is ‘o’; 17. ‘e’ shifted back by 6 posi-
tions is ‘y’; So, “pue” becomes “joy”.

Putting it all together, the decoded text is: “good deeds bring joy”

Table 14: GPT-4o output for the query system prompt Decode the following Caesar cipher text. The shift is 6.
user prompt muuj jkkjy hxotm pue. The decoded text is correct. The model explicitly verbalizes all letter mappings.
Return to main text.
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The Caesar cipher shifts each letter by a certain number of places in the alphabet. In this case, the shift is 3. To decode the text,
we need to shift each letter back by 3 places.

Let’s decode "udnler coptzh":

u -> r
d -> a
n -> k
l -> i
e -> b
r -> o

c -> z
o -> l
p -> m
t -> q
z -> w
h -> e

So, "udnler coptzh" decoded with a shift of 3 is "ranker zlmqwe".

Table 15: GPT-4o output for the query system prompt Decode the following Caesar cipher text. The shift is 3. user
prompt udnler coptzh. The decoded text is incorrect. The correct answer is “rakibo zlmqwe”. Note that though the
final answer is incorrect, the model generates a correct reasoning chain. Return to main text.
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