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Abstract

The rapid development of large language mod-
els (LLMs) has transformed the landscape of
natural language processing. Evaluating LLMs
properly is crucial for understanding their po-
tential and addressing concerns such as safety.
However, LLM evaluation is confronted by
various factors, among which contamination
stands out as a key issue that undermines the
reliability of evaluations. In this work, we intro-
duce the concept of contamination resistance
to address this challenge. We propose a bench-
mark based on Caesar ciphers (e.g., “ab” —
“bc” when the shift is 1), which, despite its
simplicity, is an excellent example of a con-
tamination resistant benchmark. We test this
benchmark on widely used LLMs under var-
ious settings, and we find that these models
struggle with this benchmark when contamina-
tion is controlled. Our findings reveal issues
in current LLMs and raise important questions
regarding their true capabilities. Our work con-
tributes to the development of contamination
resistant benchmarks, enabling more rigorous
LLM evaluation and offering insights into the
true capabilities and limitations of LLMs.'

1 Introduction

The advent of large language models (LLMs) has
largely changed the field of natural language pro-
cessing and many facets of daily life (Brown et al.,
2020; Chung et al., 2022; Chowdhery et al., 2023;
Dubey et al., 2024). Extensive research has as-
serted that these models possess “human-like abili-
ties” such as reasoning (Kojima et al., 2022; Wei
et al., 2022a,b; Bubeck et al., 2023; Hagendorff
et al., 2023; Itzhak et al., 2024; Xie et al., 2024).
However, LLM evaluation is often confronted by
various factors, and contamination, also known as
test set contamination or data leakage, stands out
as a key issue. Given that LLMs are trained on

'Our code and data are available at https: //anonymous.
4open.science/r/contamination-resistant-E@DA4.

vast web corpora, there is concern that their appar-
ent reasoning skills are superficial, and that they
are merely retrieving memorized information from
their training data (Sainz et al., 2023; Dong et al.,
2024; Jiang et al., 2024; Li and Flanigan, 2024;
Ravaut et al., 2024; White et al., 2024).

A key strategy to address contamination is to
create a dynamic benchmark that receives continu-
ous updates, with new test instances added after a
model’s training cutoff (Jain et al., 2024; Roberts
et al., 2024; Shabtay et al., 2024; White et al., 2024;
Zhang et al., 2024; Mahdavi et al., 2025). The
effectiveness of this method rests on a critical as-
sumption: the models in question have not been
trained on these newly added instances. However,
given the black box nature of current LLMs, es-
pecially commercial ones, it is almost impossible
to determine whether developers have continued
training their models after the cutoff using the up-
dated instances, and, if so, when this occurred. As
a result, the reliability and validity of the newly
added data still remain questionable. Furthermore,
creating new instances can be laborious, and main-
taining a consistent level of difficulty between old
and new instances is challenging, which is crucial
for preserving the fairness of model performance
comparisons across old and new instances.

Based on these considerations, we propose the
concept of contamination resistance. We argue that
a contamination resistant benchmark should meet
the following criteria: (a) it should assess certain
capabilities of LLMs; (b) it should be dynamic,
evolving over time to prevent contamination, and
ensure that contamination provides no advantage
in model performance; (c) while being dynamic, it
should consistently assess the same set of capabili-
ties and maintain the same level of task complexity
to ensure fairness in evaluation over time; (d) the
effort required to curate new instances should be
minimal, making it more update-able than existing
static benchmarks.
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Figure 1: We propose the concept of contamination resistance and establish a contamination resistant benchmark
based on Caesar ciphers, which meets the following criteria: (a) this benchmark tests several capabilities, including
logical deduction, arithmetic reasoning, and generalization; (b) this benchmark is dynamic, evolving over time so
that an LLM can not memorize all possible queries, and the level of task complexity is consistent; (c) it is effortless
to curate new test instances, making it more update-able than static benchmarks.

We show that a benchmark based on Caesar ci-
phers is an excellent example of a contamination
resistant benchmark (see Figure 1). The Caesar
cipher is a simple substitution cipher where each
letter in a text is shifted some places down or up the
alphabet. Encoding or decoding a Caesar cipher
demands multiple capabilities, including logical de-
duction, arithmetic reasoning, and generalization.
This benchmark is dynamic: users can generate an
infinite number of unique texts, and it is unlikely
that an LLLM can memorize all possible queries.
Despite its dynamic nature, this benchmark consis-
tently evaluates the same underlying abilities and
maintains the same level of task complexity. More-
over, this benchmark is extremely light weight. It
requires little effort to generate new test instances
and to perform inference.

Despite that solving a Caesar cipher is essen-
tially a simple linear mapping task, and that the
state-of-the-art LLMs perform exceptionally well
on benchmarks that require much more complex
reasoning abilities, they struggle with the Caesar
cipher. We summarize our findings as inconsistent
competence of LLMs, which add to the grow-
ing evidence that when contamination is controlled,
LLMs are not performing as well as expected, high-
lighting the issue of contamination. Our findings
also align with existing evidence of hallucination
and the lack of generalization in LLMs.

Our contributions are summarized as follows:

* We propose the concept of contamination re-
sistance and define the criteria a contamina-
tion resistant benchmark should meet.

* To establish a contamination resistant bench-
mark, we propose a benchmark based on Cae-
sar ciphers and show that LLMs struggle with
them when contamination is controlled.

* Our work paves the way for the development
of contamination resistant benchmarks, en-
ables more rigorous evaluation of LLMs, and
sheds light on their true capabilities.

2 Related work
2.1 Model capabilities

The exceptional performance of LLMs on vari-
ous tasks has led to claims that these models have
gained “human-like abilities”, such as reasoning
(Kojima et al., 2022; Wei et al., 2022a,b; Bubeck
et al., 2023; Saparov and He, 2023; Shi et al., 2023;
Webb et al., 2023). However, evidence that contra-
dicts these claims exists, particularly concerning
the phenomenon of hallucination (Bang et al., 2023;
McKenna et al., 2023; Miindler et al., 2023; Zhang
et al., 2023a). Schaeffer et al. (2023) argue that
LLMSs’ abilities appear due to the choice of metric
rather than fundamental changes in model behav-
ior with scale. Another line of research suggests
that LLMs rely more on memory than genuine rea-
soning abilities to solve certain tasks (Reynolds
and McDonell, 2021; Merullo et al., 2023; Wang
et al., 2023; Zheng et al., 2023; Li et al., 2024;
Lu et al., 2024b). Stefinik and Kadl&ik (2023)
introduce a conceptual learning method aimed at
disentangling models’ in-context learning ability
from memorization. Their findings indicate that
models rely heavily on their pre-trained knowledge
than benefiting from the in-context concepts.
Whether LLMs truly possess “human-like abili-
ties” has now gone beyond a technical problem. It
affects how users interact with these models and
has significant safety implications (Lu et al., 2024a;
Bengio et al., 2024). By proposing the concept of
contamination resistance, this work sheds light on
the true capabilities of LLMs and helps promote
better interaction between humans and LLMs.



2.2 Model evaluation

Evaluating LLMs properly is crucial to understand
their potential as well as addressing concerns such
as safety. The proliferation of benchmarks has led
to a multifaceted evaluation process that covers a
variety of abilities (Rajpurkar et al., 2018; Wang
et al., 2019; Cobbe et al., 2021; Srivastava et al.,
2023). However, LLM evaluation is confronted by
various factors, among which contamination stands
out as one of the key issues. Contamination has
become increasingly prominent given that current
LLMs are trained on massive web corpora and are
scaled up to billions of parameters. Furthermore,
investigating potential data leakage is challenging
because the training data are often closed source.
These factors have severely undermined the relia-
bility of evaluations (Sainz et al., 2023; Balloccu
et al., 2024; Dong et al., 2024; Jiang et al., 2024;
Ravaut et al., 2024; White et al., 2024). A growing
body of research has revealed that LLMs perform
better on problems that released before their train-
ing cutoff, and that some LLMs are overfitted to
the testing sets of popular reasoning benchmarks
(Eisenschlos et al., 2023; Li and Flanigan, 2024;
Roberts et al., 2024; Zhang et al., 2024).

A straight forward approach to address contami-
nation is to ensure that the LLM has never been ex-
posed to the evaluation data during training. Chan-
dran et al. (2024) introduce the notion of private
benchmarking, where the evaluation data remain
confidential and only the evaluation results are re-
vealed. However, this approach may raise concerns
regarding transparency and reproducibility. An-
other line of work focuses on dynamic benchmark-
ing which features frequently updated questions
from recent information sources introduced after
a model’s training cutoff (Jain et al., 2024; Shab-
tay et al., 2024; White et al., 2024; Mahdavi et al.,
2025). A key assumption of this method is that
the model has not been trained on data beyond the
cutoff, which may not hold as model developers
may continue training their models on newer infor-
mation sources after the cutoff. To address these
concerns, we propose the concept of contamination
resistance, and we show how it contributes to more
reliable LLM evaluations.

3 A contamination resistant benchmark
based on Caesar ciphers

The Caesar cipher is a substitution cipher in which
each letter is shifted certain places down or up the

alphabet. Solving a Caesar cipher requires several
capabilities, including the following:

* Logical deduction: the ability to deduce, for
example, “a” — “g” when shift=6, given the

knowledge that “a” — “d” when shift=3.

* Arithmetic reasoning: the ability to calculate
a letter’s position given a shift.

* Generalization: the ability to extend the ca-
pability of solving, for example, shift=3 ci-
phers, to solving ciphers with other shifts.

We refer to the text used for encoding a Cae-
sar cipher as plain text, and the encoded text as
cipher text. Based on the observation that LLM
performance is influenced by the probability of
the task and the probability of the input/output in
their pre-training data (McCoy et al., 2024a,b), we
curated the benchmark using ciphers with differ-
ent shifts (i.e., different tasks) and different types
of plain texts that consist of natural language En-
glish words (natural) and random non-sense words
(random) (i.e., different inputs/outputs). Table 10
in Appendix A shows examples of the data used
in the benchmark. In practice, words from any al-
phabetical language can be used as the plain text
for the Caesar cipher. Even a made-up alphabet
can be used, provided that it is informed in the
prompt. Caesar ciphers are dynamic, as they allow
the generation of an infinite number of instances.

The dynamic nature of the data is a crucial as-
pect of this benchmark that makes it contamination
resistant. It is also important to note that regardless
of the shifts and types of plain text used to gen-
erate the cipher, the capabilities required to solve
the Caesar cipher remain the same. Intuitively, it
should be easy to generalize from, for example,
solving the Caesar cipher with shift=3 to solv-
ing one with shift=6. Given the linear mapping
nature of the Caesar cipher, solving ciphers with
plain texts consisting of random words is not more
challenging than solving those with plain texts in
natural language English words. Furthermore, this
benchmark is lightweight—it is easy to generate a
large number of ciphers, and since the ciphers are
typically not lengthy, it does not cost much time
during inference.

We have 25 plain texts in natural language En-
glish words and 25 in random non-sense words.
With 4 shift values [3, 6,9, 12], this results in a to-
tal of 100 data for each type of plain text. See Table
10 for examples of the data in our benchmark.



4 Experimental setup

Model We tested widely used LLMs on our
benchmark: OpenAl GPT-40?, LLaMA3.1-8B/70B
(Dubey et al., 2024), Qwen2.5-7B/32B (Yang et al.,
2024), and QwQ-32B. These models cover a range
of sizes and different architectures. All of the mod-
els “know” what the Caesar cipher is (see Table
12). We utilize the OpenAl API, making requests
without employing any external tools.

type prompt

[Encode/Decode] the following [text to a Caesar

open cipher/Caesar cipher text]. The shift is $#$.

[Encode/Decode] the following [text to a Caesar
cipher/Caesar cipher text]. The shift is $#$. Out-
put the cipher text only.

base

[Encode/Decode] the following [text to a Cae-
sar cipher/Caesar cipher text]. The shift is $#$.
Output a lookup table and the cipher text in
a Python dictionary: {“lookup_table”: {3,
“cipher_text”:..J}. Output the dictionary only.

dict

[Encode/Decode] the following [text to a Caesar
cipher/Caesar cipher text]. The shift is $#$. Write
a Python function and generate the answer. Out-
put the function and the cipher text only.

code

Table 1: The prompts used in our experiments. The
number of shifts ($#$) is given in all the prompts.

Prompt Table 1 shows the prompts used in our ex-
periments. The open prompt is a straight forward
one that most users may use initially. It is open-
ended, with no specifications regarding the out-
put format. The base prompt serves as a baseline
where the model is instructed to generate only the
cipher text or plain text. The dict prompt instructs
the model to produce a lookup table as an interme-
diate reasoning step before generating the answer.
The code prompt instructs the model to write a
function and then generate the answer. Intuitively,
using programming code is an effective approach
for solving the Caesar cipher, as it is essentially a
linear mapping task. The number of shifts is given
in all the prompts. We keep the prompts in their
simplest form, specifying only the task (encoding
or decoding), the number of shifts, and the desired
output format. Given the simplicity of the Caesar
cipher, we believe these prompts are adequate for
solving it. All the prompts except for open specify
the output format for easier processing.

Evaluation We evaluate the output using exact
match accuracy and character error rate. The char-

2GPT-4o results were obtained on Dec 30, 2024.

acter error rate is a more continuous metric, allow-
ing us to capture any partial improvements in the
performance of the models. We tested our bench-
mark under both the zero-shot and few-shot settings
(see Table 11 for the few-shot prompts we used).
As we do not specify the output format in open,
we manually extracted the final answer from the
generated text to assess performance.

See Appendix B for more details regarding the
experimental setup.

5 Results

Table 2 shows the overall results of the experiments.
GPT-4o is the only model that shows some success
in certain cases, whereas all the other models fail
to solve this task almost entirely. The performance
of GPT-40 shows a strong negative correlation be-
tween the two metrics (r = —0.6395). The compar-
ison of character error rates between LLaMA3.1-
8B and LLaMA3.1-70B, as well as Qwen2.5-7B
and Qwen2.5-32B, indicates that larger models
have advantages over their smaller counterparts.

Though most models fail on this benchmark,
they still generate reasoning chains that appear cor-
rect, which reflects the issue of hallucination.

In the following sections, we analyze the perfor-
mance of LLMs on our benchmark across different
variables and show its resistance to contamination.
We summarize our findings as inconsistent compe-
tence in LLMs. Our discussion focuses on GPT-40
since it is the only model that achieves some suc-
cess in exact match accuracy.

5.1 The effect of shift

Table 2 shows clear inconsistencies in model per-
formance between shift=3 and other shifts re-
gardless of the shift, type of plain text, or prompt.
We attribute these inconsistencies to contamina-
tion, as Caesar ciphers with shift=3 are more
prevalent in the web corpora than those with other
shifts (McCoy et al., 2024a) (see also Table 12).
LLMs exhibit inconsistent competence across
tasks, which indicates that they lack generaliza-
tion in these tasks.

When using the open prompt, GPT-40 outputs a
reasoning chain that verbalizes all the letter map-
pings regardless of the shift (see Table 14 for an
example). However, this occurs only in the decod-
ing task®, suggesting that the model was trained

3In the encoding task, GPT-40 outputs only the final an-
swer without reasoning chains.
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shift=3 shift=6 shift=9
type model
open base dict open base dict open base dict
GPT-40 0.8200 0.6400 0.8000 0.4000 0.1100 0.1000 0.3400 0.0400 0.0200
LLaMA3.1-8B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
natural LLaMA3.1-70B  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qwen2.5-7B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qwen2.5-32B 0.1400 0.0400 0.0200 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000
GPT-40 0.1600 0.1000 0.0600 0.2000 0.0000 0.0000 0.1800 0.0200 0.0200
LLaMA3.1-8B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
random [LaMA3.1-70B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qwen2.5-7B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qwen2.5-32B 0.0400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AVERAGE (w/o GPT-40) 0.0225 0.0050 0.0025 0.0125 0.0000 0.0000 0.0000 0.0000 0.0000
(a) exact match accuracyt
shift=3 shift=6 shift=9
type model
open base dict open base dict open base dict

GPT-40 0.0430 0.1234 0.0802 0.2172 0.4440 0.4058 0.2357 0.5648 0.5501
LLaMA3.1-8B 0.8709 0.9076 09385 0.8932 0.9288 0.9648 09117 0.9326 0.9584
natural LLaMA3.1-70B  0.7208 0.7756 0.8202 0.8692 0.9056 0.9232 09114 09172 09112
Qwen2.5-7B 0.7972 0.8338 0.8577 0.8462 0.9052 09198 0.9161 0.9196 009176
Qwen2.5-32B 0.5630 0.6714 0.7152 0.5614 0.7873 0.8018 0.7965 0.8516 0.8307
GPT-40 0.2414 0.3082 0.2490 0.2561 0.3892 0.3545 0.2747 0.4965 0.4330
LLaMA3.1-8B 0.8554 0.8868 0.9208 0.8880 0.9104 0.9506 0.9398 0.9068 0.9341
random LLaMA3.1-70B 0.7931 0.8564 0.8493 0.8262 0.9067 0.8742 0.8563 0.9189 0.8957
Qwen2.5-7B 0.7765 0.8303 0.8385 0.8437 0.8744 0.8968 0.8969 0.8902 009116
Qwen2.5-32B 0.4830 0.6632 0.6923 0.5995 0.7773 0.7878 0.7799 0.8285 0.8374
AVERAGE (w/0 GPT-40) 0.7325 0.8031 0.8290 0.7909 0.8745 0.8899 0.8761 0.8957 0.8996

(b) character error rate.

Table 2: Exact match accuracy and character error rate. The rest of the results can be found in Table 13.

primarily on decoding tasks. While verbalization
generally leads to better performance (see Table 3),
we observe cases where the generated reasoning
chain is correct but the final answer is incorrect
(see Table 15).

task type shift=3 shift=6 shift=9
. natural 1.00 0.80 0.68
decoding
random 0.28 0.40 0.32
. natural 0.64 0.00 0.00
encoding
random 0.04 0.00 0.04

Table 3: Exact match accuracy; open; GPT-40; the
zero-shot setting. Verbalization is only observed in the
decoding task.

5.2 The effect of plain text

Table 2 and 3 indicate that using random non-sense
words as plain text diminishes GPT-40’s perfor-
mance on the task, even when shift=3 where the
model performs well with natural language English

words as plain text. This could be attributed to
contamination, as the model may have memorized
the mappings of certain natural language words to
their corresponding cipher texts. This is further
supported by the observation that GPT-40 performs
much better with natural language English words
than with random non-sense words as plain text
when shift=3 with the base prompt, which in-
structs the model to generate only the final answer
with no reasoning chains. The simplest explana-
tion for this performance gap is that the model has
memorized this mappings.

GPT-40 exhibits inconsistent competence
across different types of plain text, which again
indicates a lack of generalization.

5.3 The effect of prompt

Table 2 suggests that GPT-40 performs best with
the open prompt. As noted earlier, GPT-40 em-
ploys a verbalization strategy, explicitly listing all
letter mappings in a reasoning chain, which im-
proves its performance. The same strategy is ob-



type model legal ratef accuracyt
GPT-40 0.9900 1.0000
LLaMA3.1-8B 0.4550 0.4400

natural LLaMA3.1-70B 0.4750 0.1100
Qwen2.5-7B 0.4200 0.1550
Qwen2.5-32B 0.8750 0.6100
GPT-40 0.9750 1.0000
LLaMA3.1-8B 0.5900 0.1600

random LLaMA3.1-70B 0.7900 0.4250
Qwen2.5-7B 0.5650 0.1900
Qwen2.5-32B 0.9400 0.5950

Table 4: Legal rate and accuracy of lookup tables gener-
ated using dict; the zero-shot setting.

served in Qwen2.5-32B, which also shows some
success when shift=3 with the open prompt.

Compared to the base prompt, only GPT-40 ben-
efits from the dict prompt, showing improvement
in both exact match accuracy and character error
rate. For the other models, dict does not lead to a
lower character error rate in general.

We further examine the correctness of the lookup
tables models generated using dict. Specifically,
we look into the legal rate (i.e., whether the lookup
table is a legitimate Python dictionary) and accu-
racy (i.e., whether the mappings of the letters in the
lookup table are correct) of the lookup table. For
GPT-40, we specified json_object as the output
format in the API.

As shown in Table 4, GPT-40, and Qwen2.5-
32B are capable of generating lookup tables that
are correct in both format and content, and it is
independent of the type of plain text. There is a
huge discrepancy between the correctness of the
lookup tables and the accuracy of the final outputs
shown in Table 2. Though a lookup table intu-
itively serves as an intermediate reasoning chain
equivalent to the one produced by the open prompt,
GPT-40 performs worse with dict than with open.
This suggests that reasoning chains in the form of a
lookup table are less effective than those in natural
language. It is possible that the generated lookup ta-
bles are not the result of reasoning but rather some-
thing the model memorizes. Our findings suggest
an inconsistency in LLM competence between
generating lookup tables and final answers.

We only experimented with the code prompt us-
ing GPT-40. The code prompt does not lead to su-
perior performance compared to the other prompts
(see Figure 2). Like other prompts, it achieves bet-
ter performance when the plain text is natural lan-
guage English words. To examine the correctness

of the code generated by the model, we execute the
code and evaluate the accuracy of the output. We
find that all the generated code runs successfully
and produces correct outputs regardless of the type
of plain text and shift. Our findings suggest that
there is an inconsistency in LLM competence be-
tween generating code and final answers. Again,
this suggests that the model may have simply mem-
orized the code rather than performing true reason-
ing.
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Figure 2: Exact match accuracy (EMA); GPT-40; the
zero-shot setting.

5.4 The effect of output position

Table 5 shows the exact match accuracy for the first,
second, and third characters in the outputs. For all
models, the accuracy is much higher for the initial
characters compared to the full-sequence accuracy
shown in Table 2. Though plain texts consisting of
natural language English words lead to better per-
formance than those with random non-sense words,
the impact of plain text type is less prominent than
in Table 2. There is a noticeable decline in accu-
racy from the first character to the third character,
suggesting that models exhibit inconsistent com-
petence in handling characters in different posi-
tions. This also implies the autoregressive nature
of LLMs, that models generate higher-probability
tokens even in deterministic tasks like solving the
Caesar cipher, where the probability should not
matter (McCoy et al., 2024a).

Table 6 shows the accuracy of the initial char-
acters generated by GPT-40 using open, the best
performing prompt. Notably, when shift=3 and
the plain text is in natural language English words,
GPT-40 maintains consistent accuracy across dif-
ferent character positions, which is not observed
in any other cases. Additionally, GPT-40’s ability
to decode or encode the second and third charac-
ters (char_id=1 and char_id=2) when shift=3
depends on the type of plain text. This indicates
that the model may memorize the plain-text-to-



type model id=0 id=1 id=2
GPT-40 0.8717 0.7467 0.6483
LLaMA3-8B 0.1100 0.1467 0.0767
natural LLaMA3-70B 0.2650 0.2367 0.1400
Qwen2.5-7B 0.2817 0.2333  0.1100
Qwen2.5-32B  0.4900 0.3267 0.2100
GPT-40 0.8350 0.6833 0.5167
LLaMA3-8B 0.0733  0.1267 0.0683
random LLaMA3-70B 0.1800 0.1583 0.0733
Qwen2.5-7B 0.2350 0.1517 0.1383
Qwen2.5-32B  0.4250 0.2500 0.1683

Table 5: Exact match accuracy of the first (1d=0), sec-
ond (id=1), and third output character (id=2); the zero-
shot setting. LLaMA3 is for LLaMA3.1.

cipher mappings specifically for shift=3 and nat-
ural language English plain texts.

shift char_id=0 char_id=1 char_id=2
3 0.98 1.00 1.00
6 0.92 0.96 0.82
9 0.92 0.88 0.76
12 0.84 0.80 0.78
(a) natural
shift char_id=0 char_id=1 char_id=2
3 0.94 0.82 0.76
6 0.98 0.88 0.76
9 0.98 0.82 0.72
12 0.92 0.84 0.64
(b) random

Table 6: Exact match accuracy of the first (char_id=0),
second (char_id=1), and third output character
(char_id=2); open; GPT-40; the zero-shot setting.

5.5 The effect of shot

Given that LLMs demonstrate success in in-context
learning and can learn simple functions in-context
at inference time (Brown et al., 2020; Garg et al.,
2022; Akyiirek et al., 2023; Zhang et al., 2023b)
and that the Caesar cipher is essentially a linear
mapping task, state-of-the-art LLMs should be ca-
pable of solving the Caesar cipher with few-shot
prompts. We include 50 demonstrations in the
prompts (see Table 11). These demonstrations have
already covered the mappings for all letters in the
English alphabet. We tested GPT-4o0 to encode or
decode cipher texts with shift=[6,9,12] using
the base prompt, since it does not perform in the
zero-shot setting under these conditions (see Table
2). Contrary to intuition, GPT-40 does not benefit
from the few-shot demonstrations, as shown in Ta-

ble 7 and 8. We observe almost no improvement
in exact match accuracy and character error rate
for the full sequence, and there is only a slight im-
provement in GPT-40’s performance on the second
and third characters.

task EMAT CER|
zero few zero few
decoding 0.1700 0.2400 0.5521 0.5848
encoding 0.1700 0.0800 0.2961 0.4011

Table 7: Exact match accuracy (EMA) and charac-
ter error rate (CER); natural language English words;
shift=[6,9,12]; base; GPT-40; the zero-shot setting
(zero) and few-shot setting (few).

task id=1 id=2
zero few zero few
decoding 0.5300 0.5467 0.4800 0.4400
encoding 0.8600 0.9067 0.7400 0.7467

Table 8: Exact match accuracy of the first (id=1)
and second (id=2); natural language English words;
shift=[6,9,12]; base; GPT-40; the zero-shot setting
(zero) and few-shot setting (few).

Given existing evidence that few-shot learning
resembles fine-tuning (Dai et al., 2023) and the
undesired few-shot performance shown in Table 7
and 8, fine-tuning models on Caesar ciphers may
not be a viable solution for improving performance.
Moreover, it is unclear whether fine-tuning on a
large number random non-sense words would af-
fect model performance on other tasks.

5.6 Advanced reasoning models

Our findings have suggested a clear strategy for
solving the Caesar cipher, i.e., the verbalization
strategy, where every relevant letter mapping is
explicitly verbalized before arriving at the final
answer.

Recent advanced reasoning models that have fur-
ther strengthened the verbalization strategy. These
models leverage test-time scaling, which dynami-
cally allocates computational resources during in-
ference to refine intermediate reasoning steps and
improve answer accuracy (Akyiirek et al., 2024;
Snell et al., 2024). They have demonstrated excep-
tional performance on tasks that were unsolvable
for previous models.

We experimented with QwQ-32B with the open
prompt. As Table 9 shows, QwQ-32B shows some



improvement on the encoding task with natural
language English plain texts compared to Qwen2.5-
32B, suggesting the effectiveness of test-time scal-
ing. However, the model still fails on random non-
sense word plain texts. In the decoding task, QwQ-
32B frequently questions its own answer (because
the decoded texts are random non-sense words,
which it perceives as incorrect) and fails to provide
a final answer within the token limit.

type task shift=3 shift=6 shift=9
natural  encoding 0.20 0.08 0.08
random decoding 0.00 0.00 0.00
random encoding 0.04 0.00 0.00
(a) QwQ-32B
type task shift=3 shift=6 shift=9
natural  encoding 0.00 0.00 0.00
random decoding 0.08 0.00 0.00
random encoding 0.00 0.00 0.00
(b) Qwen2.5-32B
Table 9: Exact match accuracy; QwQ-32B and

Qwen2.5-32B; the zero-shot setting.

As we write this paper, a new DeepSeek-R1 (R1)
has been released and captured public attention.
However, its server is currently very unstable, pre-
venting us from conducting a comprehensive ex-
periment. At the moment, we only tested the query
shown in Table 15, which GPT-4o0 failed to solve
correctly.* The plain text in that query consists of
random non-sense words, which are shown to be
the most challenging for the models we tested.

R1 successfully solves the decoding task. No-
tably, the inference time is quite long and the in-
termediate reasoning chain is lengthy (see here for
the complete output). Similar to QwQ-32B, R1
frequently questions its own answer because the
output “does not make sense in English.”

In the encoding task, however, R1 fails to pro-
duce the correct answer. Since we currently cannot
set parameters such as seed or temperature to
ensure reproducibility, we performed inference 5
times, and R1 failed in all of them. We encourage
you to test the query yourself on the DeepSeek
Platform using DeepThink (R1):

Encode the following text to a Caesar
cipher. The shift is 3. rakibo zilmgwe.

4R1 results were obtained on Feb 14, 2025.

The correct answer is udnler coptzh, and the 5 out-
puts we obtained are: UDNLER COPTHZ, udnler
copszh, UDNELR COPTZH, udnler copthz, udnelr
coptzh (we highlighted the incorrect parts in the
output, and see here for the complete outputs).
Similar to the GPT-40 example in Table 15, R1
is able to generate correct intermediate reasoning
chains but fail to produce the correct final answer.
It seems that R1, despite being a state-of-the-art
advanced reasoning model, still shows inconsisten-
cies in solving the Caesar cipher.

5.7 Integrity check

We did not specify the direction of the shift in the
prompts (see Table 1). We intend to use the default
rules: for encoding, the shift is rightward (e.g., “a”
— “b”), and for decoding, it is leftward (e.g., “b”
— “a”). However, models may not adhere to this
setting. To address this, we conduct an addition set
of evaluations where we relax our evaluation crite-
rion by allowing two ground truths for each query.
An output is considered correct if it matches either
ground truth. The results show that this relaxed
evaluation criterion yields the same exact match
accuracy as those in Table 2. This suggests that
the models follow the default rules even when the
prompt does not explicitly specify them.

6 Conclusion

In this work, we propose the concept of contam-
ination resistance. To establish a contamination
resistant benchmark, we create a benchmark us-
ing Caesar ciphers. Though it is a simple task, we
demonstrate how it resists contamination by reveal-
ing inconsistencies in model competence. We show
that when contamination is controlled, model per-
formance on certain tasks drops greatly or even
be completely diminished. Apart from contamina-
tion, our findings align with other issues of LLMs,
including hallucination and lack of generalization.

We would like to emphasize that this paper does
not aim to find a solution for the Caesar cipher — it
is a simple task that can be solved in a few lines of
code. Instead, using this simple task, we highlight
the necessity of a contamination resistant bench-
mark and demonstrate how it contributes to more
reliable evaluations of LL.Ms and raises important
questions regarding their true capabilities.


https://api-docs.deepseek.com/news/news250120
https://anonymous.4open.science/r/contamination-resistant-E0D4/r1_examples/r1-random_nonsense_word-decoding.md
https://platform.deepseek.com
https://platform.deepseek.com
https://platform.deepseek.com
https://anonymous.4open.science/r/contamination-resistant-E0D4/r1_examples/

Limitations

Due to its closed source nature, the reproducibility
of the results related to OpenAl GPT-40 is a con-
cern. Reproducibility is also an issue for DeepSeek
R1, as we used the DeepSeek Platform and we
currently cannot set parameters such as seed and
temperature, and its server is highly unstable at
the moment.

We did not test OpenAl o1 due to its high cost. A
single inference costs around $1.5, which exceeds
our budget. Additionally, we cannot specify param-
eters to ensure reproducibility, which further limits
its usability.

Ethics Statement

There are no ethical concerns associated with this
work.
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A More on the benchmark

Table 10 shows examples from our benchmark. There are 25 plain texts in natural language English words
and 25 in random non-sense words. We chose 4 shift values [3, 6,9, 12], which results in a total of 100
data for each type of plain text.

type example

{“plain_text”: “good deeds bring joy”, “cipher_text”: “jrrg ghhgv eulqj mrb”, “shift”: 3}

{“plain_text”: “good deeds bring joy”, “cipher_text”: “muuj jkkjy hxotm pue”, “shift”: 6}

natural
{“plain_text”: “good deeds bring joy”, “cipher_text”: “pxxm mnnmb karwp sxh”, “shift”: 9}
{“plain_text”: “good deeds bring joy”, “cipher_text”: “saap pqgpe nduzs vak”, “shift”: 12}
{“plain_text”: “olksad twuqwej”, “cipher_text”: “ronvdg wzxtzhm”, “shift”: 3}

random {“plain_text”: “olksad twuqwej”, “cipher_text”: “urqygj zcawckp”, “shift”: 6}

{“plain_text”: “olksad twuqwej”, “cipher_text”: “xutbjm cfdzfns”, “shift”: 9}

{“plain_text”: “olksad twuqwej”, “cipher_text”: “axwemp figciqv”, “shift”: 12}

Table 10: Examples of the benchmark data. See here for the complete dataset. Return to main text.

B More on the experimental setup

For GPT-40, we set max_new_tokens=1024 for experiments using the open prompt, max_new_tokens=64
for base, max_new_tokens=256 for dict, and max_new_tokens=512 for code. We set temperature=0
and seed=2266 for all experiments.

For locally run models (LLaMA3.1-8B/70B, Qwen2.5-7B/32B, and QwQ-32B), we set
max_new_tokens=1024, temperature=0.01, and seed=2266. We use 4bit quantization, and all ex-
periments were run on an NVIDIA H100.

Table 11 shows fragments of the few-shot prompts used in our experiments.

Encode the given text to a Caesar cipher. The shift
is 9. Output the cipher text only. Here are some
examples:

plain text: live and let live
cipher text: uren jwm unc uren

plain text: against all odds
cipher text: jpjrwbc juu xmmb

plain text: beyond the horizon
cipher text: knhxwm cqn gxarixw

plain text: through thick and thin
cipher text: cqaxdpq cqrlt jwm cqrw

plain text: time heals all wounds
cipher text: crvn gnjub juu fxdwmb

plain text: stay true to yourself
cipher text: bcjh cadn cx hxdabnuo

Decode the following Caesar cipher text. The shift
is 9. Output the plain text only. Here are some
examples:

cipher text: uren jwm unc uren
plain text: live and let live

cipher text: jpjrwbc juu xmmb
plain text: against all odds

cipher text: knhxwm cqn gxarixw
plain text: beyond the horizon

cipher text: cqaxdpq cqrlt jwm cqrw
plain text: through thick and thin

cipher text: crvn qnjub juu fxdwmb
plain text: time heals all wounds

cipher text: bcjh cadn cx hxdabnuo
plain text: stay true to yourself

(a) encode

(b) decode

Table 11: Examples of the 50-shot prompts used in our experiments. See here for the complete prompts. Return to
main text.
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Table 12 shows that all the tested models “know” what the Caesar cipher is. All of them are able to give
a correct definition and provide an example of it. Note that 4 of 6 models use shift=3 in their examples,
which suggests that cipher texts with this shift may be prominent in their pre-training data.

model output

Yes, I'm familiar with the Caesar cipher. It’s a type of substitution cipher in which each letter
in the plaintext is shifted a certain number of places down or up the alphabet. For example,
with a shift of 3:

- A would be replaced by D

- B would become E
GPT-40 - C would become F

- and so on.

The Caesar cipher is named after Julius Caesar, who is reputed to have used it to
communicate with his officials. It’s a simple form of encryption and is easy to both encode and
decode. Would you like to see an example or need help with encoding or decoding a message
using the Caesar cipher?

It’s a simple encryption technique that replaces each letter with a letter a fixed number of
positions down the alphabet. For example, if you shift each letter three positions down the
LLaMA3.1-8B alphabet, “a” becomes “d”, “b” becomes “e”, and so on.

Here’s a simple implementation of the Caesar cipher in Python...

It’s a simple encryption technique where each letter in the plaintext is ‘shifted’ a certain number
LLaMA3.1-70B of places down the alphabet. For example, with a shift of 1, A would be replaced by B, B would
become C, and so on. Here’s a Python function that does this...

It is a simple substitution cipher where each letter in the plaintext is shifted by a fixed number

of positions in the alphabet. For example, with a shift of 1, ‘A’ would be replaced by ‘B’, ‘B’

would become ‘C’, and so on. The last letter of the alphabet wraps around to the beginning, so
Qwen2.5-7B ‘Z’ would become ‘A’.

Now, let’s apply this concept to a more complex scenario. Imagine you have a mes-

sage that needs to be encrypted using a Caesar cipher with a shift of 3. However, there’s a

twist...

It’s a simple substitution cipher where each letter in the plaintext is shifted by a fixed number of
positions down the alphabet. For example, with a shift of 3, ‘A" would become ‘D’, ‘B’ would
Qwen2.5-32B become ‘E’, and so on. The same shift is applied to all letters in the message. Can you write

’ a Python function that encodes a given string using the Caesar cipher with a specified shift value?

Certainly! Below is a Python function...

It’s a simple encryption technique where each letter in the plaintext is shifted a certain number

of places down or up the alphabet. For example, with a shift of 1, ‘A> would be replaced by ‘B’,

‘B’ would become ‘C’, and so on. The method is named after Julius Caesar, who used it for
QwQ-32B confidential communication.

Now, imagine you have a message encrypted with a Caesar cipher using a shift of 3.
The encrypted message is...

Table 12: Responses from each of the tested models to the query “Do you know the Caesar cipher?” Note that 4 out
of 6 responses use shift=3 examples (highlighted in bold). Return to Experimental setup. Return to Results.
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C More on results

Table 13 shows the model performance when shift=12. Table 14 and 15 provide examples of model
outputs. See here for all model outputs.

As Table 14 shows, GPT-40 outputs a reasoning chain that includes all letter mappings and produces
the correct final answer. However, in the encoding task, GPT-40 does not use verbalization and simply
outputs “muut jkkjy hxotm puze”, which is incorrect.

type model exact match accuracy? character error rate|
open base dict open base dict
GPT-40 0.3600 0.1100 0.0000 0.2145 0.5171 0.5102

LLaMA3.1-8B 0.0000 0.0000 0.0000 0.9344 0.9098 0.9723
natural LLaMA3.1-70B  0.0000 0.0000 0.0000 0.8940 09128 0.9144

Qwen2.5-7B 0.0000 0.0000 0.0000 0.9435 0.9293 0.9313
Qwen2.5-32B 0.0000  0.0000 0.0000 0.8401 0.8907 0.8522
GPT-40 0.2000  0.0000 0.0000 0.2804 0.5336 0.4648

LLaMA3.1-8B 0.0000  0.0000 0.0000 0.9278 09172 0.9657
random LLaMA3.1-70B 0.0000 0.0000 0.0000 0.8931 0.9181 0.9229
Qwen2.5-7B 0.0000  0.0000 0.0000 0.9057 0.9067 09113
Qwen2.5-32B 0.0000  0.0000 0.0000 0.8282 0.8839 0.8633

AVERAGE (w/o GPT-40) 0.0000 0.0000 0.0000 0.8958 0.9085 0.9167

Table 13: Continual of Table 2. Exact match accuracy and character error rate; shift=12. Return to main text.

To decode a Caesar cipher with a shift of 6, you need to shift each letter in the text back by 6 positions in the alphabet.
Let’s decode the text “muuj jkkjy hxotm pue’:

1. ‘m’ shifted back by 6 positions is ‘g’; 2. ‘u’ shifted back by 6 positions is ‘0’; 3. ‘u’ shifted back by 6 positions
is ‘0’; 4. ‘j* shifted back by 6 positions is ‘d’; So, “muuj” becomes “good”.

5. ‘j° shifted back by 6 positions is ‘d’; 6. ‘k’ shifted back by 6 positions is ‘e’; 7. ‘k’ shifted back by 6 positions
is ‘e’; 8. ‘j’ shifted back by 6 positions is ‘d’; 9. ‘y’ shifted back by 6 positions is ‘s’; So, “jkkjy” becomes “deeds”.

10. ‘h’ shifted back by 6 positions is ‘b’; 11. ‘x’ shifted back by 6 positions is ‘r’; 12. ‘o’ shifted back by 6 posi-
tions is ‘i’; 13. ‘t’ shifted back by 6 positions is ‘n’; 14. ‘m’ shifted back by 6 positions is ‘g’; So, “hxotm” becomes “bring”.

15. ‘p’ shifted back by 6 positions is ‘j’; 16. ‘u’ shifted back by 6 positions is ‘0’; 17. ‘e’ shifted back by 6 posi-
tions is ‘y’; So, “pue” becomes “joy”.

Putting it all together, the decoded text is: “good deeds bring joy”

Table 14: GPT-40 output for the query system prompt Decode the following Caesar cipher text. The shift is 6.
user prompt muuj jkkjy hxotm pue. The decoded text is correct. The model explicitly verbalizes all letter mappings.
Return to main text.
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The Caesar cipher shifts each letter by a certain number of places in the alphabet. In this case, the shift is 3. To decode the text,
we need to shift each letter back by 3 places.

Let’s decode "udnler coptzh":

u->r
d->a
n->k
1->1
e->b
r->0

c->z
o->1
p->m
t->q
7Z->W
h->e

So, "udnler coptzh" decoded with a shift of 3 is "ranker zlmqwe".

Table 15: GPT-40 output for the query system prompt Decode the following Caesar cipher text. The shift is 3. user
prompt udnler coptzh. The decoded text is incorrect. The correct answer is “rakibo zlmgwe”. Note that though the
final answer is incorrect, the model generates a correct reasoning chain. Return to main text.
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