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Abstract

Point clouds are a set of data points in space to repre-
sent the 3D geometry of objects. A fundamental step in the
processing is to identify a subset of points to represent the
shape. While traditional sampling methods often ignore to
incorporate geometrical information, recent developments in
learning-based sampling models have achieved significant
levels of performance. With the integration of geometrical
priors, the ability to learn and preserve the underlying struc-
ture can be enhanced when sampling. To shed light into the
shape, a qualitative skeleton serves as an effective descriptor
to guide sampling for both local and global geometries. In
this paper, we introduce MorphoSkel3D1 as a new technique
based on morphology to facilitate an efficient skeletonization
of shapes. With its low computational cost, MorphoSkel3D
is a unique, rule-based algorithm to benchmark its qual-
ity and performance on two large datasets, ModelNet and
ShapeNet, under different sampling ratios. The results show
that training with MorphoSkel3D leads to an informed and
more accurate sampling in the practical application of object
classification and point cloud retrieval.

1. Introduction
A skeleton is a simplified representation of the surface of
a 3D shape, which makes it essential in a prior analysis to
understand how the surface points are connected at different
levels, from coarse- to fine-grained parts. Other common
shape descriptors, such as the centroid or volume, are limited
to the formulation of global rather than local insights about
the geometry. Extracting a skeleton, however, has proven
to be a challenging task for 3D shapes due to its extensive
complexity in geometric processing. More recently, deep
learning-based, skeleton models have been introduced for
point clouds in an unsupervised manner to estimate skeletal
spheres. While the wide-spread use of deep learning has

1Code: https://github.com/Pierreoo/MorphoSkel3D

Figure 1. Overview of the proposed shape-agnostic skeletonization
pipeline, illustrated with the Stanford dragon [16]. In the Mor-
phoSkel3D module, the local maxima on the unsigned distance
function of inner points reveal the set of maximal balls. The local
neighbourhood of points is encoded by a structuring element SE.

many benefits, it’s also coupled with significant challenges.
Whenever skeletons are derived from learnable models, it
faces certain limitations despite its advanced capabilities.
One drawback is the fixed generalization over shapes, as the
network’s performance is heavily dependent on the diversity
of training data. This dependency can hinder skeleton estima-
tion when encountering data that diverges from the training
set. Usually, the model complexity also increases with the
prediction of a large number of skeletal spheres such that
the network struggles to include finer details. These require-
ments can be a barrier to widespread adoption and iterative
experimentation. Moreover, it remains an open question how
to formally define the set of skeletal spheres for 3D shapes.
Replacing the skeletal network with the morphological oper-
ations depicted in the overview of Fig. 1, can alleviate these
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issues by providing a more consistent and efficient method.
As morphology is not dependent on training data, it can ac-
curately capture features with low computational demands.
The contribution of this paper is threefold:

• We propose a lightweight skeletonization method that is
able to bring scalability to large-scale datasets.

• We integrate the skeleton as a prior to enable geometry-
informed sampling of a representative subset.

• We extensively validate the skeletal quality of our method,
demonstrating improved sampling performance in two
tasks: object classification and point cloud retrieval.

2. Related Work

Many research efforts in the field of computer vision have
focused on the development of skeletonization techniques for
2D images. However, it has been more complex to extend a
formal definition of skeletonization to the 3D space for point
clouds to assist shape analysis and downstream tasks [41].
This section discusses the concepts of skeletonization and
morphology, to support its functionality for guided sampling.

3D shape skeletonization In recent years, several works
have been proposed to tackle the sensitivity of the medial
axis transform (MAT) [5] to irregular shape surfaces. For
instance, Q-MAT [27] / Q-MAT+ [33] or Coverage Axis [18]
/ Coverage Axis++ [43] developed an algorithm with hand-
crafted local features to capture the geometric features that
approximate a simplified medial axis transform. Whereas
Q-MAT relies on watertight surfaces, Coverage Axis uses a
winding numbers method [3] to select inner points for point
cloud inputs. Learning-based methods learn a geometric
transformation to mimic the properties of MAT, pioneered
by Point2Skeleton [29], the skeletal points are considered as
a local center of surface points. Consequently, rather than
directly predicting the skeletal points, a convex combination
of input points and weights is learned through multiple loss
functions to minimize the reconstruction error. Other meth-
ods implement a Laplacian-based contraction process [7, 32],
or use the first Laplace-Beltrami eigenfunction to construct
Reeb graphs for high level surface information, and the
barycenters of these graphs are then connected to find the
skeleton [28]. More recently, implicit neural representations
have been introduced to provide continuous and detailed
modeling of complex shapes [17]. For example, distance
functions can be effectively fitted to obtain high resolution
outputs of shapes [12, 34]. Neural skeleton [14] leverages
the implicit field function for a more accurate distance es-
timation near the medial axis to extract topological infor-
mation. In order to provide a more formal definition, our
method proposes to transfer the effectiveness of morphol-
ogy for skeletonization from image analysis to the distance
function of 3D point clouds.

3D morphology Research works in image processing have
explored techniques that extend traditional 2D morphologi-
cal operations, such as dilation and erosion, into the 3D im-
age domain. These operations to form a skeleton have shown
to be fundamental in preserving the topology of tabular struc-
tures in the 3D segmentation of medical images [31, 40]. To
avoid the transformation of point clouds to a 2D or 3D im-
age, morphological dilation and erosion operations have
been proposed that focus on the addition and removal of
points according to a structuring element [2]. Another frame-
work, Point Morphology [6], defined a projection procedure
of shifting points to find the operators that sample the medial
axis in a meshless context. The extension of morphological
operators to large point clouds has also been studied to better
define boundaries for segmentation in urban scenes [1]. We
suggest an alternative approach to implement morphological
operators for efficient 3D point cloud skeletonization.

Point cloud sampling An obstacle in the processing of
point clouds is the high density of data, which can hinder the
effective use of deep learning models [24]. The aim of sam-
pling is to extract a representative subset from the original
point cloud to ensure that the resulting sampled point cloud
is both representative of the original data and optimized for
further processing and analysis. For instance, to maintain
the classification and segmentation performances. This goal
aligns with the method of Wen et al. [44] that explores the
object skeleton to preserve geometrical information during
sampling. In their work, the authors adopted a deep learn-
ing approach similar to Point2Skeleton [29] to estimate the
skeleton. An ablation study between the learned skeleton
and DPC [45] skeleton demonstrated comparable results in
their ability to improve the sampling of representative points.
Therefore, as a metric to reflect skeletal quality, we incorpo-
rate our skeleton to evaluate its ability to inform sampling.

3. Background

To sharpen the intuition before defining our method, this sec-
tion reviews the background to afterwards introduce morpho-
logical skeletonization. The concept of a skeletal structure
is first discussed as a geometric approach to introduce the
notion of the skeleton of a set of inner points. The goal is
to leverage the properties of a watertight mesh to accurately
determine an occupancy and distance function of points ly-
ing within the object. Based on the distance of inner points
to the surface, we propose a highly efficient process that is
able to extract the skeletal points from a shape. The interest
primarily lies within the inner points, as these serve as the
candidate skeletal points. To achieve this, two sequential
steps are employed. Firstly, an occupancy function is ap-
plied to determine the points within the mesh. Following this
determination, an unsigned distance function is computed



on these points to facilitate morphological operators to the
extraction of the skeletal structure.

3.1. Skeleton by maximal balls

A rich segment of mathematical literature is devoted to the
study of the central part of a set in Euclidean space. While
various definitions have been proposed, their central parts are
often similar yet not always equivalent. In particular, given a
closed surface S , the medial axis MA(S) is identified by the
set of centers of maximally inscribed spheres that are tangent
to S at two or more points. Usually referred to as the rowboat
analogy, the medial axis has been introduced by Blum [5]
in image analysis and by Beucher and Lantuejoul [4, 26] in
mathematical morphology. Other studies, including [9] and
[10], study the medial axis from a different perspective. For
any x in volume V enclosed by S , let D(x) denote the set of
medial balls:

D(x) = {y ∈ S : d(x, y) = d(x,S)}, (1)

where d(x, y) denotes the Euclidean distance between x and
y. The distance between the point and surface is defined as
d(x,S) = infy∈S d(x, y), where inf denotes the infimum.
Then, the medial axis of a closed surface S is defined as:

MA(S) := {x ∈ S : |D(x)| ≥ 2}, (2)

where |D(x)| denotes the cardinality of D(x). The medial
axis together with the distance from each point to its closest
surface point defines the medial axis transform (MAT) [13]
as a powerful tool in computer vision and image process-
ing. The related concept of a skeleton is often mistakenly
conflated with the medial axis. The skeleton of a closed
surface S, denoted SK(S), is namely defined as the set
of centers of maximal balls inscribed in S. In specific, a
ball B(x, i) defined by its center at point x and radius i is
considered maximal within S if there exists no other ball
B(y, j) such that B(x, i) is contained within B(y, j) with
a larger radius j > i. We emphasize that the set of centers
of maximal inscribed disks is generally not connected in
discrete distance maps [4, 15, 20]. Consequently, while this
set is occasionally referred to as the skeleton, it is primarily
useful for compression rather than for shape analysis tasks.
A more conventional definition of a skeleton requires that
it preserves the same simple connectivity of S, to make it
homotopic to the surface. Typically, this involves a linkage
of the centers of maximal inscribed balls to produce a con-
nected skeleton [20, 41]. Although things can become more
complicated in the 3D space, the proposed approach, that
is lightweight and object-agnostic, is introduced in section
Sec. 4. The skeletal representation focuses on the maxi-
mal inscribed balls to provide a compact and meaningful
abstraction of the original set.

3.2. Occupancy Function

Based on a bounding box that encapsulates the object, ran-
dom points are uniformly distributed in the volume to ensure
the coverage of the entire shape. An example shape with
bounding box points is illustrated on the left of Fig. 2. Fol-
lowing this, an occupancy function is applied to determine
whether each bounding box point lies within the watertight
surface mesh. It helps to identify the points inside the shape
and excludes those outside its surface. The occupancy func-
tion that follows the ray casting algorithm [38], evaluates a
given point by analyzing its intersections with the surface tri-
angles. Let p = (x, y, z) ∈ R3 be a bounding box point and
M(T ) the watertight mesh that consists of a set of triangles
T . The number of intersections between the ray cast from p
and the triangles in T is denoted by Np(T ). This algorithm
is also referred to as the crossing number algorithm or the
even–odd rule algorithm [39]. Then, the occupancy function
O : R3 7→ {0, 1} for the bounding box point p with respect
to the mesh M(T ) can be computed by:

O(p) =

{
1, if Np(T ) is odd,
0, if Np(T ) is even.

(3)

If the number of intersections between a ray cast from p and
the triangles in T is odd, O(p) equals to one, indicating that p
is inside the mesh. Conversely, if the number of intersections
is even, O(p) equals to zero, indicating that p is outside the
mesh. An example illustrating the selection of inner points
is provided on the right side of Fig. 2. By O, we consider
M(T ) as a closed surface S to ensure that the mesh forms a
completely enclosed surface without gaps.

Figure 2. Occupancy function used to retain the inner points from
the bounding box points. A case for 10000 points in the bounding
box (left). Inner points extracted for the case with 1M points within
the box volume (right).

3.3. Signed Distance Function

Given a closed surface S in metric space C ⊆ R3, a signed
distance function (SDF) is a continuous function that pro-
vides the closest distance from a given point x ∈ R3 to the



surface S . The sign indicates whether or not the point x lies
within the interior volume V enclosed by S . The signed dis-
tance function outputs a negative value for points inside the
watertight mesh and increases as it approaches the surface or
zero-level set. For points outside the mesh, it takes positive
values that become larger as one moves further away from
the surface:

SDF(x) =

{
d(x,S) if x /∈ V,
−d(x,S) if x ∈ V.

(4)

The utilization of the occupancy function to discern points
within a mesh offers an advantage to circumvent the ne-
cessity of performing the distance function for every point
within the bounding box of the object. Having already iden-
tified the inner points, see Fig. 2 right, the signed distance
function could be simplified to the unsigned distance func-
tion. This approach eliminates the need to calculate distances
for points outside the object’s surface, thus optimizing com-
putational efficiency. An example of the distance function
is illustrated in Fig. 3b. Additionally, the unsigned distance
function (UDF) only provides positive distances such that
further morphological operations can be simplified to:

UDF(x) = d(x,S) for x ∈ V. (5)

4. Method

The goal of Wen et al. [44] was to identify a subset of points
that maintains classification performance using only a few
selected points. This process involves the learning of a sam-
pling strategy that is informed by prior knowledge of the
skeleton. However, the skeleton estimation network is lim-
ited due to its inability to generalize to other shapes than the
training set. In this work, we propose a novel skeletoniza-
tion method, named MorphoSkel3D, that is object-agnostic
through a series of morphological operators to give priority
to the points belonging to the skeleton SK(S).

4.1. Morphological Skeletonization

In this method, a sequence of concepts and operators is pre-
sented based on the notion of distance. The objective is to
outline a technique that characterizes a set of points based
on the considerations of metric and geometry. An important
concept includes that of a skeleton, which is of fundamental
importance in computer vision, and has many practical ap-
plications for point clouds. In the analysis of the unsigned
distance function, a property becomes transparent that local
maxima correspond to maximal balls within the given space.
These local maxima represent regions where the distance
function reaches its greatest value within a neighborhood.
The identification of these maxima becomes essential for
understanding the structure of space. An approach to tackle
this involves the study of the difference between the original
distance and its dilation. This analysis serves as a means to
identify local maxima and mark the arrangement of a skele-
ton. Hence, the difference in the distance function among
the inner points of S is described as:

MS3D(x) = δSE(UDF(x))− UDF(x) for x ∈ V, (6)

where δSE denotes a dilation equipped by the structuring
element SE. A dilation operator takes the maximum value
of UDF within the neighborhood defined by SE. Note that
Rosenfeld and Pfaltz [37] have shown for 2D images that, to
find the set of maximal balls, it is sufficient to detect the local
maxima on the distance function. With a graph to construct
local connections, we use the same idea for 3D shapes to
highlight the inner points that are candidates to be maximal
ball centers. An option to define the structuring element is by
using a k-nearest neighbor (k-NN) graph. For a point x ∈ V ,
a directed graph G = (V,E) is constructed, representing the
local structure of the volume point cloud, where V and E
denote the vertices and edges, respectively. The structuring
element SE is then defined as:

SE(x) = k-NN(x) for x ∈ V. (7)

(a) δSE(UDF(x)) (b) UDF(x)

Figure 3. Transformed distance function by dilation (left) and its initial unsigned distance function (right). Brighter points indicate greater
distances, while darker areas correspond to points closer to the surface.



(a) MS3D(x) (b) 1024 skeletal points with lowest MS3D(x)

Figure 4. Based on 1M bounding box points, MS3D(x) as the difference between the dilated and original UDF (left). The 1024 inner points
with lowest MS3D(x) values are retained to form the skeleton with point colors based on their original UDF to the surface (right).

The local information encapsulated in this graph is leveraged
to take the maximum value of the distance function in the
neighborhood. We denote this operation of transforming
the distance function by dilation as δSE. An illustration of
a dilated distance function is presented in Fig. 3a, next to
the initial unsigned distance function on the right in Fig. 3b.
The resulting MS3D(x) is illustrated in Fig. 4a to provide
a visual understanding of the transformation between the
dilation operation and the original distance function.

To make sure that every skeleton used for training has
the same number of points, a subset K from the set of in-
ner points V is selected with the lowest MS3D(x) values,
where MS3D(x) measures how close a point is to being a
true skeletal point. We consider that the skeletal points, by
definition of maximal balls, have a MS3D(x) value equal
to zero. It involves identifying a subset K of size n that
minimizes the sum of MS3D(k) for all elements k ∈ K:

argmin
K⊂{1,2,...,S}:|K|=n

∑
k∈K

MS3D(k). (8)

As a result, K consists of points closest to the center of a
maximal ball and defines the skeletal points by minimizing
MS3D(x) values to provide a consistent subset for network
training. In Fig. 5, the distribution of MS3D(x) values re-
veals its dependency on the number of bounding box points.
As the number of points in the bounding box increases, more
accurate skeletal points appear. Although the skeleton be-
comes better defined, the increase in bounding box lightly
prolongs the computational time required for its creation.
The Fig. 4b illustrates a subset of skeletal points retained by
our proposed method. It shows that the inner points with
lowest MS3D(x) values are used to find the maximal balls
that form the skeleton. The skeletal points in this representa-
tion are color-coded based on their initial UDF values to the
surface to represent skeletal spheres.

Figure 5. The 1024 inner points selected by MS3D(x), color-coded
by their original UDF to the surface (up). Distribution of MS3D(x)
for 1024 skeletal points (down), contingent to the density of 1M
(left) to 10M (right) bounding box points.

4.2. Prior Sampling Probability

The sampling process can be informed by prior knowledge
that sits contained in the object’s skeleton. By utilizing
the concept of local feature size (LFS), which measures the
Euclidean distance from a surface point p ∈ M to the medial
axis or skeleton, it becomes apparent that smaller LFS values
denote intricate regions in the object. Hence, the strategy
involves an augmentation of sampling probability in small
LFS areas to enhance the overall representation. A heatmap
where the prior sampling probability is visualized for each



surface point is shown in Fig. 6. In this heatmap, areas with
higher weights correspond more to fine-grained regions. In
this way, the overall shape will be represented in the subset
to improve the task network in its practical application.

Figure 6. Heatmap of the prior per-point sampling weight, derived
from the proposed MS3D skeletal structure.

5. Experiments
To evaluate the quality of the skeleton through morphology,
the experimental setup is firstly discussed to assess the skele-
ton extraction in terms of reconstruction error and processing
time. Once these metrics are compared, we apply our skele-
ton on two downstream tasks: object classification and point
cloud retrieval.

5.1. Experimental Setup

Datasets The ShapeNet [8] and ModelNet [46] dataset
are employed to establish an evaluation about the skeleton
and its functionality as a prior. To compare our morpho-
logical skeleton, we use the same subset of the ShapeNet
dataset as the Point2Skeleton [29] benchmark that includes
7088 shapes from eight categories. Each object has 2000
points for surface reconstruction to allow the extraction of
its mesh and the selection of inner points. For the down-
stream tasks enhanced by a skeletal prior, the normalized
and resampled ModelNet40 dataset of 12311 point clouds
spread over 40 categories is used to align the benchmark
with existing methods. In this dataset, each shape has 10000
points to reconstruct its surface that is made watertight to
determine the inner bounding box points. The skeletons for
both datasets are in turn extracted from the inner points by
our MorphoSkel3D method. Based on the analysis in Fig. 5,
the number of bounding box points is set to 10M to optimize
the quality of the skeleton while keeping a low computa-
tion time. The resulting dataset consists of 1024 skeletal
spheres that are ordered in ascending MS3D(x) value. We
notice that this setting includes accurate skeletal points with
MS3D(x) values of zero or close to.

Architectures For the first downstream task of object clas-
sification, Wen et al. [44] propose to learn a representative
subset of the original point cloud with a selection method
that is trained with the Gumbel-softmax trick to enable dis-
crete yet differentiable sampling:

Psub = [Gsτ (Lp(WLFS ⊙Wθ)]
⊤P, (9)

where Psub ∈ RM×3 denotes the extracted subset derived
from the input point cloud P ∈ RN×3. The weight
WLFS ∈ RN×1 is computed in the prior phase from the
skeleton, while Wθ ∈ RN×Dsp represents the feature ma-
trix obtained from the sampling network, with Dsp de-
noting the feature dimension. The linear mapping layer
Lp(·) : RN×Dsp → RN×M is applied, and the element-wise
Hadamard product operation is denoted as ⊙. The Gsτ (·) op-
eration refers to the Gumbel-softmax where the confidence
of the softmax is controlled by an annealed temperature τ .
For the sampling network to obtain a feature matrix Wθ, the
DGCNN [42] architecture is applied with four edge convolu-
tion layers to capture local geometric features between points
in the dynamic feature graph. The learned embedding Wθ

is merged with the skeletal information WLFS by Hamard
product to facilitate the Gumbel-softmax to learn the optimal
subset of points for the task. During the sampling process,
a pre-trained PointNet [35] classification model operates in
evaluation mode with its loss to guide the sampling network
in classifying objects on fewer points. For the second task of
point cloud retrieval, the trained sampling model of the first
task is in evaluation to sample points for the classification
model to form a global descriptor and compare representa-
tions for retrieval.

Metrics We follow other skeletonization techniques in the
evaluation to ensure a fair comparison. Namely, the re-
construction error is evaluated to quantify how accurately
the generated skeletal spheres reconstruct the original point
cloud. Another way to evaluate the skeleton is by compar-
ing it to the manually simplified MAT, which serves as the
ground truth skeleton in the Point2Skeleton [29] benchmark.
This dual evaluation approach uses the Chamfer and Haus-
dorff distance to provide a reflection of discrepancy between
the two sets. However, relying solely on these metrics does
not fully capture the method’s skeletonization capability, es-
pecially when a small reconstruction error is returned for
a generated skeleton that closely matches the surface point
cloud. Therefore, a benchmark on two downstream appli-
cations is also conducted to measure the skeleton’s ability
to improve sampling. For the classification task, the evalua-
tion metric is based on the overall accuracy (OA) across all
categories. The evaluation scheme for point cloud retrieval
aligns with the mean Average Precision (mAP) that is de-
rived from averaging the precision scores across point clouds
based on L2 distances between shape descriptors.



CD-Recon HD-Recon CD-MAT HD-MAT
L1 DPC P2S MS3D L1 DPC P2S MS3D L1 DPC P2S MS3D L1 DPC P2S MS3D

Airplane 0.0378 0.0348 0.0363 0.0152 0.2216 0.1436 0.1266 0.0933 0.0793 0.1307 0.0611 0.0368 0.2384 0.2580 0.1721 0.1598
Chair 0.1126 0.0769 0.0441 0.0296 0.4810 0.2478 0.1618 0.2347 0.1885 0.2286 0.0974 0.0659 0.4991 0.3707 0.2151 0.3123
Table 0.1041 0.0853 0.0424 0.0366 0.3453 0.2584 0.1745 0.2205 0.1541 0.2683 0.0876 0.0823 0.3583 0.3690 0.2085 0.3107
Lamp 0.1542 0.0712 0.0335 0.0265 0.3956 0.1850 0.1382 0.1896 0.1870 0.1751 0.0884 0.0606 0.4089 0.2627 0.2003 0.2595
Guitar 0.0655 0.0212 0.0179 0.0085 0.2180 0.0589 0.0625 0.0553 0.0817 0.0672 0.0536 0.0259 0.2262 0.1226 0.1216 0.1046

Earphone 0.0437 0.0573 0.0399 0.0245 0.1908 0.2059 0.1125 0.1686 0.0607 0.2216 0.1638 0.0934 0.1732 0.3403 0.2130 0.2815
Mug 0.2864 0.1280 0.0417 0.0580 0.9142 0.3510 0.1419 0.3201 0.5316 0.4600 0.1179 0.1126 0.9057 0.4308 0.2158 0.4121
Rifle 0.0260 0.0215 0.0213 0.0097 0.1078 0.0702 0.0767 0.0584 0.0494 0.0427 0.0356 0.0250 0.1234 0.1050 0.0957 0.0873

Average 0.1038 0.0668 0.0372 0.0274 0.3593 0.2049 0.1424 0.1857 0.1665 0.2026 0.0828 0.0629 0.3667 0.3047 0.1898 0.2601

Table 1. Comparison of reconstruction error between the skeletal spheres of skeletonization methods to the surface point cloud (Recon) and
the ground truth skeleton (MAT), Chamfer (CD) and Hausdorff (HD) distances.

5.2. Skeleton Extraction

The initial step before skeletonization is to convert a surface
point cloud into its mesh representation with a shape recon-
struction method. Among traditional methods, we opt for the
Poisson surface reconstruction [23] algorithm to transform
the test objects of the ShapeNet subset into meshes. Conse-
quently, we generate watertight meshes [22] in the surface
reconstruction module to compute a distance function for
the inner points. The k is set to 20 for the k-NN graph to
perform a dilation over the inner points in Eq. (6). In the
skeletal analysis, we compare against other methods as L1-
medial skeleton [21], deep point consolidation (DPC) [45],
and the learning-based Point2Skeleton (P2S) [29]. Whereas
the number of estimated skeletal spheres is 100 for P2S,
we select 1024 points to form the set of maximal balls for
MS3D. For two examples of ShapeNet, a qualitative visu-
alization of our method is given in Fig. 7 to illustrate the
skeletal spheres in relation to the original point cloud. The
reconstruction results are reported in Tab. 1. We observe that
MS3D achieves the lowest Chamfer distance to prove its abil-
ity to define maximal balls and effectively extract skeletal
spheres. A lower Hausdorff distance of MS3D is observed
in three out of eight categories, but the other categories re-
veal its dependence on a surface reconstruction method to
provide reliable meshes. Namely, as reconstruction is not
evident with 2000 surface points, certain areas could have in-
correct reconstruction to include false inner points for MS3D
to skeletonize. Therefore, we implement PoNQ [30] as a
state-of-the-art optimization-based reconstruction method to
provide meshes for the downstream tasks with the Model-
Net dataset. Two examples of ModelNet are presented in
Fig. 8 to display the robust, object-agnostic skeletonization
without the need to learn a geometric transformation. The
corresponding processing times from surface reconstruction
to the MS3D module are reported in Tab. 2 for each cate-
gory to highlight it’s efficiency and steadiness on an Intel(R)
Core(TM) i7-12800H CPU with 32 GB memory. For refer-
ence, the processing time to skeletonize with L1 or DPC on
a 100K point cloud is unsteady but takes approximately 60
seconds next to the high Chamfer and Hausdorff distances.

Poisson [23] Watertight [22] MS3D
Num TTotal TAverage TTotal TAverage TTotal TAverage

Airplane 100 34.83 0.35 119.79 1.20 73.99 0.74
Chair 334 98.57 0.30 590.40 1.70 538.77 1.61
Table 334 103.68 0.31 559.71 1.68 661.61 1.98
Lamp 167 53.04 0.32 282.66 1.69 273.76 1.64
Guitar 100 28.66 0.29 190.81 1.91 144.97 1.45

Earphone 13 3.92 0.30 21.47 1.65 17.55 1.35
Mug 36 10.20 0.28 39.01 1.08 105.14 2.92
Rifle 100 33.57 0.34 147.12 1.47 160.25 1.60

Table 2. Comparison of total and average processing times across
categories from surface reconstruction to MorphoSkel3D, time (s).

Figure 7. The skeletal spheres of MS3D together with its surface
points for an earphone and lamp example of the ShapeNet subset.

Figure 8. The skeletal spheres of MS3D together with its surface
points for a piano and person example of the ModelNet dataset.



Figure 9. The sampled points through the MorphoSkel3D method, together with the surface points of an airplane example. From left to right
the four ratios: 16, 32, 64 and 128 sampled points.

5.3. Object Classification

The pre-trained classification network is optimized for inputs
with 1024 surface points. During training, the model under-
went data augmentation to improve its generalization and
to follow the standard setting for classification. The upper
bound classification accuracy is 89.5% when tested on the
same number of 1024 points. To further test its robustness
against lower point cloud densities, a comparison is con-
ducted between the traditional FPS and learnable methods.
Although our MorphoSkel3D method employs the learn-
able sampling process from the skeleton-aware (SA) method
proposed by Wen et al. [44], the objective is to conduct an
ablation study that compares the ability of the skeleton as
a prior to enhance sampling weights. On the one hand, SA
aims to learn the object skeleton in an unsupervised manner
similar to P2S [29]. On the other hand, MS3D introduces an
efficient, object-agnostic approach to find the maximal balls
for skeletal extraction. The methods are evaluated across
four sampling ratios: 8, 16, 32, and 64 to reduce the original
1024 points to 128, 64, 32, and 16 points respectively. In
Tab. 3, the results confirm that a learnable sampling strategy
is significantly more effective than FPS, with the accuracy
gap widening as the sampling ratio increases. For a sampling
ratio of 8, MS3D maintains the accuracy of the upper bound
with a limited decrease at higher ratios. When comparing the
influence of the skeleton between SA and MS3D, it can be
deducted that the incorporation of a morphological skeleton
achieves improvements to better guide the sampling over
all four sampling ratios. The advantage is most pronounced
at the highest sampling ratio with 85.5%. The outcome of
the learned sampling is demonstrated in Fig. 9, where it be-
comes apparent that the sampled points are spread across the
intricate parts of the object.

Ratio FPS [36] S-NET [19] SN [25] MS [11] SA [44] MS3D
8 70.4 77.5 83.7 88.0 89.1 89.5

16 46.3 70.4 82.2 85.5 88.8 88.9
32 26.3 60.6 80.1 81.5 87.4 87.8
64 13.5 36.1 54.1 61.6 82.9 85.5

Table 3. Object classification results on ModelNet40, OA (%).

5.4. Point Cloud Retrieval

The integration of morphological skeleton demonstrated an
effective selection of points in fine-grained features and,
therefore, we transfer the learned sampling networks initially
trained for classification to perform shape retrieval. We
follow the evaluation scheme of SA [44], where the resulting
global feature vector is used to search for similar point clouds
based on Euclidean distance. In Tab. 4, the retrieval results
are reported to showcase the additional performance boost
of MS3D across all four sampling ratios.

Ratio FPS [36] S-NET [19] SN [25] SA [44] MS3D
8 58.3 60.4 68.8 72.2 72.9

16 49.4 59.0 65.2 70.9 71.4
32 37.7 59.0 62.5 67.1 68.7
64 27.4 54.5 59.5 62.6 66.7

Table 4. Point cloud retrieval results on ModelNet40, mAP (%).

6. Conclusion
We propose a method that studies a distance function of in-
ner points to highlight the maximal balls in the skeleton. In
particular, our approach that applies simple morphological
operations on a neighborhood graph is shape-agnostic. The
defined skeleton is then utilized to formulate a sampling
strategy that emphasizes surface points in intricate regions.
This technique enhances the sampling network’s ability to
learn a representative subset, facilitating two downstream
tasks in the representation of the original point cloud. Be-
yond these two applications, we believe our framework can
lay the groundwork to scale prior knowledge in geometric
processing for deep learning models.
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[14] Mattéo Clémot and Julie Digne. Neural skeleton: Implicit
neural representation away from the surface. Computers &
Graphics, 114:368–378, 2023. 2

[15] Michel Couprie and Hugues Talbot. Distance, granulometry,
skeleton. In Distance, granulometry, skeleton, pages 291–316.
Wiley, 2011. 3

[16] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings

of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, page 303–312, New York, NY, USA,
1996. Association for Computing Machinery. 1

[17] Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pier-
luigi Zama Ramirez, Samuele Salti, and Luigi Di Stefano.
Deep learning on implicit neural representations of shapes.
In International Conference on Learning Representations
(ICLR), 2023. 2

[18] Zhiyang Dou, Cheng Lin, Rui Xu, Lei Yang, Shiqing Xin,
Taku Komura, and Wenping Wang. Coverage axis: Inner
point selection for 3D shape skeletonization. In Computer
Graphics Forum, pages 419–432. Wiley Online Library, 2022.
2

[19] Oren Dovrat, Itai Lang, and Shai Avidan. Learning to sample.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 8

[20] Yaorong Ge and J Michael Fitzpatrick. On the generation
of skeletons from discrete Euclidean distance maps. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
18(11):1055–1066, 1996. 3

[21] Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong,
Hao Zhang, Guiqing Li, and Baoquan Chen. L1-medial
skeleton of point cloud. ACM Trans. Graph., 32(4), 2013. 7

[22] Jingwei Huang, Hao Su, and Leonidas Guibas. Robust wa-
tertight manifold surface generation method for ShapeNet
models. arXiv preprint arXiv:1802.01698, 2018. 7

[23] Michael M. Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the Fourth
Eurographics Symposium on Geometry Processing, pages
61–70, Aire-la-Ville, Switzerland, Switzerland, 2006. Euro-
graphics Association. 7

[24] Loic Landrieu and Simonovsky Martin. Large-scale Point
Cloud Semantic Segmentation with Superpoint Graphs. In
2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2018), Salt Lake City, United States,
2018. 2

[25] Itai Lang, Asaf Manor, and Shai Avidan. SampleNet: Dif-
ferentiable Point Cloud Sampling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7578–7588, 2020. 8

[26] Christian Lantuejoul. La squelettisation et son application
aux mesures topologiques des mosaiques polycristallines.
PhD thesis, Ecole des Mines de Paris, 1978. 3

[27] Pan Li, Bin Wang, Feng Sun, Xiaohu Guo, Caiming Zhang,
and Wenping Wang. Q-MAT: Computing medial axis trans-
form by quadratic error minimization. 35(1), 2016. 2

[28] Jian Liang, Rongjie Lai, Tsz Wai Wong, and Hongkai Zhao.
Geometric understanding of point clouds using Laplace-
Beltrami operator. 2012 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 214–221, 2012. 2

[29] Cheng Lin, Changjian Li, Yuan Liu, Nenglun Chen, Yi-King
Choi, and Wenping Wang. Point2skeleton: Learning skele-
tal representations from point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4277–4286, 2021. 2, 6, 7, 8

[30] Nissim Maruani, Maks Ovsjanikov, Pierre Alliez, and Math-
ieu Desbrun. PoNQ: a neural QEM-based mesh representa-
tion, 2024. 7



[31] Martin J. Menten, Johannes C. Paetzold, Veronika A. Zimmer,
Suprosanna Shit, Ivan Ezhov, Robbie Holland, Monika Probst,
Julia A. Schnabel, and Daniel Rueckert. A skeletonization
algorithm for gradient-based optimization. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), 2023. 2

[32] Lukas Meyer, Andreas Gilson, Oliver Scholz, and Marc Stam-
minger. CherryPicker: Semantic skeletonization and topolog-
ical reconstruction of cherry trees, 2023. 2

[33] Yiling Pan, Bin Wang, Xiaohu Guo, Hua Zeng, Yuexin Ma,
and Wenping Wang. Q-MAT+: An error-controllable and
feature-sensitive simplification algorithm for medial axis
transform. Computer Aided Geometric Design, 71:16–29,
2019. 2

[34] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. DeepSDF: Learning con-
tinuous signed distance functions for shape representation.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

[35] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3D classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 6

[36] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
net++: deep hierarchical feature learning on point sets in
a metric space. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, page
5105–5114, Red Hook, NY, USA, 2017. Curran Associates
Inc. 8

[37] Azriel Rosenfeld and John L Pfaltz. Sequential operations in
digital picture processing. Journal of the ACM (JACM), 13
(4):471–494, 1966. 4

[38] Scott D Roth. Ray casting for modeling solids. Computer
graphics and image processing, 18(2):109–144, 1982. 3

[39] Moshe Shimrat. Algorithm 112: position of point relative to
polygon. Communications of the ACM, 5(8):434, 1962. 3

[40] Suprosanna Shit, Johannes C Paetzold, Anjany Sekuboyina,
Ivan Ezhov, Alexander Unger, Andrey Zhylka, Josien PW
Pluim, Ulrich Bauer, and Bjoern H Menze. clDice-a novel
topology-preserving loss function for tubular structure seg-
mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16560–
16569, 2021. 2

[41] Andrea Tagliasacchi, Thomas Delame, Michela Spagnuolo,
Nina Amenta, and Alexandru Telea. 3D skeletons: A state-of-
the-art report. In Computer Graphics Forum, pages 573–597.
Wiley Online Library, 2016. 2, 3

[42] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph CNN for learning on point clouds. ACM Transactions
on Graphics (TOG), 2019. 6

[43] Zimeng Wang, Zhiyang Dou, Rui Xu, Cheng Lin, Yuan Liu,
Xiaoxiao Long, Shiqing Xin, Lingjie Liu, Taku Komura,
Xiaoming Yuan, et al. Coverage Axis++: Efficient inner
point selection for 3D shape skeletonization. arXiv preprint
arXiv:2401.12946, 2024. 2

[44] Cheng Wen, Baosheng Yu, and Dacheng Tao. Learnable
skeleton-aware 3D point cloud sampling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17671–17681, 2023. 2, 4, 6, 8

[45] Shihao Wu, , Hui Huang, Minglun Gong, Matthias Zwicker,
and Daniel Cohen-Or. Deep points consolidation. ACM
Transactions on Graphics (Proc. of SIGGRAPH Asia), 34(6):
176:1–176:13, 2015. 2, 7

[46] Zhirong Wu, Shuran Song, Aditya Khosla, Xiaoou Tang, and
Jianxiong Xiao. 3D ShapeNets for 2.5D object recognition
and next-best-view prediction. CoRR, abs/1406.5670, 2014.
6


	. Introduction
	. Related Work
	. Background
	. Skeleton by maximal balls
	. Occupancy Function
	. Signed Distance Function

	. Method
	. Morphological Skeletonization
	. Prior Sampling Probability

	. Experiments
	. Experimental Setup
	. Skeleton Extraction
	. Object Classification
	. Point Cloud Retrieval

	. Conclusion
	. Acknowledgement

