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Abstract

Computer-assisted surgical systems provide support information to the surgeon,
which can improve the execution and overall outcome of the procedure. These sys-
tems are based on deep learning models that are trained on complex and challenging-
to-annotate data. Generating synthetic data can overcome these limitations, but it
is necessary to reduce the domain gap between real and synthetic data. We propose
a method for image-to-image translation based on a Stable Diffusion model, which
generates realistic images starting from synthetic data. Compared to previous
works, the proposed method is better suited for clinical application as it requires
a much smaller amount of input data and allows finer control over the generation
of details by introducing different variants of supporting control networks. The
proposed method is applied in the context of laparoscopic cholecystectomy, using
synthetic and real data from public datasets. It achieves a mean Intersection over
Union of 69.76%, significantly improving the baseline results (69.76% vs. 42.21%).
The proposed method for translating synthetic images into images with realistic
characteristics will enable the training of deep learning methods that can generalize
optimally to real-world contexts, thereby improving computer-assisted intervention
guidance systems.

1 Introduction

Computer-assisted intervention (CAI) is a research field focused on enhancing the safety, efficiency,
and cost-effectiveness of medical procedures by minimizing errors and complications [15]. Within
CAI, Laparoscopic Cholecystectomy (LC) has gained significant attention as a widely performed min-
imally invasive procedure for gallbladder removal [19]. However, LC presents technical challenges
due to limited visibility and the use of laparoscopic instruments, leading to potential complications
like bile duct injury (BDI) [31]. To address these complexities, CAI systems leveraging Deep
Learning (DL) methods have been proposed. These systems aim to identify safe dissection zones,
locate anatomical landmarks, and automatically assess critical safety criteria [14, 31]. DL techniques,
including action-triplet recognition, temporal modeling, tools and anatomical structures segmentation,
have been applied to LC [19, 35, 32, 7].

However, the availability of annotated data poses challenges for training DL models in this domain
[22]. Limited datasets, primarily derived from the Cholec80 dataset, exist for LC, annotated with
phases, tool presence, and action-triplets [32, 18, 19]. To overcome this limitation, generating
synthetic data through virtual simulations along with rich annotations has been explored [4, 22]. Yet,
DL models trained on synthetic data often struggle to perform well on real data due to the domain gap
[22]. Image-to-image translation techniques based on Generative Adversarial Networks (GANs) have
been proposed to mitigate this limitation [2]. However, these techniques still require a substantial
amount of annotated data.
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Figure 1: Examples of synthetic data translated with our fine-tuned model to the CholecT45 style. Three random
frames from the simulator and their realistic translations are shown in the top and bottom rows, respectively.

Recently, Latent Diffusion Models (LDMs) have shown promise in generating highly detailed images
while preserving semantic structure [9]. LDMs employ an iterative process involving noise addition
and reverse learning to recover original data. In the medical field, LDMs have been utilized for tasks
such as image translation, generation, preprocessing, segmentation, and classification [9]. Compared
to other DL techniques like GANs, LDMs can be fine-tuned effectively with smaller datasets and
combined with support methods for controlled generation. The widely used Stable Diffusion (SD)
LDM model offers efficient conditioning of the generation process through text prompts [24].

In general, no existing work uses LDMs instead of GANs for the translation of synthetic images
into realistic images with limited training data. Therefore, our contributions are as follows: (1) We
introduce a novel application of the Stable Diffusion Model to generate synthetic surgical data in an
unsupervised manner, addressing the issue of limited data availability in clinical environments. (2)
We evaluate our approach using public datasets to demonstrate its effectiveness in generating realistic
synthetic data. The results show that our approach outperforms the baseline method in preserving
tissue integrity, achieving a mean Intersection over Union (IOU) of 69.76% compared to 42.21%
for the CholecT80-styled baseline. Additionally, our method successfully captures the characteristic
feature distribution of real surgical data, either comparable to or enhanced compared to the baseline
dataset, (3) We provide public access to the code and our realistic rendering of the publicly available
IRCAD dataset, which includes simulation frames, depth maps, segmentation maps, edges, and
normals (https://github.com/SanoScience/sim2real_with_Stable_Diffusion).

2 Related work

Several approaches have been proposed for generating realistic synthetic data for surgical procedures,
e.g., [10]. In [4], Unity3D was used to create a 3D liver and laparoscopic environment to generate
training images for DL segmentation. Another study [16] used a GAN to generate images from
segmentation maps, emphasizing instrument-anatomy differences. Synthetic images combined with
real segmentation maps have trained GANs for tool segmentation using techniques like consistency
losses and student-teacher learning [27, 26]. GANs have also been applied in cardiac intervention,
colonoscopy, and sinus surgery [29, 20, 13]. Another relevant work [22] introduced image-to-image
translation for 3D LC anatomy rendering from real endoscopic images. It used GANs trained in an
unpaired manner, generating 100,000 annotated images. Though extended to video translation [23],
it lacks tools and gallbladder-specific content, not representing LC procedures. While GANs show
potential, they have limitations, including early discriminator convergence and unstable adversarial
loss, leading to mode collapse and reduced diversity. LDMs are emerging as an alternative, excelling
in computer vision tasks [3]. In the medical domain, LDMs find use in various applications, such
as generating MRI sequences and histological images [9, 21, 17]. The Stable Diffusion (SD) model
is notably used in similar medical tasks. Our work pioneers the use of LDMs for intra-operative
endoscopic image generation, conditioning on text prompts and virtual simulator images.

3 Method

Our method involves adding a concept to the SD model and using it to generate realistic images from
synthetic ones. We begin by fine-tuning SD based on Dreambooth (DB) [25]. Then, the fine-tuned
Laparoscopic Cholecystectomy Stable Diffusion (LC-SD) model is employed to generate realistic
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Figure 2: Overview of fine-tuning and inference: SD is fine-tuned using Dreambooth, which binds a unique text
identifier with a newly incorporated CholecT45 style. In the inference stage, the fine-tuned LC-SD is conditioned
with two ControlNet models. The textured input sample, along with the ’cholecT45’ prompt, is passed to LC-SD.
The Tile ControlNet accepts a tiled version of the input sample, while the SoftEdge ControlNet accepts edges
detected by Pidinet from the input sample.

images. This is achieved by leveraging two versions of the ControlNet support architecture, namely
Tile and SoftEdge control, to ensure consistency between label and generated images. An overview
of the proposed method is depicted in Fig. 2.

Fine-tuning with Dreambooth. SD [24] is a LDM, uses a lower-dimensional latent space for
denoising, with flexibility to condition on text or images via cross-attention. Notable progress in
few-shot fine-tuning and personalized concept introduction for SD includes Textual-Inversion [5],
Low Rank Adaptation [8], Custom Diffusion [11], and DB [25]. DB is selected for fine-tuning since
it allows to add unconventional concepts using a small set of concept-specific images (3 to 5 for an
object, 50 to 200 for a style). During training, a new concept is bound with an unique text identifier.

Inference with ControlNet. For realistic tissue generation, we use text-guided image-to-image
inference, incorporating a unique text identifier bound to the CholecT45 style during DB training.
We impose additional control over generated samples using ControlNet - an architecture designed for
controlling pre-trained large LDMs by integrating conditions like sketches, key points, edges, and
segmentation maps [36]. It is possible to combine multiple ControlNet models using the extended
formula from [36], given in Appendix A. We explored various outputs contained in IRCAD dataset
(depth maps, segmentation maps, normal vectors) as control inputs. However, preliminary tests
showed unsatisfactory inference results. Instead, we utilized ControlNet models delivering more
robust control for the CholecT45 style: SoftEdge and Tile. SoftEdge primarily preserves original
edges and tissue folds, utilizing edges from Pidinet [30] or HED [34] models, while Tile ControlNet
effectively adds tissue details and helps preserve accurate tissue colors. Selected control types are
compared in Appendix B.

4 Experiments

To use the minimum amount of data while ensuring a sufficient variability of visual properties and the
presence of all regions and instruments of interest, we trained three separate models, each based on
two distinct videos from the CholecT45 dataset [19]. We carefully select pairs of videos that exhibit
comparable visual characteristics and ensure that all classes are represented within each training set.
We train each model with DB using a manually selected set of 85, 91, and 95 images, respectively. We
further discuss the experimental setup in Appendix C. To evaluate the realism of the generated data,
we employ established evaluation metrics [23, 9]: Frechet Inception Distance (FID) [6] and Kernel
Inception Distance (KID) [1]. Following [33, 38, 12], we employ Learned Perceptual Image Patch
Similarity (LPIPS) [37] to assess diversity of generated samples. Moreover, to evaluate the LC-SD
models’ ability to preserve labels, we fine-tuned a variant of U-Net with a pre-trained ResNet50
backbone using the CholecSeg8k dataset [7] for five classes present in both the CholecSeg8k and
IRCAD datasets. We use mean Intersection over Union (mIoU) to calculate the average overlap
between predicted and ground truth segmentation masks across multiple classes. Each metric was
calculated for 10,000 samples. We exclude all training videos from CholecT45 dataset for evaluation.
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Table 1: Quantitative results are presented for each style: the raw simulator, baseline data, and our generated
data. We demonstrate this using mIoU, FID, KID, and LPIPS metrics. The best-performing methods are bolded.

Method FID ↓ KID ↓ LPIPSV GG ↑ mIoU [%] ↑
Raw simulation images 305.00 .3739 ± .0041 .5820 24.73

[22] - Random 110.92 .1243 ± .0035 .5834 45.28
[22] - Cholec80 67.13 .0623 ± .0017 .6407 42.21

Ours - CholecT45 vid52 & vid56 68.35 .0658 ± .0015 .6245 66.85
Ours - CholecT45 vid25 & vid66 63.07 .0582 ± .0012 .6262 69.76
Ours - CholecT45 vid01 & vid49 57.47 .0513 ± .0011 .6175 67.20

Ours - Mixed styles 54.57 .0473 ± .0011 .6281 67.89

Table 2: The mIoU [%] values for different control types and improvement compared to no-control inference are
presented.

Style No control Only SoftEgde Only Tile SoftEdge + Tile

CholecT45 vid52 & vid56 61.52 65.26 (+6.1%) 64.20 (+4.4%) 66.85 (+8.7%)
CholecT45 vid25 & vid66 63.35 67.16 (+6.0%) 68.01 (+7.4%) 69.76 (+10.1%)
CholecT45 vid01 & vid49 54.29 63.26 (+16.5%) 62.08 (+14.3%) 67.20 (+23.8%)

5 Results

Raw simulation images have an mIoU of 24.73%, FID of 305.00, KID of 0.3739 ± 0.0041, and LPIPS
of 0.5820. Using the method from [28], we observe performance improvements across all metrics -
mIOU of 42.21%, accompanied with FID of 67.13 and KID of 0.0623 ± 0.0017 and LPIPS of 0.6407
for Cholec80 style. Our method, denoted as "ours", showcases further enhancements. Across various
CholecT45 styles, we achieve impressive mIoU scores, notably 69.76% for vid25 & vid66 style.
These results are accompanied by competitive FID, KID, and LPIPS scores. Additional experiment
demonstrates that mixing images from three styles further decreases FID and KID values. Overall,
our method signifcantly outperforms the baseline method in terms of label preservation expressed
through mIoU, while capturing the characteristic feature distribution on a comparable or better level.
Additionally, Table 2 provides an overview of the mIoU values for different control types and their
improvements compared to no-control inference. Across all CholecT45 styles, control mechanisms
consistently boosted mIoU compared to no-control inference. The combination of SoftEdge and Tile
controls delivered the most substantial improvement, demonstrating their effectiveness in enhancing
model performance across diverse styles.

6 Discussion and Conclusions

In this work, we have proposed an SD-based approach to generate realistic surgical images from
virtual simulator images and text prompts. The SD model was initially fine-tuned using DB and then
used for inference, supported by Tile and SoftEdge ControlNets. The model can be trained using less
than 100 real images without manual annotations and manages to generate realistic images that either
outperform or are highly competitive to the baseline in all considered evaluation metrics. We consider
this work to be a significant addition to the current foundation, offering researchers a valuable dataset
to facilitate the development of machine learning solutions in image-guided and robotic surgery.
This approach can produce fully labeled training data for supervised machine learning algorithms.
Additionally, strict alignment of the created data with its ground truth annotations extends its potential
for evaluation in various unsupervised and semi-supervised applications. Despite that, our method
has some limitations, including the need for careful image selection due to a small training dataset,
heavy reliance on input image features, and a lack of temporal consistency in simulated data. Overall,
our proposed method represents a promising direction for generating realistic surgical images and
has the potential to contribute to advancements in the field of image-guided and robotic surgery.
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A ControlNet

ControlNet, designed for controlling pre-trained large DMs, maintains two sets of UNet weights:
a locked copy preserving original weights and a trainable copy fine-tuned using task-specific data.
Neural network blocks of pre-trained DM and ControlNet use trainable "zero convolution" layers,
and detailed functionality and application are explained in [36].

It is possible to directly apply ControlNet trained on original SD to LC-SD, and even to combine
multiple ControlNet models (each with desired strength) to impose diversified control. To combine
single LC_SD block with corresponding blocks of N ControlNets we present the extended formula
from [36] as:

yc = F(x;θLC_SD) +

N∑
i=1

wiZ (F (x+ Z (ci;θZ1,i) ;θC,i) ;θZ2,i) (1)

where x is an input feature map to the LC-SD block, ci is a conditioning input feature map to the
corresponding block of the i-th trained ControlNet and yc is a conditioned output feature map from
the LC-SD block. We denote the weights of the LC-SD block as θLC_SD and the trainable weights
for the block of the i-th ControlNet as θC,i. The function denoted as F(·; ·) transforms the input
feature map into the output feature map given a set of parameters. We denote the "zero convolution"
operation as Z(·; ·). Within the block of the i-th ControlNet two "zero convolution" operations
are performed with optimized parameters {θZ1,i,θZ2,i}, respectively. wi is the strength the i-th
ControlNet is applied with. The first term on the right side of Eq.1 represents the result of applying
LC-SD, while the second term relates to the contribution of the different ControlNets.

B ControlNet Influence

For inference we use two ControlNet models which influence is shown in Fig.3. The SoftEdge control
utilizes edges generated with Pidinet [30] or HED [34] models. It primarily preserves original edges
and tissue folds. On the other hand, Tile ControlNet exhibits conceptual similarities with tile-based
super-resolution models but offers broader applications. It operates in two modes: generating new
details while ignoring existing ones, and ignoring global prompts when local tile semantics and
prompts do not align, guiding the diffusion process with local context. In the context of endoscopic
image generation, Tile ControlNet effectively adds tissue details and helps preserve accurate tissue
colors.

C Dataset and Implementation details

We train our models on manually selected small subsets from the CholecT45 dataset [19]. Despite
the limited number of images, it is crucial to choose representative and consistent samples that cover
various procedure stages and tissues present in the synthetic dataset. Furthermore, to prevent the
models from introducing tool artifacts in each frame, it is highly important to include images both
with surgical tools and with minimal or no presence of them. All models are based on Stable Diffusion
v1.5 and we train them with DB using a learning rate of 1 × 10−6 and a batch size of 4 for 2,000
steps.

In the inference stage, we utilize fully labeled synthetic data from the IRCAD 3D CT liver dataset.
The dataset contains 20,000 synthetic images rendered from 3D scenes obtained from the CT data
of 10 different patients including models of the liver, gallbladder (only for 6 patients), insufflated
abdominal wall, fat, and connective tissue. In addition, tools, light sources, and endoscopic cameras
have been added in random positions in the scene. In the image-to-image approach, the prior
information significantly influences the resulting image. However, the IRCAD dataset presents
simplified anatomy, and as a result, plain structures and distorted colors can lead to unrealistic results.
To address this issue, we enhance the raw simulation images by incorporating texture information
from example samples. We extract small texture samples for each tissue from the corresponding
training set and blend them with the raw simulation scenes, guided by segmentation maps, as shown
in Fig. 5.

For inference, we adjust the model checkpoint, denoising strength, classifier-free guidance scale
(CFG), noise scheduler, and ControlNet v1.1. strengths for each LC-SD model separately. Although

8



Figure 3: Visual comparison on example image generated with different control types applied. Without any type
of control, the overall image consistency is degraded. With Tile control details are clearly rendered, but tissue
shapes do not correspond to the given labels. With only SoftEdge control color artifacts appeared.

Figure 4: A visual comparison is made between the data processed using our fine-tuned Stable Diffusion model
(first row), the raw image from the simulator, and the data generated in [22] for random and Cholec80 styles
(second row).

Figure 5: Visual comparison between the raw image from the simulator (first from left) and image with enriched
textures for two styles (second and third from left).

all models are trained with the same parameters, variations in the complexity and diversity of the
training sets resulted in differences in denoising capabilities across the models. We carefully balance
the ControlNet strengths for each model separately. In addition to tissue placement, we also consider
overall image realism and details, such as tissue folds. The lack of tissue folds would not necessarily
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Table 3: Selected inference parameter values for each model: denoising strength, CFG, noise scheduler, SoftEdge,
and Tile control strength. All the models use noise scheduler DPM++ 2M Karras.

Style Denoising CFG SoftEdge Tile

CholecT45 vid52 & vid56 0.45 4.5 0.5 0.3

CholecT45 vid25 & vid66 0.45 5.0 0.4 0.3

CholecT45 vid01 & vid49 0.5 5.0 0.55 0.3

degrade mIoU. To achieve the desired balance, we use a stronger SoftEdge control in combination
with a weaker Tile control. Using only SoftEdge with high control strength could compromise image
quality by erasing valuable details. To prevent Tile control from introducing excessive detail based
on the input sample, we use a smaller strength. To generate data at a large scale while maintaining
reasonable inference time and acceptable image quality, we limit the denoising steps to 20. The
selected parameter values are shown in Table 3.

The data generation process is carried out on a single NVIDIA A100 GPU. The generation time takes
up to 3 seconds per image, depending on the number of ControlNets utilized.
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