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ABSTRACT

Vision-Language Models (VLMs) have demonstrated remarkable capabilities in
visual question answering (VQA), yet they often struggle with referential ambi-
guity when multiple objects in an image could satisfy a given query. To address
this challenge, we present Gaze-VLM, a novel training-free approach that uses
eye-tracking data in real-time as an external alignment signal to resolve ambi-
guity in open-ended VQA. Through a comprehensive user study with 500 unique
image-question pairs, we demonstrate that fixations closest to the time participants
start verbally asking their questions are the most informative for disambiguation in
Multimodal Large Language Models (MLLMs), more than doubling the accuracy
of responses on ambiguous questions (from 35.2% to 77.2%) while maintaining
performance on unambiguous queries. We evaluate our approach across state-of-
the-art VLMs, showing consistent improvements when gaze data is incorporated
in ambiguous image-question pairs, regardless of architectural differences. To
facilitate future research in gaze-informed VQA, we release a new benchmark
dataset to use eye movement data for disambiguated VQA, a novel real-time in-
teractive protocol, and an evaluation suite. Our findings demonstrate that human
visual attention signals can effectively guide VLMs toward intended referents in
ambiguous contexts without requiring model retraining or architectural changes.

1 INTRODUCTION

Visual question answering (VQA) represents a fundamental challenge at the intersection of Com-
puter Vision and Natural Language Processing (NLP), requiring systems to understand both visual
content and linguistic queries to generate appropriate responses. While recent Vision-Language
Models (VLMs) have achieved impressive performance on standard VQA benchmarks (Chen et al.,
2023; Peng et al., 2023; Chen et al., 2024; Liu et al., 2024; Wang et al., 2024b; Qin et al., 2025;
Yao et al., 2025), they continue to struggle with a pervasive real-world challenge: referential ambi-
guity. When multiple objects in an image could plausibly satisfy a query, such as asking "What is
that?", current VLMs lack the contextual grounding to identify the intended object referred to in the
ambiguous query, defined as the "referent".

Here, we present a solution that leverages eye movement fixations, a natural human behavior, to re-
solve referential ambiguity in open-ended VQA. Decades of cognitive science and psycholinguistics
research show a tight coupling between eye movements, attention allocation, and linguistic planning
(Just & Carpenter, 1976; Hayhoe & Ballard, 2005; Land, 2009; Yarbus, 1967). During natural view-
ing and questioning, fixations reliably precede verbal references by several hundred milliseconds,
reflecting both planning and execution in speech production (Griffin & Bock, 2000). By aligning
what is said with where (and when) people look, we obtain a time-locked, user-aligned signal that
helps disambiguate referential intent in ambiguous VQA scenarios.

We present Gaze-VLM, a training-free approach that leverages human gaze data to enhance VLMs’
ability to resolve referential ambiguity in open-ended VQA. As illustrated in Figure 1, our system
captures users’ natural eye movements as they formulate questions about images, then provides these
fixation patterns as additional context to guide VLMs toward the intended referent.

Prior work leverages human gaze across vision–language and recognition tasks. For image caption-
ing, Sugano & Bulling (2016) integrated human fixations into an attention LSTM; for VQA, Inadumi
et al. (2024) estimated within-image gaze to select regions of interest, and Sood et al. (2021) assessed
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Figure 1: Gaze-VLM system overview. Partici-
pant asks an ambiguous question about an image
while their eyes are being tracked. The VLM uses
the fixation data (marked as a white cross) to dis-
ambiguate the query and provide an accurate re-
sponse in real-time.

human–model attention alignment without
feeding gaze to the model. Beyond VQA, Ka-
ressli et al. (2017) encoded gaze as an auxiliary
embedding to improve zero-shot image classi-
fication. In contrast, our approach operates at
inference time without requiring model modifi-
cation, making it immediately applicable to ex-
isting VLMs.

Through a comprehensive human study involv-
ing 500 unique image-question pairs, we col-
lected a rich dataset of synchronized speech,
gaze, and stimulus information. Participants
formulated both ambiguous (for images con-
taining multiple similar referents) and unam-
biguous questions (for images with a clear sin-
gle referent), while we tracked their eye move-
ments. Our experimental paradigm, detailed in
Figure 2, captures the natural coupling between
visual attention and linguistic formulation that
occurs during human question-asking behavior.

Our temporal analysis reveals critical insights
about the mechanism behind successful disam-
biguation using observers’ gaze. We find that
fixations occurring around the time of speech-onset provide the strongest disambiguation signals
to VLMs. Moreover, we demonstrate that even a simple aggregation of all fixations during view-
ing significantly improves performance over image-only baselines (p < .001), suggesting that the
concentration of gaze fixations itself carries disambiguating information. We evaluate our approach
across 10 state-of-the-art (SOTA) VLMs, demonstrating consistent improvements when gaze data is
incorporated. Our approach is not only grounded in literature linking eye movements and intent, but
also practical and easily deployable. It finds immediate application in AR/VR systems that integrate
eye tracking to deliver user-aligned ambiguity resolution in real-world interactive systems.

Our main contributions are:

• We introduce Gaze-VLM, a training-free approach that uses human eye data to steer VLM repre-
sentations toward user-intended referents, resolving ambiguity without modifying model parame-
ters or reliance on a specific architecture.

• Across 500 human-collected image–question pairs, conditioning on gaze around speech onset
more than doubles accuracy for ambiguous questions (35.2% → 77.2%), while leaving unam-
biguous performance statistically unchanged.

• A controlled analysis identifies the most informative window around speech onset, evidence that
gaze aligns with task-relevant features when the ambiguous question is formulated.

• We create a new real-time interactive experimental paradigm that synchronizes speech, gaze, and
image information for VQA, as well as a corresponding offline evaluation suite and a new dataset
on open-ended VQA to facilitate benchmarking.

2 RELATED WORK

Vision-Language Models and Visual Question Answering. VLMs have progressed from early
two-stream transformers (VisualBERT (Li et al., 2019), LXMERT (Tan & Bansal, 2019)) and con-
trastive pretraining (CLIP; (Radford et al., 2021)) to instruction-tuned systems (Flamingo (Alayrac
et al., 2022), BLIP-2 (Li et al., 2023), LLaVA (Liu et al., 2023)) and recent open models that
markedly advance VQA and multimodal reasoning: LLaVA-OneVision (Li et al., 2024), Qwen2-
VL and Qwen2.5-VL (Wang et al., 2024a; Bai et al., 2025b), InternVL 2.5 (Chen et al., 2025),
IDEFICS2 (Laurençon et al., 2024), and large-scale pretraining analyses such as MM1 (McK-
inzie et al., 2024). Yet grounding issues persist, including failures owing to visual shortcomings
in MLLMs (Tong et al., 2024) or bypassing visual grounding in shortcut learning (Reich & Schultz,
2024). When questions are underspecified, VQA performance may be helped by prompt-level fixes
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(e.g., visually grounded rephrasing) (Prasad et al., 2024). Complementing these trends, emerging
work integrate human gaze cues within images to clarify referents by introducing new model ar-
chitectures (Inadumi et al., 2024). In contrast, our approach leverages the viewer’s natural gaze
at inference, without architectural changes or retraining, to guide the model toward the intended
referent and reduce ambiguity in open-ended VQA.

Eye Movements and Attention. Foundational research links eye movements to covert attention
(Posner, 1980; Hoffman & Subramaniam, 1995; Deubel & Schneider, 1996; Li et al., 2021). In
natural tasks, gaze anticipates actions and speech, revealing time-resolved planning during sentence
production (Coco & Keller, 2012), and scene and event description (Hayhoe et al., 2012; Griffin &
Bock, 2000). Classic studies have demonstrated that what observers look at depends strongly on
visual and linguistic context and goals (Yarbus, 1967; Tanenhaus et al., 1995). While this temporal
coupling is well established, it is rarely operationalized to select referents at the precise moment of
question formulation in VQA. This work aligns a short window around speech onset with fixations
to harvest the most informative disambiguation cue.

Eye-Tracking in Vision-Language and Computer Vision. Eye movements have a rich history of
informing models of perception and learning. Yarbus (1967) pioneered the use of eye movements to
understand visual perception, showing that fixation patterns vary with task demands. In the context
of language processing, Tanenhaus et al. (1995) demonstrated that eye movements during spoken
language comprehension reflect real-time semantic processing. Interactive systems have long ex-
plored gaze as an input modality: Jacob (1991) introduced early gaze-based interaction paradigms,
and Majaranta & Bulling (2014) surveyed the evolution of eye-tracking interfaces. Building on
these foundations, the computer vision community has increasingly recognized the value of gaze
data: classical saliency models codify attention mechanisms inspired by human vision (Itti & Koch,
2001) (see Borji & Itti (2013) for a review), and gaze has been used to directly guide concrete vision
tasks. For example, Shanmuga Vadivel et al. (2015) used multi-viewer eye-tracking to guide video
object segmentation, showing that gaze can directly support object localization and extraction. More
recently, gaze has been integrated as a supervisory signal in learning-based systems. For instance,
Sugano & Bulling (2016) utilized gaze supervision to enhance image captioning models.

Within VQA, Sood et al. (2021) introduced VQA-MHUG, a gaze-annotated dataset designed to
study multimodal neural attention, and Ilaslan et al. (2023) presented GazeVQA, a video QA dataset
capturing multiview gaze in task-oriented collaboration scenarios. Building on these directions, our
work creates a real-time system that naturally integrates speech, gaze, and vision to resolve ambigu-
ous questions in open-ended VQA. Inadumi et al. (2024) used gaze-target estimations to improve
VQA performance, and Karessli et al. (2017) used human gaze embeddings as auxiliary informa-
tion for zero-shot image classification. However, most prior work leverages gaze during training
or as estimated gaze target annotations, and model-internal attention is not a reliable substitute for
human referential intent. Our work creates a real-time system that naturally integrates human fix-
ations, speech, and visual inputs directly at inference to bias VLM reasoning without retraining or
architectural changes.

Multimodal Ambiguity Resolution. Ambiguity resolution has been studied across modalities. In
NLP, Sukthanker et al. (2018) surveyed approaches to anaphora resolution (identifying what a refer-
ring expression refers to in context). In computer vision, Mao et al. (2016) addressed ambiguous re-
ferring expressions by generating unambiguous descriptions, and Kazemzadeh et al. (2014) created
a game to collect referring expressions for objects in images. At the VQA intersection, Zhang et al.
(2016) introduced a balanced dataset for binary ("yes/no") VQA on abstract scenes rather than am-
biguous questions, while more recently Testoni et al. (2024) highlighted issues with overconfidence
and bias in visual LLMs under ambiguity. Against this backdrop, our approach uniquely combines
real-time gaze tracking with open-ended VQA to address ambiguity in a naturalistic setting.

3 GAZE-VLM

3.1 SYSTEM ARCHITECTURE

Our Gaze-VLM system integrates three key components: (1) real-time eye-tracking to capture overt
visual attention patterns (fixation locations), (2) speech recognition to identify question timing and
content, and (3) MLLMs to generate responses. The system operates in a naturalistic setting where
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Figure 2: Experimental procedure. A central fixation check was enforced, after which participants
freely viewed each image and asked any question aloud about it. Once 1.5s of silence elapsed
following the question, the VLM was prompted with (i) the image, (ii) the transcribed question, and
(iii) the same image with fixation data superimposed. Finally, participants reported the object they
queried about (location of interest) by clicking the corresponding region of the image.

users freely explore images and formulate questions while their eye movements are recorded. The
core insight driving our approach is that human gaze patterns during question formulation carry rich
information about the intended referent of the question. When a person asks "What color is that?"
while looking at a specific object among many, their fixations cluster around that object, providing a
natural disambiguation signal. We capture these fixations and present them to the VLM as additional
visual context, enabling the model to identify the referent and respond accurately.

3.2 GAZE DATA COLLECTION PROTOCOL

We recruited 10 participants (5 female; age: 19-26 years, M=22±0.89 years) with normal or
corrected-to-normal vision for a within-subjects study approved by the Institutional Review Board.
All participants provided informed consent and received course credit for participation. Gaze was
recorded monocularly from the left eye using EyeLink1000 Tower Mount (SR Research Ltd., 2005),
at 1000 Hz (mean calibration error <1 dva; max <1.5 dva). Stimuli consisted of 50 photographs cap-
tured in everyday environments, with 40 scenes for ambiguous questions (containing multiple po-
tential referents) and 10 for unambiguous ones (see Section A.1, Figure 8 for examples). The images
were blocked, and ambiguous and unambiguous blocks were counterbalanced across participants.
We also included 7 practice images from the MS COCO test set (Lin et al., 2014). Images were dis-
played on an Acer VG272X monitor (1920×1080 @ 60 Hz; 60 cm width) at 62 cm viewing distance
(0.029 dva/pixel). Each session began with a 9-point calibration procedure. Participants completed a
practice block with feedback on valid questions. Trials were gated by a central forced-fixation check
(Figure 2): participants pressed space while fixating on a cross; progression required fixating within
a 1.45 dva radius, with recalibration after three failures. Once the fixation check was successful,
participants were shown the trial image with no time limit while they formulated an unambiguous or
ambiguous question (based on the block assigned). Participants then asked their question out loud
while continuing to view the image. OpenAI’s speech-to-text and text-to-speech APIs were used to
convert participants’ voice to text questions and VLM’s text responses to voice output, respectively.
Next, participants listened to the VLM’s response. Finally, participants registered the Location of
Interest (LOI), which was the location of the queried object using a mouse click. Sessions lasted 45
minutes per participant on average.

3.3 GAZE DATA PROCESSING

Gaze data typically consists of periods of relative stability, or fixations, which alternate
with ballistic eye movements, also known as saccades. We identified fixations and sac-
cades using EyeLink’s online velocity and acceleration-based algorithm (SR Research Ltd.,
2005) to parse saccades when eye velocity and acceleration exceed a threshold of 30°/s
and 8000°/s2, respectively. The period between two saccades was classified as a fixa-
tion. The duration, start, and end locations of each fixation and saccade were recorded dur-
ing the trial (see Section A.3 and Figure 12 for descriptive statistics of recorded fixations).
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Figure 3: Temporal-spatial filtering of eye gaze data.
Fixations colored by time. Black lines on the color bar
mark speech onset and end. Diamonds represent fix-
ations within ±1s of speech onset; all others are cir-
cles. Any diamond within 2 dva of the diamonds’ me-
dian (red +) is spatially filtered and rendered as white
crosses on black circles and passed onto Gaze-VLM.

For each trial, we used a spatiotemporal
filtering approach to denoise fixation sig-
nals. First, we identified a specific time
window around speech onset, which was
determined using voice activity detection
on the audio stream (see Section A.3 and
Figure 13 for details on speech onset la-
tency and duration). Next, a spatial filter
using the coordinate-wise median location
of all temporally filtered fixations was ap-
plied. Any fixations that remained within
a 2 dva radius of this median were kept,
and the rest were discarded. If this step re-
sulted in zero remaining fixations (10.8%
of all 500 trials), we kept all the fixations
that passed the temporal filtering stage.
Finally, we overlaid the filtered fixations
on the original image as white crosses on
black circles (Figure 3). For more details
on the efficiency of our filtering approach,
see Section A.2 (Figures 9, 10, and 11).

3.4 VLM INTEGRATION

We employed a system prompt that instructed the VLM to use eye movement data for disambigua-
tion. Importantly, we instructed the model not to mention the eye movement data in its response,
maintaining a natural interaction flow. The complete set of system prompts for all our tasks, includ-
ing accuracy evaluation and baseline response generation (as described in Section 3.7), is provided
in A.5.

3.5 GROUND TRUTH GENERATION

Establishing ground truth for open-ended VQA presents unique challenges, as responses can vary
in phrasing while conveying the same information. We developed a multi-stage process for ground
truth generation. We first generated responses from three SOTA VLMs, including GPT-5 (OpenAI,
2025), Gemini 2.5 Pro (Gemini Team, Google DeepMind, 2025), and Claude Opus 4.1 (Anthropic,
2025), using the participants’ LOI to identify the true object that was queried about. We then re-
cruited five independent evaluators to review each image-question pair along with the model re-
sponses and the participants’ LOI. They selected the most accurate response or provided a custom
answer if none were satisfactory. This step minimized bias from any single model and incorporated
human judgment for ambiguous cases. Because our semantic similarity metric (Section 3.6) is sen-
sitive to textual length and detail, we standardized the final ground truth by selecting the shortest
accurate response among those chosen by evaluators. This approach ensured consistent compar-
isons across trials and conditions, while avoiding deflated similarity scores due to verbose phrasing.
Finally, all ground truth responses were manually verified for accuracy by the first two authors.

3.6 EVALUATION METRICS

We employed two complementary metrics to assess system performance:

Accuracy: We evaluated response correctness using binary classification (correct vs. incorrect),
assessed both manually and by an automated evaluator VLM, Gemini-2.5-Flash (Gemini Team,
2025). The evaluator was provided with an accuracy evaluation prompt (see A.5), alongside the
question–response pair and the corresponding image annotated with the Location of Interest (LOI).
Based on this input, it classified each response as correct or incorrect. To assess the reliability of
this automated evaluation, we manually assessed responses generated by GPT-5-Mini (results in
Figure 6) and found an 88% agreement in accuracy ratings between human judgment and the VLM
evaluator. Unless noted, all p-values reported are from two-tailed paired-samples t tests.
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Figure 4: Qualitative results showing successful (A) and failed (B) disambiguation using gaze
data. Black circles with white crosses mark temporally and spatially filtered fixation locations.

Embedding-Based Similarity Metric: Let gi denote the ground truth response for trial i and r
(m)
i

the response of model m on the same trial. We use a fixed, frozen sentence encoder E(·) to embed
both texts OpenAI (2024). Our primary score is cosine similarity outlined in 1. For each model m,
we report the mean and standard deviation of s(·, ·) across trials.

s
(
r
(m)
i , gi

)
=

⟨E(r
(m)
i ), E(gi)⟩

∥E(r
(m)
i )∥2 ∥E(gi)∥2

. (1)

3.7 SEMANTIC SIMILARITY BASELINES, UPPER AND LOWER BOUNDS

Semantic similarity values range between 0 (dissimilar) and 1 (identical) (Equation 1). To interpret
the effects of gaze on ambiguous and unambiguous VQA, we compared the model’s response to sev-
eral baselines and upper and lower bounds. We generated baselines by sending specific information
to the model (detailed here), and computing the similarity of the model response thus generated to
the ground truth. Upper bounds: (i) mouse-click LOI as "perfect gaze" with image and question, and
(ii) inter-rater agreement between the five human-generated ground truth statements (mean pairwise
similarity). We also included a baseline that sends all fixations (no temporal or spatial filtering) to
the model. Lower bounds: (i) only image and question only (no gaze) baseline and (ii) a "wrong-
answer" baseline, generated by prompting the model to respond incorrectly given the image, LOI,
and question (see Section A.5), to control for object-level differences within each image.

4 RESULTS

4.1 QUALITATIVE ANALYSIS

Figure 4 qualitatively showcases when gaze helps and when it does not (see also Section A.2, Fig-
ures 9 and 10). In Successful Cases (Figure 4A), fixations narrow the model to the intended referent:
e.g., gazing at the burgundy jacket corrects “Dark green,” fixating the purple bowl overrides a de-
fault to the salient blue one, fixations on the toy cactus disambiguate “plant,” and fixations on the
closed door spatially resolve a two-door scene. In Failed Cases (Figure 4B), gaze is uninforma-
tive or misleading: fixations fall between two doors, land on tinted glass yielding a wrong “Dark
green” building color, reflect a voice-to-text error (“pen” vs “pan”) with vague gaze, or miss the
relevant chair entirely. Overall, success requires fixations that are (1) concentrated on the target
around speech onset, (2) show clear separation from distractors, and (3) aligned to question intent.
Otherwise, gaze can have no effect, or even harm model performance. For a detailed taxonomy and
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Figure 5: Temporal dynamics of gaze informativeness for ambiguous questions. (A) Model per-
formance increases as the temporal window expands around speech onset time, converging to
the "all-fixations" baseline similarity at ±4500ms around speech onset. The bottom panel shows
decreasing distance between the fixation median and the Location of Interest (LOI) in dark blue and
increasing fixation count with larger windows in red. (B) Peak performance a few milliseconds
before speech onset is revealed in sliding window analysis (600ms window-width, 400ms sliding
step-size), aligning with minimum fixation-to-LOI distance. Gray shaded region indicates the in-
terquartile range of speech end times. Error bars represent SEM. (A) and (B) top: green - "LOI
(perfect gaze)" upper bound; orange - "all-fixations" baseline; purple - "image-only" baseline; pink
- "wrong answer" lower bound (see Section 3.7 for details).

quantification of errors, see Section A.4 (Figure 14 shows examples of error types and Figure 15
quantifies that across all trials and participants).

4.2 TEMPORAL ANALYSIS OF GAZE INFORMATION

To quantify features of gaze data that are: (i) crucial for successful disambiguation, and (ii) corre-
lated with question intent, we systematically varied a temporal window centered on speech onset,
to identify the optimal time window that contains the most informative gaze disambiguation sig-
nal (Figure 5). In Figure 5A, we observe that similarity to ground truth increases monotonically
as we expand the temporal window from ±250ms to ±3000ms around speech onset. Performance
starts at a similarity of 0.57 for the smallest window and reaches a peak of 0.65 at ±2500ms, after
which it converges with the "all-fixations" baseline (0.615) at ±4500ms. This convergence suggests
that fixations beyond ±4500ms around speech onset contribute minimal additional disambiguation
value. The bottom panel reveals the mechanism underlying this performance curve: median fixation
distance to LOI decreases from 4.0° to 2.7° as the window expands, while fixation count increases
linearly. The inverse relationship between fixation-to-LOI distance and performance (correlation
r = −0.89, p < .001) confirms that fixations closer to the intended object provide stronger disam-
biguation signals. Notably, even the all-fixations baseline similarity is significantly greater than that
of image-only (0.615 vs 0.531, p < .001), indicating that the mere concentration of fixations during
viewing helps resolve ambiguity compared to the absence of any gaze data. The LOI upper bound
similarity (0.688) represents "perfect gaze" information, while the "wrong answer" baseline simi-
larity (0.463) shows the lower bound by deliberately prompting the model to generate an incorrect
response given image, LOI, and question (see Section 3.7).

Figure 5B employs a sliding window approach (600ms width) to pinpoint when gaze is most infor-
mative in relation to speech onset. Performance peaks at a similarity of 0.62 for windows centered
near speech onset (-200ms to +400ms to speech onset), precisely when the median fixation-to-LOI
distance is minimal (3.5°). This temporal alignment between optimal performance and closest fixa-
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Figure 6: Effect of gaze input on performance compared to Image-Only and Image with Location
of Interest (LOI). (A) By adding gaze to the input, accuracy increases from 35.2% to 77.2%,
p < .001) for ambiguous questions, while remaining non-significant for unambiguous questions
(p = .52). (B) Semantic similarity shows similar significant improvements only in ambiguous
conditions. Error bars represent SEM shown on the upper side only.

tions to the intended object validates that speakers naturally look at what they are asking about. The
performance decline and median fixation-to-LOI distance increase after speech onset suggest that
later fixations introduce noise rather than a disambiguation signal.

4.3 IMPACT OF GAZE ON AMBIGUOUS VS UNAMBIGUOUS QUESTIONS

We use the optimal time window identified in our analysis in Figure 5 to demonstrate the differen-
tial impact of gaze information on ambiguous and unambiguous questions (Figure 6). Gaze data
within a 2-second window centered on speech onset provide substantial benefits when referential
ambiguity exists, but offer minimal value when questions have clear, unique referents. For ambigu-
ous questions (Figure 6A, left), accuracy increases dramatically from 35.2% (image-only) to 77.2%
(gaze+image), representing a 115% improvement (p < .001). The large gap between image-only
and gaze-augmented performance confirms that VLMs struggle with referential ambiguity but can
effectively utilize gaze disambiguation signals when provided. In contrast, unambiguous questions
show no significant improvement with gaze data (83.0% to 86.0%, p = .52). The minimal differ-
ence between conditions (LOI: 89.0%, Gaze: 86.0%, Image: 83.0%) suggests a ceiling effect where
the questions are sufficiently clear that additional context provides marginal benefit, as expected for
unambiguous scenarios.

The semantic similarity analysis (Figure 6B) corroborates these findings. Ambiguous questions
show significant improvement from 0.531 (image) to 0.650 (gaze+image, p < .001), approaching
the LOI performance of 0.691 (p = .01). The ground truth self-similarity of 0.82 represents the up-
per bound of achievable similarity given variation in human-generated ground truth responses. For
unambiguous questions, similarity scores remain statistically unchanged across conditions (image:
0.656, gaze+image: 0.671, p = .685), reinforcing that gaze primarily benefits ambiguous scenar-
ios. Importantly, the similarity-to-ground-truth measures for all conditions were greater than the
"wrong answer" baseline (see Section 3.7), indicating that deliberately guiding the model to answer
incorrectly given the LOI leads to worse model performance than the image-only condition.

4.4 PERFORMANCE ACROSS VLM ARCHITECTURES

Table 1 shows consistent accuracy gains on incorporating gaze data across diverse VLMs (OpenAI,
2025; Gemini Team, Google DeepMind, 2025; Anthropic, 2025; Lu et al., 2025; Bai et al., 2025a).
Across diverse architectures and model sizes, Image+Gaze uniformly outperforms Image-only, with
improvements that are largest for frontier models and remain substantial for compact open-source
ones. The effect correlates with instruction-following rather than parameter count alone, suggest-
ing that gaze acts as a robust, architecture-agnostic disambiguation prior. Figure 7 shows the re-
sults of semantic similarity evaluation on the same models. Each point represents a model’s per-
formance with image-only similarity (x-axis) versus image+gaze similarity (y-axis) on ambiguous
image-question pairs. Remarkably, all models show improvement with gaze data, falling above the
diagonal identity line. GPT-5 achieves the highest absolute performance, reaching 0.71 similarity
when augmented with gaze. These consistent across-family gains without fine-tuning or architec-
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Model Image Only (%) Image+Gaze (%) ∆ (pp) p-value

GPT-5 Mini 49.7 83.0 +33.2 < 0.001
Gemini 2.5 Flash 54.2 83.3 +29.0 < 0.001
Gemini 2.5 Pro 59.3 82.3 +23.0 < 0.001
GPT-5 53.7 76.5 +22.8 < 0.001
Claude Sonnet 4 54.2 74.0 +19.8 < 0.001
Ovis 2.5 9B 52.5 69.5 +17.0 < 0.001
Claude 4.1 Opus 55.2 72.0 +16.7 < 0.001
Qwen 2.5 VL 32B 56.2 73.0 +16.7 < 0.001
Qwen 2.5 VL 7B 51.7 63.7 +12.0 < 0.001
Qwen 2.5 VL 3B 52.0 54.5 +2.5 0.48

Table 1: VLM Accuracies on ambiguous trials. “Image+Gaze” uses fixations from ±1s around
speech onset; ∆ is the difference in percentage points. p-values test Image+Gaze vs. Image-Only.

tural changes suggest our method taps general visual-processing abilities and makes our approach
immediately applicable to future VLMs as they continue to improve.

5 CONCLUSION

Figure 7: Semantic similarity to ground truth
across VLMs. Models above the diagonal line
show improvement with the inclusion of eye gaze
data in ambiguous trials.

We present Gaze-VLM, a training-free ap-
proach that leverages human eye-tracking data
to resolve referential ambiguity in vision-
language models. In a comprehensive study
with 10 participants on 50 images, we show that
using fixation data from a critical temporal win-
dow around speech onset more than doubled ac-
curacy on ambiguous questions while maintain-
ing performance on unambiguous ones. The
effectiveness of our method across 10 diverse
VLMs, from commercial APIs to open-source
models, demonstrates its generality and imme-
diate applicability. By releasing our benchmark
dataset, real-time experiment code, and evalu-
ation suite, we provide the research commu-
nity with tools to further explore gaze-informed
VQA. Our work demonstrates that human vi-
sual attention signals offer a powerful, natural,
and immediately applicable solution to referen-
tial ambiguity in VLMs. As eye-tracking tech-
nology becomes more ubiquitous through in-
tegration in AR/VR devices and accessibility
tools, we envision gaze-augmented VQA be-
coming a standard interaction paradigm for intuitive human-AI communication. More broadly, our
findings suggest that incorporating natural human behavioral signals, rather than requiring explicit
annotations or model retraining, represents a promising direction for improving AI systems. Future
work should explore extending this paradigm to other modalities and tasks, potentially revolutioniz-
ing how we interact with intelligent systems.

REPRODUCIBILITY STATEMENT

To preserve anonymity, we currently release only the practice trials of our VQA benchmark (con-
taining only MS COCO images), as well as semantic embeddings of model responses, and an
example gaze-visualization code. The full stimulus image set, VLM responses, real-time inter-
active VQA demo, and the complete code of the project will be released upon acceptance. Our
anonymized supplementary material can be accessed from: https://drive.google.com/
file/d/1Ly5WGakEy_1MnjqW2WPjGQ-DVMAg05TS/view?usp=share_link

9

https://drive.google.com/file/d/1Ly5WGakEy_1MnjqW2WPjGQ-DVMAg05TS/view?usp=share_link
https://drive.google.com/file/d/1Ly5WGakEy_1MnjqW2WPjGQ-DVMAg05TS/view?usp=share_link


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We conducted this research in accordance with the ICLR Code of Ethics and applicable regula-
tions. This study involving human participants was reviewed and approved by the human subject
research protocols (to maintain anonymity, details will be provided upon acceptance). All partic-
ipants provided informed consent prior to participation and could withdraw at any time without
penalty. Recruitment occurred via our university subject pool; participants received course credit.
We collected monocular eye-tracking data at 1000 Hz, participants’ voices, and mouse click loca-
tions for research purposes only. Personally identifying information was not collected; data were
pseudonymized before sharing in compliance with institutional and legal requirements. The public
release data will include only fixation coordinates and the transcribed text format of the audio to
reduce re-identification risks; raw audio or any Personally Identifiable Information (PII) will not be
released. Potential risks to participants were minimal and limited to transient discomfort/fatigue;
these were mitigated by calibration breaks, screen distance guidelines, and data minimization. The
participant sample (primarily students) may limit demographic diversity; we report results with this
limitation in mind and caution against over-generalization.
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A APPENDIX

A.1 EXAMPLES OF AMBIGUOUS AND UNAMBIGUOUS QUESTIONS

Each of our 10 participants formulated their own questions for the same 50 images (10
for unambiguous questions and 40 for ambiguous ones), thus resulting in 500 unique
image-question pairs. Figure 8 shows sample questions on a few example images.

Figure 8: Sample unambiguous and ambiguous questions
asked by four participants on four example images.

The top panel shows two exam-
ples from the Unambiguous condi-
tion. For instance, in Unambiguous
Example 1, participant AR asks about
"the purple object," and there is only
one such object present in the image.
In Unambiguous Example 2, partic-
ipant KM asks about the "cactus,"
again unambiguously referring to the
only cactus in the image.

In contrast, the bottom panel shows
examples of ambiguous questions.
For instance, in Ambiguous Example
1, participants AR and KM both ask
about a mug, but it is unclear from
their questions which one of the two
mugs present in the image is being re-
ferred to, making their questions am-
biguous given the image information.
Similarly, in Ambiguous Example
2, participants KM and VR inquire
whether the "food" is healthy, but
there are several food items present,
of which some are healthy (apples)
but others are not (marshmallows),
thus making their question ambigu-
ous about the intended referent. KV’s
question on this image is not ambiguous and, thus, inappropriate for our study (see Section A.4)

A.2 TEMPORO-SPATIAL VISUALIZATION OF RAW FIXATION DATA

We plot the raw fixation start locations on trial images to visualize the temporal and spatial features
of our eye movement data with respect to task-related events such as speech onset time and mouse
click location. Figure 9 shows example successful trials, where the eye gaze data helped the VLM
disambiguate the object being asked about in ambiguous scenarios. Figure 10 shows example un-
successful trials, where the inclusion of eye gaze data did not disambiguate the object in question
for our VLM and algorithm. Finally, Figure 11 describes examples of a few rare cases (1% of all
trials) where our spatial filtering approach resulted in discarding all fixations and lead to an incor-
rect VLM response, but keeping all fixations that occurred within ±1s of speech onset rescued the
trial. Importantly, the data shown are from different participants, emphasizing the generality of our
approach to eye gaze data and questions collected across subjects.
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Figure 9: Visualizing and filtering fixations: examples of "successful" ambiguous trials. In-
clusion of gaze data successfully disambiguated the object in question. The colored circles and
diamonds are fixations shaded by their temporal order (yellow - more recent, blue - older). The ma-
genta circle represents the mouse click location registered by the participant at the end of the trial.
The red dashed circle indicates a region of 2 dva radius around the median of all fixations within
±1s around speech onset (shown as diamonds). Any diamond within the red dashed circle was sent
to the VLM as eye gaze data. The x and y-axes indicate distance to the mouse click location. The
times at which the participant started and ended their question are marked as black lines on the color
bar. The fixation markers are enlarged for illustrative purposes.

In the figure above, we show all fixations made by a participant during the trial as circle and diamond
markers, colored according to the temporal order of their occurrence. Specifically, bluer markers
occurred earlier in the trial, whereas yellower markers occurred later. Diamond markers show all
fixations that occurred within ±1s around speech onset (temporal filter). The magenta circle indicates
the mouse-click location registered by the participant at the end of the trial. The red cross shows
the coordinate-wise median location of all diamonds. The red dashed circle marks a region of 2 dva
radius centered on the median. This is our spatial filter. Any diamonds that were within this red
dashed circle were sent to the VLM, and the rest were discarded. Except for those trials where the
spatial filtering process resulted in zero remaining fixations, in which case all temporally filtered
fixations, or diamonds, were sent to the model.

This visualization enables us to easily grasp how eye gaze evolves through time as a function of
task instructions. Several features of the gaze data are immediately apparent. First, subjects take
different amounts of time for different trials; however, the duration of speech remains more or less
the same across trials. Second, the longer the time taken in a trial, the more fixations are made.
Third, although fixations closer in time usually cluster together, there are also fixations made later
on the same objects visited previously. Finally, and most importantly, fixations made around the
time of speech (or question asked) generally indicate the location of the object eventually reported
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by the subject with a mouse click. In other words, people look at the object they are asking about
around the time they utter the question.

Figure 10: Visualizing and filtering fixations: examples of "unsuccessful" ambiguous trials.
Inclusion of eye gaze data did not successfully disambiguate the object in these trials. Plotting
conventions follow those described in Figure 9.

Although our temporal and spatial filtering algorithm did well for the most part, achieving successful
disambiguation in 88% of images overlaid with eye gaze data, there were a few cases where it failed
(see Section A.4). As described in the main text, some of the original failures were caused by our
spatial filtering process, resulting in zero remaining fixations. For these cases, all fixations that
remained after temporal filtering were sent to the VLM. This led to a 1.5% improvement in model
performance, measured as the accuracy of model response.

Next, we show some cases of failures in Figure 10, including cases where there were zero remaining
fixations after employing a median-based spatial filter (right top and right bottom panels). There
are several causes of these failures: first, the object in question may have been fixated too few
times leading to a shift in the median towards the wrong referent (top left panel in Figure 10), or
there might have been too few fixations close to speech onset on the correct object (bottom left),
or too many fixations overall leading to an uninformative median (top and bottom right), or the
model might have been incorrect even with the right eye gaze data (detection error, as described in
Section A.4).

Finally, we present examples of the 2% cases where median filtering resulted in zero fixations, and
retaining all fixations that occurred within ±1s of speech onset (essentially removing the spatial
filter) yielded a more accurate VLM response (Figure 11).
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Figure 11: Effect of spatial filtering. Visualizing ambiguous Image+Gaze trials where spatial fil-
tering resulted in zero retained fixations. In these examples, removing the spatial filter (but retaining
the temporal filter) led to accurate disambiguation (2% trials). In other words, all fixations marked
as diamonds were sent to the VLM during inference. Plotting conventions follow those described in
Figure 9.

A.3 SPEECH BEHAVIOR AND FIXATION DESCRIPTIVE STATISTICS

We present more insights into the speech (questioning) behavior of the subjects in the study, and
also discuss the descriptive statistics of the fixations collected in our data.

Figure 12: Participants’ speech (questioning) behavior. The left panel shows the mean time taken
by participants to formulate and ask a question from the time of stimulus onset. The right panel
shows the mean duration between speech onset and end, as a function of experiment condition. The
error bars indicate the standard error of the mean.
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First, Figure 12 shows the average time taken by participants to ask a question once the trial starts
(left) and the average time between speech onset and end (in other words, the mean duration of
speech during asking the question) (right). Although participants took longer to ask a question
in the Ambiguous condition (M=11.51s, SE=2.45s) than in the Unambiguous condition (M=7.25s,
SE=1.02s) on average, this difference was not significant (t(9) = −1.87, p = 0.09). The mean
duration of questions asked was also not significantly different between Ambiguous (M=1.47 s,
SE=0.11 s) and Unambiguous (M=1.56 s, SE=0.22 s) conditions (t(9) = .46, p = 0.66).

Next, Figure 13 shows some descriptive statistics for the fixations observed in our study. The left-
most panel shows the average fixation number for our two conditions. This aligns with the longer
time between the stimulus onset and the start of questioning observed for ambiguous trials: a longer
time allows for more fixations. Although the Ambiguous condition has a higher mean number of
fixations (M=39.71, SE=6.95) than the Unambiguous condition (M=28.91, SE=3.79), this difference
is not significant (t(9) = −1.71, p = 0.121). The middle panel shows the mean duration of a given
fixation on unambiguous and ambiguous trials. On average, fixation durations were highly simi-
lar between Ambiguous (M=268.31ms, SE=12.74ms) and Unambiguous conditions (M=265.06ms,
SE=17.30ms) (t(9) = −0.43, p = 0.675). Finally, the rightmost panel shows the mean latency
of the first fixation after stimulus onset. As observed for fixation duration, the average first fixa-
tion latency was very similar between Ambiguous (M=388.62ms, SE=14.47ms) and Unambiguous
conditions (M=381.32ms, SE=15.96ms) (t(9) = −0.51, p = 0.621).

Figure 13: Fixation metrics. From left to right, the panels show average fixation count, fixation
duration, and first fixation latency for Unambiguous and Ambiguous conditions. The error bars
indicate the standard error of the mean.

A.4 TAXONOMY OF VLM RESPONSE ERRORS: UNSUCCESSFUL TRIALS

We analyze the "unsuccessful" trials to quantify why some trials fail in terms of the various types of
errors observed in the different stages of the question-answering process. To do this, we manually
categorized each of the 1500 VLM responses (50 stimulus images X 10 subjects X 3 categories -
Image+LOI, Image+Gaze, Image Only) into four types of errors. The types of errors, listed roughly
in the temporal order of their potential occurrence, are elaborated below along with some examples
(see Figure 14):
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Figure 14: Types of errors. Example trials showing Inappropriate Question, Detection Error, De-
tail/Hallucination Error, Referent Bias, and Eye Data Error (discussed in Section A.4 in detail). The
bottom right panel shows an example of a trial where none of the types of errors occurred. The red
cross in each image indicates the mouse click location, depicting the object asked about in a given
trial.

• Error Type 1. Inappropriate Question. In this case, the failure happened because the par-
ticipant asked a question that was not suitable for the purposes of testing whether eye gaze
data can help disambiguate visual information in the presence of ambiguity. For example,
asking about the color of a bottle when there is only one bottle in the scene for a trial in the
Ambiguous condition. Around 5.2% of the trials had this kind of error.

• Error Type 2. Detection Error. In this case, an appropriate question was asked by the
participant, yet the model failed to answer the question accurately when eye gaze data or
mouse click locations for ambiguous trials were sent to the VLM, or for unambiguous trials
with or without eye gaze data and mouse click locations. Around 5.1% of the trials had this
kind of error.

• Error Type 3. At this stage, the participant had asked an appropriate question, but one of the
following things happened, depending on whether eye gaze data or mouse-click location
was sent to the model along with the image:

– Hallucination/Detail Error (Image+LOI or Image+Gaze). In this case, the VLM cor-
rectly detected the object category being asked about, yet responded with an incorrect
detail and/or hallucinated. Approximately 2% of all ’Image+LOI’ and ’Image+Gaze’
trials had this type of error.

– Referent Bias (ambiguous Image Only trials). In this case, the VLM assumes one
of the multiple referents was being asked about and answers with the details of that
object. This reflects the model’s tendency to select a particular instance as the intended
referent when multiple same-category instances are present. To be clear, when no
eye gaze data is sent to the VLM, an accurate response of the VLM could either be
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a follow-up clarification question or a listing of the details of all the instances of a
category (see bottom right "No Error" example in Figure 14). Around 57% of all
’Image Only’ trials had this kind of bias.

• Error Type 4. Eye Data Error. The final form of failure is observed when the VLM response
is accurate for the Image+LOI subtype but inaccurate for the Image+Gaze subtype for the
same trial (image-question pair). This implies that the portion of the gaze data sent to the
VLM for that trial might not have accurately captured the object being asked about. 11.6%
of all ’Image+Gaze’ trials had this kind of error. Importantly, only ambiguous trials could
have this kind of error because eye gaze data would be uninformative for unambiguous
trials.

Figure 15: Quantification of error types. Proportion of trials that suffered from the error types
discussed above and exemplified in Figure 14. The three rows show data from Image+LOI, Im-
age+Gaze, and Image Only input categories from top to bottom, respectively. The four columns
show data from Unambiguous and Ambiguous conditions, each separated into subject-wise and
across-subject measures. InapptQ - Error Type 1 (Inappropriate Question), Detection - Error Type
2, Detail - Error Type 3A (Detail/Hallucination Error), Referent Bias - Error Type 3B, Eye Data -
Error Type 4.

Figure 15 shows the proportion of trials within a specific condition (Ambiguous or Unambiguous)
and a specific VLM input type (Image+LOI, Image+Gaze, and Image Only) with the different error
types as discussed above, both as subject-wise and across subjects measures. It is worthwhile to
note that most of the errors of type 1 (inappropriate questions) were contributed by only a few of
the subjects, such as IC and KZ. Secondly, for the Unambiguous condition, Detection Error forms
the major contributor to unsuccessful trials, when mouse click location or eye gaze data is sent to
the VLM. For the Ambiguous condition, a major portion of the unsuccessful trials is caused by
error type 4 (Eye Data Error), which is when the VLM responds accurately when prompted with
Image+LoI but not with Image+Gaze. Finally, for ambiguous trials, when only the image without
any mouse clicks or eye gaze data is sent to the model, a major portion (70%) of the responses
contain type 3B errors (Assumption Error). This is in line with the findings of Testoni et al. (2024)
who show that LLMs have a bias in responding with stereotypical, and sometimes risky, assumptions
when prompted with inherently ambiguous questions.
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A.5 LIST OF SYSTEM PROMPTS

VQA prompt for Image+Gaze/LOI input: "You are an expert visual interpreter specialized in
identifying and describing features of specific objects in images by considering the eye movement
data. The user will provide an original image alongside the same image with eye movement data,
where fixation points indicated by white X signs. Alongside these two images, the user will ask a
specific question regarding an object’s features, such as its color, size, shape, or spatial location
relative to other objects present in the image. Your task is to carefully analyze the image, identify
the specific object in question considering the eye fixation points, and answer the user’s question
precisely and concisely. Your response should only describe the referred object closest to the fixation
points indicated by white X signs. You should provide clear, factual answer without any extra output.
Do not speculate or include details unrelated to the indicated object or question. Do not mention
the eye movement data in your response. Your response should be very short, concise, but accurate."

VQA prompt for Image-Only input: "You are an expert visual interpreter specialized in identi-
fying and describing features of specific objects in images. The user will provide an image, and
alongside that image, the user will ask a specific question regarding an object’s features, such as its
color, size, shape, or spatial location relative to other objects present in the image. Your task is to
carefully analyze the image, identify the specific object in question, and answer the user’s question
precisely and concisely. You should provide clear, factual answer without any extra output. Do not
speculate or include details unrelated to the indicated object or question. Your response should be
very short, concise, but accurate."

VQA prompt for generating "wrong answer": "You are an expert visual interpreter specialized
in identifying features of specific objects in images by considering the eye movement data. The user
will provide an original image alongside the same image with eye movement data, where fixation
points indicated by white X signs. Alongside these two images, the user will ask a specific question
regarding an object’s features, such as its color, size, shape, or spatial location relative to other
objects present in the image. Your task is to carefully analyze the image, identify the specific object
in question considering the eye fixation points, and answer the user’s question concisely but wrongly.
Your response should only be the wrong answer about the referred object closest to the fixation points
indicated by white X signs. You should provide clear, wrong answer without any extra output. Do
not speculate or include details unrelated to the indicated object or question. Do not mention the
eye movement data in your response. Your response should be very short, concise, but wrong."

VLM accuracy evaluation prompt: "You are an expert visual interpreter specialized in identifying
the correctness of an answer to a question about an object in the image. The user will provide an
image alongside the same image with the referent object in question indicated by a white X sign.
Alongside these two images, the user will provide the specific question and answer. Your task is to
analyze the images and decide whether the answer about the referent object is correct or not. Your
response should only include one word: "correct" or "incorrect". Do not include any other words
or details in your response."

LLM USE DISCLOSURE

We used LLMs to correct grammatical mistakes, polish writing, and search related works.
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