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Abstract

Recent developments in LLMs offer new op-001
portunities for assisting authors in improving002
their work. In this paper, we envision a use003
case where authors can receive LLM-generated004
reviews that uncover weak points in the cur-005
rent draft. While initial methods for automated006
review generation already exist, these meth-007
ods tend to produce reviews that lack detail,008
and they do not cover the range of opinions009
that human reviewers produce. To address010
this shortcoming, we propose an efficient two-011
stage review generation framework called RE-012
VIEWER2. Unlike prior work, this approach013
explicitly models the distribution of possible014
aspects that the review may address. We show015
that this leads to more detailed reviews that016
better cover the range of aspects that human017
reviewers identify in the draft. As part of the re-018
search, we generate a large-scale review dataset019
of 27k papers and 99k reviews that we annotate020
with aspect prompts, which we make available021
as a resource for future research.022

1 Introduction023

Asking fellow group members to critique a draft is024

widely regarded as a valuable way of improving sci-025

entific writing, and the lack of access to such peers026

outside of well-resourced research groups is a key027

source of inequality (Merton, 1968; Nielsen and028

Andersen, 2021; Kozlowski et al., 2022). Further-029

more, even in well-resourced groups, the frequency030

with which authors can receive feedback is limited.031

In this paper, we thus develop techniques for gener-032

ating automated feedback via LLMs to aid authors033

in enhancing the quality of their work before it en-034

ters the formal peer review. This helps level the035

playing field, and it promises to reduce pressure036

on the peer review process (Lee et al., 2012) after037

experiencing exponential increases in submissions038

(Björk and Solomon, 2013; Bornmann and Mutz,039

2014; Kelly et al., 2014).040

The ability of LLMs to reason about complex 041

tasks gives them the potential to provide automated 042

feedback on papers (Liu and Shah, 2023; Liang 043

et al., 2023). A key asset is that we already have 044

substantial amounts of supervised data from peer 045

reviews (Kang et al., 2018a; Yuan et al., 2021; Shen 046

et al., 2022; Dycke et al., 2023), containing paper- 047

review pairs across different years, venues, and 048

subjects. Prior approaches to review generation 049

(Yuan et al., 2021; Lin et al., 2023) focus on fine- 050

tuning a pre-trained language model based on these 051

datasets. However, unlike typical instruction fol- 052

lowing tasks (Ouyang et al., 2022; Touvron et al., 053

2023), we argue that open-ended review generation 054

is under-specified in a way that makes it difficult 055

to align language models for instruction follow- 056

ing. In particular, asking an LLM to generate a 057

review without specifying which aspects of the pa- 058

per to focus on exposes the model to substantial 059

uncertainty. This leads to shortcomings along the 060

following dimensions: 061

Specificity. Peer reviews exhibit varying levels 062

of specificity from general (e.g., "the paper is tech- 063

nically sound.") to precise (e.g., "the paper has a 064

good theoretical basis based on the derivation in 065

section 3."). A good review should provide de- 066

tailed justifications for its assessment, especially 067

when stating the weaknesses of the paper (Yuan 068

et al., 2021). In addition, justifications make the 069

review more constructive as they provide direct in- 070

structions on how to improve the paper (Xiong and 071

Litman, 2011). However, our experiments reveal 072

that standard fine-tuning diminishes the specificity 073

of the generated reviews. An example is shown 074

in Table 1 where we generate reviews based on a 075

model that is fine-tuned over increasing numbers of 076

training steps. The generated review is significantly 077

more generic at step 2000 compared to the one at 078

step 500. 079

Coverage and Control. Different human re- 080

viewers are likely to focus on different aspects of 081
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Training Step 500 Training Step 1000 Training Step 2000
The paper proposes a simple and
efficient differentiable data genera-
tion pipeline.

The authors have done extensive
experiments to validate the effec-
tiveness of the proposed method.

The paper is well-written and
straightforward. The method is
technically sound.

Table 1: Generated reviews from different steps using a generic prompt (1 epoch ≈ 1000 steps).

a paper. An automated review-generation system082

should thus cover the range of issues that human083

reviewers may identify. We find that standard fine-084

tuning of LLMs for review generation often leads085

to a form of regression-to-the-mean, where the gen-086

erated reviews do not cover the full range of aspects.087

We argue that an ideal system should actively con-088

trol coverage, and give authors the ability to ask for089

feedback on specific aspects.090

To address these issues, we propose an efficient091

two-stage review generation framework for papers092

called REVIEWER2. REVIEWER2 includes two093

fine-tuned language models. The first LLM ana-094

lyzes the paper and produces a set of aspects that095

the reviews should focus on. Each of these aspects096

takes the form of a prompt that is the input for the097

second stage. The second LLM generates a review098

based on the paper and the aspect prompt. We im-099

plement REVIEWER2 based on LongLoRA (Chen100

et al., 2023) to enable 32k context length, avoiding101

the use of extractive summaries of the paper that102

was necessary in prior work due to limitations in103

context length (Gehrmann et al., 2018; Chen and104

Bansal, 2018; Dou et al., 2021; Yuan et al., 2021;105

Lin et al., 2023).106

Unfortunately, existing peer-review datasets do107

not include aspect prompts, providing insufficient108

data for training either stage of REVIEWER2. To109

address this issue, we develop a Prompt Generation110

with Evaluation (PGE) pipeline to generate a vari-111

ety of high-quality aspect prompts. PGE generates112

prompts given the review and uses a self-evaluation113

step to ensure the quality of the generated prompts.114

Based on PGE, we construct a large-scale review115

dataset of 27k papers and 99k reviews from six dif-116

ferent venues with corresponding aspect prompts.117

Extensive experiments on multiple venues118

demonstrate that our REVIEWER2 framework119

trained on PGE-generated aspect prompts substan-120

tially outperforms existing methods in terms of re-121

view quality, specificity, and coverage. The major122

contributions of this paper are summarized below:123

• We propose REVIEWER2, a novel framework for124

joint aspect prompt and review generation that125

improves coverage and enables control.126

• We implement REVIEWER2 based on Lon-127

gLoRA, enabling 32k context length with low 128

memory requirement for fine-tuning. 129

• We design two new metrics for evaluating speci- 130

ficity and coverability. We compare REVIEWER2 131

with various baseline methods and find that it sub- 132

stantially improves review generation. 133

• We propose PGE, a novel pipeline for augment- 134

ing existing review datasets with aspect prompts, 135

and we construct the first large-scale peer review 136

dataset that includes aspect prompts. 137

2 Related Work 138

Instruction generation and tuning. Previous 139

works have demonstrated the efficacy of instruction 140

fine-tuning in enhancing both task performance and 141

adaptability to unseen tasks (Wei et al., 2022; Sanh 142

et al., 2022; Ouyang et al., 2022). However, these 143

approaches depend heavily on human-written in- 144

struction data, which is often constrained in terms 145

of quantity and diversity. Several works have ex- 146

plored using large language models (LLMs) to au- 147

tomatically generate instructions. Honovich et al. 148

(2022) prompts a language model with seed ex- 149

amples of instructions to generate additional in- 150

structions, inputs, and outputs. Wang et al. (2023) 151

adopts a similar approach while filtering the gener- 152

ated instructions to ensure diversity and quality. 153

Self-alignment. Self-alignment of LLMs is an 154

emerging area of research that utilizes the model 155

to improve itself and align with human values with 156

minimal human supervision. This field primarily 157

consists of two approaches: unsupervised data gen- 158

eration and post-hoc output refinement. In Li et al. 159

(2023), prompts and responses are generated ac- 160

cording to a small set of human-written principles, 161

while Sun et al. (2023) focuses on generating syn- 162

thetic prompts derived from human-written docu- 163

ments. On the other hand, Madaan et al. (2023) 164

employs an iterative process to refine its output 165

through generated feedback. 166

Automation in peer review. Automated sys- 167

tems have played a significant role in various as- 168

pects of the review process. Numerous algorithms 169

(Stelmakh et al., 2019; Kobren et al., 2019; Cohan 170

et al., 2020) have been developed to evaluate the ex- 171

pertise of potential reviewers, optimizing reviewer- 172
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Figure 1: Illustrations of REVIEWER2. a) REVIEWER2
fine-tunes two models: Mp generates aspect prompts
based on paper, and Mr generates reviews based on the
paper and a prompt. b) REVIEWER2 utilizes a two-stage
inference to generate an aspect prompt and generate the
review based on the generated prompt.

paper assignments. In addition, several algorithms173

have been proposed to ensure the submissions ad-174

here to appropriate guidelines, such as plagiarism175

detection (Foltýnek et al., 2019) and desk rejection176

prediction (Ghosal et al., 2019). Recently, efforts177

have been directed towards the development of al-178

gorithms for review generation (Yuan et al., 2021;179

Lin et al., 2023), leveraging papers as input and180

fine-tuning on LLMs for review generation.181

3 REVIEWER2 for Review Generation182

In this section, we introduce our REVIEWER2183

pipeline for generating reviews. The key idea is to184

insert explicit control into the pipeline to ensure185

that the generated reviews cover the full range of186

aspects that human reviewers may comment on.187

We demonstrate that this improves both coverage188

and specificity of the generated reviews.189

Figure 1(a) illustrates how we train the two
stages of REVIEWER2. For the first stage, we fine-
tune an LLM

Mp : p → {x1, ..., xk}

to produce a set of aspect prompts x1, ...xk for
paper p that cover the aspects that a reviewer may
comment on for this paper. For the second stage of
REVIEWER2, we fine-tune another LLM

Mr : (p, x) → y

to produce a review y for paper p that addresses 190

aspect x. When generating a review for a new 191

paper p′, we first query Mp for an aspect prompt 192

x. We then query Mr to produce a review y for 193

the generated aspect prompt. This inference pro- 194

cess is depicted in Figure 1(b). We will provide 195

evidence that this two-stage pipeline not only pro- 196

vides explicit control of aspect coverage, it also 197

avoids a type of regression-to-the-mean (Barnett 198

et al., 2004) that makes single-stage pipelines pro- 199

duce generic reviews with little specificity. 200

An illustrative example is shown in Figure 2 201

which contains three reviews, {y1i , y2i , y3i }, for pa- 202

per pi. All three reviews comment on either or both 203

theoretical and empirical justifications, represent- 204

ing the general aspects. However, the reviews pro- 205

vide different suggestions for improvement, which 206

are considered as specific parts. We find that a 207

single-stage pipeline that is trained without aspect 208

prompts tends to only generate the general com- 209

ponents of the review, as illustrated in Figure 2(b), 210

since such "mean reviews" align closely with all 211

three reviews. On the other hand, by adding as- 212

pect prompts {x1i , x2i , x3i } derived from the paper, 213

the augmentation diversifies the aspects that are 214

addressed, aligning it more effectively with the 215

variability seen in the human reviews. Note that the 216

prompt space now better captures the variability 217

between reviewers, which reduces the noise when 218

mapping to generated reviews. This reduction in 219

noise enables the generation of more specific re- 220

views, ŷi, during inference as shown in Figure 2(c). 221

The geometric intuition behind our illustration is 222

detailed in Appendix A. 223

To enable efficient long context fine-tuning and 224

inference, we adapt LoRA+ and S2-Attn from 225

Chen et al. (2023). LoRA+ extends on top of 226

LoRA (Hu et al., 2021) by making the embedding 227

and normalization layers trainable, and S2-Attn 228

groups input tokens to address the quadratic com- 229

plexity of self-attention. 230

4 Review Dataset with Aspect Prompts 231

Training REVIEWER2 requires a dataset of papers 232

and reviews that is augmented with aspect prompts. 233
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Figure 2: Illustrations of the effect of aspect prompts. a) General content is highlighted in blue, while specific
content is highlighted in red. b) Fine-tuning without aspect prompts causes the generated contents to be general
during inference. c) Fine-tuning with aspect prompts allows specific content generation during inference.

Figure 3: PGE includes two steps: generation and eval-
uation. The prompt is regenerated if the score is below
5 on a 5-point scale, otherwise, it is saved to S.

While there is ample data on papers and their as-234

sociated reviews, these datasets contain generic re-235

view prompts that do not capture which aspects the236

human reviewer chose to focus on. We therefore237

developed the following methodology for augment-238

ing existing review datasets with aspect prompts.239

The result is the first review dataset that is an-240

notated with aspect prompts, and we make this241

dataset available as a new resource. It consists242

of up-to-date crawls of publicly available reviews243

from NeurIPS and ICLR , and we also augment the244

datasets from PeerRead (Kang et al., 2018b) and245

NLPeer (Dycke et al., 2023).246

4.1 PGE: Prompt Generation with Evaluation247

In order to generate the corresponding prompt for248

each review, we propose Prompt Generation with249

Evaluation (PGE) pipeline consisting of a gen-250

eration step and an evaluation step, as shown in251

Figure 3. Specifically, given a set of m papers 252

P = {p1, p2, ..., pm} and corresponding reference 253

reviews Y = {yni |1 ≤ i ≤ m, 1 ≤ n ≤ ni} 254

where ni is the number of reviews for paper i, the 255

goal of the pipeline is to generate a set of prompts 256

X = {xni |1 ≤ i ≤ m, 1 ≤ n ≤ ni} that one 257

prompt corresponds to one review. 258

For a review yni , the generation step generates 259

a prompt, xni , and the evaluation step evaluates 260

the generated prompt based on a 5-point scale. 261

If xni achieves a score of 5, the pair (xni , y
n
i ) is 262

stored in the set S, S = S ∪ {(xni , yni )}, otherwise 263

the prompt is regenerated. This two-step iterative 264

approach resolves the problem of the absence of 265

ground-truth prompts for reviews and ensures the 266

quality of prompt generation without human super- 267

vision. The prompts we used for generation and 268

evaluation are shown in Appendix B. 269

Prompt Generation. We initialize S with 270

human-annotated examples that will be used as 271

initial in-context examples during generation. To 272

construct these examples, we use Llama-2-70B- 273

Chat (Touvron et al., 2023) to generate prompts 274

for a randomly selected subset of 100 reviews in 275

a zero-shot fashion. Then, we manually refine the 276

prompts by removing irrelevant questions, adding 277

missing questions that are covered in the review, 278

and refining to align with the open-ended format of 279

review questions. An example of a review-prompt 280

pair is shown in Appendix C. 281

To enhance the performance of prompt gener- 282

ation, we apply in-context learning (ICL) (Dong 283

et al., 2023) in the process. The in-context ex- 284

amples are randomly sampled from S. As more 285

prompts are generated and saved to S, the pool 286

of available examples also expands, ensuring the 287

diversity of the prompts. We always sample the 288

maximum possible number of in-context examples 289

while satisfying the context length constraint. 290
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Table 2: Dataset Statistics

CONLL-16 ACL-17 COLING-20 ARR-22 ICLR-17-23 NeurIPS-16-22 total
# papers 22 137 89 476 16,327 10,754 27,805

# words per paper 4,325 4,679 4,230 4,850 6,959 5,236 6,229
# reviews 39 275 112 684 58,933 39,684 99,727

# words per review 418 440 414 397 512 482 487
# prompts 37 270 108 676 58,107 38,762 97,960

# words per prompt 56 60 45 46 52 51 53
% accepted 50% 67% 93% 100% 32% 98% 55%

domain NLP/CL NLP/CL NLP/CL NLP/CL ML ML multi

Table 3: Dataset Comparison

# papers # reviews prompts
PeerRead

3,006∗ 10,770 ✗
(Kang et al., 2018b)

ASAP-Review
8,877 28,119 ✗

(Yuan et al., 2021)
MReD

7,894 30,764 ✗
(Shen et al., 2022)

NLPeer
5,672 11,515 ✗

(Dycke et al., 2023)
Ours 27,805 99,727 ✓

*Number of papers that have reviews.

Prompt Evaluation. Similar to generation, we291

also apply ICL during the evaluation step. We use292

Llama-2-70B-Chat to evaluate the review-prompt293

pair based on a 5-point scale with five in-context ex-294

amples for each score from 1 to 5. The in-context295

examples (shown in Appendix D) are manually296

constructed and remain consistent across all evalua-297

tions. Inspired by chain-of-thought prompting (Wei298

et al., 2023), we prompt the LLM to generate an299

explanation for the score before producing the final300

score to encourage more accurate assessments.301

Regeneration. To ensure the quality of the gen-302

erated prompt, the pipeline regenerates the prompt303

if the score is not 5. Since the in-context examples304

for generation are randomly sampled rather than305

a fixed set, the regeneration step is guaranteed to306

generate a different prompt compared to the previ-307

ous generations, minimizing redundancy. We use308

a limit of 5 generations per review, and the review309

is excluded from further generation if it exceeds310

the limit. 93.60% of the reviews take less than or311

equal to 3 generations to reach a score of 5.312

4.2 Dataset Details313

We incorporate parts of the PeerRead and NLPeer314

datasets. CONLL-16 and ACL-17 from Peer-315

Read contain papers and reviews from the NLP316

domain. The reviewing process is double-blind317

and the formats of the review are unstructured.318

NLPeer’s COLING-20 and ARR-22 are collected319

via a donation-based workflow in NLP domain with 320

formats in free-form reports and standardized struc- 321

tured review forms. 322

In addition to the prior datasets, we crawl ICLR 323

papers from 2017 to 2023 through OpenReview1 324

and NeurIPS papers from 2016 to 2020 through 325

NeurIPS Proceedings2 and from 2021 to 2022 326

through OpenReview. The resulting datasets are 327

ICLR-17-23 and NeurIPS-16-22. For each pa- 328

per’s review, we follow the format of the previous 329

datasets to keep as much metadata information as 330

possible including reference and meta reviews from 331

official reviewers, and final decisions. 332

Unification. The diverse sources of datasets 333

are converted into a unified format to enhance ac- 334

cessibility and consistency. For each paper, we 335

include the full text of the paper, metadata, and cor- 336

responding reviews and prompts. For the contents 337

of the paper, we use Science Parse3 from AllenAI 338

to parse the PDFs of the papers into construct struc- 339

tured JSON files. Each paper is accompanied by 340

detailed metadata, providing essential information 341

about the paper. The detailed sections of paper and 342

metadata are shown in Appendix E. The reviews 343

contain both textual components and scores that are 344

divided into different sections based on the venue- 345

specific formats. In addition, we employ our PGE 346

pipeline to construct a prompt for each review. For 347

simplicity, we only use the text part of the review 348

for prompt generation and review generation. 349

Analysis. The statistics of our dataset are shown 350

in Table 2. Our dataset consists of more than 27k 351

papers and 99k reviews in various domains. The 352

average paper length spans from 4k to 7k, demon- 353

strating substantial variability. The review length 354

and prompt length exhibit smaller variances, aver- 355

aging from 400 to 500 and 45 to 60 respectively. 356

Compared to other review datasets (Table 3), our 357

dataset has the largest number of papers and re- 358

1https://openreview.net/
2http://papers.neurips.cc/
3https://github.com/allenai/science-parse
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Table 4: Results of the model variations using three
metrics across six venues (SS-E0: SINGLES-E0, SS-
E: SINGLES-E, SS: SINGLES, R2-E: REVIEWER2-E,
R2: REVIEWER2). The best-performing model for each
venue and metric is highlighted in bold.

Method BLEU ROUGE (max) BertScore
(max) R-1 R-2 R-L (max)

In
-d

om
ai

n IC
L

R

SS-E0 8.15 29.93 7.14 13.76 68.45
SS-E 12.53 39.63 10.19 19.76 79.40
R2-E 13.32 40.06 10.59 20.34 80.11
SS 15.08 40.77 11.78 21.09 81.18
R2 16.94 44.58 13.56 22.62 83.61

N
eu

rI
PS

SS-E0 8.29 28.96 6.98 13.63 67.82
SS-E 11.72 39.54 9.75 19.67 79.17
R2-E 12.91 39.87 10.02 19.81 80.17
SS 14.44 40.62 11.22 20.8 81.83
R2 16.24 42.15 13.11 22.52 83.23

C
ro

ss
-d

om
ai

n

A
C

L

SS-E0 5.02 30.77 6.28 12.69 68.90
SS-E 4.67 35.23 7.07 16.53 78.15
R2-E 4.82 36.44 7.98 16.73 80.03
SS 5.40 35.73 7.94 16.94 80.25
R2 6.49 36.88 8.04 17.77 83.65

A
R

R

SS-E0 6.01 32.48 7.89 13.91 69.34
SS-E 6.89 38.30 9.67 18.67 79.09
R2-E 6.96 39.17 10.94 19.53 80.69
SS 6.73 38.93 11.22 19.61 81.03
R2 7.46 40.18 12.04 20.76 82.29

C
O

L
IN

G

SS-E0 3.66 30.51 6.49 12.83 69.19
SS-E 2.65 35.31 6.92 16.5 77.92
R2-E 3.01 35.09 7.34 17.74 78.15
SS 3.34 34.57 8.11 17.14 80.21
R2 4.37 37.13 9.18 18.91 83.35

C
O

N
L

L

SS-E0 5.18 32.01 6.32 12.75 69.45
SS-E 3.41 35.16 6.89 16.18 78.39
R2-E 3.59 34.28 6.74 16.82 80.15
SS 5.09 33.85 6.88 16.52 79.83
R2 6.07 35.38 7.40 18.22 83.13

views and is the only dataset that includes aspect359

prompts.360

Licensing and Personal Data All datasets361

are distributed under an open Creative Commons362

license and compiled with explicit consent or363

sourced from materials with an open license. We364

attribute authors of the papers in our dataset while365

excluding personal and reviewer metadata.366

5 Experiments367

In the following section, we evaluate review qual-368

ity, review specificity, and aspect coverage as key369

properties of the generated reviews. We provide370

extensive ablation experiments that identify how371

much each novel contribution of our approach con-372

tributes to improved performance. In particular, we373

compare REVIEWER2 against the following base-374

lines:375

• REVIEWER2-E: Following (Yuan et al., 2021),376

we apply a cross-entropy (CE) extraction method377

to extract a diverse set of sentences from the pa-378

Figure 4: Pairwise winrates on faithfulness, coverage,
coherence, and specificity among REVIEWER2 and base-
lines using GPT4 as a judge.

per to represent the content of the paper. The 379

framework is the same as REVIEWER2 while we 380

only use the extracted part instead of the full pa- 381

per: ME
p : e → {x1, ..., xk}, ME

r : (e, x) → y 382

where e is the extracted content from paper p. 383

This ablation is used to evaluate the difference 384

between using the full paper compared to an ex- 385

tractive summary. 386

• SINGLES: We fine-tune a single-stage model to 387

directly generate reviews from the full context of 388

the paper without an aspect prompt, MS
r : p → 389

y. Prompts are neither used in fine-tuning nor 390

inference. This ablation is designed to evaluate 391

the effect of aspect prompts. 392

• SINGLES-E: This variant involves fine-tuning a 393

single model to generate reviews only from ex- 394

tractive summaries of papers, MSE
r : e → y. 395

This method aligns with commonly employed 396

pipelines in previous papers and serves as a base- 397

line representing the state-of-the-art. 398

• SINGLES-E0: This zero-shot approach prompt 399

an LLM to generate a review from the extracted 400

context directly without aspect prompts. This 401

baseline evaluates the effect of fine-tuning. 402

We use SINGLES-E and SINGLES as proxies 403

for the baseline methods proposed by (Yuan et al., 404

2021; Lin et al., 2023). Llama-2-70B-Chat (Tou- 405

vron et al., 2023) is used as the instruction- 406

following model for PGE and Llama-2-7B-Chat is 407

used for REVIEWER2 and the single stage base- 408

lines. More experimental details are shown in 409

Appendix F. We randomly select 80% of ICLR 410

and NeurIPS papers for training, 10% for valida- 411

tion, and 10% for testing while using all the pa- 412

pers in other venues for testing. Since the other 413

venues have review formats different from ICLR 414

and NeurIPS, this allows us to test adaptability to 415

different review formats. 416
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Figure 5: Specificity plots of four methods for 2000 steps across six venues.

5.1 Quality Analysis417

To compare the generated reviews with the refer-418

ence reviews, we employ three metrics: BLEU (Pa-419

pineni et al., 2002), ROUGE (Lin and Hovy,420

2003), and BertScore (Zhang et al., 2020). BLEU421

and ROUGE measure the n-gram similarity while422

BertScore measures the semantic similarity in the423

embedding space. Notably, there are several ref-424

erence reviews for each paper. When computing425

BLEU, ROUGE, and BertScore, following (Yuan426

et al., 2021), we use the maximum value instead427

of an average since the generated reviews do not428

need to be closely aligned with all references, given429

that the reference reviews may focus on different as-430

pects. To compare across the generated reviews, we431

prompt GPT4 to select the better review based on432

faithfulness, coverage, coherence, and specificity433

on 100 randomly sampled reviews for each method434

across six venues. More details of the evaluation is435

shown in Appendix G.436

Result. Table 4 compares the performance of437

REVIEWER2 against several ablations and base-438

lines. Overall, REVIEWER2 outperforms all meth-439

ods across all metrics and datasets, demonstrat-440

ing the effectiveness of leveraging both the full441

context of the paper and the aspect prompt. The442

comparisons between REVIEWER2 and SINGLES443

as well as REVIEWER2-E and SINGLES-E re-444

veal consistent performance improvement through445

the two-stage approach. Furthermore, the com-446

parison between REVIEWER2 and REVIEWER2-447

E shows that avoiding extractive summaries pro-448

vides an additive benefit on top of using aspect449

prompts. On the cross-domain datasets (ACL,450

ARR, COLING, CONLL) we can observe a com-451

parable BertScore with ICLR and NeurlPS using 452

REVIEWER2, demonstrating the semantic adapt- 453

ability of the method to domains that the methods 454

was not trained on. 455

Figure 4 compares REVIEWER2 with the base- 456

lines on faithfulness, coverage, coherence, and 457

specificity using GPT4 as a judge. REVIEWER2 458

consistently achieves higher winrates compared to 459

the baselines, demonstrating the effectiveness of 460

our method in producing high-quality reviews. 461

To further illustrate REVIEWER2, we included 462

aspect prompts produced by Mp and a review pro- 463

duced by Mr in Appendix H. 464

5.2 Specificity Analysis 465

A highly specific review identifies specific issues of 466

the given paper, and it does not look like a generic 467

review that could apply to other papers. To for- 468

malize this into a concise metric, we measure the 469

specificity of the review by calculating the drop 470

in BertScore when pairing the review with the ref- 471

erence reviews of a different paper. A generated 472

review with high specificity will lead to a large av- 473

erage drop, while a generic review will lead to a 474

smaller drop. Formally, given papers P , reviews Y , 475

and generated reviews Ŷ = {ŷ1, ŷ2, ..., ŷm}, we 476

define specificity (SPE ↑) as: 477

SPE =
1

m

m∑
i=1

max{sim(ŷi, y
n
i )|1 ≤ n ≤ ni} 478

− 1

m−1

∑
j ̸=i

max{sim(ŷi, y
n
j )|1 ≤ n ≤ ni} 479

where sim(a, b) denotes the BertScore between a 480

and b and ŷj . We approximate the inner sum by 481

Monte Carlo sampling j ∼ [1,m] \ i. 482
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Table 5: Effect of prompts for SINGLES (SS) and RE-
VIEWER2 (R2) across six venues.

av
g

SS
1

m

m∑
i=1

1

ni

ni∑
n=1

sim(MS
r (pi), y

n
i )

R2
1

m

m∑
i=1

1

n2
i

ni∑
n=1

ni∑
k=1

sim(Mr(pi, x
n
i ), y

k
i )

m
ax

SS
1

m

m∑
i=1

max{sim(MS
r (pi), y

n
i )|

1 ≤ n ≤ ni}

R2
1

m

m∑
i=1

1

ni

ni∑
n=1

max{sim(Mr(pi, x
n
i ), y

k
i )|

1 ≤ k ≤ ni}
Method ICLR NeurIPS ACL ARR COLING CONLL

av
g SS 80.19 80.23 79.85 80.23 79.42 78.41

R2 80.13 80.36 79.14 79.96 79.53 78.28

m
ax SS 81.18 81.83 80.25 81.03 80.21 79.83

R2 83.63 83.41 83.54 82.51 83.19 83.32

Result. To obtain a reliable measure, we con-483

ducted ten random shuffles and calculated the av-484

erage. The result is shown in Figure 5 along with485

the variance. For methods that do not make use486

of aspect prompts, SINGLES and SINGLES-E, the487

specificity drops with more training steps. This488

indicates that increased training without prompts489

leads to more generic reviews. For the methods490

that use prompts, REVIEWER2-E and REVIEWER2,491

the specificity consistently increases with a higher492

number of steps. Notably, the difference between493

REVIEWER2 and SINGLES is higher than the dif-494

ference between REVIEWER2-E and SINGLES-E,495

suggesting that adding prompts on top of the full496

context leads to higher improvement comparing to497

adding to the extracted context.498

5.3 Control Analysis499

To assess how responsive REVIEWER2 is to the500

aspect prompts, we conduct experiments that com-501

pare REVIEWER2 and SINGLES. The Mr model502

in REVIEWER2 is given the prompts generated by503

PGE. We compute the average similarity of the504

generated review to the reference reviews for both505

methods as well as the maximum similarity. The506

detailed equations for the computations are shown507

in Table 5. BertScore is used for computing sim.508

Result. REVIEWER2 and SINGLES have sim-509

ilar average similarity while REVIEWER2 has a510

higher maximum similarity across all six venues.511

This means that SINGLES generates reviews that512

are close to all the reference reviews, but that are513

not particularly close to any one of them. In con-514

trast, REVIEWER2 is consistently able to generate515

reviews that closely match one of the references.516

Table 6: Coverability (COV ↓) for REVIEWER2-E (R2-
E) and REVIEWER2 (R2) across six venues.

Method ICLR NeurIPS ACL ARR COLING CONLL

R2-E 13.55 12.66 16.62 15.29 14.84 15.46
R2 4.22 3.99 3.23 2.91 5.09 4.25

5.4 Coverage Analysis 517

Finally, we evaluate whether authors can achieve 518

good coverage through the choice of aspect 519

prompts and the effect of different aspect prompts 520

on generation. Since Mr and ME
r are the only 521

models that permit aspect prompts, we evaluate the 522

effect of aspect prompts on coverage for these two 523

models. Given papers P , reviews Y , prompts X , 524

we define coverability (COV ↓) for Mr as: 525

COV =
1

m

m∑
i=1

gi − hi 526

hi =
1

ni(ni − 1)

ni∑
n=1

ni∑
k=1
k ̸=n

sim(yni , y
k
i ) 527

gi =
1

ni(ni − 1)

ni∑
n=1

ni∑
k=1
k ̸=n

sim(Mr(pi, x
n
i ),

Mr(pi, x
k
i ))

528

Here, hi represents the pairwise similarity among 529

the reference reviews for paper pi while gi is the 530

pairwise similarity among generated reviews based 531

on the PGE prompts in the dataset. The coverability 532

for ME
r is defined similarly but with ei as input 533

instead of pi. We use BertScore to calculate the 534

similarities. A high gi indicates that the generated 535

reviews are similar despite being generated from 536

different prompts. 537

Result. The results are shown in Table 6. While 538

perfectly reproducing the coverage of the human 539

reviews would imply a value of 0, Mr exhibits sig- 540

nificantly better coverage than ME
r , demonstrating 541

its effectiveness in generating tailored responses 542

across diverse prompts for a given paper and the 543

importance of using full context. 544

6 Conclusion 545

We propose a two-stage review generation frame- 546

work that incorporates aspect prompts. Analyses 547

of quality, specificity, and controllability indicate 548

that our method can generate high-quality and spe- 549

cific reviews while being controllable based on the 550

aspect prompt. Furthermore, we develop a new 551

pipeline for annotating review datasets with aspect 552

prompts, and we make this new dataset available. 553
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7 Limitations554

In this section, we discuss some of the limitations555

for PGE and REVIEWER2.556

7.1 Disjoint Processes for Generation557

Our current configuration first uses PGE to gen-558

erate prompts and subsequently fine-tunes RE-559

VIEWER2 with the generated prompts. However,560

this approach leads to a disjointed process, where561

prompt generation operates independently of re-562

view generation, reducing the effectiveness of the563

generated prompts. Ideally, the generated prompts564

should assist alignment during fine-tuning. A pos-565

sible extension is to integrate the two processes566

together and refine the generated prompts based on567

the review generation pipeline.568

7.2 Input Inconsistency569

The input to PGE consists of human-written re-570

views, while REVIEWER2 also incorporates pa-571

pers. This distinction arises from the limitation572

of Llama-2-70B-Chat, which only has a context573

length of 4,096. Although GPT-4 (OpenAI, 2023)574

supports up to 32,000 context length, the associ-575

ated cost is high since the average context length of576

the papers is 6,229. The potential improvement in577

performance may not be worth the increased cost.578

7.3 Limited Domain Knowledge579

Currently, REVIEWER2 relies on its pre-trained580

corpus, assuming that the language model used has581

adequate domain knowledge. This approach might582

produce inaccurate reviews for papers that demand583

substantial in-domain expertise. A potential future584

work could investigate the effectiveness of second-585

stage pre-training or domain adaptation using the586

paper corpus.587

8 Ethics588

Automatic review generation is a complex task and589

bears a wide range of risks. It is crucial to em-590

phasize that the ongoing efforts in this field are591

not designed to replace human reviewers; instead,592

they function as a valuable tool for authors and593

a guiding resource for human reviewers. This re-594

search is an exploratory work within this domain,595

and it is important to stress that the outcomes pro-596

duced by the models should not be misconstrued597

as definitive and authentic reviews of the respec-598

tive papers. In utilizing datasets, we adhere to the599

intended purposes outlined in previous works. The600

datasets we released offer many possibilities for ad- 601

vancing research in NLP, including but not limited 602

to review generation, instruction following, and 603

self-alignment. 604
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A Geometric Intuition of Illustration 844

. 845

Figure 6: Embedding visualization of the reviews from human, REVIEWER2, and SINGLES. The eclipse represents
the confidence interval with 2 standard deviations.

To justify the intuition of our illustration in Figure 2, we visualize the text embeddings of actual 846

generations from REVIEWER2 and SINGLES. For a given paper, we use REVIEWER2 and SINGLES 847

to generate 10 reviews respectively. Then, we use SFR-Embedding-Mistral4 as the embedding model 848

to embed the text and visualize the embeddings using t-SNE (van der Maaten and Hinton, 2008). The 849

SINGLES generations have a much smaller coverage and reside around the middle of the space spanned 850

by the human-written reviews, while generations from REVIEWER2 are more dispersed and closer to the 851

human references. This plot aligns closely with the intuition we convey in Figure 2 (b) and (c). 852

4Huggingface Model Card: Salesforce/SFR-Embedding-Mistral
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B Prompts for PGE853

Prompt for Generation

[INST] «SYS» You are a helpful, respectful and honest assistant. Always answer as helpfully
as possible, while being safe. Your answers should not include any harmful, unethical, racist,
sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially
unbiased and positive in nature. If a question does not make any sense, or is not factually
coherent, explain why instead of answering something not correct. If you don’t know the
answer to a question, please don’t share false information. «/SYS»
Analyzing the provided review, identify a set of questions that the reviewer is attempting to
address regarding the paper without being too specific.
Here are some examples:

Review:
[SAMPLED REVIEW FROM S]
Questions to address:
[SAMPLED PROMPT FROM S]

Review:
[SAMPLED REVIEW FROM S]
Questions to address:
[SAMPLED PROMPT FROM S]

Review:
[SAMPLED REVIEW FROM S]
Questions to address:
[SAMPLED PROMPT FROM S]

Review:
[REVIEW FOR GENERATION]
Questions to address:[/INST]
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Prompt for Evaluation

[INST] «SYS» You are a helpful, respectful and honest assistant. Always answer as helpfully as possible,
while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous,
or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If
a question does not make any sense, or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question, please don’t share false information.
«/SYS»
Below is a set of questions and a candidate answer. Evaluate the quality of the questions. Are the
questions a good match to the candidate answer? Please assign a score using the following 5-point scale:
1: This score indicates that the response deviates significantly from the instruction, providing information
or addressing aspects that were not required or specified.
2: This score suggests that the response is limited in scope, focusing on a small subset of the questions
posed in the instruction. It does not comprehensively cover the entire set of questions.
3: This score indicates that the response covers a substantial portion of the questions outlined in the
instruction but falls short of addressing all of them. It suggests a moderate level of completeness.
4: This score indicates that the response covers most of the questions. However, there is some irrelevant
information in the answer that is not asked by any of the questions.
5: This score indicates that the response is comprehensive, addressing all questions in the instruction
without any irrelevant information.

Here are some examples:

Questions:
[EXAMPLE PROMPT]
Answer:
[EXAMPLE REVIEW]
Assessment:
[EXAMPLE ASSESSMENT]
Score: [EXAMPLE SCORE]

Questions:
[EXAMPLE PROMPT]
Answer:
[EXAMPLE REVIEW]
Assessment:
[EXAMPLE ASSESSMENT]
Score: [EXAMPLE SCORE]

Questions:
[EXAMPLE PROMPT]
Answer:
[EXAMPLE REVIEW]
Assessment:
[EXAMPLE ASSESSMENT]
Score: [EXAMPLE SCORE]

Questions:
[PROMPT FOR EVALUATION]
Answer:
[REVIEW FOR EVALUATION]
Assessment:[/INST]
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C Example Review-Prompt Pair854

Review Summary Of The Paper
This paper introduces neural matching fields into semantic correspondence. To the best my
knowledge, this approach should be the first method to do the task using implicit neural
representation. There are two problems: the computation for 4D matching field and the
inference efficiency. Authors provide effect method to address the two problems.
Strengths And Weaknesses
This paper employs implicit neural representation to do semantic correspondence. This should
be the major contribution. According to the statement of authors, I can follow the idea easily
and this idea should work. The disadvantage of this work is the experiments. There are too
many quantitative comparisons. According to the data, the performance of this method seems
OK. However, authors should provide more visual experiments to convince readers.
Questions
I only have one concern. Traditional Implicit Neural Representation method such as LIIF and
NeRF records images into the weights of neural network. One neural network represents one
image or one scene. Does NeMF take a neural network to represent a semantic correspondence
or a matching cost. If so, how much time will your method cost to train a network? If not so,
what is the difference between your method and other semantic correspondence methods.
Limitations
According to my understand, NeMF takes a network to represent a matching cost. In practice,
people need a method to compute different matching cost for different image pairs. How does
NeMF to deal with this situation.

Questions
to address

1. What is the focus and contribution of the paper on semantic correspondence?
2. What are the strengths of the proposed approach in terms of neural representation?
3. What are the weaknesses for the experiment section?
4. Do you have any concerns on the semantic correspondence representation?
5. What are the limitations regarding the NeMF approach on matching cost representation?
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D In-Context Example for Evaluation 855

Questions 1. What is the main contribution of the paper on dictionary learning?
2. What are the strengths of the paper in the theoretical analysis?
3. Do you have any questions regarding the assumptions, theorems, and algorithm of the paper?
4. Could you access the reproducibility of the paper?

Answer The paper proposes an alternating minimization algorithm for dictionary learning, and theoreti-
cal guarantees are also given. In each step the algorithm first uses an l1, l2 and l_infty algorithm
with thresholding to get an estimate of the coefficients, and then use another gradient step to
update the dictionary.
To me two shining points of the paper:
1. Guarantee holds for the overcomplete dictionary.
2. Improved the sparsity level requirement by a factor of log d.
Obviously the NIPS format is too short for the arguments the authors are making, and a lot of
details are moved to the appendix. Due to time limit I cannot read all the details of the proof.
Below are some questions:
1. In A1 you have a mu-incoherence assumption, but mu is not shown in your theorem 3. Is it
hidden somewhere?
2. In assumption B1 you mentioned, and I agree that there is a fast random initialization so
that the condition holds. Can you give some details about your initialization procedure and
guarantees?
3. How do you handle the permutation invariance of A?
4. In your algorithm 1, line 3, the MUS algorithm has a return, but in your definition (equation
2), the return is not specified. Actually the returned should be theta instead of (theta, t, u).
5. “(w_k^t is the k^th covariate at step t)”? Why w_k^t is called the k^th covariate?
6. Any simulation result verifying your convergence rate?

Assessment The answer addresses the first question by summarizing the main contribution of the paper.
For the second question, the answer gives two strong points of the paper in its theoretical
justifications. The answer address the third question by providing six different questions
convering the assumptions, theorems, and the algorithm of the paper. However, the answer fails
to address the fourth question.

Score Since the answer fails to address all of the questions, it receives a score of 3.
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E Dataset Details856

E.1 Paper Contents857

• title: title of the paper858

• authors: list of author names859

• emails: list of author emails860

• sections: list of sections of the paper861

– heading: heading of the section862

– text: text of the section863

• references: list of references of the paper864

– title: title of the reference865

– author: list of author names of the reference866

– venue: venue of the reference867

– citeRegEx: citation expression868

– shortCiteRegEx: short citation expression869

– year: publication year of the reference870

• referenceMentions: the location of the reference871

in the paper872

– referenceID: numerical reference id873

– context: context of the reference in the pa-874

per875

– startOffset: start index of the context876

– endOffset: end index of the context877

• year: year of publication878

• abstractText: abstract of the paper879

E.2 Metadata Contents880

• id: unique id of the paper881

• conference: venue for the paper882

• decision: final decision for the paper (ac-883

cept/reject)884

• url: link to the PDF of the paper885

• review_url: link to the review of the paper886

• title: title of the paper887

• authors: list of the authors of the paper888

F Experimental Details 889

REVIEWER2 and SINGLES have a context length 890

of 32,768 while other models have a 4,096 context 891

length. All of the models excluding SINGLES-E0 892

are fine-tuned with 8 A6000 GPUs using Deep- 893

Speed (Rasley et al., 2020) stage 2, batch size 894

64, gradient accumulation 8, and warm-up steps 895

100 for 2 epochs. We use the AdamW opti- 896

mizer with a learning rate 1e − 5 searched from 897

[5e− 6, 1e− 5, 2e− 5, 5e− 5, 1e− 4, 2e− 4]. 898

We perform supervised fine-tuning (SFT) for RE- 899

VIEWER2 and each baseline methods that require 900

training. The setup is detailed below: 901

• REVIEWER2 902

– Prompt generation model (Mp) 903

Model: Llama-2-7B-Chat 904

Input: Full paper 905

Output: Aspect prompts 906

– Review generation model (Mr) 907

Model: Llama-2-7B-Chat 908

Input: Full paper and aspect prompt 909

Output: Review 910

• REVIEWER2-E 911

– Prompt generation model (ME
p ) 912

Model: Llama-2-7B-Chat 913

Input: Extracted sentences from the pa- 914

per 915

Output: Aspect prompts 916

– Review generation model (ME
r ) 917

Model: Llama-2-7B-Chat 918

Input: Extracted sentences from the pa- 919

per and aspect prompt 920

Output: Review 921

• SINGLES 922

– Review generation model (MS
p ) 923

Model: Llama-2-7B-Chat 924

Input: Full paper 925

Output: Review 926

• SINGLES-E 927

– Review generation model (MSE
p ) 928

Model: Llama-2-7B-Chat 929

Input: Extracted sentences from the pa- 930

per 931

Output: Review 932
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G Winrate Details 933

We are using gpt-4-0613 checkpoint for winrate computations. 934

Prompt for Winrate
Which of the following reviews provide a more accerate review of the given paper? Judge based on faithfulness,
coverage, coherence, and specificity.

### Paper:
{{Paper}}

### Review A:
{{reviewa}}

### Review B:
{{reviewb}}

### Instructions:
FIRST provide a comparison of the two reviews, explaining which you prefer and why. SECOND, on a new line,
state only "A" or "B" to indicate your choice. Your response should use the format:
Comparison: <comparison and explanation >
Preferred: <“A” or “B”>
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H Generated Aspect Prompts and Review for this Paper935

Aspect
Prompts

What is the focus and contribution of the paper on peer review generation?
What are the strengths of the proposed approach, particularly in terms of its two-stage architec-
ture?
What are the weaknesses of the paper regarding its experimental setup and proposed metrics?
Do you have any concerns or suggestions for improving the paper’s clarity and organization?

Review Summary Of the Paper. This paper proposes a two-stage review generation framework
that incorporates aspect prompts. They design a prompt generation with evaluation (PGE)
pipeline to generate a variety of high-quality aspect prompts, and they make this new dataset
available. They evaluate review quality, specificity, and aspect coverage as key properties
of the generated reviews. They provide extensive ablation experiments that identify how far
each novel contributions in their approach contributes to improved performance. Finally, they
conclude by highlighting the advantages of leveraging both the full context of the paper and the
aspect prompt.

Strengths. The paper clearly states the problem of existing methods that only generate generic
reviews and lacks specificity and control. The authors propose a two-stage architecture that
explicitly models the distribution of possible aspects that the review may address. They show
that this leads to more detailed reviews that better cover the range of aspects that human
reviewers identify in the draft.

Weaknesses. The authors evaluate the effectiveness of the proposed method with several
baselines. However, the baselines are not very convincing. The paper lacks clear motivation for
why they use a two-stage architecture. The paper needs to provide more details on how they
evaluate the generated prompts.
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