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Figure 1: MEGA-BENCH contains 505 multimodal tasks with diverse data sources, input/output
formats, and skill requirements. The taxonomy tree guides and calibrates the annotation process.

ABSTRACT

We present MEGA-BENCH, an evaluation suite that scales multimodal evaluation
to over 500 real-world tasks, to address the highly heterogeneous daily use cases
of end users. Our objective is to optimize for a set of high-quality data samples
that cover a highly diverse and rich set of multimodal tasks, while enabling cost-
effective and accurate model evaluation. In particular, we collected 505 realistic
tasks encompassing over 8,000 samples from 16 expert annotators to extensively
cover the multimodal task space. Instead of unifying these problems into standard
multi-choice questions (like MMMU, MMBench, and MMT-Bench), we embrace
a wide range of output formats like numbers, phrases, code, LATEX, coordinates,
JSON, free-form, etc. To accommodate these formats, we developed over 40 met-
rics to evaluate these tasks. Unlike existing benchmarks, MEGA-BENCH offers a
fine-grained capability report across multiple dimensions (e.g., application, input
type, output format, skill), allowing users to interact with and visualize model ca-
pabilities in depth. We evaluate a wide variety of frontier vision-language models
on MEGA-BENCH to understand their capabilities across these dimensions.
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1 INTRODUCTION

Large foundation models (OpenAI, 2023; 2024a; Anthropic, 2024a; Google, 2023; Meta, 2024; Al-
ibaba, 2024) have dramatically transformed the landscape of artificial intelligence by showcasing
exceptional capabilities across various tasks and domains. Originating in the realm of natural lan-
guage processing, these models have progressively expanded to perceive and interpret multimodal
information, including single images, multiple images, and videos. Previously, multimodal models
were mainly used for standardized tasks like image captioning (Lin et al., 2014), video caption-
ing (Wang et al., 2019), and visual question answering (Antol et al., 2015; Goyal et al., 2017; Xiao
et al., 2021). With the recent progress on multimodal alignment, these models have shown great
potential to solve many diverse and complex tasks with well-designed prompts. As a result, people
have applied them to assist with many realistic tasks like “web navigation” (Koh et al., 2024), “game
playing” (Valevski et al., 2024), “travel planning” (Xie et al., 2024), “visual navigation” (Wang
et al., 2023a), “sports analysis” (Xia et al., 2024), “visual entity recognition” (Hu et al., 2023), “vi-
sual quality assessment” (Ku et al., 2024), and more. These efforts have significantly increased the
utility of multimodal models.

An important challenge is identifying how to accurately gauge the abilities of these vision-language
models (VLMs) across a wide range of tasks. Most existing benchmarks are designed to cover only
one or a few similar tasks, making them inadequate for evaluating the models’ overall capabilities.
The status quo is to evaluate the model on many existing benchmarks to showcase their all-round
abilities. For example, Qwen2-VL1 was evaluated on 27 image and video benchmarks in total. Al-
though this massive evaluation effort provides valuable insights into how well these models handle
specialized tasks, it also introduces a significant overhead and several challenges:
- Limited Output Diversity: The existing multi-task benchmarks like MMMU (Yue et al., 2024a),
MMT-Bench (Ying et al., 2024) rely heavily on multiple-choice questions to lower the burden of
evaluation. This fails to evaluate the generative abilities of these multimodal models.
- Lack of Task Coverage: The existing benchmarks are often sporadic and lack a systematic design
to cover the multimodal task space. Certain abilities are not well covered in the current ecosystem.
Consequently, even exhaustively testing all the available benchmarks would not be sufficient.
- Expensive Inference Cost: The full evaluation process is expensive regarding computation cost/-
time or API expense. Since many examples or tasks are similar in the capabilities they assess (e.g.,
DocVQA Mathew et al. (2021) alone has thousands of examples for examining doc understanding
and OCR-related abilities), overly repetitive evaluation at a large scale leads to resource waste.
- Unmanageable Setups: Each benchmark has complexities when setting up the evaluation. For
example, VQA (Goyal et al., 2017) alone has four splits (val, dev-test, std-test, and test). It is hard
to track the exact setup of different baseline models to ensure a fair comparison.

To address these challenges, we advocate for a unified protocol that scales up multi-modal evaluation
to maximize the task coverage and the diversity in model outputs while optimizing the inference cost.
As an initial attempt, we propose MEGA-BENCH, which is designed to provide a comprehensive
and systematic assessment of multimodal foundation models.

To build MEGA-BENCH, we first construct a task taxonomy tree that organizes different multimodal
tasks based on the application type (Figure 1), with significant effort spent adjusting and refining the
taxonomy tree to ensure sufficient coverage and diversity. The task taxonomy tree then serves as the
guiding principle to ensure all relevant tasks and skills are covered and appropriately balanced. To
help the annotators create their tasks, we build an annotation GUI to simplify the process of creating
the task JSON files and a web tool to visualize the results of the VLM’s responses alongside the
ground truth. We also review each task contribution when it is first submitted, after evaluating the
models on the new tasks, and periodically throughout the annotation process to ensure that all of the
tasks are novel and high-quality. This collaborative effort resulted in the compilation of 505 realistic
tasks, effectively covering (almost) the entire multimodal capability space at a manageable inference
cost. To facilitate nuanced and precise evaluation, we also developed 45 highly-customized metrics
tailored to these tasks during the annotation process.

Unlike existing benchmarks that often provide a single score, MEGA-BENCH offers a fine-grained
capability report based on multiple dimensions such as the input type, input format, output format,
and required skills. This interactive and visualizable report enables users to identify the models’
1 https://github.com/QwenLM/Qwen2-VL
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performance across several orthogonal dimensions, uncovering strengths and weaknesses that might
be obscured in aggregate scores. Such detailed analysis is invaluable for researchers and developers
aiming to enhance foundation models and optimize them for specific downstream applications.

Using MEGA-BENCH, we conducted comprehensive studies of popular flagship and efficiency
models (with both open-source software and proprietary APIs) and identified some findings below:
1. Among flagship models, Claude 3.5 Sonnet (1022) and GPT-4o (0513) currently lead in perfor-
mance across a wide range of multimodal tasks, with less than a 0.1% difference in their overall
scores. Our detailed breakdown shows that Claude 3.5 Sonnet excels in planning and math with
its latest upgrade bringing clear boosts in processing UI/Infographics inputs, while GPT-4o leads in
information extraction and knowledge-intensive tasks.
2. Among open-sourced models, Qwen2-VL performs the best, with its performance near the top
close-sourced flagship models, and outperforms the second best open-source model by ≈10%.
3. Among efficiency models, Gemini 1.5 Flash is the strongest model overall, except for the tasks
related to handling User Interfaces and Documents.
4. Proprietary models can effectively leverage Chain-of-Thought (CoT) prompting to improve their
performance, while open-source models hardly produce helpful reasoning processes. In our evalua-
tion results, 10 of 13 open-source models get worse results with CoT prompting.

2 RELATED WORK

Multimodal benchmarks. Benchmarking in vision-language models has been a long-standing
research problem. Before the era of large multimodal models, most benchmarks were designed
for specific tasks or skills. Some benchmarks like VQA (Antol et al., 2015), GQA (Hudson &
Manning, 2019), and ViswizVQA (Gurari et al., 2018) focus on photograph or natural images.
ChartQA (Masry et al., 2022), InfoVQA (Mathew et al., 2022), DocVQA (Mathew et al., 2021),
and OCR-VQA (Mishra et al., 2019) focus more on documents, infographics, and other similar me-
dia. Later on, there was a trend to build more well-rounded benchmarks to cover a wider range of
skills or topics, such as ScienceQA (Lu et al., 2022), MMBench (Liu et al., 2023b), MMMU (Yue
et al., 2024a;b), MMT-Bench (Ying et al., 2024), and more. However, due to the diversity of these
different tasks, most benchmarks use multiple-choice questions for all problems. Therefore, these
benchmarks cannot fully reflect the generational abilities of multimodal models. Complementary to
this, LMsys arena (Chiang et al., 2024) and WildVision arena (Lu et al., 2024) have proposed to use
user voting and Elo-ranking to benchmark multimodal models. Our benchmark is the first to scale
up the tasks by a significant magnitude. Furthermore, our benchmark provides a breakdown report
to analyze multimodal models across multiple dimensions.

Sensitivity of large model leaderboards to input format. Creating reliable leaderboards poses a
substantial challenge for evaluating large models. Previous studies have noted that LLMs exhibit
sensitivity to minor input modifications, including prompts and in-context examples in few-shot
settings (Sclar et al., 2024; Chang & Jia, 2023). To mitigate input sensitivities, researchers have de-
veloped specialized prompt design and prompting-based training approaches (Liu et al., 2023a; Jain
et al., 2024b). Nonetheless, for benchmarks that only allow a multiple-choice format (Wang et al.,
2024d), studies by Zheng et al. (2024) and Robinson et al. (2023) find the option sequencing can
significantly alter model rankings on the leaderboard. Recently, Alzahrani et al. (2024) explores the
advantage of a hybrid scoring method to stabilize models’ leaderboard rankings over input format.
Though MEGA-BENCH does not include hybrid scoring for each individual task, the overall use of
diverse and hybrid scoring methods and output formats across more than 500 tasks demonstrates the
robustness of the benchmark.

3 MEGA-BENCH

MEGA-BENCH is a comprehensive multimodal benchmark that spans 7 input formats, 6 output
formats, 10 different types of skills, and a varying number of visual inputs, whether single-image,
multi-image or from video, as shown in Figure 2. Our benchmark covers 8 distinct subject areas in
a hierarchical taxonomy to evaluate VLMs’ ability to tackle various tasks.
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Figure 2: MEGA-BENCH’s four keyword dimensions and the task-level statistics. The diversity
along various dimensions enables fine-grained capability analysis.

3.1 BENCHMARK CONSTRUCTION PROCESS

Preparation. Figure 3 illustrates our annotation process. In the conceptualization stage, we propose
a “draft” task taxonomy tree with the top two levels of Figure 1 by getting inspirations from existing
multi-task or multi-discipline LLM/VLM benchmarks (Srivastava et al., 2022; Liu et al., 2023b; Yue
et al., 2024a). The first level consists of general applications like “perception”, “planning”, “reason-
ing”, etc., while the second level has more concrete meta-tasks like “document understanding”, “app
function understanding”, “logic reasoning”, etc. We host a brainstorming session to add exemplars
under each second-level node and write descriptions about the number and quality of the tasks we
expect. Based on our empirical observations of how general users use VLMs in real-world scenar-
ios, we assign more task budgets to perception, knowledge, and information extraction than other
first-level nodes while strictly monitoring the application-level distribution balance in the annota-
tion process. We then distribute the second-level nodes in the “draft” tree to the annotators. This
top-down framework minimizes overlaps between annotators and facilitates overall organization.

Taxonomy

Perception …Planning Reasoning

Doc Website App Logic Math Puzzles

dr
af
t

Add tasks

Add Meta-Task

Instagram X

Understanding Function Geometry
Add task group

Add tasks

Action

Task-Level Instruction: Your task is to analyze 
the query image … <box>x1, y1, x2, y2</box> …

Question: What is the 
location ..

<box>11,12…</box>

Question: What is the 
location ..

<box>10,11…</box>

Example 1 Example 2Shopping

Figure 3: The annotation process of MEGA-BENCH. We propose a “draft” taxonomy tree and then
distribute the second-level nodes to annotators. We allow the annotators to gradually refine the tree
structure as they add new tasks. Each task has many examples and a shared task-level instruction.
Each example has a question and a ground truth answer.

To ensure reliable commitment and annotation quality, we call up 16 designated expert annotators
with rich LLM experience and computer science backgrounds. All annotators are graduate students
or above with majors in computer science, electronics/communications engineering, bio-statistics,
or finance, and 12 of them served as annotators or authors of LLM/VLM benchmarks published at
top conferences. The annotators can 1) refine the “draft” taxonomy by adding/deleting nodes, 2)
add “task group” nodes and then add a series of tasks under that, and 3) directly add tasks under an
existing high-level node. We develop tools to facilitate the annotation process, including 1) an in-
teractive annotation tool that defines the annotation format and automatically unifies all annotations
into JSON files, 2) a GitHub repository to coordinate the task submission, reviewing, and discussion
process, which was inspired by BIG-bench (Srivastava et al., 2022), and 3) a visualization tool that
allows annotators to browse the existing tasks and the evaluation results of representative vision lan-
guage models (VLMs). We coordinate all the annotators to ensure they understand our expectations
and continuously improve our tools. Please see §B for complete details of annotation protocols.

Task annotation. The annotation process contains two rounds. The annotators submit tasks to the
benchmark by creating pull requests (PR) to the main branch of our GitHub repository. In the first
round of the annotation process, we ask the annotators to contribute 20 tasks following the principles
below to ensure the quality of the task:
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• Data source and output format: Creative tasks with diverse data sources and output formats are
encouraged. If the data was collected from existing datasets, we ask annotators to adapt the original
annotation into more specific questions and design more diverse answer formats.
• Number of examples: Each task should have at least 15 examples. Exceptions are allowed for some
complicated tasks where the data are scarce.
• Documentation: Each task should be accompanied by documentation that indicates the source of
the data, the capabilities the task tries to evaluate, and the evaluation metric to be used.

Our core contributors review each PRs carefully to provide feedback, and the accepted PRs are
merged into the main branch. We periodically run the evaluation with commercial VLMs (e.g., GPT-
4o) and update the results of existing tasks on our visualization page, which allows the annotators
to better understand the difficulty of their tasks and catch potential glitches in the annotation. We
found that this helps significantly improve the annotation quality.

Before the second round of annotations, the core contributors review all tasks in the taxonomy
tree and investigate the biases in the task distribution. We then host another annotator session to
propose new meta-tasks to balance the distribution and maximize the coverage. We then distribute
the updated tree nodes to annotators and employ the same guidelines to finish the second-round
annotations. After this round, each annotator contributes at least another 30 tasks.

Quality control and refinement. We leverage commercial VLMs to examine the task quality. Con-
cretely, we gather the results of GPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro and compute an
average score on each task. Tasks with almost 1.0 scores often have trivial questions (based on
manual inspection) and can hardly distinguish the ability of different models. We ask the corre-
sponding annotators to investigate and augment those tasks. For tasks with almost zero scores, the
task reviewers audit them carefully and remove them if the zero score comes from incorrect an-
notations or insufficient instruction contexts. Finally, the benchmark contains a total of 505 tasks
with roughly 8,200 examples, which is large enough to minimize the sample variance within each
high-level taxonomy node. Please refer to §4.3 for an analysis of the number of examples per task.

3.2 METRICS FOR ANSWERS IN DIVERSE OUTPUT FORMATS

To properly evaluate the tasks with different output formats, we develop a set of highly-customized
evaluation metrics in parallel with the benchmark construction process (§3.1). Figure 4 shows sev-
eral examples of the model outputs along with the task’s associated metrics. When new tasks are
submitted to our GitHub repository, we implement any new metrics specified by the task authors. We
use two types of metrics: rule-based metrics and LLM-assisted metrics. All metrics are normalized
into [0, 1], with 1.0 being the full mark.

Rule-based metrics. When there is a unique answer under the question context or the correctness
of the answer can be verified by rules (e.g., if the generated story/poetry meets the desired formats
or if the generated code can pass test cases), we implement rule-based metrics for evaluation. To
satisfy the needs of all tasks submitted by annotators, we end up with a suite of over 40 rule-based
metrics. Robust string parsing is also implemented to extract the answer from the model’s response.
We conduct a sanity check to ensure the correct implementation of rule-based metrics. Specifically,
we create an “oracle” model that always returns the ground truth, then compute its score over all
tasks evaluated by rule-based metrics. The sanity check is passed when the “oracle” model gets a
full 1.0 score. See §D.4 for details.

LLM-assisted metrics. For open-ended tasks that do not have a unique answer, we instead employ
an LLM-assisted metric (Zheng et al., 2023; Li et al., 2023a). We design a per-task evaluation prompt
template and fill in the tailored evaluation criteria for each task. The LLM is instructed to compare
the model response with the reference answer and assign a score from 1 to 10. The score is then
normalized into [0, 1] to be consistent with the other metrics. See §D.3 for details.

We divide the tasks into two subsets based on the different evaluation processes. The Core Set is
evaluated with rule-based metrics to make the evaluation fast and cost-free. The Open-Ended Set is
evaluated with metrics that use an LLM-as-a-judge, where the evaluation pipeline calls a proprietary
LLM over an API. Specifically, we use GPT-4o-0806 (OpenAI, 2024a) as the judge LLM while
maintaining an extensible implementation for using other judge models. The Core and Open-Ended
sets contain 440 and 65 tasks, respectively.
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`̀̀python
def f(x, a3, a2, a1, a0):
    return a3 * x**3 + a2 * x**2 + a1 * x + a0
def bisection_method(a3, a2, a1, a0, a, b, 
tolerance=1e-6):
    while (b - a) / 2.0 > tolerance:

... ...... ...
print(f"{root:.2f}")
`̀̀

Output Type: Structured

Metric: Program Judge

Code Programming Test (easy)

Answer:
(grasp left shot4)
(fill-shot shot4 ingredient1 left right dispenser1)
(pour-shot-to-clean-shaker shot4 ingredient1 shaker1 left l0 l1)
(clean-shot shot4 ingredient1 left right)
(fill-shot shot4 ingredient3 left right dispenser3)
(pour-shot-to-used-shaker shot4 ingredient3 shaker1 left l1 l2)(pour-shot-to-used-shaker shot4 ingredient3 shaker1 left l1 l2)
... ...
(shake cocktail2 ingredient2 ingredient3 shaker1 left right)
(pour-shaker-to-shot cocktail2 shot3 left shaker1 l2 l1)

Output Type: Structured

Metric: Symbolic Planning 

Symbolic Planning (Barman)

Answer: 
\begin{align*}(\nu_\begin{align*}(\nu_
{\mu,\Phi}(A,U)=\int_P 
(\mu\cdot\Phi)
(A\cap\varphi_p
(X),U\cap\varphi_p
(X))\,d\varphi\end{align*}

Output Type: Structured

Metric: LaTeX Expr Equality

LaTeX Complex Formula Convertion

Answer:
  426195783
  357846192
  198237546
  ... ...
  735418629
  241659738  241659738

Output Type: Contextual Formatted

Metric: Simple String Match

Sudoku

Answer: [[0.28,0.48], [0.0,0.0], [0.28,0.55], 
[0.38,0.55], [0.75,0.45], [0.45,0.65], 
[0.45,0.75], [0.45,0.85], [0.55,0.65], 
[0.55,0.75], [0.55,0.85], [0.7,0.55], 
[0.75,0.65], [0.75,0.85], [0.75,0.55], 
[0.8,0.65], [0.8,0.85]]

Output Type: Numerical

Metric: Sequence Coordinates 
Similarity

Animal Pose Estimation

Answer: 
[
 (0.02, 0.32, 0.12, 0.42), 
 (0.00, 0.32, 0.10, 0.42), 
 (0.00, 0.32, 0.10, 0.42), 
 (0.00, 0.32, 0.10, 0.42)
]]

Output Type: Numerical 

Metric: Sequence BBox IoU

Multi-camera Car Tracking

Answer: 
`̀̀json
{
    "has_dot_r1c1": true,
    "has_dot_r1c2": true,
    "has_dot_r1c3": true,
 ... ... ... ...
    "has_dot_r3c4": false,
    "has_dot_r3c5": false
}
`̀̀

Output Type: Structured

Metric: Dict Equality

Mensa IQ Test

Answer: 
West leads the 2S against 5C.
South has 10 top tricks (5 spades, 1 heart, 1 
club, and 3 diamonds). 
South needs to ... ...
The key is to ensure that the club suit is played The key is to ensure that the club suit is played 
in a way that maximizes the chances of 
establishing the second club trick while 
maintaining control of the hand.

Output Type: Open-ended

Metric: GPT-4o as Judge

Bridge Strategies (Worldclass)

Figure 4: Representative examples of MEGA-BENCH’s diverse output formats and customized
metrics (input queries are omitted). The outputs are extracted from real responses of GPT-4o (0513).
We implement robust parsing to extract the final answer from raw model responses.

3.3 MULTI-DIMENSIONAL KEYWORDS FOR FINE-GRAINED ANALYSIS

Existing multi-task multimodal benchmarks analyze models according to dimensions like the image
type and academic discipline (Yue et al., 2024a), ability (Liu et al., 2023b), or meta-task (Ying et al.,
2024). MEGA-BENCH offers a broad and diverse range of coverage across all these dimensions,
and extends even further beyond them. As explained in §3.1, the taxonomy tree divides the tasks
into general application scenarios, the most manageable dimension for distributing the annotation
efforts to different annotators. After we collected all tasks and finished the quality control process,
we grouped all tasks based on four extra dimensions: input visual type, input visual number, output
format, and required skills (Figure 2). Each dimension has 6 to 10 keywords, enabling fine-grained
analysis and comparison. Interactive visualization tools can then be developed based on our eval-
uation results, which allows model developers to delve deep into different aspects of a model and
compare different models comprehensively.

3.4 DATASET STATISTICS AND COMPARISON WITH OTHER BENCHMARKS

MEGA-BENCH contains 505 real-world tasks with 8,186 manually annotated or repurposed sam-
ples. Even for repurposed data, considerable effort is needed to convert the original annotations into
specific task descriptions, diverse output formats, and additional instructions to include auxiliary
information about formatting. Figure 2 shows the task distribution of all five dimensions, and the
detailed task taxonomy tree and statistics of each dimension are in Appendix C.

Table 1 compares MEGA-BENCH to existing multimodal benchmarks. The key feature of our
benchmark is the diversity across all aspects, driven by our high-level designs of diverse task appli-
cations and output formats. MMMU (Yue et al., 2024a;b) focuses on college-level exam questions
with various discipline and image formats. All questions are single-image and answered in multiple-
choice format. MMT-Bench (Ying et al., 2024) covers 162 concrete sub-tasks, enabling in-depth
analysis based on their “taskonomy” and diverse input forms. However, all of the tasks MMT-Bench
are from existing datasets, mostly under the “Perception” sub-tree in our taxonomy, and all outputs
are in multiple-choice form like MMMU. To maximize task coverage and the diversity in model
outputs with cost-effective inference, MEGA-BENCH includes a much broader range of task types
and output formats, while having fewer total samples compared to existing benchmarks.
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Table 1: A comparison between MEGA-BENCH and existing works. MEGA-BENCH has a greater
diversity in data sources, input/output format, the number of metrics, and the number of tasks.

Dataset Annotation Source Input Output #Metrics #Tasks

VQA-v2 (Antol et al., 2015) New Photo 1 Image Phrase/Bool/Num 1 1
VizwizVQA (Gurari et al., 2018) New Photo 1 Image Phrase/Bool/Num 1 1
ChartQA (Masry et al., 2022) New Chart 1 Image Bool/Num 1 1
AI2D (Kembhavi et al., 2016) New Diagram 1 Image Multi-choice (MC) 1 1
GeoQA (Chen et al., 2021) New Geometry 1 Image Multi-choice (MC) 1 1
NLVR2 (Suhr & Artzi, 2019) New Photo 2 Images Bool 1 1
InfoVQA (Mathew et al., 2022) New Infographics 1 Image Phrase/Bool/Num 1 1
DocVQA (Mathew et al., 2021) New Document 1 Image Phrase/Bool/Num 1 1
OCR-VQA (Mishra et al., 2019) New Book covers 1 Image Phrase 1 1
ScienceQA (Lu et al., 2022) New K12 Books ≤1 Image Multi-choice (MC) 1 26
MathVista (Lu et al., 2023) Repurposed Diverse 1 Image MC / Num 1 5
MMBench (Liu et al., 2023b) Hybrid Diverse 1 Image Multi-choice (MC) 1 20
MME (Yin et al., 2023) Repurposed Existing 1 Image Multi-choice (MC) 1 14
Seed-Bench (Li et al., 2024c) New Existing Image/Video Multi-choice (MC) 1 12
VisIT-Bench (Bitton et al., 2023) Hybrid Diverse 1/2 Images Free-form (FF) 1 70
MMStar (Chen et al., 2024a) Repurposed Existing 1 Image Multi-choice (MC) 1 18
MM-Vet (Yu et al., 2024b) Repurposed Existing 1 Image Free-form (FF) 1 16
MMMU (Yue et al., 2024a) New Diverse ≥1 Image MC / FF 1 30
MUIRBench (Wang et al., 2024a) Hybrid Existing >1 Image Multi-choice (MC) 1 12
MileBench (Song et al., 2024) Repurposed Existing >1 Image MC / FF 2 12
VideoMME (Fu et al., 2024a) New Youtube Video Multi-choice (MC) 1 30
MVBench (Li et al., 2024e) Repurposed Existing Video Multi-choice (MC) 1 20
MMT-Bench (Ying et al., 2024) Repurposed Existing ≥1 Image/Video Multi-choice (MC) 1 162

MEGA-BENCH New Diverse ≥1 Image/Video Unrestricted 45 505

4 EXPERIMENTS

We evaluate 19 VLMs with multi-image support on MEGA-BENCH. §4.1 describes the evaluated
models and the evaluation pipeline. §4.2 presents the evaluation results with a fine-grained analytical
breakdown. §4.3 provides analyses on the number of examples per task and error types.

4.1 EVALUATION SETTINGS

Evaluated models. We evaluate a diverse range of large multimodal models. The proprietary
models assessed include GPT-4o (0513) and GPT-4o mini (OpenAI, 2024a), Claude-3.5-Sonnet
(0620 and 1022) (Anthropic, 2024a;b), Gemini-1.5-Pro (002) and Gemini-1.5-Flash (002) (Google,
2024a). For open-source models, we mainly focus on large flagship (>70B parameters) and
small-to-medium efficiency models. The large models include Qwen2-VL-72B (Alibaba, 2024),
InternVL2-Llama3-76B (Chen et al., 2024d), LLaVA-OneVision-72B (Li et al., 2024a), and
NVLM (Dai et al., 2024). The medium-scale models comprise Qwen2-VL-7B (Alibaba, 2024),
Pixtral 12B (Mistral, 2024), Aria (Li et al., 2024d), InternVL2-8B (Chen et al., 2024d), Phi-3.5-
Vision (Abdin et al., 2024), MiniCPM-V2.6 (Yao et al., 2024), LLaVA-OneVision-7B (Li et al.,
2024a), Llama-3.2-11B Meta (2024), and Idefics3-8B-Llama3 (Laurençon et al., 2024).

Evaluation pipeline. MEGA-BENCH has diverse and flexible formats. To ensure the models have
clear instructions on the output format, we provide all evaluated VLMs with a one-shot in-context
example. For each query, we fill in a pre-defined prompt template with the task instructions written
by the task annotators, the 1-shot example, and the concrete query question. Since this one-shot
example’s primary purpose is to illustrate the output format, we allocate only a tiny portion of
the total image budget for it. For each model, we conduct experiments with and without Chain-of-
Thought (CoT) prompting (Wei et al., 2022) for the Core tasks (the one-shot example of Open-ended
tasks already contains CoT demonstrations). The prompt templates and other evaluation details (e.g.,
the frame sampling strategy for video inputs) are in §D. Our default evaluation pipeline focuses on
models with multi-image support. To properly evaluate models trained mainly for single-image use
cases, we create a single-image setting using the single-image tasks of MEGA-Bench. See §A for
the detailed results and analyses of the single-image setting.
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Table 2: The main results of different models on the Core and Open-ended subset of MEGA-
BENCH, with 440 and 65 tasks, respectively. We report the macro mean scores across all tasks in
each set. The overall score is the weighted average of the Core and Open-ended scores. When
computing the overall score, we use the higher Core score from ‘w/o CoT’ and ‘w/ CoT’.

Model Eval Tier Open Source Core (rule eval) Open-ended
(GPT eval) Overall

w/o CoT w/ CoT

Claude-3.5-Sonnet (1022) (Anthropic, 2024b) Flagship No 49.20 52.59 65.63 54.27
GPT-4o (0513) (OpenAI, 2024a) Flagship No 52.03 52.65 64.78 54.21
Claude-3.5-Sonnet (0620) (Anthropic, 2024a) Flagship No 48.80 50.41 63.74 52.13
Gemini-1.5-Pro-002 (Google, 2024b) Flagship No 46.99 48.22 58.58 49.55

Gemini-1.5-Flash-002 (Google, 2024b) Efficiency No 41.90 41.89 56.91 43.82
GPT-4o mini (OpenAI, 2024b) Efficiency No 39.85 40.77 58.65 43.07

Qwen2-VL-72B (Alibaba, 2024) Flagship Yes 46.41 45.42 56.40 47.70
InternVL2-Llama3-76B (Chen et al., 2024d) Flagship Yes 35.02 35.63 51.93 37.73
LLaVA-OneVision-72B (Li et al., 2024a) Flagship Yes 31.99 29.74 45.99 33.79
NVLM-72B (Dai et al., 2024) Flagship Yes 24.21 21.59 34.78 25.57

Qwen2-VL-7B (Alibaba, 2024) Efficiency Yes 34.80 32.93 43.96 35.98
Pixtral-12B (Mistral, 2024) Efficiency Yes 31.91 31.36 45.66 33.68
Aria-MoE-25B (Li et al., 2024d) Efficiency Yes 30.49 28.90 51.03 33.13
InternVL2-8B (Chen et al., 2024d) Efficiency Yes 25.96 24.09 39.79 27.74
Phi-3.5-Vision-4B (Abdin et al., 2024) Efficiency Yes 23.27 23.00 39.48 25.36
MiniCPM-V2.6-8B (Yao et al., 2024) Efficiency Yes 22.88 22.96 41.73 25.38
LLaVA-OneVision-7B (Li et al., 2024a) Efficiency Yes 22.41 21.36 33.98 23.90
Llama-3.2-11B (Meta, 2024) Efficiency Yes 10.04 16.00 31.73 18.02
Idefics3-8B-Llama3 (Laurençon et al., 2024) Efficiency Yes 11.12 8.96 32.11 13.82

3D related

Arts/Creative

Infographics

PhotographsDocuments

UI related

Videos

0.08
0.25

0.42
0.59

0.76

Contexual
Formatted

Exact

Multiple-
choiceNumerical

Open-ended

Structured

0.08
0.25

0.42
0.59

0.76

Commonsense
Reasoning

Domain
Knowledge

Ethical/Safety
Reasoning

Language
Parsing/Gen.

Math/Logical
ReasoningObject

Recognition

Planning/Decis
ion Making

Scene
Understanding

Spatial/Tempor
al Reasoning

OCR

0.08
0.25

0.42
0.59

0.76

Coding

Info
Extraction

Knowledge

Math

Metrics

Perception

Planning

Science

0.08
0.25

0.42
0.59

0.76

GPT-4o (0513)
Claude-3.5-Sonnet (1022)
Claude-3.5-Sonnet (0620)
Gemini-1.5-Pro-002
InternVL2-76B
Qwen2-VL-72B
Llava-OneVision-72B

Figure 5: Fine-grained breakdown analysis of flagship models on four dimensions. From top-left to
bottom-right: input format, output format, skills, and application.

4.2 MAIN RESULTS WITH BREAKDOWN ANALYSIS

Table 2 presents the main evaluation results, with Figure 5 and Figure 6 being the accompany-
ing fine-grained breakdowns enabled by MEGA-BENCH’s multi-dimensional diversity. We discuss
some important findings below and leave a full breakdown of the results in §E of the Appendix.
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Figure 6: Fine-grained analysis of efficiency models on input format (left) and application (right).

For the sake of careful comparison, we organize the results into two tiers: (1) The Flagship Model
Tier compares the strongest performing models from each model’s organization, (believed) with
#params≥ 70B. (2) The Efficiency Model Tier compares efficiency models from each model’s orga-
nization, (believed) with #params≤ 20B.

Flagship models. Unlike the results on recent benchmarks like MMMU-Pro (Yue et al., 2024b)
where GPT-4o (0513) and Claude-3.5-Sonnet (0620) get close scores, GPT-4o (0513) outperforms
Claude-3.5-Sonnet (0620) with a clear margin on MEGA-BENCH (> 2%). Investigating the break-
down results, we observe that GPT-4o (0513) wins in most applications/skills except for coding,
math, and planning-related tasks, where the answers are typically in a “structured” output format (
Figure 5). The recent update of Claude-3.5-Sonnet (1022) makes improvements across almost all
dimensions, especially in planning tasks and those with infographics/UI/photographs inputs, and
slightly surpasses GPT-4o in the overall score (< 0.1%). The “planning” application keyword con-
tains tasks like symbolic planning (Zhu et al., 2024), navigation (Ku et al., 2020), chess games (Fu
et al., 2024b), puzzle games (e.g., maze, Sudoku), etc., and even the best models get low scores.

One typical observation of Claude-3.5-Sonnet models is that they tend to be meticulous and refuse to
answer routine knowledge or commonsense questions, such as the name and nationality of famous
actors. The bottom radar maps show that they fall behind in knowledge, information extraction, and
commonsense reasoning compared to GPT-4o, partially because of this refusal behavior.

The evaluation results suggest that Qwen2-VL performs particularly well amongst open-source
models of similar parameter sizes. In Figure 5, Qwen2-VL-72B gets a similar score to closed-source
models in the general perception category and outperforms Gemini-1.5-Pro-002 on information ex-
traction tasks. Llava-OneVision-72B scores very low when the visual inputs are in “UI related”
and “Document” formats while performing well on video inputs. This suggests a lack of OCR and
language parsing abilities, which can be confirmed with its skills radar plot.

Efficiency models. Figure 6 analyzes the results on efficiency models. In general, Gemini-1.5-
flash-002 has the best performance with exceptional scores in Science and Metrics applications. The
Metrics keyword contains tasks such as rating the quality of GenAI results (He et al., 2024; Jiang
et al., 2024b) and requires deep multimodal reasoning and commonsense. However, its performance
on UI-related inputs and information extraction tasks falls behind GPT-4o mini.

Chain-of-Thought. An interesting finding is that the CoT prompt (See §D) effectively guides all
proprietary models to generate a detailed reasoning process, and flagship-tier proprietary models all
obtain better performance on the Core set. However, it has almost no effect on most open-source
models. For example, the Qwen2-VL, InternVL2, and LLaVA-OneVision models rarely produce
reasoning when given a CoT instruction, and sometimes get confused about the required format
after generating the reasoning process, leading to a lower score on the Core set.

Some open-source models get comparatively low scores for their parameter count. Llama-3.2-11B
has difficulty leveraging the one-shot example to understand the correct output format and tends to

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

3 5 7 9 111315
0.48
0.50
0.52
0.54
0.56

GPT-4o (0513)

3 5 7 9 111315
0.48
0.50
0.52
0.54
0.56

Claude-3.5-Sonnet

3 5 7 9 111315
0.44

0.46

0.48

0.50

0.52
Gemini-1.5-Pro

3 5 7 9 111315

0.42

0.44

0.46

0.48

Qwen2-VL-72B

Examples per Task

M
eg

a-
Be

nc
h 

M
ac

ro
-M

ea
n 

Sc
or

e

Annotation Glitch
2.4%

Refuse to Answer
2.0%

Fail to Follow 
Instructions

6.3%

Perception Error
30.3%

Lack of Reasoning
 Capability
48.0%

Lack of Knowledge
11.0%

Figure 7: (Left) The bootstrap distribution of benchmark scores (w/ CoT prompting) with a gradually
increased bootstrap sample size of the number of per-task examples. (Right) The task-wise error
distribution of GPT-4o (0513) over a subset of 255 Core tasks.

generate a long descriptive sentence instead. This issue is alleviated under the CoT setting because
the prompt provides extra instructions on the output format beyond the one-shot example, requesting
the model to strictly separate the reasoning process from the final answer. Idefics3 frequently repeats
the example answer from the one-shot demonstration. We suspect the reason for this problem is the
poor support for multi-image (as our query contains at least two images, including the one-shot
example) since it can generate reasonable responses with a single-image input. §A in the Appendix
presents a single-image setting of MEGA-BENCH and conducts further analyses.

4.3 MORE ANALYSIS

Number of samples per task. As discussed in §1, one of MEGA-BENCH’s goals is to optimize
the inference cost while still producing detailed multi-dimensional breakdown analysis. Therefore,
we prioritize expanding the number of tasks over adding many examples per task in the benchmark
construction process. To understand the robustness of the benchmark score with around 15 examples
per task, we obtained bootstrap distributions (Efron & Tibshirani, 1994; Hesterberg, 2011) of the
model scores for our Core set with the CoT prompting. We did this by taking a random subset of the
model’s responses of size n (n = 3, 5, . . . , 13, 15) with replacement for each task and calculating
the task-level macro-mean scores. To ensure the bootstrap distribution was numerically stable, we
ran 10,000 Monte Carlo simulations. Figure 7 (left) shows that the variance in model scores rapidly
narrows as the number of examples per task increases. As the number of examples per task increases
beyond 7, the marginal return in variance reduction diminishes.

Error analysis. To understand the limitations of state-of-the-art VLMs, we analyze the GPT-4o
(0513) results by manually identifying the error types over a subset of 255 tasks from the Core
set. We use the CoT setting since the reasoning process helps determine the error type. Figure 7
(right) presents the error distribution. For GPT-4o, the lack of various reasoning capabilities (e.g.,
symbolic reasoning for planning/coding tasks, spatial or temporal reasoning for complex perception
tasks, etc.) is the dominating failure mode on MEGA-BENCH. Please refer to §F for the full
definition of error types and detailed example-wise inspection results with different models.

5 CONCLUSION

This paper presents MEGA-BENCH, a comprehensive benchmark that scales multimodal evalua-
tion to over 500 real-world tasks but at a manageable inference cost. By systematically organizing
tasks across dimensions like skill, output format, and input type, we enable fine-grained analysis of
multimodal models. Our evaluation of state-of-the-art VLMs revealed significant performance vari-
ations between models that previously seemed similar. MEGA-BENCH provides a new standard for
multimodal evaluation, offering a robust analysis tool for model development.
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A SINGLE-IMAGE SETTING: RESULTS AND ANALYSES

Table 2 in the main paper focuses on models with multi-image support. However, some open-source
models are only trained with single images. To provide a feasible evaluation setting for these models,
we create a single-image (SI) setting using the single-image tasks in MEGA-BENCH, containing
273 and 42 tasks from the Core and Open-ended sets, respectively.

Evaluation setup. The Chain-of-Thought (CoT) prompting is used for Core SI tasks. To make the
entire query contain only one image as needed by some single-image models, we drop the image
input of the 1-shot demonstration example (“✗ demo im” column in the table). In this case, the
1-shot example only demonstrates the output format, which is necessary for inferring the correct
answer. For those models already evaluated in Table 2, we calculate the task-level average scores on
single-image tasks to obtain the “✓ demo im” results. Compared to Table 2, 3 single-image models
are evaluated and added: Molmo-72B-0924 (Deitke et al., 2024), Molmo-7B-D-0924 (Deitke et al.,
2024), and POINTS-Qwen2.5-7B (Liu et al., 2024b).

Evaluation results. Table 3 presents the evaluation results of the SI setting. The Core and Open-
ended scores of the standard setting (with CoT prompting) are also in the table for reference. Some
observations from the table are listed below:

• Single-image tasks are easier than multi-image tasks in general, and all models get higher scores
in the SI setting than in the standard setting.

• GPT-4o has the best overall SI score, slightly higher than Claude 3.5 Sonnet (1022). Interest-
ingly, GPT-4o mini overtakes Gemini-1.5-Flash-002 under the SI setting, suggesting that Gemini-
1.5-Flash has pretty stable performance across different numbers of image inputs.

• NVLM-72B (Dai et al., 2024) has much better scores in the SI setting than in the standard setting,
suggesting its training data might only contain single or a few images.

• Comparing the “✓ demo im” and “✗ demo im” results of open-source models, the image input in
the 1-shot demonstration example is not well utilized by the models to better understand the task
logic. Including the image input in the demonstration example makes the results much worse for
models like Llama-3.2-11B.

More detailed breakdown results are available on our project page and the leaderboard (hosted with
Hugging Face Spaces)
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Table 3: The single-image (SI) setting results of MEGA-BENCH. The Core set evaluation uses
Chain-of-Thought (CoT) prompting. The “demo img” means the image input of the 1-shot demon-
stration example. The “✓ demo im” directly takes the single-image subset average from the full
results in Table 2. The “✗ demo im” means the 1-shot demonstration example only demonstrates
the output format, and the entire query has a single image. We report “✓ demo im” alone for the
proprietary models because they have good multi-image support. For open-source models, we do
additional evaluations with the “✗ demo im” setting and use it to compute the overall score.

Model Core Core SI Open Open SI Overall
SI

✓ demo im ✗ demo im ✓ demo im ✗ demo im

GPT-4o (0513) (OpenAI, 2024a) 52.65 55.30 - 64.78 66.00 - 56.73
Claude-3.5-Sonnet (1022) (Anthropic, 2024b) 52.59 54.63 - 65.63 67.64 - 56.36
Claude-3.5-Sonnet (0620) (Anthropic, 2024a) 50.41 52.03 - 63.74 64.80 - 53.73
Gemini-1.5-Pro-002 (Google, 2024b) 48.22 49.14 - 58.58 58.15 - 50.34

GPT-4o mini (OpenAI, 2024b) 40.77 44.31 - 58.65 59.56 - 46.32
Gemini-1.5-Flash-002 (Google, 2024b) 41.89 43.48 - 56.91 57.87 - 45.40

Qwen2-VL-72B (Alibaba, 2024) 45.42 47.31 47.31 56.40 58.50 55.10 48.34
InternVL2-Llama3-76B (Chen et al., 2024d) 35.63 39.32 39.99 51.93 55.33 55.47 42.05
Molmo-72B-0924 (Deitke et al., 2024) - - 36.48 - - 44.66 37.58
NVLM-72B (Dai et al., 2024) 21.59 31.19 32.99 34.78 48.67 44.69 34.55
LLaVA-OneVision-72B (Li et al., 2024a) 29.74 31.77 31.26 45.99 46.12 44.26 32.99

Qwen2-VL-7B (Alibaba, 2024) 32.93 35.04 35.39 43.96 45.87 45.17 36.69
Pixtral-12B (Mistral, 2024) 31.36 34.87 34.37 45.66 44.03 44.17 35.68
Aria-MoE-25B (Li et al., 2024d) 28.90 31.67 31.79 51.03 50.92 51.37 34.40
InternVL2-8B (Chen et al., 2024d) 24.09 27.19 27.65 39.79 40.94 39.39 29.21
Phi-3.5-Vision-4B (Abdin et al., 2024) 23.00 25.72 25.61 39.48 44.61 42.72 27.89
POINTS-Qwen2.5-7B (Liu et al., 2024b) - - 25.51 - - 30.32 26.15
MiniCPM-V2.6-8B (Yao et al., 2024) 22.96 23.82 23.23 41.73 42.54 43.61 25.95
LLaVA-OneVision-7B (Li et al., 2024a) 21.36 22.70 23.68 33.98 36.44 38.71 25.69
Qwen2-VL-2B (Alibaba, 2024) 20.88 24.16 22.78 31.54 30.59 35.09 24.43
Molmo-7B-D (Deitke et al., 2024) - - 20.98 - - 35.70 22.95
Llama-3.2-11B (Meta, 2024) 16.00 17.34 20.79 31.73 34.29 38.61 23.17
Aquila-VL-2B-llava-qwen (Gu et al., 2024) 16.00 16.98 20.77 24.57 24.58 31.47 22.20
InternVL2-2B (Chen et al., 2024d) 13.14 13.83 12.07 23.86 24.28 28.52 14.26
Idefics3-8B-Llama3 (Laurençon et al., 2024) 8.96 9.13 8.94 32.11 33.25 32.31 12.06
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B DETAILS OF ANNOTATION PROTOCOLS

This section presents additional details of our task annotation pipeline and protocols, providing
complete details for §3.1 of the main paper.

B.1 THE UNIFIED ANNOTATION FORMAT

Figure 8 presents the annotation format designed and used in our annotation process. All annotated
tasks share this unified structure, including task instruction, optional global media to provide context
to all the questions (typically used in retrieval-related tasks). Additionally, each specific example
contains distinct media path(s), a concrete question, and an answer with a single or multiple answer
fields. Multi-field answers are organized as JSON structures.

<task_instruction>

[<global_media>, <global_media>, ... ...]

Task instruction:

Global media:

annotation.json

[<example_media>, <example_media>, ... ...]

<example_question>

<answer_field>: <answer>
<answer_field>: <answer>

... ...

Media paths:

Answers:

Example question:

Example 1

Example 2

Example 3

Example 

... ...

Figure 8: The structure of our task annotation format, which helps coordinate all task annotators and
standardize the annotation format.

Our evaluation pipeline follows this format to convert the task information into concrete queries
and feed them to the evaluated model. Based on this format, we establish an interactive annotation
tool to ensure the tasks submitted by all annotators have the correct and unified format. Figure 9
demonstrates the GUI of the annotation tool.

B.2 GENERAL TASK COLLECTION AND CREATION GUIDELINES

This subsection provides more detailed annotation guidelines for our annotators, complementing the
descriptions in §3.1.

Data source of each task. There is no restriction on the data source as long as the annotator follows
the copyright and license requirements of the original data. Below are three typical task types and
their data sources:
(1). The task is designed entirely by the annotator, and the annotator looks for the image or video
resources from the Internet or even using code/simulator;
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Figure 9: A screenshot of our GUI annotation tool.

(2). The task is inspired by existing benchmarks or datasets. The annotator collects the raw im-
age/video data from existing datasets but does not use the original annotation. The annotator re-
designs/repurposes the data by writing concrete task descriptions and creating new questions and
answers, or using scripts to re-process the data for the designed task.
(3). The task is directly converted from existing benchmarks or datasets. The annotator randomly
samples a subset from the existing benchmark, directly using its image/video and the annotation
without redesign.

In our annotation process, the first two task types are encouraged. The task reviewers strictly control
the number of the third type and reject the task if an annotator submits many tasks of the third type.
Table 18 shows the detailed data source of all tasks in MEGA-BENCH.

Output format and answer uniqueness. We aim to cover diverse output formats in MEGA-
BENCH. Therefore, we always require the task annotators to consider adapting the original dataset’s
answer format, especially avoiding unnecessary multiple-choice questions (many MCQs are unnatu-
ral and mainly for evaluation convenience). Notably, the annotator must provide sufficient context in
the task description and per-example question so that the range of the correct answer is manageable
and the task can be evaluated with a clearly defined metric.

Metric specification. When creating a task, the annotator must specify the corresponding evaluation
metric. Since the metric implementation is in parallel to the task construction process, as described
in §3.2, our GUI annotation tool (Figure 9) allows annotators to choose from existing metrics for
each answer field of the task and assigns different weights to each field. When the desired metric
is unavailable, the annotator chooses an “unsupported” metric type and writes down detailed metric
specifications in the pull request. Our core contributors periodically check the needs of new metrics
and implement them.

Documentation. When submitting the pull request, the annotator must write README documen-
tation for each task. If the desired metric has not been implemented, the documentation should
contain the specification described in the last point. Furthermore, the doc should record the data
source (e.g., the Web, an existing dataset, etc.) and brief descriptions of the task. These descriptions
are instrumental in helping the core contributors assign various keywords to the task and creating
Table 18 to show the details of all tasks.
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B.3 TOOLS FOR COORDINATING ANNOTATION AND QUALITY CONTROL

As described in §3.1, we have two additional tools for coordinating the annotation process and
maintaining the data. We present the details in this subsection.

The GitHub repository for task organization. We created a private GitHub repository for con-
structing MEGA-BENCH. The repository’s main branch is protected, and all task submissions must
go through pull requests (PRs). The core contributors serve as the task reviewers and discuss with
task annotators in the pull request forum to ensure the task conforms to our data collection guide-
lines (§B.2). The code of our evaluation pipeline, including the model query and score computation,
is maintained in the same repository. The core contributors submit pull requests to support different
VLMs and add new evaluation metrics, and these PRs are cross-reviewed by other core contributors.

We also actively use the repository’s Issues forum to report bugs in annotation or metric implemen-
tation so the corresponding contributors can get notified and work on the fix. At the end of the
annotation process, our repository has 685 pull requests and 40 issues. 277 out of the 685 PRs are
for task submission, indicating that many annotators submit task groups with more than one task in
each PR. Other PRs are mainly for the evaluation pipeline and bug fixing.

(a). List of existing tasks (b). Task overview

(c). Per-example model response and evaluation results

Figure 10: Illustrations of our task visualization page.

Task visualization web page. We developed a simple visualization web page and periodically syn-
chronized the evaluation results of existing tasks on the page. The page provides several benefits: 1)
it allows the core contributors to keep track of the overall annotation process, 2) it helps the anno-
tators understand the capability of state-of-the-art VLMs, so that they can adjust the task difficulty
accordingly, and 3) it facilitates the checking of the potential annotation glitches or metric bugs,
significantly improving the overall quality of MEGA-BENCH. Figure 10 shows screenshots of the
visualization page taken during the benchmark construction process. Note that the task names in
the figure might not align with the final names in the paper. In our project page, we will provide a
similar visualization page for users to interactively inspect the behaviors of different VLMs.
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C TAXONOMY TREE AND MULTI-DIMENSIONAL KEYWORDS

This section presents the full details of our application-based taxonomy tree and the multi-
dimensional keywords.

C.1 DETAILS OF THE TAXONOMY STRUCTURE

Table 4 shows the detailed structure of our application-driven task taxonomy. The first level defines
the broad scope of use cases. At the second level, tasks are categorized into more specific domains.
These first two levels guide the annotation process of our benchmark and are gradually updated/re-
fined in the annotation process. The third level lists the concrete names of tasks or task groups. If
the third-level node is a task group, the number of concrete tasks under this group is shown in the
parenthesis.

Table 4: Details of taxonomy of MEGA-BENCH.

Level-2 Tasks Leaf Tasks (at Level-3 or deeper) # Tasks
Coding

Code Debugging Stackoverflow Debug Qa, Code Error Line Identifica-
tion

2

Code Generation Document Conversion (8 tasks), Programming Prob-
lems (4 tasks), Visualization With Code

13

Code Translation Code Translation Easy, Code Translation Python,
Code Translation Hard, Code Translation Advanced

4

Code Understand-
ing

Symbolic Graphics Programming (2 tasks), Webpage
Code Understanding, Code Add Tag, Code Match (5
tasks), Code Output (3 tasks)

12

Information Extraction
App Function Un-
derstanding

App Layout Understanding Leetcode, App Layout
Understanding Youtube, App Layout Understanding
Amazon, App Layout Understanding Word, App Lay-
out Understanding Notes, App Layout Understanding
Ppt, App Layout Understanding Alipay, App Layout
Understanding Instagram, App Layout Understanding
Zoom, App Layout Understanding Excel, App Layout
Understanding Iphone Settings, App Layout Under-
standing Tiktok, App Layout Understanding Twitter

13

Compound Search
and Calculate

Cheapest Flight Identification, Weather Info Re-
trieval, Stock Info Retrieval, Game Platform Sup-
port Identification, Top Rated Hotel Identification,
Movie Info Retrieval, Top Video Creator Identifi-
cation, Highest Discount Game Price Identification,
Newspaper Page Parse And Count, Remaining Play-
back Time Calculation

10

Detailed Manual
Understanding

Multi Lingual Manual Explanation Scooter Spanish,
Multi Lingual Manual Explanation Scooter Arabic,
Multi Lingual Manual Explanation Scooter French,
Multi Lingual Manual Explanation Scooter Chinese,
Multi Lingual Manual Explanation Scooter Russian

5

Multimodal QA Multilingual News Qa, Product Ocr Qa, Large Image
(3 tasks), Gui Chat (2 tasks), Realworld Qa En2cn,
Star Object Interaction Video, Video Qa (7 tasks)

16
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Table 4 – continued from previous page
Level-2 Tasks Leaf Tasks (at Level-3 or deeper) # Tasks

Search by Attribute
wo Calculate

Coco Ood Global Image Retrieval By Query Prop-
erty, Places365 Similar Scene Retrieval, Booking
Web Recommendation, Game Info Retrieval, Media
Homepage Profile, Movie Retrieval By Actor, Music
Info Retrieval, Tv Show Retrieval By Character

8

Structured Parsing Multilingual Movie Info Parsing, Movie Info Pars-
ing, Stock Info Parsing, Music Info Parsing, Mul-
tilingual Game Info Parsing, Ocr Article Authors,
Youtube Video Info Parsing, Tv Show Info Parsing,
Ocr Resume School Plain, Image Translation En2cn,
Booking Web Rating, Weather Info Parsing, Game
Info Parsing, Weather Map Climate Type Temperature
Parsing, Hotel Booking Confirmation Parsing, Enter-
tainment Web Game Style

16

Summarization Video Summary, Video Short Title, Video2notes,
Video Content Reasoning

4

Knowledge
Arts Poetry Generation (7 tasks), Ascii Art 30 8

Fact Checking Background Change, Out Of Context, Text Entity Re-
place, Text Style, Face Attribute Edit, Face Swap, In-
terpret Force Perspective Illusion, Clip Stable Diffu-
sion Generate, Unusual Images, Forensic Detection
Of Different Images, Veracity, Distinguish Ai Gen-
erated Image

12

Human and Culture Cultural Vqa, Human Relationship Reasoning, Sign
Language, Ishihara Test, Safety And Norm (13 tasks),
Video Content Follow Up, Emotion And Intent Un-
derstanding (9 tasks), Theory Of Minds (2 tasks),
Hashtag Recommendation

30

World Knowledge Dish Ingredient Match, Music (6 tasks), Insect Order
Classification, Signage Navigation, Song Title Identi-
fication From Lyrics, Logo And Sign (3 tasks), Chi-
nese Idiom Recognition, Ruozhiba (6 tasks), Font
Recognition, Traffic Accident Analysis, Multiple
State Identification (4 tasks), Worldle, Location Vqa,
Daily (2 tasks), Ancient Map Understanding, Rocks
Samples Compare, Painting (2 tasks), Memorization
(4 tasks), Soccer Offside, Deciphering Oracle Bone,
Actor Character And Famous People (3 tasks), Land-
mark And Buliding (3 tasks), Defeasible Reasoning

47

Mathematics
Algebra Algebra 1

Calculus Scibench Calculus Wo Solution 1

Functions Math Parity, Math Breakpoint, Math Convexity Value
Estimation

3

General Math Exams V, Theoremqa, Math 3
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Table 4 – continued from previous page
Level-2 Tasks Leaf Tasks (at Level-3 or deeper) # Tasks

Geometry Geometry Reasoning Count Line Intersections, Ge-
ometry Length, Geometry Reasoning Nested Squares,
Geometry Transformation, Geometry Reasoning
Overlapped Circle, Geometry Area, Geometry Rea-
soning Grid, Polygon Interior Angles, Geometry
Solid, Geometry Analytic, Geometry Descriptive

11

Graph Theory Graph Shortest Path Kamada Kawai, Graph Short-
est Path Planar, Graph Connectivity, Graph The-
ory, Graph Isomorphism, Graph Hamiltonian Cy-
cle, Graph Hamiltonian Path, Graph Chordless Cycle,
Topological Sort, Graph Maxflow

10

Number Theory Counterfactual Arithmetic 1

Numeric Reasoning Clevr Arithmetic, Iconqa Count And Reasoning,
Number Comparison

3

Metrics
Generated Image
Eval

Autorater Artifact, Autorater Control, Autorater Arti-
fact Reason, Autorater Aesthetics, Autorater Unmask,
Autorater Subject, Autorater 3d Model Texturing, Au-
torater Semantics, Autorater Motion Guided Editing,
Autorater Mask

10

Generated Video
Eval

Video Eval Visual Pref, Generated Video Artifacts,
Video Eval Factual Pref, Video Eval Dynamic Pref

4

Paper Review Paper Review Writing, Paper Review Rating, Paper
Review Acceptance

3

Quality Assessment Vizwiz Quality Accessment For Blind 1

Reward Models Reward Models T2i Reward, Reward Models I2t Re-
ward

2

Perception
3D understanding Adapted Cvbench Depth, Relative Depth Of Differ-

ent Points, Visual Prediction Rater Depth Estima-
tion, Visual Prediction Rater Novel View Synthe-
sis, Pokemon 3d Recognition, Av View Identifica-
tion, Multiview Reasoning Camera Moving, 3d In-
door Scene Text Bbox Prediction, Google Streetview
Circle Reasoning, Google Streetview Direction Un-
derstanding, Video Motion Matching Real 3d, Video
Motion Matching 3d Real, Visual Prediction Rater
3d Assembled Quality Understanding, Visual Predic-
tion Rater Surface Normal Estimation, Visual Predic-
tion Rater Plane Segmentation, 3d Indoor Scene Text
Bbox Selection, Google Streetview Circle Sorting

17

Counting Ad Count Detection, Adapted Cvbench Count, Av
Vehicle Multiview Counting, Counting Multi Image,
Av Human Multiview Counting, Shape Composition
Shapes, Counting Single Image, Clevrer Video Mov-
ing Object Count, Shape Composition Colours

9

Diagram and Doc-
ument Understand-
ing

Diagram (23 tasks), Document (9 tasks), Table Qa (6
tasks)

38
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Table 4 – continued from previous page
Level-2 Tasks Leaf Tasks (at Level-3 or deeper) # Tasks

Image Segmenta-
tion

Visual Prediction Rater Openable Part Segmentation,
Visual Prediction Rater Panoptic Segmentation, Vi-
sual Prediction Rater Semantic Segmentation

3

Multimodal Cap-
tioning

Video Detail Description, Guess Image Generation
Prompt, Docci Image Description Long, Tweets Cap-
tioning, Image Captioning With Additional Require-
ments

5

Multimodal Con-
strained Captioning

Contain Contain Images, Contain Repeat Length,
Multi Contain Repeat Position Only Length, Contain
Length, Contain Position Images, Contain Position
Length, Xor Images, Multi Contain Repeat, Contain
Contain Length, Multi Contain Position Only

10

Object and Scene
Understanding

Autonomous Driving Scene Analysis, Super Clevr
Scene Understanding, Functionality Matching In Dif-
ferent Objects, Visual Dialog Image Guessing, Nlvr2
Two Image Compare Qa, Egocentric Analysis Sin-
gle Image, Clevrer Object Existence Video, Snli Ve
Visual Entailment, Ocr Open Ended Qa, Semantic
Matching Of Two Images

10

Physical Under-
standing

Physical Reasoning (8 tasks), Lighting And Shading
(2 tasks)

10

Spatial Understand-
ing

Adapted Cvbench Relation, Visual Correspondance
In Two Images, 2d Image Jigsaw Puzzle Easy, Ge-
ometry Plot Position Relationship, Adapted Cvbench
Distance, Video Grounding Spatial, Egocentric Spa-
tial Reasoning

7

Temporal Under-
standing

Video To Camera Trajectory Retrieval, Sceneqa Scene
Transition Video, Video Segments Reordering, Video
Action Recognition, Action Sequence Understanding,
Google Streetview Line Sorting, Next Action Predic-
tion, Perception Test Video Action Count, Google
Streetview Line Reasoning, Video Camera Motion
Description, Video Grounding Temporal, Web Action
Prediction, Cam Traj To Video Selection, Sta Action
Localization Video

14

Visual Recognition Face Identity Matching, Rocks Samples Identify,
Animal Pose Estimation, License Plate Recogni-
tion, Image Style Recognition, Long String Letter
Recognition, Coco Object Detection By Query Prop-
erty, Widerface Face Count And Event Classifica-
tion, Handwritten Math Expression Extraction, Ge-
ometry Reasoning Circled Letter, Av Multicamera
Tracking Predict Bbox, Ascii Art Understanding,
Face Keypoint Detection, Extract Webpage Head-
line, Waldo, Geographic Remote Sensing Land Cover,
Signboard Identification, Long String Number Recog-
nition, Waybill Number Sequence Extraction, Sin-
gle Person Pose Estimation, Coco Person Detection,
Places365 Scene Type Classification

22

Planning
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Table 4 – continued from previous page
Level-2 Tasks Leaf Tasks (at Level-3 or deeper) # Tasks

Agents and Plan-
ning

Wikihow Complex Task Completion, Navigation (6
tasks), Gui Operation (18 tasks), Calendar Schedule
Suggestion, Symbolic Planning (13 tasks)

39

Puzzles and Games Logical Reasoning Find Odd One Out, Logical Rea-
soning Fit Pattern, Perception Test Object Shuffle
Video, Board Games (12 tasks), Bongard Problem,
Number Puzzle Kakuro 5x5, Mensa Iq Test, Arc Agi,
Mnist Pattern, Number Puzzle Sudoku, Move Pos
To Pos Hanoi 4 Pole, Pictionary (5 tasks), Annoy-
ing Word Search, Logical Reasoning 2d Views Of 3d
Shapes, Maze 2d 8x8, Crossword Mini 5x5, Rebus,
Icon Arithmetic Puzzle, Iq Test Open Ended, Ball Cup
Swap 3, Logical Reasoning 2d Folding

36

Reordering Perception Test Video Character Order, Comic Page
Ordering, Recipe Image Ordering

3

Science
Chemistry Chemistry Exams V, Science Molecule Chemistry 2

Life Sciences Biology Exams V, Medical (15 tasks) 16

Physics Circuit Diagram Understanding, Mmmu Physics
Chemistry Selected, Science Basic Physics, Physics
Exams V

4

STEM Mmmu Pro Exam Screenshot, Scibench W Solution
Open Ended, Arxiv Vqa, Tqa Textbook Qa, Question
Solution Solving, Quizlet Question Solving, Scibench
Fundamental Wo Solution

7

C.2 STATISTICS OF EACH KEYWORD DIMENSION

Figure 2 of the main paper presented the overall keyword distribution. As a complement, Table 5
provides more detailed statistics. Each of the five dimensions contains multiple keywords, and for
each keyword, we explicitly show the number of related tasks and the total number of samples.
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Table 5: Number of tasks and samples across the five dimensions, with detailed breakdown into each
keyword.

Dimension Keywords (number of tasks, num of samples)

Skills Object Recognition (303, 4755), OCR (137, 2239), Language Parsing & Gen. (154, 2509),
Scene & Event Understanding (154, 2467), Math & Logical Reasoning (109, 1910), Common-
sense & Social Reasoning (51, 855), Ethical & Safety Reasoning (15, 245), Domain-Specific
Knowledge/Skills (77, 1387), Spatial & Temporal Reasoning (152, 2437), Planning & Deci-
sion Making (37, 577)

Input Format User Interface (93, 1517), Text-rich Image & Doc (82, 1294), Diagrams & Visualizations (101,
1718), Videos (43, 698), Artistic & Creative (32, 542), Photographs (143, 2248), 3D Related
(11, 169)

Output Format Contextual Formatted (98, 1514), Structured (110, 1714), Exact (83, 1279), Numerical (49,
862), Open-ended (80, 1454), Multiple Choice (85, 1363)

Input Number 6-8 images (21, 314), 9-image+ (41, 623), 1-image (315, 5228), Video (43, 698), 4-5 images
(34, 520), 2-3 images (51, 802)

Application Information Extraction (72, 1124), Planning (78, 1239), Coding (31, 474), Perception (145,
2313), Metrics (20, 309), Science (29, 574), Knowledge (97, 1605), Mathematics (33, 547)
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D EVALUATION DETAILS

This section details our evaluation settings, including the prompt template design, model query
details, and evaluation metrics.

Figure 11: The prompt template structure without Chain-of-Thought (CoT).

D.1 PROMPT TEMPLATE

We provide the concrete prompt template in Figure 11 and Figure 12. All the information orga-
nized by the prompt template is serialized by our evaluation pipeline before sending queries to the
evaluated model.

The non-CoT prompt instructs the VLM to strictly follow the one-shot example, directly producing
the answer without additional text. In contrast, the CoT prompt instructs the VLM to output step-by-
step reasoning before providing the final answer, and the model must strictly separate the reasoning
process from the final answer.

Note that our prompt sets different formats for single-field and multi-field outputs. Single-field
answers must be explicitly indicated by the “Answer: ...” format so that our output parser can ro-
bustly locate and extract the model’s answer. Multi-field answers are in JSON format, and our JSON
parser can robustly extract the JSON-style answer from the entire response without the “Answer: ...”
format.

D.2 MODEL QUERY DETAILS

Since the evaluated VLMs have different context windows, we must tailor the number of query
images or video frames for each model. We implement an image/video pre-processing pipeline
that follows the settings listed in Table 6 to sub-sample the input images and videos. We allocate
different budgets for in-context examples and the query. Since the in-context examples (we use a
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Figure 12: The prompt template structure for the Chain-of-Thought (CoT) setting

one-shot example) mainly help models understand the task logic and the output format, we reserve
most of the image budget for the query. Images or video frames surpassing the budget are discarded.
To make sure the open-source models can run smoothly, we implement a fallback strategy, which
reduces the image budget to decrease the number of input tokens if the model’s maximum context
length is exceeded.

For images or video frames with a longer side larger than 1000 pixels, we resize the longer side to
1000 without changing the aspect ratio before sending them to the evaluated model. Each

D.3 LLM-ASSISTED METRICS

The LLM-assisted metric instructs a multimodal LLM to evaluate VLM’s response by providing
a detailed evaluation prompt. When submitting a task with open-ended answers that cannot be
evaluated by rule-based metrics, the annotator is asked to write down a detailed evaluation prompt
for the LLM judge following the prompt format in Figure 13.

Concretely, the task annotator decides if the LLM judge should consider the question’s visual input
when evaluating the model’s response. If yes, then the query media (images or videos) will be
passed to the LLM as well (we use GPT-4o-0806 as a multimodal judge model). For most tasks,
the LLM judge can do a proper evaluation by comparing the model’s response with the reference
answer, and the visual media is not needed. The task annotator also writes a thorough evaluation
criteria, explaining to the judge model the meaning of each score range, which is important to get
reliable evaluation results.
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Table 6: The maximum number of images and the budget for the in-context example per model.

Model Max # of images In-context example budget
GPT-4o (0513) (OpenAI, 2024a) 64 8
Claude-3.5-Sonnet (1022) (Anthropic, 2024a) 64 8
Claude-3.5-Sonnet (0620) (Anthropic, 2024a) 64 8
Gemini-1.5-Pro-002 (Google, 2024b) 128 16
Gemini-1.5-Flash-002 (Google, 2024b) 128 16
GPT-4o Mini (OpenAI, 2024b) 64 8

Qwen2-VL-72B (Alibaba, 2024) 24 2
InternVL2-Llama3-76B (Chen et al., 2024d) 24 4
NVLM-72B Dai et al. (2024) 32 4
Molmo-72B-0924 (Deitke et al., 2024) 1 0
LLaVA-OneVision-72B (Li et al., 2024a) 28 4

Qwen2-VL-7B (Alibaba, 2024) 18 2
Pixtral-12B (Mistral, 2024) 48 6
Aria-MoE-25B (Li et al., 2024d) 32 4
POINTS-Qwen2.5-7B (Liu et al., 2024b) 1 0
InternVL2-8B (Chen et al., 2024d) 18 2
Phi-3.5-Vision (Abdin et al., 2024) 16 2
MiniCPM-V2.6 (Yao et al., 2024) 64 8
Molmo-7B-D (Deitke et al., 2024) 1 0
LLaVA-OneVision-7B (Li et al., 2024a) 20 4
Llama-3.2-11B (Meta, 2024) 32 4
Idefics3-8B-Llama3 (Laurençon et al., 2024) 20 2
Qwen2-VL-2B (Alibaba, 2024) 16 2
InternVL2-2B (Chen et al., 2024d) 18 2
Aquila-VL-2B-llava-qwen (Gu et al., 2024) 8 1

<media>,<media>, ... ...     // if judge with image
<evaluation_criteria>        // defined by task annotator

<reference_answer>
<model_response> 
<per_example_label>  
 //  some tasks require per-example criteria

Please output your score in the following format:
**Score**: <single_number>,  
**Score explanation**: <detailed_explanations>

Reference:
Model Response:
(Optional):

LLM-Assisted Metrics Prompt Template

Figure 13: The prompt template structure for LLM-Assisted Metrics

At the end of the prompt, a pre-defined scoring format instruction is attached, ensuring the judge
model outputs a score between 1 and 10 and an explanation for the score.

D.4 RULE-BASED METRICS

We have over 40 highly customized rule-based metrics to evaluate the Core set of MEGA-BENCH.
Basic metrics like “extract string match” and “simple string match” (which ignores punctuation and
special characters) are first added to the supported metric set. New metrics are implemented when
our task annotators submit new tasks requiring uncovered metrics. In the end, we get 45 customized
tasks, as shown in Table 7. The usage distribution is long-tail because many metric implementations
are triggered by a single novel task.
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Table 7: All metrics used in MEGA-BENCH.

Metric Name Usage Count (# tasks)
Exact String Match 198
GPT-4o as Judge 64
Simple String Match 61
Multi Reference Phrase Evaluation 25
Constrained Generation 18
Set Equality 15
Sequence Equality 15
General Single Numerical Match 14
Exact String Match Case Insensitive 14
Sequence Accuracy Case Insensitive 13
Symbolic Planning Test 13
String Set Equality Comma 9
Normalized RMSE 8
Program Judge 8
Set Precision 5
Dictionary Equality 4
String Set Equality Line Break 4
Sequence Coordinates Similarity 3
LaTeX Expression Equality 3
Jaccard Index Case Insensitive 3
Jaccard Index 3
Normalized Bounding Box IOU Tuple 2
Number Relative Difference Ratio 2
XML Bounding Box IOU 2
Dictionary Exact String Match Aggregate Recall 2
Boxed Single Numerical Match 2
Positive Integer Match 2
Chess Move List Jaccard Index 2
Code Result Exact String Match 1
Normalized Bounding Box IOU Single 1
Normalized Bounding Box IOU Sequence 1
Normalized Similarity Damerau-Levenshtein 1
Near String Match 1
XML Normalized Point Distance 1
Dictionary Precision 1
Text with LaTeX Expression Equality 1
Angle Sequence Float RMSE 1
XML Normalized Point in Bounding Box 1
Longest Common List Prefix Ratio 1
Sequence Equality Case Insensitive 1
Set Equality Case Insensitive 1
GLEU (Chinese) 1
ASCII Art GPT-4O Judge 1
Dictionary Jaccard Aggregate Jaccard 1
Dictionary Normalized Bounding Box IOU Tuple Aggregate Jaccard 1

D.5 ANSWER EXTRACTION FROM MODEL RESPONSE

For Core tasks, our rule-based evaluation metrics compare the model’s answer with a ground-truth
answer or some ground-truth constraints. Therefore, an answer extraction step is necessary to sep-
arate the final answer from the reasoning process and other irrelevant texts. We implement robust
extraction logic for different types of outputs based on the format specified in the prompt template:

Single-field answer. We first reduce the answer by the “Answer: ...” pattern. If this pattern does not
exist, we take the entire response. Since many VLMs do not strictly follow the format instructions,
we have specific and extra processing for different output formats to improve robustness. Some
typical examples are: 1) For multiple-choice outputs, we locate the exact letter or index choice
using sophisticated regular expressions, which excludes any potential parenthesis or accompanying
texts; 2) For code outputs, we extract the code from the potential code blocks; 3) For structured
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outputs, we parse the structural data into the proper Python data structures (list, set, dictionary, etc.),
with tolerance on minor syntax errors (e.g., we automatically fix wrong quotes).

Multi-field answer. Since the prompt requires the model to output the final answer in JSON format,
we implement a robust JSON parser to locate the JSON structure in the raw response and convert
the JSON structure into the corresponding Python data structure.

If our comprehensive answer extraction fails to obtain any meaningful final answer from the model
response, we consider the model as “fail to follow instructions”.
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E COMPLETE MULTI-DIMENSIONAL BREAKDOWN RESULTS

This section provides the full breakdown results over the five dimensions of MEGA-BENCH, com-
plementing section 4 of the main paper.

E.1 BREAKDOWN RESULTS ON THE SKILL DIMENSION

Table 8: Average scores for each model on the skill dimension. The best-performing model in each
category is in-bold, and the second best is underlined.

Model CASR DKAS EASR LUAG MALR ORAC PADM SAEU SATR TR
Claude-3.5-Sonnet (1022) (Anthropic, 2024b) 59.1 54.9 65.7 60.8 48.9 56.9 29.1 55.1 43.2 62.2
GPT-4o (0513) (OpenAI, 2024a) 63.5 55.1 68.0 61.6 44.2 56.3 22.9 58.2 39.4 62.2
Claude-3.5-Sonnet (0620) (Anthropic, 2024a) 57.6 52.8 69.7 57.5 47.7 54.1 23.8 54.5 40.8 60.8
Gemini-1.5-Pro-002 (Google, 2024b) 57.5 51.4 69.8 55.3 42.6 52.0 23.9 54.7 38.5 50.2
Gemini-1.5-Flash-002 (Google, 2024b) 55.9 44.8 63.8 49.9 34.4 46.3 19.0 51.0 34.5 43.4
GPT-4o mini (OpenAI, 2024b) 55.7 41.9 69.0 51.7 34.1 44.9 19.4 46.7 29.4 49.0
Qwen2-VL-72B (Alibaba, 2024) 56.8 46.3 60.5 53.9 37.8 49.8 22.0 50.9 35.1 54.4
InternVL2-Llama3-76B (Chen et al., 2024d) 52.6 33.3 57.8 43.7 29.8 38.2 17.0 42.7 29.5 41.3
LLaVA-OneVision-72B (Li et al., 2024a) 47.8 31.7 60.1 36.7 29.5 36.2 13.9 42.1 29.6 28.3
NVLM-72B (Dai et al., 2024) 40.9 25.8 45.6 29.4 26.4 24.0 6.7 22.8 15.7 32.2
Qwen2-VL-7B (Alibaba, 2024) 49.4 33.3 52.2 40.3 28.2 37.1 14.7 41.1 27.6 40.2
Pixtral 12B (Mistral, 2024) 41.9 32.8 56.9 38.3 28.3 34.6 10.6 37.8 26.8 37.8
Aria-MoE-25B (Li et al., 2024d) 49.4 32.8 58.1 40.0 27.6 32.6 11.9 37.8 24.8 35.7
InternVL2-8B (Chen et al., 2024d) 39.7 27.1 47.0 32.0 24.1 28.2 8.3 32.6 23.2 28.1
Phi-3.5-Vision (Abdin et al., 2024) 36.8 24.1 46.7 28.7 21.7 25.5 8.9 30.5 21.5 24.8
MiniCPM-V2.6 (Yao et al., 2024) 40.7 23.7 48.8 30.0 18.3 26.0 8.7 31.8 19.7 25.0
LLaVA-OneVision-7B (Li et al., 2024a) 36.8 24.5 45.0 25.6 19.0 25.2 6.7 30.0 21.8 19.1
Qwen2-VL-2B (Alibaba, 2024) 31.3 20.8 41.4 25.7 17.6 22.2 6.2 26.5 17.3 23.7
Llama-3.2-11B (Meta, 2024) 32.3 17.7 42.6 19.6 13.3 19.1 6.6 22.4 15.4 14.3
Aquila-VL-2B-llava-qwen (Gu et al., 2024) 26.6 18.6 35.2 17.9 16.8 18.4 4.5 22.0 16.2 12.4
InternVL2-2B (Chen et al., 2024d) 24.0 14.8 34.2 16.9 13.9 14.5 1.7 18.5 13.0 12.1
Idefics3-8B-Llama3 (Laurençon et al., 2024) 19.2 17.9 28.6 17.3 13.3 14.5 4.2 14.7 10.2 11.6

The abbreviations used in the table above are explained in the following table:

Table 9: Abbreviation list of the keywords in the skill dimension.

Abbreviation Skill
CASR Commonsense and Social Reasoning
DKAS Domain-Specific Knowledge and Skills
EASR Ethical and Safety Reasoning
LUAG Language Understanding and Generation
MALR Mathematical and Logical Reasoning
ORAC Object Recognition and Classification
PADM Planning and Decision Making
SAEU Scene and Event Understanding
SATR Spatial and Temporal Reasoning
TR Text Recognition (OCR)
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E.2 BREAKDOWN RESULTS ON THE INPUT FORMAT DIMENSION

Table 10: Average scores for each model on the input format dimension. The best-performing model
in each category is in-bold, and the second best is underlined.

Model 3MAAI AACC DADV P TIAD UIS V
Claude-3.5-Sonnet (1022) (Anthropic, 2024b) 44.2 55.6 55.6 54.3 48.9 60.5 49.5
GPT-4o (0513) (OpenAI, 2024a) 47.8 56.4 50.0 56.1 49.1 60.8 53.2
Claude-3.5-Sonnet (0620) (Anthropic, 2024a) 44.3 57.0 52.6 51.0 48.0 56.9 50.9
Gemini-1.5-Pro-002 (Google, 2024b) 42.9 55.8 48.7 55.0 42.9 46.3 50.3
Gemini-1.5-Flash-002 (Google, 2024b) 38.5 50.5 40.1 51.7 36.0 38.7 49.0
GPT-4o mini (OpenAI, 2024b) 29.4 47.6 38.9 46.5 36.2 47.2 45.5
Qwen2-VL-72B (Alibaba, 2024) 36.2 50.8 42.1 49.8 42.9 54.0 49.9
InternVL2-Llama3-76B (Chen et al., 2024d) 28.7 45.0 34.7 42.9 31.4 36.3 39.6
LLaVA-OneVision-72B (Li et al., 2024a) 23.9 44.0 34.6 42.5 21.3 23.4 44.5
NVLM-72B (Dai et al., 2024) 5.7 34.7 30.3 32.6 21.7 23.9 0.0
Qwen2-VL-7B (Alibaba, 2024) 26.2 34.8 32.2 40.7 29.0 38.2 41.1
Pixtral 12B (Mistral, 2024) 24.0 37.5 32.2 37.1 28.8 30.7 41.0
Aria-MoE-25B (Li et al., 2024d) 19.6 36.1 32.4 37.3 27.8 28.3 42.9
InternVL2-8B (Chen et al., 2024d) 10.9 29.4 28.0 33.9 20.1 22.8 34.8
Phi-3.5-Vision (Abdin et al., 2024) 15.4 27.9 26.1 34.1 17.5 18.7 24.7
MiniCPM-V2.6 (Yao et al., 2024) 7.6 31.0 21.6 31.8 18.6 21.2 35.3
LLaVA-OneVision-7B (Li et al., 2024a) 13.0 32.0 24.2 32.6 13.3 14.7 31.0
Qwen2-VL-2B (Alibaba, 2024) 13.4 24.9 19.6 28.8 16.3 19.1 25.2
Llama-3.2-11B (Meta, 2024) 6.4 25.2 16.9 24.9 11.5 11.9 21.2
Aquila-VL-2B-llava-qwen (Gu et al., 2024) 10.1 19.7 19.4 24.6 11.4 7.5 21.4
InternVL2-2B (Chen et al., 2024d) 11.9 14.9 16.3 20.1 10.5 5.7 19.0
Idefics3-8B-Llama3 (Laurençon et al., 2024) 4.0 18.4 16.2 14.9 11.4 10.1 16.2

The abbreviations used in the table above are explained in the following table:

Table 11: Abbreviation list of the keywords in the input formats dimension.

Abbreviation Input Format
3MAAI 3D Models and Aerial Imagery
AACC Artistic and Creative Content
DADV Diagrams and Data Visualizations
P Photographs
TIAD Text-Based Images and Documents
UIS User Interface Screenshots
V Videos
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E.3 BREAKDOWN RESULTS ON THE OUTPUT FORMAT DIMENSION

Table 12: Average scores for each model on the output format dimension. The best-performing
model in each category is in-bold, and the second best is underlined.

Model C E M N O S
Claude-3.5-Sonnet (1022) (Anthropic, 2024b) 51.9 53.9 57.8 48.2 62.4 50.7
GPT-4o (0513) (OpenAI, 2024a) 53.9 59.9 54.5 44.6 62.7 48.0
Claude-3.5-Sonnet (0620) (Anthropic, 2024a) 50.7 52.8 54.6 44.9 58.4 49.7
Gemini-1.5-Pro-002 (Google, 2024b) 44.9 51.5 55.4 46.9 55.8 44.4
Gemini-1.5-Flash-002 (Google, 2024b) 38.7 44.8 47.8 37.0 54.5 39.9
GPT-4o mini (OpenAI, 2024b) 41.2 44.2 39.9 36.3 57.1 39.1
Qwen2-VL-72B (Alibaba, 2024) 44.7 51.0 52.0 40.3 51.6 45.0
InternVL2-Llama3-76B (Chen et al., 2024d) 36.3 39.4 38.8 29.2 45.8 34.8
LLaVA-OneVision-72B (Li et al., 2024a) 28.7 37.1 39.9 30.7 42.9 25.9
NVLM-72B (Dai et al., 2024) 22.9 27.9 18.5 23.3 32.2 27.9
Qwen2-VL-7B (Alibaba, 2024) 34.3 35.2 39.9 32.7 39.1 34.3
Pixtral 12B (Mistral, 2024) 30.8 36.4 30.1 32.1 41.7 31.9
Aria-MoE-25B (Li et al., 2024d) 30.9 29.3 32.8 30.9 45.2 30.4
InternVL2-8B (Chen et al., 2024d) 25.1 27.4 30.3 22.4 35.4 25.2
Phi-3.5-Vision (Abdin et al., 2024) 21.8 25.7 26.0 21.4 36.5 21.4
MiniCPM-V2.6 (Yao et al., 2024) 23.5 25.5 29.3 20.8 36.5 17.8
LLaVA-OneVision-7B (Li et al., 2024a) 20.3 25.4 28.0 22.0 31.3 18.3
Qwen2-VL-2B (Alibaba, 2024) 16.2 20.0 25.7 22.0 30.2 21.0
Llama-3.2-11B (Meta, 2024) 12.4 15.8 19.3 15.0 30.0 16.4
Aquila-VL-2B-llava-qwen (Gu et al., 2024) 11.9 18.5 22.1 19.9 23.3 12.3
InternVL2-2B (Chen et al., 2024d) 11.3 15.5 21.3 16.0 21.4 5.7
Idefics3-8B-Llama3 (Laurençon et al., 2024) 14.0 7.1 11.6 9.8 29.9 10.6

The abbreviations used in the table above are explained in the following table:

Table 13: Abbreviation list of keywords in the output formats dimension.

Abbreviation Output Format
C Contextual Formatted Text
E Exact Text
M Multiple Choice
N Numerical Data
O Open-ended Output
S Structured Output
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E.4 BREAKDOWN RESULTS ON THE APPLICATION DIMENSION

Table 14: Average scores for each model on the application dimension. The best-performing model
in each category is in-bold, and the second best is underlined.

Model C I K M M2 P P2 S
Claude-3.5-Sonnet (1022) (Anthropic, 2024b) 51.7 65.9 56.6 47.6 61.2 55.6 39.9 55.1
GPT-4o (0513) (OpenAI, 2024a) 50.3 70.6 61.4 44.0 61.0 55.1 33.2 52.8
Claude-3.5-Sonnet (0620) (Anthropic, 2024a) 51.9 66.6 55.1 47.5 58.1 53.2 33.8 51.3
Gemini-1.5-Pro-002 (Google, 2024b) 43.5 54.2 57.2 41.2 58.2 52.5 33.4 51.2
Gemini-1.5-Flash-002 (Google, 2024b) 40.4 46.6 51.2 33.7 60.1 48.0 25.2 45.7
GPT-4o mini (OpenAI, 2024b) 34.6 56.7 54.0 32.9 51.8 43.6 24.2 35.5
Qwen2-VL-72B (Alibaba, 2024) 43.7 58.1 51.7 31.2 49.7 53.6 31.2 44.9
InternVL2-Llama3-76B (Chen et al., 2024d) 29.5 43.1 46.3 28.7 47.4 42.2 21.3 30.0
LLaVA-OneVision-72B (Li et al., 2024a) 23.2 30.8 43.6 31.6 48.1 38.4 18.2 31.7
NVLM-72B (Dai et al., 2024) 23.9 22.8 37.2 24.5 18.9 30.2 8.0 24.9
Qwen2-VL-7B (Alibaba, 2024) 32.7 42.7 42.8 25.6 42.5 40.0 20.0 29.9
Pixtral 12B (Mistral, 2024) 25.7 43.0 38.1 24.2 50.2 38.9 13.6 31.3
Aria-MoE-25B (Li et al., 2024d) 28.5 38.3 41.0 26.2 39.7 37.8 14.3 29.7
InternVL2-8B (Chen et al., 2024d) 24.7 29.1 33.9 22.1 40.0 32.1 12.2 24.6
Phi-3.5-Vision (Abdin et al., 2024) 21.9 22.4 33.3 17.6 39.5 31.6 8.9 21.9
MiniCPM-V2.6 (Yao et al., 2024) 15.3 26.7 33.2 16.5 37.8 29.2 11.7 25.7
LLaVA-OneVision-7B (Li et al., 2024a) 15.2 19.3 32.7 22.1 36.0 28.5 9.8 23.7
Qwen2-VL-2B (Alibaba, 2024) 17.0 25.2 26.6 16.4 31.0 27.6 7.0 21.1
Llama-3.2-11B (Meta, 2024) 5.8 17.3 28.1 13.9 25.4 19.9 8.1 16.3
Aquila-VL-2B-llava-qwen (Gu et al., 2024) 13.3 9.5 24.1 20.7 29.3 20.7 5.9 21.1
InternVL2-2B (Chen et al., 2024d) 11.3 8.7 21.2 11.0 33.3 17.0 4.1 16.9
Idefics3-8B-Llama3 (Laurençon et al., 2024) 9.1 14.7 17.6 13.2 14.6 14.6 5.4 22.7

The abbreviations used in the table above are explained in the following table:

Table 15: Abbreviation list of keywords in the applications dimension .

Abbreviation Application
C Coding
I Information-Extraction
K Knowledge
M Mathematics
M2 Metrics
P Perception
P2 Planning
S Science

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

E.5 BREAKDOWN RESULTS ON THE VISUAL INPUT NUMBER DIMENSION

Table 16: Average scores for each model on the visual input number dimension. The best-
performing model in each category is in-bold, and the second best is underlined.

Model 1 2I 4I 6I 9OM V
Claude-3.5-Sonnet (1022) (Anthropic, 2024b) 56.4 48.8 48.3 46.3 59.1 49.5
GPT-4o (0513) (OpenAI, 2024a) 56.7 49.1 45.0 47.5 53.4 53.2
Claude-3.5-Sonnet (0620) (Anthropic, 2024a) 53.7 49.3 44.2 46.3 54.1 50.9
Gemini-1.5-Pro-002 (Google, 2024b) 50.3 45.5 48.9 39.1 53.7 50.3
Gemini-1.5-Flash-002 (Google, 2024b) 44.3 42.0 42.3 33.7 43.7 49.0
GPT-4o mini (OpenAI, 2024b) 46.3 37.0 24.7 33.6 43.1 45.5
Qwen2-VL-72B (Alibaba, 2024) 49.2 45.2 36.7 31.0 54.7 49.9
InternVL2-Llama3-76B (Chen et al., 2024d) 41.5 31.5 24.4 20.3 34.8 39.6
LLaVA-OneVision-72B (Li et al., 2024a) 34.8 34.2 25.0 20.7 28.1 44.5
NVLM-72B (Dai et al., 2024) 36.8 23.3 3.8 0.0 0.0 0.0
Qwen2-VL-7B (Alibaba, 2024) 37.7 33.0 26.4 19.4 37.5 41.1
Pixtral 12B (Mistral, 2024) 37.1 31.0 25.8 19.7 16.6 41.0
Aria-MoE-25B (Li et al., 2024d) 35.8 27.3 19.8 21.1 27.1 42.9
InternVL2-8B (Chen et al., 2024d) 30.1 25.3 17.7 15.4 19.9 34.8
Phi-3.5-Vision (Abdin et al., 2024) 27.8 28.5 20.2 12.5 14.3 24.7
MiniCPM-V2.6 (Yao et al., 2024) 26.3 22.3 17.9 14.0 23.6 35.3
LLaVA-OneVision-7B (Li et al., 2024a) 25.5 24.1 17.8 14.8 13.8 31.0
Qwen2-VL-2B (Alibaba, 2024) 25.0 21.3 17.4 7.7 10.5 25.2
Llama-3.2-11B (Meta, 2024) 19.6 18.6 13.5 14.6 7.3 21.2
Aquila-VL-2B-llava-qwen (Gu et al., 2024) 18.2 23.3 19.0 11.1 1.2 21.4
InternVL2-2B (Chen et al., 2024d) 15.2 15.8 17.7 3.7 5.8 19.0
Idefics3-8B-Llama3 (Laurençon et al., 2024) 14.8 12.3 12.2 10.1 9.3 16.2

The abbreviations used in the table above are explained in the following table:

Table 17: Abbreviation list of keywords in the visual input number dimension.

Abbreviation Input Number
1 1-image
2I 2-3 images
4I 4-5 images
6I 6-8 images
9OM 9-image or more
V video
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F DETAILED INSPECTION OF MODEL BEHAVIOURS ON MEGA-BENCH

To complement §4.3 of the main paper, this section presents a case study analysis of the error types
of different models on different tasks in MEGA-BENCH. We use similar error categories as in
MMMU (Yue et al., 2024a) and MMT-Bench (Ying et al., 2024):

• Perception Error: VLMs fail to recognize or perceive the content of interest in the query image(s).
Perception errors indicate the

• Lack of Knowledge: VLMs lack the domain-specific knowledge to answer specialized questions,
such as identifying the taxonomic order of an insect.

• Lack of (Reasoning) Capability: VLMs lack the necessary capabilities to solve the task, mainly
related to various reasoning abilities, such as logical reasoning, counting, spatial or temporal rea-
soning, symbolic reasoning for code or various programs, and so on. This is a broad type that covers
many errors. One typical case for this error type is that the models can accurately follow instructions
and perceive the visual inputs but struggle with the required reasoning process, leading to incorrect
answers.

• Refuse to Answer: VLMs refuse to answer questions that they believe to involve sensitive content.

• Fail to Follow Instructions: VLMs fail to correctly understand instructions and provide wrong
answers. The tasks in MEGA-BENCH usually have more instructions on the answer format com-
pared to previous benchmarks. A typical error pattern is not comprehending the required format,
thus providing answers with incorrect formats or generating irrelevant responses. This error type is
much more common in open-source models.

Figure 14 to Figure 33 shows the case study for samples from different tasks. We use distinct
colors to highlight the tags in each task sample. We borrow the error case analysis template from
MMMU (Yue et al., 2024a) while adding the keywords information of MEGA-BENCH. We mainly
focus on the flagship proprietary models. The Claude-3.5 in these figures refers to the Claude-3.5-
Sonnet (0620) model.
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Coding: Code Debugging

Given a piece of program code, identify the most obvious error. Output the line number on 
the left where the error occurs. Attention: Do not invoke any external compilers or related 
programs.
Question: Where the error occurs?

Correct Answer: 18

Task Name: Code Error Line Identification

Error Category: Lack of Capability
GPT-4o: The most obvious error in the code is the use of `printf` instead of `printf` in line 20. 
The correct function name should be `printf`.
Answer: 20 (score: 0.0)

Claude-3.5: 1. The function declaration and variable initializations seem correct. 2. The first 
nested loop (lines 7-12) appears to b e properly structured. 3. The while loop (lines 13-19) also 
seems structurally correct. 4. However, within this while loop, there's an issue on line 18: 5. 
This error is the most obvious and significant in the code, as it will likely cause runtime errors 
or incorrect results. Therefore, the most obvious error occurs on line 18.
Answer: 18 (score: 1.0)

Keywords: Domain-Specific Knowledge and Skills, Text-Based Images and 
Documents, Mathematical and Logical Reasoning, Multiple Choice

Figure 14: A sample error case of Coding (subfield: Code Debugging). Source:Web
Back to List of Figures
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Coding: Code Understanding

Given a symbolic graphics program, the task is to answer a related question by understanding 
the program.
Question: How many visible screws or screw holes are there on the CAD object?

Correct Answer: 4

Task Name: Symbolic Graphics Programs Computer Aided Design

Error Category: Lack of Capability
GPT-4o: To determine the number of visible screws or screw holes in the CAD object, we need 
to identify the instances of circles in the program, as circles typically represent screws or screw 
holes in CAD drawings …
Answer: 6 (score: 0.0)

Keywords: Mathematical and Logical Reasoning, 
Contextual Formatted Text, Domain-Specific Knowledge and Skills,

Text-Based Images and Documents

Error Category: Lack of Capability
Gemini-1.5-pro: The code shows six circles that could be screw holes and two "Ext" 
commands that specify extrusions. Extrusions can be used to create screw holes. 
Answer: 8 (score: 0.0)

Claude-3.5: 1. In CAD programs, screws or screw holes are often represented by circles.
2. Looking at the program, we can see several Circle commands: …
Answer: 4 (score: 1.0)

Figure 15: A sample error case of Coding (subfield: Code Understanding).
Source:Web

Back to List of Figures
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Coding: Code_Understanding

Given several images of program code, output the program's execution result. Attention: Do 
not invoke any external compilers or related programs. Place the code output in a Markdown 
result code block.
Question: What's the output of the program?

Correct Answer: Final data: [1, 3, 5]

Task Name: Code Output Result

Error Category: Lack of Capability
Claude 3.5 :Let's analyze this Rust code step by step:
1. We start with a vector [1, 2, 3] wrapped in an Arc<Mutex<...>>.
2. We create an empty vector `handles` to store thread handles.
3. We spawn 3 threads (for i in 0..3):
- Each thread gets a clone of the Arc.
- Each thread locks the mutex and increments the first element of the vector.
4. After spawning, we join all threads, ensuring they complete.
5. Finally, we print the contents of the vector.
Let's trace the changes:
- Initial state: [1, 2, 3]
- Thread 1: [2, 2, 3]
- Thread 2: [3, 2, 3]
- Thread 3: [4, 2, 3]
The final state of the vector will be [4, 2, 3]. The println! macro will output this vector.
Answer: Final data: [4, 2, 3] (score: 0.0)

Keywords: OCR, Mathematical and Logical Reasoning
Domain-Specific Knowledge, Text-Based Images and Documents

Figure 16: A sample error case of Coding (subfield: Code Understanding).
Source:Web

Back to List of Figures
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Information Extraction: Multimodel QA

The task involves identifying objects a person interacts with in various videos based on the 
provided questions. You need to output the object name.
Question: Which object was taken by the person?

Correct Answer: pillow

Task Name: Object Interaction Video

Error Category: Perception Error
Claude-3.5: After carefully analyzing the sequence of images, I can see that the person in the 
video is interacting with a hat. In the earlier frames, the person is holding what appears to be a 
white or light-colored object, which is likely laundry or bedding. However, as the sequence 
progresses, we see the person in front of a mirror, and they appear to be adjusting or handling 
a hat. In the final frames, there's a motion that suggests the person is tossing or throwing the 
hat upwards.
Answer: hat (score: 0.0) 

GPT-4o: Answer: pillow (score: 1.0) 

Keywords: Contextual Formatted Text,  Scene Understanding, 
Scene and Event Understanding, Videos

……

Figure 17: A sample error case of Information Extraction (subfield: Multimodel QA).
Source: MVBench (Li et al., 2024e) and STAR (Wu et al., 2024)

Back to List of Figures
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Information Extraction：Detailed Manual Understanding

根据给定的用户手册图片内容，使用中文回答问题。涉及操作上的问题，给出解决方法。涉及
人身安全上的问题给出合理建议。
Question: 我骑这个车送孩子上学方便吗？

Reference Answer: 电动滑板车严禁搭载乘客，其设计和承重能力仅适合单人使用。擅自搭载
他人，特别是带孩子一起乘坐，不仅违反使用规范，还可能带来严重的安全隐患。出于对自身
和孩子安全的考虑，不建议使用滑板车送孩子上学。

Task Name: Multi-lingual Manual Explanation Scooter (Chinese)

Error Category: Perception Error, Lack of Knowledge
Idefics3 :
Answer:是的，滑板车可以方便地送孩子上学。您可以在孩子上学时使用滑板车，减少交通拥
堵和堵车的时间。(score: 0.0)

Keywords: Document, Open-ended

GPT-4o : Answer: 不建议使用这款滑板车送孩子上学。根据用户手册的安全说明，这款电动滑
板车只能由一名成人使用，且不允许载人。此外，手册中明确指出不要进行危险动作或单手骑
行，这样会增加安全风险。因此，为了您和孩子的安全，建议选择其他更为安全的交通工具。
(score: 0.9)

Figure 18: A sample error case of Information Extraction (subfield: Detailed Manual
Understanding).Source:Web

Back to List of Figures
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Information Extraction: 
Search by Attribute without Calculate

Given a set of screenshots from a game information page and a specific query, retrieve the 
names of the games that match the query. If there are multiple matching games, provide a list 
of game names separated by commas.
Question: Find the game available on 'MacOS'

Correct Answer: World of Goo 2, SnowRunner

Task Name: Game Info Retrieval

Error Category: Perception Error
GPT-4o: To find the game available on 'MacOS', I will examine each screenshot for the 
platform information. 
…
6. World of Goo 2: No mention of MacOS.
…
Answer: SnowRunner(score: 0.0)

Keywords: Object Recognition and Classification, OCR, Language 
Understanding and Generation, User Interface Screenshots

Claude-3.5 : Let's go through this step-by-step:
1. We need to look for a game that specifically mentions Mac or MacOS as a platform. … 
Answer: World of Goo 2, SnowRunner (score: 1.0)

Figure 19: A sample error case of Information Extraction (subfield: Search by Attribute without
Calculate).Source:Web

Back to List of Figures
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Knowledge: World Knowledge

This task involves the classification of insects into their respective taxonomic orders based on 
visual input. The goal is to accurately identify and categorize an insect from an image into one 
of the pre-defined orders. Each order is represented by a specific label corresponding to the 
insect's taxonomic classification, including orders such as Diptera, Hymenoptera, Coleoptera, 
Hemiptera, Lepidoptera, Psocodea, Thysanoptera, Trichoptera, Orthoptera, Blattodea, 
Neuroptera, Ephemeroptera, Dermaptera, Archaeognatha, Plecoptera, or Embioptera.

Correct Answer: Hymenoptera

Task Name: Insect Order Classification

Error Category: Lack of Knowledge
Claude-3.5: 1. The insect is small and appears to be in a circular container, likely for 
observation purposes. 2. The insect has an elongated body shape …
Answer: Lepidoptera (score: 0.0)

Keywords: Object Recognition and Classification, Photographs, Domain-
Specific Knowledge and Skills, Contextual Formatted

Error Category: Lack of Knowledge
Gemini-1.5-pro: The insect has long, slender antennae and its wings are held roof-like over its 
body. These are characteristic of the order Trichoptera, or caddisflies. 
Answer: Trichoptera (score: 0.0)

Error Category: Lack of Knowledge
GPT-4o: 1. The insect has a pair of wings. 2. The antennae are feathery, which is a 
characteristic feature of some insects. 3. The body structure is relatively small and delicate …
Answer: Trichoptera (score: 0.0)

Figure 20: A sample error case of Knowledge (subfield: World Knowledge).
Source: BIOSCAN-1M (Gharaee et al., 2024)

Back to List of Figures
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Knowledge: World Knowledge

Please answer the name and nationality of the celebrity. For the name, please put last name in 
the front.

Correct Answer: {“name”: “Lin Junjie”; “nationality”: “Singaporean”}

Task Name: Memorization Chinese Celebrity

Error Category: Refuse to Answer
Claude-3.5: I apologize, but I'm not able to identify or name specific individuals in images. 
However, I can describe what I see in this photo:… 
Answer: null(score: 0.0)

Keywords: Object Recognition and Classification, Photographs,
Language Understanding and Generation, Structured

Error Category: Lack of Knowledge
Gemini-1.5-pro: The person in the image is Eric Chou. He is a Taiwanese singer. 
Answer: {“name”: “Chou Chih-chieh”; “nationality”: “Taiwanese”} (score: 0.0)

Error Category: Lack of Knowledge
GPT-4o: I don't know who they are.
Answer: null(score: 0.0)

Figure 21: A sample error case of Knowledge (subfield: World Knowledge). Source: Web
Back to List of Figures
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Knowledge: Arts

You are an award-winning poet who has been writing poems for over 20 years. Please write 
an acrostic poem about the attached image, using the letters in the specified word or words to 
start off the first letter of each line in the poem. A space between the words indicates a 
newline. If there are no spaces, there should not be any blank lines. No title is needed.
Question: Word: hamster

Eval Context: acrostic:  hamster,
contain: [hamster, paw, tail, whisker, seed, rodent, scurry, fur]"

Task Name: Poetry Generation (Acrostic)

Error Category: Fail to Follow Instruction
Qwen2-VL-72B: Answer: 
Humble hamster, with fur so fine,
A creature small, yet full of might.
Majestic in its tiny form,
Standing tall, without a care.
Eyes so bright, a curious gleam,
Ruling its world, in a tiny dream. (score: 0.0) (acrostic: 0, contain: 1)

Keywords: Object Recognition and Classification, 
Language Understanding and Generation, Photographs

GPT-4o: Answer: 
Huddled in a cozy corner,
A tiny heart beats with gentle grace.
Mischief sparkles in those bright eyes,
Soft fur, a warm embrace.
Tiny paws clutching a hidden treasure,
Eagerly nibbling, lost in pleasure.
Radiating charm, a small wonder. (score: 1.0)

Figure 22: A sample error case of Knowledge (subfield: Art). Source: Web
Back to List of Figures
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Mathematics: Graph Theory

For a given Directed Acyclic Graph (DAG), your task is to output all possible topological 
orders. The output is a set of topological order.

Correct Answer: [0->1->2->3->4]

Task Name: Topological Sort

Error Category: Lack of Capability
Claude-3.5: 1. Identify the nodes with no incoming edges (sources):

- Node 0 is the only source in this graph .…
Answer: [0->1->2->3->4,0->1->2->4->3] (score: 0.0)

Keywords: Spatial and Temporal Reasoning, Structured, Mathematical and 
Logical Reasoning, Diagrams and Data Visualizations

Error Category: Lack of Capability
Gemini-1.5-pro: We can perform a depth-first search (DFS) from each node with no incoming 
edges. During the DFS, we maintain a stack to keep track of the visited nodes …
Answer: [0->2->1->4->3, 0->2->1->3->4] (score: 0.0)

Error Category: Lack of Capability
GPT-4o: To determine which 3D object can be formed from the given 2D foldable sheet, we 
need to visualize how the sheet folds into a 3D shape. Let's analyze the 2D sheet and the 3D 
options step by step …
Answer: [0->1->2->3->4, 0->1->3->4->2, 0->…] (score: 0.0)

Figure 23: A sample error case of Mathematics (subfield: Graph Theory).
Source:Web

Back to List of Figures

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

Metrics: Generated Image Eval

Motion-guided image editing is important for generating realistic and context-aware 
animation. Your task is to rank the motion-guided image generation results. The desired 
motion is described by a text input, several generative models try to edit the input image 
based on the described motion. You should rate the generation results based on 1) how well 
the generated image follows the motion described by the text query and 2) whether the 
generated image is still consistent with the source image in terms of semantics and object 
attributes. The first image is the source image; the rest are the edited results. Rank the results 
using their indices, starting with 1. Exclude the source image from the ranking.
Question: Move the lion to the left

Correct Answer: 2,3,1

Task Name: Autorater Motion Guided Editing

Error Category: Fail to Follow Instruction
Idefics3: 
Answer: no. (score: 0.0)

Keywords: Object Recognition, Photographs, 
Spatial and Temporal Reasoning, Structured

Error Category: Fail to Follow Instruction
internvl-76B: The first image shows the lion facing forward, with its head straight. The second 
image shows the lion tilting its head to the left ... Based on these observations, we can 
conclude that the second image is the one that shows the lion moving to the left.
Answer: 2 (score: 0.0)

Claude-3.5: 1. Image 2: Best follows the instruction to move left while maintaining the lion's 
features and overall composition. 2. Image 3: Maintains consistency with the source image but 
shows minimal leftward movement. 3. Image 1: Follows the leftward motion but obscures too 
much … 
Answer: 2, 3, 1 (score: 1.0)

Input image 1 2 3

Figure 24: A sample error case of Metrics (subfield: Generated Image Eval).
Source:Motion Guidance (Geng & Owens, 2024)
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Metrics: Generated Image Eval

You will be asked to evaluate the quality of textured 3D models by comparing two texture 
transfer results. The first image will show an untextured 3D model and a source image whose 
texture needs to be transferred to the mesh. The second image will show two textured 3D 
models for comparison, and you should pick one with better texturing quality (left or right).

Correct Answer: right

Task Name: Autorater 3d Model Texturing

Error Category: Perception Error
GPT-4o: To determine which textured 3D model has better texturing quality, we need to 
consider the realisticness of the textured object and the consistency between the textured mesh 
and the source image. … 
Answer: left (score: 0.0)

Keywords: Object Recognition, 3D Models and Aerial Imagery, Scene and 
Event Understanding, Contextual Formatted Text

Error Category: Perception Error
Gemini-1.5-pro: The left image (A) is a white truck, while the right image (B) is a combination 
of a truck and a van. The source image is a van. Therefore, the left image is more realistic and 
consistent with the source image. … 
Answer: left (score: 0.0)

Claude-3.5: Model A doesn't match the source image well. While it's a realistic vehicle, it's a 
different type (cargo truck instead of passenger van) … 
Answer: right (score: 1.0)

Figure 25: A sample error case of Metrics (subfield: Generated Image Eval).
Source: EASI-Tex (Perla et al., 2024)
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Planning: Puzzles and Games

Look at the provided image and question, guess which Chinese word or phrase the image is 
trying to convey. Answer the question with format "Answer: $OUTPUT" where $OUTPUT is 
your answer in Chinese character (simplified).
Question:图中表示了一个六字典故，请问是什么？

Correct Answer: 唐伯虎点秋香

Task Name: Pictionary GenAI Output Chinese

Error Category: Lack of Capability
GPT-4o: The image shows a tiger making tea, which is a visual representation of the Chinese 
idiom "老虎不吃人" (a tiger that doesn't eat people). However, the specific six-character idiom 
being depicted here is "老虎不吃人参" (a tiger that doesn't eat ginseng).
Answer: 老虎不吃人参 (score: 0.0)

Keywords: Object Recognition and Classification, Artistic and Creative Content, 
Language Understanding and Generation, Contextual Formatted

Error Category: Lack of Capability
Claude-3.5: 1. We see a tiger in the image, which is the central figure
...
5. The tiger seems to be focused on or studying the burning incense.
Answer: 卧薪尝胆 (score: 0.0)

Figure 26: A sample error case of Planning: (subfield: Puzzles and Games).
Source: Web
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Planning: Puzzles and Games

Given the query image including a 2D foldable sheet (the first image) and several options for 
the folded 3D objects (the remaining images), please find out which 3D object comes from the 
2D sheet. The answer should the image index starting from 1 that represents the second image.

Correct Answer: 3

Task Name: Logical Reasoning 2d Folding

Error Category: Lack of Capability
GPT-4o: To determine which 3D object can be formed from the given 2D foldable sheet, we 
need to visualize how the sheet folds into a 3D shape. Let's analyze the 2D sheet and the 3D 
options step by step …
Answer: 1 (score: 0.0)

Keywords: Spatial and Temporal Reasoning, Multiple Choice, Mathematical 
and Logical Reasoning, Diagrams and Data Visualizations

Error Category: Lack of Capability
Claude-3.5: 1. First, we need to analyze the 2D foldable sheet (the first image). It has a unique 
shape with several rectangular sections and one triangular section. 2. Now, let's look at each of 
the 3D objects (images 1-5) and try to match them with the 2D sheet …
Answer: 1 (score: 0.0)

…

Error Category: Lack of Capability
Gemini-1.5-pro: The 2D sheet has a long base with a small square attached to the right. There 
are two protrusions from the base, one with a triangular cutout and one rectangular. Only 
option 1 satisfies these conditions. 
Answer: 1 (score: 0.0)

Figure 27: A sample error case of Planning (subfield: Puzzles and Games).
Source:Web
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Planning: Reordering

The task involves identifying the order of letters as a person writes, types, or arranges them, 
predicting subsequent letters, and reversing letter sequences in various scenarios. What was 
the order of the letters at the beginning?

Correct Answer: mx

Task Name: Perception Test Video Character Order

Error Category: Fail to Follow Instruction
Idefics3: The order of the letters at the beginning was not mentioned in the facts provided. 
Answer: null (score: 0.0)

Keywords: Object Recognition, Video, 
Spatial and Temporal Reasoning, Contextual Formatted Text

Error Category: Perspection Error
Gemini-1.5-pro: The letters at the beginning of the video spell out MIX. The person first places 
the M, then the I, and finally the X.
Answer: mix (score: 0.0)

GPT-4o: The order of the letters at the beginning was M X.
Answer: mx (score: 1.0)

…

Figure 28: A sample error case of Planning (subfield: Reordering).
Source:Perception Test (Patraucean et al., 2024)
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Perception: Multimodal Constrained Captioning

Can you write a story about the animal in the figure with more than 10 but less than 20 words?

Task Name: Constrained Generation Contain Length

Error Category: Fail to Follow Instruction
Claude-3.5: Two feline friends, a tabby and a ginger, lounged side by side, their curious eyes 
gleaming with mischief and companionship. (score: 0.0) (contain: 0, length1: 1, length2: 0)

GPT-4o: Two curious cats, one tabby and one ginger, explored their cozy home, discovering 
hidden treasures together. (score: 1.0)

Keywords: Object Recognition and Classification, Open-Ended, 
Language Understanding and Generation, Photographs

Eval Context: contain: [cat, kitten], length1: >10, length2: <20

Figure 29: A sample error case of Perception (subfield: Multimodal Constrained Captioning).
Source: Web
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Perception: Visual Recognition

Please extract the license plate name from the image, ignore the punctuations.

Correct Answer: 京NHINIO

Task Name: License Plate Recognition

Error Category: Lack of Knowledge
Claude-3.5: Let's approach this step-by-step: 1. The image shows a blue license plate, similar 
to the example provided … The task asks us to ignore punctuation, so we should remove the 
dot (•). 6. Combining all elements and ignoring punctuation, we get: 京NHIN10.
Answer: 京NHIN10 (score: 0.0)

Keywords: Text Recognition (OCR), Contextual Formatted Text, Object 
Recognition and Classification, Photographs

Error Category: Lack of Knowledge
Gemini-1.5-pro: The license plate in the image contains the characters "京N" followed by 
"HINI0". 
Answer: 京NHINI0 (score: 0.0)

GPT-4o: 京N·HINIO 
Answer: 京NHINIO (score: 1.0)

Figure 30: A sample error case of Perception (subfield: Visual Recognition).
Source:Web
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Perception: Visual Recognition

You are asked to detect persons in a query image. The format of bounding box is (x1,y1,x2,y2), 
where (x1,y1) is the top-left corner and (x2,y2) is the bottom-right corner. The coordinates are 
normalized by the image's height and width.

Correct Answer: {“number of person”: “2”;
“bounding boxes”: “[(0.38,0.46,0.56,0.77), (0.68,0.10,0.78,0.48)]”}

Task Name: Coco Person Detection

Error Category: Perception Error
Claude-3.5: 1. I can see two people in the image, both partially submerged in water. 2. The 
first person is on the left side of the image, sitting in shallow water near the shore. …
Answer: {“number of person”: “2”; 
“bounding boxes”: “[(0.20,0.40,0.55,0.95), (0.70,0.15,0.90,0.85)]”} (score: 0.64)

Keywords: Object Recognition and Classification, 
Photographs, Numerical Data

Error Category: Perception Error
Gemini-1.5-pro: There are two people in the image. The man is on the left and the woman is 
on the right …
Answer: {“number of person”: “2”; 
“bounding boxes”: “[(0.42,0.54,0.74,0.84), (0.68,0.52,0.80,0.82)]”} (score: 0.62)

Error Category: Perception Error
GPT-4o: 1. Identify the persons in the image. 2. Determine the bounding boxes for each person. 
3. Normalize the coordinates by the image's height and width …
Answer: {“number of person”: “2”; 
“bounding boxes”: “[(0.05,0.40,0.30,0.80), (0.60,0.20,0.85,0.80)]”} (score: 0.54)

Figure 31: A sample error case of Perception (subfield: Visual Recognition).
Source: COCO (Lin et al., 2014)

Back to List of Figures

63



3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

Perception: Visual Recognition

This task involves analyzing a set of 5 images to identify which images show the same person. 
Among the 5 images, there are two pairs of images where each pair shows the same 
individual, and one image shows a different person. The goal is to determine the matching 
pairs by providing the indices of the images that depict the same person. The answer should 
list the smaller indices first within each pair.

Correct Answer: 14,25

Task Name: Face Identity Matching

Error Category: Fail to Follow Instruction
Idefics3: Example Response: [PLEASE OUTPUT YOUR REASONING]
Answer: 1, 3 (score: 0.0)

Keywords: Scene and Event Understanding, 
Object Recognition, Photographs, Contextual Formatted 

Claude-3.5 : 1. The first image shows an older woman with short, brown hair. 2. The second 
image shows a man with short, dark hair. 3. The third image shows a man with short, light 
brown hair. 4. The fourth image shows an older woman with short, light brown hair … 
Answer: 14,25 (score: 1.0)

Figure 32: A sample error case of Perception (subfield: Visual Recognition).
Source: CelebA (Liu et al., 2015)
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Science: STEM

Solve the problem. The answer is a number. A proton is a distance d/2 directly above the 
center of a square of side d. What is the magnitude of the electric flux through the square? 
(Hint: Think of the square as one face of a cube with edge d).

Correct Answer: 3.01

Task Name: Scibench Fundamental wo Solution

Error Category: Fail to Follow Instruction
Claude-3.5: First, recall Gauss's law for electric fields. It states that the total electric flux 
through a closed surface is equal to the enclosed charge divided by ε₀ (the permittivity of free 
space) … 
Answer: |q| / (6ε₀) (score: 0.0)

Keywords: Mathematical and Logical Reasoning, Numerical Data, Domain-
Specific Knowledge and Skills, Diagrams and Data Visualizations

Error Category: Fail to Follow Instruction
Gemini-1.5-pro: The electric flux through a closed surface is given by Gauss's law: $\Phi_E = 
\frac{q_{enc}}{\epsilon_0}$... 
Answer: $q/(6\epsilon_0)$ (score: 0.0)

Error Category: Lack of Capability
GPT-4o: To solve the problem, we need to determine the electric flux through the square due 
to the proton positioned at a distance \( d/2 \) directly above the center of the square … 
Answer: 3.01 \times 10^{-21} (score: 0.0)

Figure 33: A sample error case of Science (subfield: STEM).
Source: SciBench (Wang et al., 2023b)
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G DETAILED TASK INFORMATION

In Table 18, we list data source details for every task in our benchmark. We also list the output
format and metrics to help better understand each task’s form.

Table 18: Detailed task information description of MEGA-BENCH.

Task Name Source Description Output Format Metrics
Information Extraction

Cheapest Flight
Identification

Screenshots were taken by the
human annotator on Google
Flights. Questions and answers
were created by the annotator.

Contextual Simple String
Match

Weather Info Re-
trieval

Screenshots were taken by the
human annotator on Microsoft
Weather. Questions and answers
were created by the annotator.

Contextual String Set Equal-
ity Comma

Stock Info Re-
trieval

Screenshots were taken by the
human annotator on Yahoo Fi-
nance. Questions and answers
were created by the annotator.

Contextual Set Equality

Game Platform
Support Identifi-
cation

Screenshots were taken by the
human annotator on the Steam
store. Questions and answers
were created by the annotator.

Structured Exact String
Match, Set Equal-
ity

Top Rated Hotel
Identification

Screenshots were taken by the
human annotator on Book-
ing.com. Questions and answers
were created by the annotator.

Contextual String Set Equal-
ity Comma

Movie Info Re-
trieval

Screenshots were taken by the
human annotator on the Amazon
Prime Video webpage. Ques-
tions and answers were created
by the annotator.

Contextual String Set Equal-
ity Comma

Top Video Creator
Identification

Screenshots were taken by the
human annotator on YouTube.
Questions and answers were cre-
ated by the annotator.

Exact Exact String
Match

Highest Discount
Game Price Iden-
tification

Screenshots were taken by the
human annotator on the Steam
store. Questions and answers
were created by the annotator.

Numerical Exact String
Match

Newspaper Page
Parse And Count

Data collected from the News-
paper Navigation Dataset (Lee
et al., 2020). Questions and an-
swers were created by the anno-
tator.

Exact Exact String
Match

Remaining Play-
back Time Calcu-
lation

Screenshots were taken by the
human annotator on YouTube.
Questions and answers were cre-
ated by the annotator.

Exact Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Multi Lingual
Manual Expla-
nation Scooter
Spanish

Screenshots taken from
user manual located at
https://fcc.report/FCC-
ID/2A33E5LCHG11U/6288539.pdf.
Questions and answers created
by human annnotator.

Open GPT-4o as Judge

Multi Lingual
Manual Expla-
nation Scooter
Arabic

Screenshots taken from
user manual located at
https://fcc.report/FCC-
ID/2A33E5LCHG11U/6288539.pdf.
Questions and answers created
by human annnotator.

Open GPT-4o as Judge

Multi Lingual
Manual Expla-
nation Scooter
French

Screenshots taken from
user manual located at
https://fcc.report/FCC-
ID/2A33E5LCHG11U/6288539.pdf.
Questions and answers created
by human annnotator.

Open GPT-4o as Judge

Multi Lingual
Manual Expla-
nation Scooter
Chinese

Screenshots taken from
user manual located at
https://fcc.report/FCC-
ID/2A33E5LCHG11U/6288539.pdf.
Questions and answers created
by human annnotator.

Open GPT-4o as Judge

Multi Lingual
Manual Expla-
nation Scooter
Russian

Screenshots taken from
user manual located at
https://fcc.report/FCC-
ID/2A33E5LCHG11U/6288539.pdf.
Questions and answers created
by human annnotator.

Open GPT-4o as Judge

Video Summary Videos taken from WikiHow or
YouTube. Questions and an-
swers created by human annno-
tator.

Open GPT-4o as Judge

Video Short Title Videos taken from YouTube.
Questions and answers created
by human annnotator.

Open GPT-4o as Judge

Video2notes WikiHow or YouTube. Ques-
tions and answers created by hu-
man annnotator.

Open GPT-4o as Judge

Video Content
Reasoning

Videos and annotations were
taken from the HME100k (Yuan
et al., 2022) dataset. Questions
and answers were adapted by a
human annotator.

Contextual Simple String
Match

COCO OOD
Global Image Re-
trieval By Query
Property

Images were from COCO-
O (Mao et al., 2023). Questions
and answers were re-designed by
the annotator manually

Structured Jaccard Index
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Places365 Similar
Scene Retrieval

Images and labels were
taken from the Places365
dataset (Zhou et al., 2017) and
adapted into questions and
answers by a human annotator.

MC Exact String
Match

Booking Web
Recommendation

Images and labels come from the
SEED-Bench (Li et al., 2024b)
dataset. Some images are from
Yelp. Questions and annotations
were adapted by a human anno-
tator.

Contextual Jaccard Index
Case Insensitive

Game Info Re-
trieval

Screenshots were taken by the
human annotator on the Epic
Games Store. Questions and an-
swers were created by the anno-
tator.

Contextual String Set Equal-
ity Comma

Media Homepage
Profile

Most images and labels come
from the SEED-Bench (Li et al.,
2024b) dataset, while one came
from a screenshot taken by a hu-
man annotator. Questions and
annotations were adapted by a
human annotator.

Structured Jaccard Index
Case Insensitive

Movie Retrieval
By Actor

Screenshots were taken by the
human annotator on the Amazon
Prime Video webpage. Ques-
tions and answers were created
by the annotator.

Contextual String Set Equal-
ity Comma

Music Info Re-
trieval

Screenshots were taken by the
human annotator on the Spotify
Web Player. Questions and an-
swers were created by the anno-
tator.

Contextual String Set Equal-
ity Comma

Tv Show Re-
trieval By Charac-
ter

Screenshots were taken by the
human annotator on the Amazon
Prime Video webpage. Ques-
tions and answers were created
by the annotator.

Contextual String Set Equal-
ity Comma

App Layout Un-
derstanding Leet-
code

Screenshots were taken by the
human annotator on Leetcode.
Questions and answers were cre-
ated by the annotator.

Exact Exact String
Match

App Layout
Understanding
Youtube

Screenshots were taken by the
human annotator on YouTube.
Questions and answers were cre-
ated by the annotator.

Exact Exact String
Match

App Layout Un-
derstanding Ama-
zon

Screenshots were taken by the
human annotator on Amazon.
Questions and answers were cre-
ated by the annotator.

Exact Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

App Layout Un-
derstanding Word

Screenshots were taken by the
human annotator on Microsoft
Word. Questions and answers
were created by the annotator.

Exact Exact String
Match

App Layout Un-
derstanding Notes

Screenshots were taken by the
human annotator on the Google
Notes app. Questions and an-
swers were created by the anno-
tator.

Exact Exact Str Match
Case Insensitive

App Layout Un-
derstanding Ppt

Screenshots were taken by the
human annotator on Microsoft
PowerPoint. Questions and an-
swers were created by the anno-
tator.

Exact Exact String
Match

App Layout
Understanding
Alipay

Screenshots were taken by the
human annotator on the Alipay
app. Questions and answers were
created by the annotator.

Exact Exact String
Match

App Layout Un-
derstanding Insta-
gram

Screenshots were taken by the
human annotator on the Insta-
gram app. Questions and an-
swers were created by the anno-
tator.

Exact Exact String
Match

App Layout Un-
derstanding Zoom

Screenshots were taken by the
human annotator on Zoom.
Questions and answers were
created by the annotator.

Exact Exact String
Match

App Layout Un-
derstanding Excel

Screenshots were taken by the
human annotator on Microsoft
Excel. Questions and answers
were created by the annotator.

Exact Exact String
Match

App Layout
Understanding
Iphone Settings

Screenshots were taken by the
human annotator on the iPhone.
Questions and answers were cre-
ated by the annotator.

Exact Exact String
Match

App Layout
Understanding
Tiktok

Screenshots were taken by the
human annotator on the TikTok
app. Questions and answers were
created by the annotator.

Exact Exact String
Match

App Layout Un-
derstanding Twit-
ter

Screenshots were taken by the
human annotator on the X (for-
merly Twitter) app. Questions
and answers were created by the
annotator.

Exact Exact String
Match

Multilingual
News Qa

Screenshots were taken by the
human annotator on X (formerly
Twitter). Questions and answers
were created by the annotator.

Contextual Multi Ref Phrase
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Product Ocr Qa Images were taken from various
websites. Questions and answers
were created by the annotator.

Exact Exact String
Match

Research Website
Parsing Blogpost

Screenshots were taken of vari-
ous ML research websites. Ques-
tions and answers were created
by the annotator.

Contextual Multi Ref Phrase

Research Website
Parsing Home-
page

Screenshots were taken of vari-
ous ML research websites. Ques-
tions and answers were created
by the annotator.

Contextual Multi Ref Phrase

Research Website
Parsing Publica-
tion

Screenshots were taken of vari-
ous ML research websites. Ques-
tions and answers were created
by the annotator.

Contextual Multi Ref Phrase

Gui Chat Easy Images and annotations were
adapted from the GUI Chat
dataset (Chen et al., 2024c) by
the human annotator into an
open-ended question.

Open GPT-4o as Judge

Gui Chat Hard Images and annotations were
adapted from the GUI Chat
dataset (Chen et al., 2024c) by
the human annotator into an
open-ended question.

Open GPT-4o as Judge

Realworld Qa
En2cn

Images and annotations were
adapted from the RealWorldQA
benchmark (xAI, 2024) by the
human annotator into an open-
ended question. The translation
requirement was added by the
human annotator.

Contextual Multi Ref Phrase

Star Object Inter-
action Video

Videos and annotations were
adapted from the STAR bench-
mark (Wu et al., 2024) by the hu-
man annotator into questions and
answers.

Contextual Multi Ref Phrase

Funqa Unex-
pected Action
Magic Video

Videos and annotations were
adapted from the FunQA bench-
mark (Xie et al., 2023) by the
human annotator into being an
open-ended question.

Open GPT-4o as Judge

Activitynetqa Images and annotations were
adapted from the ActivityNetQA
benchmark (Yu et al., 2019) by
the human annotator into being
an open-ended question.

Open GPT-4o as Judge
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Funqa Unex-
pected Action
Creative Video

Videos and annotations were
adapted from the FunQA bench-
mark (Xie et al., 2023) by the
human annotator into being an
open-ended question.

Open GPT-4o as Judge

Nextqa Mc Images and annotations were
adapted from the NExTQA
benchmark (Xiao et al., 2021)
by the human annotator into
questions and answers.

MC Exact String
Match

Video Qa Videos taken from YouTube.
Questions and answers created
by human annnotator.

Open GPT-4o as Judge

Nextqa Oe Images and annotations were
adapted from the NExTQA
benchmark (Xiao et al., 2021) by
the human annotator into being
an open-ended question.

Open GPT-4o as Judge

Funqa Unex-
pected Action
Humor Video

Videos and annotations were
adapted from the FunQA bench-
mark (Xie et al., 2023) by the
human annotator into being an
open-ended question.

Open GPT-4o as Judge

Multilingual
Movie Info
Parsing

Screenshots were taken by the
human annotator on the Amazon
Prime Video webpage. Ques-
tions and answers were created
by the annotator.

Structured Exact String
Match, Simple
String Match

Movie Info Pars-
ing

Screenshots were taken by the
human annotator on the Amazon
Prime Video webpage. Ques-
tions and answers were created
by the annotator.

Structured Exact String
Match

Stock Info Parsing Screenshots were taken by the
human annotator on Yahoo Fi-
nance. Questions and answers
were created by the annotator.

Structured Exact String
Match

Music Info Pars-
ing

Screenshots were taken by the
human annotator on the Spotify
Web Player. Questions and an-
swers were created by the anno-
tator.

Structured Exact String
Match

Multilingual
Game Info Pars-
ing

Screenshots were taken by the
human annotator on the Epic
Games Store. Questions and an-
swers were created by the anno-
tator.

Structured Exact String
Match

Ocr Article Au-
thors

Screenshots taken of various aca-
demic papers. Questions and an-
swers created by human annota-
tor.

Structured Simple String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Youtube Video
Info Parsing

Videos taken from YouTube.
Questions and answers created
by human annnotator.

Structured Exact String
Match

Tv Show Info
Parsing

Screenshots were taken by the
human annotator on the Amazon
Prime Video webpage. Ques-
tions and answers were created
by the annotator.

Structured Simple String
Match

Ocr Resume
School Plain

Resumes taken from various per-
sonal websites. Questions and
answers were created by the an-
notator.

Contextual String Set Equal-
ity Line Break

Image Translation
En2cn

Images were collected from vari-
ous sources, including academic
papers, news articles, shopping
receipts, etc. The annotations are
obtained by GPT-4o translation
followed by a human check.

Contextual Gleu Cn

Booking Web
Rating

Images and labels come from the
SEED-Bench (Li et al., 2024b)
dataset. Some images are from
Yelp. Questions and annotations
were adapted by a human anno-
tator.

Structured Exact String
Match

Weather Info
Parsing

Images were collected from the
Microsoft Weather by taking
screenshots. Questions and an-
swers were designed by the an-
notator.

Structured Exact String
Match

Game Info Pars-
ing

Screenshots were taken by the
human annotator on the Epic
Games Store. Questions and an-
swers were created by the anno-
tator.

Structured Exact String
Match

Weather Map Cli-
mate Type Tem-
perature Parsing

One of the examples comes from
the SEED-Bench 2 Plus bench-
mark (Li et al., 2024b). The
rest of the images were col-
lected from various online web-
sites. Questions and annotations
were adapted by a human anno-
tator.

Structured Exact String
Match

Hotel Booking
Confirmation
Parsing

Screenshots were taken by the
human annotator on Book-
ing.com. Questions and answers
were created by the annotator.

Structured Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Entertainment
Web Game Style

Some of the examples come from
the SEED-Bench 2 Plus bench-
mark (Li et al., 2024b). The
rest of the screenshots were taken
on the Steam store. Questions
and annotations were adapted by
a human annotator.

Structured Exact Str Match
Case Insensitive,
Exact String
Match

Planning
Wikihow Com-
plex Task Com-
pletion

Data collected from website, and
the questions and answers are de-
signed by human annotator

Open GPT-4o as Judge

Vln Identify
Robot

Data collected from RxR
dataset (Ku et al., 2020), the
question and answer are adapted
to select the robot that should
execute the instruction

Exact Exact String
Match

Vln English Next
Step

Data collected from RxR
dataset (Ku et al., 2020), the
question and answer are adapted
by human annotator

Contextual Simple String
Match

Vlnqa Egocentric
Navigation Video

Data collected from VLN-
CE (Krantz et al., 2020)
and the task is adapted from
MVBench (Li et al., 2024e), the
question and answer are adapted
by human annotator

Contextual Simple String
Match

Vln Identify Lo-
cation

Data collected from RxR
dataset (Ku et al., 2020), the
question and answer are adapted
by human annotator

Structured Exact String
Match

Vln Tegulu Next
Step

Data collected from RxR
dataset (Ku et al., 2020), the
question and answer are adapted
by human annotator

Structured Simple String
Match

Vln Hindi Next
Step

Data collected from RxR
dataset (Ku et al., 2020), the
question and answer are adapted
by human annotator

Contextual Simple String
Match

App Interac-
tive Operations
Instagram

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match

App Interac-
tive Operations
Leetcode

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Gui Act Web
Multi

Data collected from webpage
screenshots by human annotator,
and the questions and answers
bounding boxes are annotated by
human annotator

Structured Exact String
Match, Xml
Nbbox Iou Single

App Interactive
Operations Ppt

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match

Gui Act Mobile
Swipe

Data collected from application
screenshots by human annotator,
and the questions and answers
bounding boxes are annotated by
human annotator

Structured Xml Norm Point
Distance

App Interactive
Operations Excel

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match

Gui Act Mobile
Tap

Data collected from application
screenshots by human annotator,
and the questions and answers
bounding boxes are annotated by
human annotator

Numerical Xml Norm Point
In Bbox

App Interactive
Operations Alipay

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match

Gui Act Web Sin-
gle

Data collected from webpage
screenshots by human annotator,
and the questions and answers
bounding boxes are annotated by
human annotator

Numerical Xml Nbbox Iou
Single

App Interac-
tive Operations
Twitter

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match

App Interactive
Operations Word

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match

App Interac-
tive Operations
Iphone Settings

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match

App Interactive
Operations Tiktok

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

App Interactive
Operations Notes

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match

App Interactive
Operations Zoom

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match

App Interac-
tive Operations
Amazon

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match

Web Action
Grounding

Data collected from Visual-
WebBench (Liu et al., 2024a),
and the questions and answers
are adapted by human annotator

MC Exact String
Match

App Interac-
tive Operations
Youtube

Data collected from application
screenshots by human annotator,
and the questions and answers
are designed by human annotator

MC Exact String
Match

Calendar Sched-
ule Suggestion

Data collected from Google Cal-
endar by human annotator, and
the questions and answers are
designed by human annotator
to identify all possible starting
times for a meeting within a
specified time range and duration

Contextual Set Equality

Planning Visual
Barman

Data collected from Planning
Domain Definition Language
(PDDL) of Barman, and the
questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Planning Visual
Floortile

Data collected from website, and
the questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Planning Visual
Storage

Data collected from website, and
the questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Planning Screen-
shot Grippers

Data collected from website, and
the questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Planning Visual
Blocksworld

Data collected from website, and
the questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Planning Screen-
shot Barman

Data collected from Planning
Domain Definition Language
(PDDL) of Barman, and the
questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Planning Screen-
shot Termes

Data collected from website, and
the questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Planning Screen-
shot Floortile

Data collected from website, and
the questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Planning Screen-
shot Blocksworld

Data collected from website, and
the questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Planning Screen-
shot Storage

Data collected from website, and
the questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Planning Visual
Termes

Data collected from website, and
the questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Planning Screen-
shot Tyreworld

Data collected from website, and
the questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Planning Visual
Grippers

Data collected from website, and
the questions and answers are
adapted to match the transitions
from init state to goal state

Structured Symbolic Plan-
ning Test

Logical Reason-
ing Find Odd One
Out

Data collected from website, and
the questions and answers are
adapted to match strings

Structured Dict Equality, Ex-
act String Match

Logical Reason-
ing Fit Pattern

Data collected from Log-
icVista (Xiao et al., 2024), and
the questions and answers are
adapted by human annotator

MC Exact String
Match

Perception-Test
Object Shuffle
Video

Data collected from VLN-
CE (Krantz et al., 2020)
and the task is adapted from
MVBench (Li et al., 2024e), the
question and answer are adapted
into single choice by human
annotator

MC Simple String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Chess Puzzles
Checkmate

Data collected from Lichess, and
the questions and answers are
adapted to match strings

Structured Set Equality

Chess Puzzles
Equality

Data collected from Lichess, and
the questions and answers are
adapted to match strings

Structured Set Equality

Bridge Strategies
Expert

Data and answer are collected
from Bridge Master 2000

Open GPT-4o as Judge

Chess Puzzles
Crushing

Data collected from Lichess, and
the questions and answers are
adapted to match strings

Exact Exact String
Match

Chess Puzzle Sin-
gle Step

Data collected from Lichess, and
the questions and answers are
adapted to match strings

Exact Exact String
Match

Chess Find Legal
Moves

Data collected from game po-
sitions of games in the 2024
FIDE Candidates tournament,
and the questions and answers
are adapted to match strings

Exact Chess Move List
Jaccard Index,
Exact String
Match

Bridge Strategies
Advanced

Data and answer are collected
from Bridge Master 2000

Open GPT-4o as Judge

Chess Winner
Identification

Data collected from
IsoBench (Fu et al., 2024b),
and the questions and answers
are adapted by human annotator

Exact Exact String
Match

Bridge Strategies
Worldclass

Data and answer are collected
from Bridge Master 2000

Open GPT-4o as Judge

Mahjong Data collected from website and
screenshot of MajSoul, and the
answer are annotated by human
annotator

Exact Exact String
Match

Chess Sygyzy
Endgames

Endgames created by human
annotator and data collected
from https://syzygy-tables.info,
and the questions and answers
are adapted to match Jaccard in-
dex

Exact Chess Move List
Jaccard Index,
Exact String
Match

Go Capture Stone Data collected from
https://online-go.com/learn-
to-play-go/capture and
https://forums.online-
go.com/t/capture-go-
problems/31531/9, and the
questions and answers are
adapted to match strings

Exact Exact String
Match

Bongard Problem Data collected from
https://www.oebp.org/welcome.php
and
https://www.foundalis.com/res/bps/bpidx.htm

Contextual String Set Equal-
ity Comma
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Number Puzzle
Kakuro 5x5

Data collected from
https://krazydad.com/kakuro/,
and the questions and answers
are adapted to match strings

Exact Exact String
Match

Mensa Iq Test Data collected from website, and
the questions and answers are
adapted to match dict equality

Structured Dict Equality

Arc Agi Data collected from
https://arcprize.org/play and
the task is adapted from In-
telligence (Chollet, 2019), the
question and answer are adapted
into a grid of digits by human
annotator

Exact Exact String
Match

Mnist Pattern Data collected from
MNIST (Deng, 2012), and
the questions and answers are
adapted to match strings

Numerical Exact String
Match

Number Puzzle
Sudoku

Data collected from puzzles.ca,
and the questions and answers
are adapted to match strings

Contextual Simple String
Match

Move Pos To Pos
Hanoi 4 Pole

Shortest paths derived from a di-
agram found on website and the
questions and answers are cre-
ated to match strings and the
longest common move prefix

Structured Exact String
Match, Longest
Common List
Prefix Ratio

Pictionary Car-
toon Drawing
Guess

Data collected from An early
evaluation of gpt-4v (ision) (Wu
et al., 2023), the question and an-
swer are adapted to match strings
by human annotator

Exact Exact Str Match
Case Insensitive

Pictionary Chi-
nese Food Img2en

Data collected from website, and
the questions and answers are
adapted to match strings

Exact Exact Str Match
Case Insensitive

Pictionary Doodle
Guess

Data collected from website, and
the questions and answers are
adapted to match strings

Exact Exact String
Match

Pictionary Skribbl
Io

Data collected from screenshots
collected by human annotator on
skribbl.io and the questions and
answers are adapted to match
strings

Exact Exact Str Match
Case Insensitive

Pictionary Genai
Output Chinese

Data collected from screenshot
of website, and the questions and
answers are adapted to match
strings

Exact Exact String
Match

Annoying Word
Search

Data collected from various web-
sites, and the answers are anno-
tated by human annotator

Contextual Dict Jaccard Agg
Jaccard
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Logical Reason-
ing 2d Views Of
3d Shapes

Data collected from website, and
the questions and answers are
adapted to match strings

Structured Dict Equality

Maze 2d 8x8 Data generated from
https://www.mazegenerator.net/,
and the questions and answers
are adapted to match strings

Exact Exact Str Match
Case Insensitive

Crossword Mini
5x5

Data collected from website, and
the questions and answers are
adapted to match strings

Structured Dict Exact Str
Match Agg Recall

Rebus Data collected from website, and
the questions and answers are
adapted to match strings

Contextual Simple String
Match

Icon Arithmetic
Puzzle

Data collected from An early
evaluation of gpt-4v (ision) (Wu
et al., 2023), the question and an-
swer are adapted to match strings
by human annotator

Structured Exact String
Match, Sequence
Equality

Iq Test Open
Ended

Data and answers are collected
from website

Open GPT-4o as Judge

Ball Cup Swap 3 Screenshots taken from video
and edited together using images
found online, and the questions
and answers are adapted to match
strings

MC Exact String
Match

Logical Reason-
ing 2d Folding

Data collected from website, and
the questions and answers are
adapted to match strings

MC Exact String
Match

Perception Test
Video Character
Order

Data collected from Perception
Test (Patraucean et al., 2024)
and the task is adapted from
MVBench (Li et al., 2024e), the
question and answer are adapted
into single answer string by hu-
man annotator

Contextual Simple String
Match

Comic Page Or-
dering

Data collected from website Contextual Sequence Equal-
ity

Recipe Image Or-
dering

Data collected from website MC Sequence Equal-
ity

Coding
Code Translation
Easy

Data and test cases are collected
from Pintia

Structured Program Judge

Code Translation
Python

Data collected from xCodeEval
split (Khan et al., 2023), and test
cases are annotated by human

Structured Program Judge

Code Translation
Hard

Data and test cases are collected
from Pintia

Structured Program Judge
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Code Translation
Advanced

Data and test cases are collected
from Pintia

Structured Program Judge

Symbolic Graph-
ics Programs
Computer Aided
Design

Data and answer are collected
from SGP-Bench (Qiu et al.,
2024)

Contextual Multi Ref Phrase

Symbolic Graph-
ics Programs
Scalable Vector
Graphics

Data and answer are collected
from SGP-Bench (Qiu et al.,
2024)

Contextual Multi Ref Phrase

Webpage Code
Understanding

Data are collected from website,
and the question and answer are
adapted for string match

MC Exact String
Match

Code Add Tag Data collected from xCodeEval
(Khan et al., 2023), the question
and answer are adapted to match
code tag

Contextual Set Equality

Media Recom-
mend Solutions
Stackoverflow

Data are collected from Stack
Overflow Website, and the ques-
tion and answer are adapted to
match string

MC Exact String
Match

Flowchart Code
Generation

Data are collected from website,
and the question and answer are
designed by human annotator

MC Exact String
Match

Code Solution
Compare

Data collected from SGP-
Bench (Qiu et al., 2024), and the
question and answer are adapted
for string match

Exact Exact String
Match

Code Match Prob-
lem

Data collected from SGP-
Bench (Qiu et al., 2024), and the
question and answer are adapted
to match code

Exact Exact String
Match

Code Visual-
ization Output
Understanding

Data are collected from website,
and the question and answer are
designed by human annotator

MC String Set Equal-
ity Comma

Code Output Re-
sult

Data are collected from San-
Foundry MCQs, and the question
and answer are designed by hu-
man annotator

Exact Code Result Exact
Str Match

Code Execution Data collected from execution-
v2 (Jain et al., 2024a), the ques-
tion and answer are adapted to
match string

Contextual Simple String
Match

Code Retrieval Data collected from SGP-
Bench (Qiu et al., 2024), and the
question and answer are adapted
to match string

Exact Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Table2latex Com-
plex

Data collected from SGP-
Bench (Qiu et al., 2024), and the
question and answer are adapted
for LLM Judge

Structured GPT-4o as Judge

Ocr Table To
Html

Data are collected from website,
and the question and answer are
designed by human annotator

Structured Simple String
Match

Ocr Table To
Markdown

Data are collected from website,
and the question and answer are
designed by human annotator

Structured Simple String
Match

Ocr Math Text La-
tex

Data are collected from website,
and the question and answer are
designed by human annotator to
match text with LATEX

Contextual Text With Latex
Expr Equality

Ocr Math Equa-
tion

Data are collected from website,
and the question and answer are
designed by human annotator to
match LATEX

Contextual Latex Expr Equal-
ity

Latex Com-
plex Formula
Convertion

Data are collected from latex-
formulas and TexTeller, and the
question and answer are de-
signed by human annotator

Structured Latex Expr Equal-
ity

Ocr Table To La-
tex

Data are collected from website,
and the question and answer are
designed by human annotator

Structured Simple String
Match

Ocr Table To Csv Data are collected from website,
and the question and answer are
designed by human annotator

Structured Simple String
Match

Code Program-
ming Test Easy

Data and test cases are collected
from Pintia

Structured Program Judge

Code Program-
ming Test Hard

Data and test cases are collected
from Pintia

Structured Program Judge

Code Program-
ming Test Ad-
vanced

Data and test cases are collected
from Pintia

Structured Program Judge

Code Program-
ming Extremely
Hard

Data and test cases are collected
from Pintia

Structured Program Judge

Visualization
With Code

Data are collected from website,
and the question and answer are
designed by human annotator

Structured GPT-4o as Judge

Stackoverflow
Debug Qa

Data are collected from Stack
Overflow Website, and the ques-
tion and answer are adapted to
match string

Structured Exact Str Match
Case Insensitive,
Exact String
Match

Code Error Line
Identification

Data collected from Pintia, and
the question and answer are
adapted to match string

MC Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Perception
Visual Correspon-
dence In Two Im-
ages

Images are from BLINK (Fu
et al., 2024c). Annotator man-
ually added one more reference
point per sample and designed
structured answers

Structured Dict Equality

2D Image Jigsaw
Puzzle Easy

Images created by playing the
online Jigsaw simulator and tak-
ing screenshots

Structured Dict Exact Str
Match Agg Recall

Adapted Cvbench
Distance

Data collected from CV-Bench’s
distance split (Tong et al., 2024),
and adapted into exact text an-
swer

Exact Exact String
Match

Geometry Plot
Position Relation-
ship

Data collected from Internet.
Question and answers were de-
signed by the annotator

Exact Exact String
Match

Video Grounding
Spatial

Videos collected from Vi-
dOR (Shang et al., 2019).
Re-designed questions and
answers for this specific task

Contextual Simple String
Match

Adapted Cvbench
Relation

Data collected from CV-Bench’s
relation split (Tong et al., 2024),
and adapted into exact text an-
swer

Exact Exact String
Match

Egocentric Spatial
Reasoning

Data are collected from Epic-
Kitchen (Damen et al., 2018) and
the Internet. Questions and an-
swers are adapted for contextual
formatted output

Contextual Multi Ref Phrase

Trance Physics
Reasoning Basic

Data are collected from
Trance (Hong et al., 2023)
by specifically picking up sam-
ples with the easiest settings.
Questions and answers are
re-designed for this specific task

Exact Exact String
Match

CLEVER Moving
Direction Video

Video data are collected from
MVBench (Li et al., 2024e).
Questions and answers are
adapted for the contextual
formatted output format

Contextual Multi Ref Phrase

Trance Physics
Reasoning Event

Data are collected from
Trance (Hong et al., 2023)
by selecting settings where
objects are moved. Questions
and answers are re-designed for
indicating changed objects

MC Set Equality

3D Fragments
Understanding

We write rendering scripts to
produce the data from the assets
of the Break Bad dataset (Sellán
et al., 2022)

Numerical Simple String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Physical Property
Reasoning

Images are collected from the In-
ternet, questions and answers are
designed by annotator

Contextual Simple String
Match

ClEVRER
Physics

Images are collected from
CLEVRER (Yi et al., 2019),
questions and answers are
re-designed for testing the
understanding of physical status

Numerical Exact String
Match

ClEVRER Video
Moving Ob-
ject Property
Recognition

The videos are collected from
MVBench (Li et al., 2024e),
the questions and answers are
adapted to test the understanding
of physical property and dynam-
ics

Contextual Multi Ref Phrase

Trance Physics
Reasoning View

Data are collected from
Trance (Hong et al., 2023)
by selecting the most challeng-
ing settings (objects are moved,
and two states are captured by
different cameras). Questions
and answers are re-designed for
indicating changed objects

MC Set Equality

Photoshop Opera-
tion

Images are collected from the
Web, questions and answers de-
signed by annotator

Structured Jaccard Index

Relative Re-
flectance Of
Different Regions

Images come from BLINK (Fu
et al., 2024c), the annotator
added one more point per image
and converted the task into a re-
flectance sorting task

Structured Sequence Equal-
ity

Autonomous
Driving Scene
Analysis

Images are collected from the In-
ternet, questions and answers are
designed by annotator

Exact Exact Str Match
Case Insensitive

Functionality
Matching In
Different Objects

The images come from
BLINK (Fu et al., 2024c).
The annotator manually added
one ref point per image to
augment the task

Structured Dict Equality

NLVR2 Two Im-
age Compare QA

Images are collected from
NLVR2 (Suhr & Artzi, 2019).
Questions and answers re-
designed by the annotator

MC Multi Ref Phrase

Egocentric Analy-
sis Single Image

The images are collected from
Epic-Kitchens (Damen et al.,
2018). Questions and answers
are re-designed by the annotator

Exact Exact String
Match Case
Insensitive

ClEVR Object
Existence Video

Videos are collected from
MVBench (Li et al., 2024e).
Questions and answers are
slightly adapted

MC Simple String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

SNLI-VE Visual
Entailment

Data are collected and converted
from SNLI-VE dataset (Xie
et al., 2019)

Exact Exact String
Match

OCR Open-ended
QA

Images collected from the Inter-
net. Questions and answers made
up by the annotator for the open-
ended output format

Open GPT-4o as Judge

Super ClEVR
Scene Under-
standing

Images are collected from Su-
perCLEVR (Li et al., 2023b).
Questions and answers are re-
designed by the annotator

Contextual Multi Ref Phrase

Visual Dialog Im-
age Guessing

Images are collected from Visual
Dialog dataset (Das et al., 2017).
Questions and answers are de-
signed by the annotator

MC Exact String
Match

Semantic Match-
ing Of Two Im-
ages

Images come from BLINK
dataset (Fu et al., 2024c). The
annotator augmented the data by
adding one more ref point and
re-designed the answer

Structured Dict Equality

Recover Masked
Word In Figure

The annotator took screenshots
from a few public papers on
arXiv and designed the question-
answer pairs

Contextual Simple String
Match

Graph Interpreta-
tion

The images of line/dot graphs are
collected from the Internet, and
the annotator created the ques-
tion and open-ended reference
answer

Open GPT-4o as Judge

Science Figure
Explanation

The images of science figures are
collected from the Internet, and
the annotator created the ques-
tion and open-ended reference
answer

Open GPT-4o as Judge

Bar Chart Inter-
pretation

The images of bar graphs are
collected from the Internet, and
the annotator created the ques-
tion and open-ended reference
answer

Open GPT-4o as Judge

Electricity Load
Estimate Plot

The temporal data were collected
from Informer (Zhou et al.,
2021) and AutoFormer (Wu
et al., 2021). The annotator
re-processed the data to design a
more specific task

Numerical Normalized
RMSE

Average Humidity
Estimate Plot

The temporal data were col-
lected from AutoFormer (Wu
et al., 2021). The annotator re-
processed the data to design a
more specific task

Numerical Normalized
RMSE
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Exchange Rate
Estimate Plot

The temporal data were collected
from Lai et al. (2018) and Aut-
oFormer (Wu et al., 2021). The
annotator re-processed the data
to design a more specific task

Numerical Normalized Rmse

Road Map Find
Highway Be-
tween Two Place

The road map images were
collected from Seed-Bencn (Li
et al., 2024c) and the Internet.
Questions and answers are de-
signed by the annotator

Exact Exact String
Match

Transit Map Inter-
section Points

The transit map images were
collected from Seed-Bencn (Li
et al., 2024c) and the Internet.
Questions and answers are de-
signed by the annotator

Structured Exact String
Match, Sequence
Equality Case
Insensitive

Panel Images Sin-
gle Question

Panel images were collected
from (Fan et al., 2024). Ques-
tions and answers were designed
by the annotator

MC Exact String
Match

Knowledge Graph
Understanding

The large knowledge graph im-
age was collected from the Inter-
net. Questions and answers were
designed by the annotator

Contextual Set Equality

Panel Images
Multi Question

Panel images were collected
from (Fan et al., 2024). Ques-
tions and answers were designed
by the annotator

Structured Exact String
Match

Mindmap Ele-
ments Parsing

Mindmap images were collected
from Seed-Bencn (Li et al.,
2024c) and the Internet. Ques-
tions and answers are designed
by the annotator

Structured Set Equality Case
Insensitive

Dvqa Images were collected from
Dvqa dataset (Kafle et al., 2018).
Questions and answers were
re-designed by the annotator

Numerical Multi Ref Phrase

Figureqa Images were collected from Fig-
ureQA dataset (Kahou et al.,
2017). Questions and answers
were re-designed by the annota-
tor

MC Multi Ref Phrase

Map Diagram Qa Images were collected from
MapQA dataset (Chang et al.,
2022). Questions and an-
swers were re-designed by the
annotator

Contextual Simple String
Match

Chart Vqa Data were collected from Math-
Vista (Lu et al., 2023) (statistics
subset) and converted into a more
specific task

Numerical General Single
Numerical Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Photo Sharing Im-
age Retrieval

Images were from the Pho-
toChat (Zang et al., 2021)
dataset. Questions and answers
are designed by the annotator

MC Exact String
Match

Multi Load Type
Prediction From
Plot

The temporal data were collected
from Informer (Zhou et al.,
2021) and AutoFormer (Wu
et al., 2021). The annotator
re-processed the data to design a
more specific task

MC Sequence Ac-
curacy Case
Insensitive

Stock Price Future
Prediction

The annotator downloaded data
from Yahoo! Finance’s API, and
processed data to design this task

Contextual Normalized Rmse

Traffic Future Pre-
diction From Line
Plot

The temporal data were col-
lected from AutoFormer (Wu
et al., 2021). The annotator re-
processed the data to design a
more specific task

Numerical Normalized Rmse

Electricity Plot
Future Prediction

The temporal data were col-
lected from AutoFormer (Wu
et al., 2021). The annotator re-
processed the data to design a
more specific task

Numerical Normalized Rmse

Ili Ratio Future
Prediction

The temporal data were col-
lected from AutoFormer (Wu
et al., 2021). The annotator re-
processed the data to design a
more specific task

Numerical Normalized Rmse

Paper Vqa The annotator took high-
resolution screenshots of a few
papers on arXiv, and designed
the questions and answers

Contextual Simple String
Match

Doc Vqa Data and open-ended QA
pairs were converted from
DocMatix (HuggingFaceM4,
2024)

Open GPT-4o as Judge

FunSD Document
Qa

Images were collected from
FunSD (Jaume et al., 2019).
Questions and answers were
designed by annotator

Contextual Simple String
Match

OCR Article Jour-
nal

The article screenshots were
taken from various websites.
Questions and answers were cre-
ated by the annotator

Contextual Simple String
Match

IAM Line Ocr
And Locate

Images were collected
from the IAM handwritten
database (Marti & Bunke, 1999).
Questions and answers were
re-designed by the annotator

Structured Exact String
Match, Normal-
ized Similarity
Damerau Leven-
shtein
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

OCR Resume Ex-
perience Plain

The resume screenshots were
taken from various websites.
Questions and answers were cre-
ated by the annotator

Contextual String Set Equal-
ity Line Break

Newspaper Ocr In
Query Box

Images were collected from
The Newspaper Navigator
Dataset (Lee et al., 2020). Ques-
tions and answers were adapted
by the annotator into simple
string answer format.

Contextual Simple String
Match

OCR Resume
Skill Plain

The article screenshots were
taken from various websites.
Questions and answers were cre-
ated by the annotator

Contextual String Set Equal-
ity Line Break

OCR Resume
Employer Plain

The article screenshots were
taken from various websites.
Questions and answers were cre-
ated by the annotator

Contextual String Set Equal-
ity Line Break

Finance Table Un-
derstanding

Images were collected from
MMMU (Yue et al., 2024a).
Questions and answers were
adapted by the annotator into
direct numerical output format

Numerical Exact String
Match

Monthly Weather
Days Count

Images were collected from the
Microsoft Weather by taking
screenshots. Questions and an-
swers were designed by the an-
notator.

Structured Exact String
Match

Table Under-
standing Complex
Question Answer-
ing

Tables were collected from
WikiTableQuestions (Pasupat &
Liang, 2015) and TabFact (Chen
et al., 2019). Questions and
answers were designed by the
annotator

Contextual Simple String
Match

Table Understand-
ing Fetaqa

Data were collected and con-
verted from FetaQA (Nan et al.,
2022)

Open GPT-4o as Judge

Table Understand-
ing Fact Verifica-
tion

Tables were collected from
WikiTableQuestions (Pasupat &
Liang, 2015) and TabFact (Chen
et al., 2019). Questions and
answers were designed by the
annotator

Contextual Dict Precision

Electricity Future
Prediction From
Table

The temporal data were col-
lected from AutoFormer (Wu
et al., 2021). The annotator re-
processed the data to design a
more specific task

Numerical Normalized Rmse
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Video Detail De-
scription

Video and description data were
collected from VideoDetailCap-
tion (Maaz et al., 2023) and con-
verted into a specific task

Open GPT-4o as Judge

Guess Image Gen-
eration Prompt

Examples were collected from
various online text-to-image gen-
eration demos

Open GPT-4o as Judge

Docci Image De-
scription Long

Data were collected from
DOCCI (Onoe et al., 2024)

Open GPT-4o as Judge

Tweets Caption-
ing

The annotator collected the data
from X by taking screenshots and
and the texts

Open GPT-4o as Judge

Image Captioning
With Additional
Requirements

Images were collected from var-
ious sources on the Web. The
annotator used Claude 3.5 Son-
net to generate reference answers
and manually polished them

Open GPT-4o as Judge

Ad Count Detec-
tion

Image were collected from var-
ious websites by taking screen-
shots. Questions and answers
created by the annotator

Numerical Exact String
Match

Adapted Cvbench
Count

Data were collected from CV-
Bench’s counting split (Tong
et al., 2024) and adapted into
a specific task by rewriting the
question-answer pairs

Numerical Exact String
Match

Av Vehicle Multi-
view Counting

Images were collected from the
nuScenes (Caesar et al., 2020)
dataset. The annotator designed
the questions and implemented
a script to generate the answers
from the raw annotation

Numerical Exact String
Match

Counting Multi
Image

Data were collected from Man-
tis (Jiang et al., 2024a) and
adapted into direct numerical an-
swer

Numerical Exact String
Match

Av Human Multi-
view Counting

Images were collected from the
nuScenes (Caesar et al., 2020)
dataset. The annotator designed
the questions and implemented
a script to generate the answers
from the raw annotation

Numerical Exact String
Match

Shape Composi-
tion Shapes

Images were made by the anno-
tator using Canva. Questions and
answers were created by the an-
notator

Structured Positive Int Match

Counting Single
Image

Data were collected from Man-
tis (Jiang et al., 2024a) and
adapted into direct numerical an-
swer

Numerical Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

CLEVRER Video
Moving Object
Count

Video data are collected from
MVBench (Li et al., 2024e).
Questions and answers are
adapted for the direct numerical
output

Numerical Exact String
Match

Shape Composi-
tion Colours

Images were created by the anno-
tator using Canva. Questions and
answers were created by the an-
notator

Structured Positive Int Match

Face Identity
Matching

Images were collected from
CelebA (Liu et al., 2015). Ques-
tions and answers re-designed
by the annotator for this specific
task

Numerical Set Equality

Rocks Samples
Identify

Images, questions, and answers
were collected from the Web by
the annotator

Contextual Simple String
Match

Animal Pose Esti-
mation

Images were collected from AP-
10K (Yu et al., 2021). The anno-
tator implemented a script to pro-
duce the answer from raw anno-
tations for this task

Numerical Sequence Coords
Similarity

License Plate
Recognition

Images were collected from the
Web. Questions and answers
were created by the annotator

Exact Exact Str Match
Case Insensitive

Image Style
Recognition

Images were collected from the
Web. Questions and answers
were created by the annotator

Exact Exact Str Match
Case Insensitive

Long String Letter
Recognition

Data were designed by the anno-
tator and generated automatically
with code

Exact Exact String
Match

COCO Object De-
tection By Query
Property

Images were from MS-
COCO (Lin et al., 2014).
Questions and answers were
re-designed by the annotator and
adapted manually

Numerical Exact String
Match, Nbbox Iou
Tuple

Widerface Face
Count And Event
Classification

Images were collected from
WiderFace (Yang et al., 2016).
Questions and answers were
designed and produced by the
annotator

Structured Exact String
Match, Simple
String Match

Handwritten
Math Expression
Extraction

Data were collected from
HME100K (Yuan et al., 2022)

Contextual Latex Expr Equal-
ity

Geometry Rea-
soning Circled
Letter

Image were collected from Rah-
manzadehgervi et al. (2024) are
manually created. Questions and
answers were re-designed by the
annotator

Structured Exact String
Match, Sequence
Equality
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Av Multicamera
Tracking Predict
Bbox

Images were collected from the
nuScenes (Caesar et al., 2020)
dataset. The annotator designed
the questions and implemented
a script to generate the answers
from the raw annotation

Numerical Nbbox Iou Se-
quence

ASCII Art Under-
standing

Data and annotations were col-
lected and created by the annota-
tor from various online resources

MC Exact String
Match

Face Keypoint
Detection

Raw data were from CelebA (Liu
et al., 2015). The annotator wrote
a script to produce the answers
for this task

Structured Sequence Coords
Similarity

Extract Webpage
Headline

Images were collected from
VisualWebBench (Liu et al.,
2024a). Questions and answers
were adapted by the annotator

Contextual Simple String
Match

Waldo Images and annotations were
collected and created by the an-
notator using various resources
on the Web

Structured Dict Nbbox Iou
Tuple Agg Jac-
card

Geographic Re-
mote Sensing
Land Cover

Images and annotations were
collected and converted from
SATIN (Roberts et al., 2023)

Contextual Sequence Equal-
ity

Signboard Identi-
fication

Images were collected from the
Internet. The annotator created
the question-answer pairs

Contextual Simple String
Match

Long String Num-
ber Recognition

Data were designed by the anno-
tator and generated automatically
with code

Exact Exact String
Match

Waybill Num-
ber Sequence
Extraction

Images were collected from the
Internet. The annotator created
the question-answer pairs

Contextual Simple String
Match

Single Person
Pose Estimation

hello, this is Source Description Structured Sequence Coords
Similarity

COCO Person
Detection

Images were from MS-
COCO (Lin et al., 2014).
Questions and answers were
re-designed by the annotator and
adapted with a script

Numerical Exact String
Match, Nbbox Iou
Tuple

Places365 Scene
Type Classifica-
tion

Images were collected from
Places365 (Zhou et al., 2017).
Questions and answers were
re-designed and generated by the
annotator

Exact Exact String
Match

Visual Prediction
Rater Openable
Part Segmentation

Images were collected using
screenshots from arXiv papers’
qualitative results. Questions and
answers were created by the an-
notator

MC Sequence Equal-
ity
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4885
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Visual Prediction
Rater Panoptic
Segmentation

Images were collected using
screenshots from qualitative re-
sults from the arXiv papers.
Questions and answers were cre-
ated by the annotator

MC Sequence Ac-
curacy Case
Insensitive

Visual Prediction
Rater Semantic
Segmentation

Images were collected using
screenshots from the qualita-
tive results of the arXiv papers.
Questions and answers were cre-
ated by the annotator

MC Sequence Ac-
curacy Case
Insensitive

Video To Cam-
era Trajectory Re-
trieval

Data were collected from the
project page of VD3D (Bahmani
et al., 2024). Questions and an-
swers designed and created by
the annotator

MC Exact String
Match

Sceneqa Scene
Transition Video

Video data are collected from
MVBench (Li et al., 2024e).
Questions and answers are
adapted by the annotator into
open-ended format

Open GPT-4o as Judge

Video Segments
Reordering

Raw data come from
UCF101 (Soomro et al., 2012).
The annotator designed the task
and re-organized the data to
produce the question-answer
pairs

Structured Sequence Equal-
ity

Action Sequence
Understanding

Data were collected from
MileBench (Song et al., 2024).
Questions and answers were
designed and created by the
annotator

Exact Exact String
Match

Video Action
Recognition

Raw data come from
UCF101 (Soomro et al., 2012).
The annotator designed the task
and re-organized the data to
produce the question-answer
pairs

Structured Exact String
Match

Google
Streetview Line
Sorting

The data were taken from Google
Maps. Questions and answers
were created by the annotator

Structured Sequence Equal-
ity

Next Action Pre-
diction

Data were collected from
MileBench (Song et al., 2024).
Questions and answers were
designed and created by the
annotator

MC Exact String
Match

Perception Test
Video Action
Count

Video data are collected from
MVBench (Li et al., 2024e).
Questions and answers are
adapted by the annotator into
direct numerical output format

Numerical Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Google
Streetview Line
Reasoning

The data were taken from Google
Maps. Questions and answers
were created by the annotator

MC Simple String
Match

Video Camera
Motion Descrip-
tion

Videos were collected from Vi-
dOR (Shang et al., 2019). Ques-
tions and answers re-designed
and created by the annotator

Exact Exact String
Match

Video Grounding
Temporal

Videos were collected from Vi-
dOR (Shang et al., 2019). Ques-
tions and answers re-designed
and created by the annotator

MC Simple String
Match

Web Action Pre-
diction

Data were collected from Visual-
WebBench (Liu et al., 2024a)

MC Exact String
Match

Cam Traj To
Video Selection

Data were collected from the
project page of VD3D (Bahmani
et al., 2024). Questions and an-
swers designed and created by
the annotator

Contextual Simple String
Match

Sta Action Local-
ization Video

Video data are collected from
MVBench (Li et al., 2024e).
Questions and answers are repur-
posed for the contextual format-
ted output format

Contextual Simple String
Match

Contain Contain
Images

Images were collected from the
Web. Questions and constraints
are designed by the annotator.
This task has no reference an-
swer

Open Constrained Gen-
eration

Contain Repeat
Length

Images were collected from the
Web. Questions and constraints
are designed by the annotator.
This task has no reference an-
swer

Open Constrained Gen-
eration

Multi Contain Re-
peat Position Only
Length

Images were collected from the
Web. Questions and constraints
are designed by the annotator.
This task has no reference an-
swer

Open Constrained Gen-
eration

Contain Length Images were collected from the
Web. Questions and constraints
are designed by the annotator.
This task has no reference an-
swer

Open Constrained Gen-
eration

Contain Position
Images

Images were collected from the
Web. Questions and constraints
are designed by the annotator.
This task has no reference an-
swer

Open Constrained Gen-
eration
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4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
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4987
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4989
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4999
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5013
5014
5015
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5017
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5019
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Contain Position
Length

Images were collected from the
Web. Questions and constraints
are designed by the annotator.
This task has no reference an-
swer

Open Constrained Gen-
eration

Xor Images Images were collected from the
Web. Questions and constraints
are designed by the annotator.
This task has no reference an-
swer

Open Constrained Gen-
eration

Multi Contain Re-
peat

Images were collected from the
Web. Questions and constraints
are designed by the annotator.
This task has no reference an-
swer

Open Constrained Gen-
eration

Contain Contain
Length

Images were collected from the
Web. Questions and constraints
are designed by the annotator.
This task has no reference an-
swer

Open Constrained Gen-
eration

Multi Contain Po-
sition Only

Images were collected from the
Web. Questions and constraints
are designed by the annotator.
This task has no reference an-
swer

Open Constrained Gen-
eration

Relative Depth Of
Different Points

Images were collected from
BLINK (Fu et al., 2024c).
The annotator augmented each
sample by adding one more
reference point manually and
adjusted the answers

MC Exact String
Match

Visual Prediction
Rater Depth Esti-
mation

Images were collected by taking
screenshots from depth estima-
tion papers on arXiv. Questions
and answers were created by the
annotator

MC Sequence Ac-
curacy Case
Insensitive

Visual Prediction
Rater Novel View
Synthesis

Images were collected by taking
screenshots from novel view syn-
thesis papers on arXiv. Questions
and answers were created by the
annotator

MC Sequence Equal-
ity

Pokemon 3d
Recognition

Images were created by the an-
notator from the Pokemon Go
game. Questions and answers
were designed by the annotator

Structured Exact String
Match

Av View Identifi-
cation

Images were collected from the
nuScenes (Caesar et al., 2020)
dataset. Questions and answers
were designed and created by the
annotator

Contextual Sequence Ac-
curacy Case
Insensitive
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Multiview Rea-
soning Camera
Moving

Images were collected from
BLINK (Fu et al., 2024c).
Questions and answers were
re-designed and augmented by
the annotator

Exact Exact String
Match

3d Indoor Scene
Text Bbox Predic-
tion

The data is adapted from
Multi3DRefer (Zhang et al.,
2023). Questions and answers
were designed by the annotator
and dataset annotation.

Numerical Nbbox Iou Single

Google
Streetview Circle
Reasoning

The data were taken from Google
Maps. Questions and answers
were created by the annotator

MC Simple String
Match

Google
Streetview
Direction Un-
derstanding

The data were taken from Google
StreetView. Questions and an-
swers were created by the anno-
tator

Exact Exact String
Match

Video Motion
Matching Real 3d

Videos were collected from the
project page of Shen et al.
(2024). Questions and answers
were created by the annotator

MC Exact String
Match

Video Motion
Matching 3d Real

Videos were collected from the
project page of Shen et al.
(2024). Questions and answers
were created by the annotator

MC Exact String
Match

Visual Prediction
Rater 3d Assem-
bled Quality Un-
derstanding

Data were collected from the
project page of Wang et al.
(2024e). Questions and answers
were designed and created by the
annotator

MC Sequence Equal-
ity

Visual Prediction
Rater Surface
Normal Estima-
tion

Images were collected by tak-
ing screenshots from surface nor-
mal estimation papers on arXiv.
Questions and answers were cre-
ated by the annotator

MC Sequence Ac-
curacy Case
Insensitive

Adapted Cvbench
Depth

Images were collected from CV-
Bench (Tong et al., 2024). An-
swers were adapted by the anno-
tator into exact text

Exact Exact String
Match

Visual Prediction
Rater Plane Seg-
mentation

Images were collected by taking
screenshots from plane segmen-
tation papers on arXiv

MC Sequence Ac-
curacy Case
Insensitive

3d Indoor Scene
Text Bbox Selec-
tion

Images were collected by tak-
ing screenshots from 3D scene
understanding papers on arXiv.
Questions and answers were de-
signed and generated by the an-
notator

MC Exact String
Match

94



5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129

Under review as a conference paper at ICLR 2025

Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Google
Streetview Circle
Sorting

The data were taken from Google
Maps. Questions and answers
were created by the annotator

Structured Sequence Equal-
ity

Metrics
Paper Review
Writing

Data collected from OpenRe-
view’s public paper reviews

Open GPT-4o as Judge

Paper Review
Rating

Data collected from OpenRe-
view’s public paper reviews

Numerical Number Rel Diff
Ratio

Paper Review Ac-
ceptance

Data collected from OpenRe-
view’s public paper reviews

Exact Exact String
Match

Autorater Artifact Images were collected from Ima-
genHub (Ku et al., 2023). Ques-
tions and answers adapted by the
annotator

MC Exact String
Match

Autorater Control Images were collected from Ima-
genHub (Ku et al., 2023). Ques-
tions and answers adapted by the
annotator

Exact Exact String
Match

Autorater Artifact
Reason

Images were collected from Im-
agenHub (Ku et al., 2023).
The annotator created open-
ended reference answer manu-
ally

Open Constrained Gen-
eration

Autorater Aes-
thetics

Images were collected from Ima-
genHub (Ku et al., 2023). Ques-
tions and answers adapted by the
annotator

Exact Exact String
Match

Autorater Un-
mask

Images were collected from Ima-
genHub (Ku et al., 2023). Ques-
tions and answers adapted by the
annotator

Exact Exact String
Match

Autorater Subject Images were collected from Ima-
genHub (Ku et al., 2023). Ques-
tions and answers adapted by the
annotator

Exact Exact String
Match

Autorater 3d
Model Texturing

Resources are collected from the
user study of Perla et al. (2024).
Questions and answers were de-
signed and created by the anno-
tator

Contextual Sequence Equal-
ity

Autorater Seman-
tics

Images were collected from Ima-
genHub (Ku et al., 2023). Ques-
tions and answers adapted by the
annotator

Exact Exact String
Match

Autorater Motion
Guided Editing

Images were collected by taking
screenshots from image genera-
tion papers on arXiv

MC Sequence Equal-
ity

95



5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183

Under review as a conference paper at ICLR 2025

Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Autorater Mask Images were collected from Ima-
genHub (Ku et al., 2023). Ques-
tions and answers adapted by the
annotator

Exact Exact String
Match

Video Eval Visual
Pref

Video frames were collected
from ImagenHub (He et al.,
2024). Questions and answers
adapted by the annotator

MC Exact String
Match

Generated Video
Artifacts

Videos were collected by run-
ning various text-to-video diffu-
sion models online. Open-ended
reference answers were written
by the annotator manually

Open GPT-4o as Judge

Video Eval Fac-
tual Pref

Video frames were collected
from ImagenHub (He et al.,
2024). Questions and answers
adapted by the annotator

MC Exact String
Match

Video Eval Dy-
namic Pref

Video frames were collected
from ImagenHub (He et al.,
2024). Questions and answers
adapted by the annotator

MC Exact String
Match

Vizwiz Quality
Accessment For
Blind

Images were collected from Chiu
et al. (2020). Questions and
answers were adapted and re-
designed by the annotator

Contextual Set Equality

Reward Models
T2i Reward

Images were collected from
RLAIF-V dataset (Yu et al.,
2024a). Questions and answers
were adapted by the annotator

Exact Exact String
Match

Reward Models
I2t Reward

Images were collected from
RLAIF-V dataset (Yu et al.,
2024a). Questions and answers
were adapted by the annotator

Exact Exact String
Match

Science
Biology Exams V Data collected from EXAMS-

V (Das et al., 2024) and MMMU-
Pro (Yue et al., 2024b), and
the questions and answers are
adapted to match strings

Contextual Simple String
Match

Pmc Vqa Medical
Image Qa

Data collected from NLVR2
dataset (Suhr et al., 2018), and
the questions and answers are
adapted to match strings

Contextual Simple String
Match

Medical Content
Based Retrieval
Radiology

Data collected from ROCO
dataset (Pelka et al., 2018), and
the questions and answers are
adapted to match strings

MC Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Medical Ab-
domen MRI
Organ Recogni-
tion

Data collected from GMAI-
MMBench (Chen et al., 2024b),
and the questions and answers
are adapted to match sequence
accuracy

Contextual Sequence Ac-
curacy Case
Insensitive

Medical Multi Or-
gan Segmentation
Rater

Data collected from pdf screen-
shot, and the questions and
answers are adapted to match
strings

MC Exact String
Match

Medical Cell
Recognition

Data collected from GMAI-
MMBench (Chen et al., 2024b),
and the questions and answers
are adapted to match strings

Exact Exact String
Match

Medical Im-
age Artifacts
Indentification

Data collected from GMAI-
MMBench (Chen et al., 2024b),
and the questions and answers
are adapted to match strings

Exact Exact String
Match

Medical Blood
Vessels Recogni-
tion

Data collected from GMAI-
MMBench (Chen et al., 2024b),
and the questions and answers
are adapted to match strings

Structured Exact String
Match

Healthcare Info
Judgement

Data collected from GMAI-
MMBench (Chen et al., 2024b),
and the questions and answers
are adapted to match strings

MC Exact String
Match

Electrocardiogram Data collected from
MMMU (Yue et al., 2024a),
and the answers are open-ended

Open GPT-4o as Judge

Medical Polyp
Segmentation
Single Object
Rater

Data collected from pdf screen-
shot, and the questions and an-
swers are adapted to match se-
quence equality

Structured Sequence Equal-
ity

Medical Ab-
domen Endscopy
Organ Recogni-
tion

Data collected from GMAI-
MMBench (Chen et al., 2024b),
and the questions and answers
are adapted to match sequence
accuracy

Contextual Sequence Ac-
curacy Case
Insensitive

Medical Key-
words Based
Retrieval Non
Radiology

Data collected from ROCO
dataset (Pelka et al., 2018), and
the questions and answers are
adapted to match strings

Exact Exact String
Match

Medical Parasite
Detection

Data collected from pdf screen-
shot, and the questions and an-
swers are adapted to match set
equality

Structured Set Equality

Medical Retrieval
Given Surgeon
Activity

Data collected from GMAI-
MMBench (Chen et al., 2024b),
and the questions and answers
are adapted to match strings

MC Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Medical Counting
Lymphocytes

Data collected from GMAI-
MMBench (Chen et al., 2024b),
and the questions and answers
are adapted to match strings

Numerical Exact String
Match

Chemistry Exams
V

Data collected from EXAMS-
V (Das et al., 2024) and MMMU-
Pro (Yue et al., 2024b), and
the questions and answers are
adapted to match strings

MC Simple String
Match

Science Molecule
Chemistry

Data collected from
IsoBench (Fu et al., 2024b),
and the questions and answers
are adapted by human annotator

Contextual Simple String
Match

Mmmu Pro Exam
Screenshot

Data collected from MMMU-
Pro (Yue et al., 2024b), and
the questions and answers are
adapted to match strings

MC Exact String
Match

Scibench W Solu-
tion Open Ended

Data collected from
Scibench (Wang et al., 2023b),
and the answers are open-ended

Open GPT-4o as Judge,
General Single
Numerical Match

arXiv Vqa Data collected from screen-
shots by human annotator, and
the questions and answers are
adapted to match strings

MC Exact String
Match

Tqa Textbook Qa Data collected from Dvqa (Kafle
et al., 2018), and the questions
and answers are refractered from
the original TQA dataset

Contextual Multi Ref Phrase

Question Solution
Solving

Data collected from webpage
screenshots by human annotator

Contextual General Single
Numerical Match

Quizlet Question
Solving

Data collected from webpage
screenshots by human annotator

Contextual General Single
Numerical Match

Scibench Funda-
mental Wo Solu-
tion

Data collected from
Scibench (Wang et al., 2023b)

Numerical General Single
Numerical Match

Mmmu Physics
Chemistry Mcq

Data collected from
MMMU (Yue et al., 2024a),
and the questions and answers
are adapted to match strings

Exact Exact String
Match

Circuit Diagram
Understanding

Data collected from webpage
screenshots by human annotator

Numerical Exact String
Match

Science Basic
Physics

Data collected from
IsoBench (Fu et al., 2024b),
and the questions and answers
are adapted by human annotator

Contextual Simple String
Match

98



5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345

Under review as a conference paper at ICLR 2025

Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Physics Exams V Data collected from EXAMS-
V (Das et al., 2024) and MMMU-
Pro (Yue et al., 2024b), and
the questions and answers are
adapted to match strings

Contextual Simple String
Match

Knowledge
Background
Change

Images and labels come from the
MFCBench (Wang et al., 2024c)
dataset. Questions and annota-
tions were adapted by a human
annotator.

MC Exact String
Match

Out Of Context Images and labels come from the
MFCBench (Wang et al., 2024c)
dataset. Questions and annota-
tions were adapted by a human
annotator.

MC Exact String
Match

Text Entity Re-
place

Images and labels come from the
MFCBench (Wang et al., 2024c)
dataset. Questions and annota-
tions were adapted by a human
annotator.

MC Exact String
Match

Text Style Images and labels come from the
MFCBench (Wang et al., 2024c)
dataset. Questions and annota-
tions were adapted by a human
annotator.

MC Exact String
Match

Face Attribute
Edit

Images and labels come from the
MFCBench (Wang et al., 2024c)
dataset. Questions and annota-
tions were adapted by a human
annotator.

MC Exact String
Match

Face Swap Images and labels come from the
MFCBench (Wang et al., 2024c)
dataset. Questions and annota-
tions were adapted by a human
annotator.

MC Exact String
Match

Interpret Force
Perspective Illu-
sion

Images come from various web-
sites. Questions and annotations
were created by a human annota-
tor.

Exact Exact String
Match

Clip Stable Diffu-
sion Generate

Images and labels come from the
MFCBench (Wang et al., 2024c)
dataset. Questions and annota-
tions were adapted by a human
annotator.

MC Exact String
Match

Unusual Images Images come from various web-
sites. Questions and annotations
were created by a human annota-
tor.

Open GPT-4o as Judge
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Forensic Detec-
tion Of Different
Images

Images and labels come from the
BLINK benchmark (Fu et al.,
2024c). Questions and annota-
tions were adapted by a human
annotator.

MC Exact String
Match

Veracity Images and labels come from the
MFCBench (Wang et al., 2024c)
dataset. Questions and annota-
tions were adapted by a human
annotator.

MC Exact String
Match

Distinguish AI
Generated Image

Images come from various
websites and image generators.
Questions and annotations were
created by a human annotator.

Exact Exact String
Match

Cultural Vqa Images and labels come from
the CulturalVQA bench-
mark (Romero et al., 2024).
Questions and annotations were
adapted by a human annotator.

Contextual Multi Ref Phrase

Human Relation-
ship Reasoning

Images come from various web-
sites. Questions and annotations
were created by a human annota-
tor.

Contextual Simple String
Match

Sign Language Videos come from Dr. Bill Vi-
cars’ “Signs” YouTube channel.
Questions and annotations were
created by a human annotator.

Contextual Multi Ref Phrase

Ishihara Test Images come from various web-
sites. Questions and annotations
were created by a human annota-
tor.

Structured Set Precision

Llavaguard Images and labels come from the
LlavaGuard benchmark (Helff
et al., 2024). Questions were cre-
ated by a human annotator.

Structured Exact String
Match

Red Teaming
Racial

Images and labels come from
the Red Teaming benchmark (Li
et al., 2024f). Questions were
created by a human annotator or
generated by GPT-4.

Open GPT-4o as Judge

Red Teaming
Captcha

Images and labels come from
the Red Teaming benchmark (Li
et al., 2024f). Questions were
created by a human annotator or
generated by GPT-4.

Open GPT-4o as Judge

Red Teaming Pol-
itics

Images and labels come from
the Red Teaming benchmark (Li
et al., 2024f). Questions were
created by a human annotator or
generated by GPT-4.

Open GPT-4o as Judge
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Mmsoc Hateful-
memes

Images and labels come from the
MMSoc benchmark (Jin et al.,
2024). Questions and answers
were adapted by a human anno-
tator.

MC Exact String
Match

Red Teaming Vi-
sual Order B

Images and labels come from
the Red Teaming benchmark (Li
et al., 2024f). Questions were
created by a human annotator or
generated by GPT-4.

Open GPT-4o as Judge

Red Teaming
Celebrity

Images and labels come from
the Red Teaming benchmark (Li
et al., 2024f). Questions were
created by a human annotator. or
generated by GPT-4

Open GPT-4o as Judge

Mmsoc Memo-
tion

Images and labels come from the
MMSoc benchmark (Jin et al.,
2024). Questions and answers
were adapted by a human anno-
tator.

Structured Exact String
Match

Mmsoc Misinfor-
mation Politifact

Images and labels come from the
MMSoc benchmark (Jin et al.,
2024). Questions and answers
were adapted by a human anno-
tator.

MC Exact String
Match

Red Teaming Jail-
break

Images and labels come from
the Red Teaming benchmark (Li
et al., 2024f). Questions were
created by a human annotator or
generated by GPT-4.

Open GPT-4o as Judge

Red Teaming Vi-
sual Order A

Images and labels come from
the Red Teaming benchmark (Li
et al., 2024f). Questions were
created by a human annotator or
generated by GPT-4.

Open GPT-4o as Judge

Mmsoc Misinfor-
mation Gossipcop

Images and labels come from the
MMSoc benchmark (Jin et al.,
2024). Questions and answers
were adapted by a human anno-
tator.

MC Exact String
Match

Red Teaming Vi-
sualmisleading

Images and labels come from
the Red Teaming benchmark (Li
et al., 2024f). Questions were
created by a human annotator.

Open GPT-4o as Judge

Video Content
Follow Up

Videos taken from YouTube.
Questions and answers created
by human annnotator.

Open GPT-4o as Judge

Meme Explain Images come from various web-
sites. Questions were created by
a human annotator.

Open GPT-4o as Judge
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Funny Image Title Images come from various web-
sites. Questions were created by
a human annotator.

Open GPT-4o as Judge

Emotion Recogni-
tion

Videos and labels come from
the CAER dataset (Lee et al.,
2019). Questions and answers
were adapted by a human anno-
tator.

Exact Exact String
Match

Image Humor Un-
derstanding

Images come from various web-
sites. Questions were created by
a human annotator.

Open GPT-4o as Judge

Humor Explana-
tion

Images and labels come from
a Humor Understanding bench-
mark derived from the New
Yorker Caption Contest (Hessel
et al., 2022). Questions were cre-
ated by a human annotator.

Open GPT-4o as Judge

Mvsa Sentiment
Classification

Images and labels come from
the MVSA dataset (Niu et al.,
2016). Questions and answers
were adapted by a human anno-
tator

MC Exact String
Match

Video Intent
Recognition

Video and labels come from the
MIntRec dataset (Zhang et al.,
2022). Questions and answers
were adapted by a human anno-
tator.

Contextual Simple String
Match

Humor Under-
stand Caption
Match

Images and labels come from
a Humor Understanding bench-
mark derived from the New
Yorker Caption Contest (Hessel
et al., 2022). Questions and an-
swers were adapted by a human
annotator.

Exact Exact String
Match

Figurative Speech
Explanation

Images come from various web-
sites. Questions were created by
a human annotator.

Open GPT-4o as Judge

Muma Theory Of
Mind Social Goal

Images and labels come from the
MuMA-ToM dataset (Shi et al.,
2024). Questions and answers
were adapted by a human anno-
tator.

Contextual Simple String
Match

Muma Theory Of
Mind Belief Of
Goal

Images and labels come from the
MuMA-ToM dataset (Shi et al.,
2024). Questions and answers
were adapted by a human anno-
tator.

Contextual Simple String
Match

Hashtag Recom-
mendation

Images and hashtags come from
various social media websites.
Questions were created by a hu-
man annotator.

Structured Set Precision
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Task Name Source Description Output Format Metrics

Dish Ingredient
Match

Images and labels come from the
HelloFresh website. Questions
were created by a human anno-
tator.

MC Exact String
Match

Music Sheet Sen-
timent

Images are music sheets posted
to Noteflight. Questions and an-
swers were created by a human
annotator.

Exact Exact String
Match

Music Sheet Au-
thor

Images are music sheets posted
to Noteflight. Questions and an-
swers were created by a human
annotator.

Exact Exact String
Match

Music Sheet Note
Count

Images are music sheets posted
to Noteflight. Questions and an-
swers were created by a human
annotator.

Numerical Exact String
Match

Music Sheet For-
mat Qa

Images are music sheets posted
to Noteflight. Questions and an-
swers were created by a human
annotator.

Numerical Exact String
Match

Orchestra Score
Recognition

Images come from various web-
sites. Questions were created by
a human annotator.

Structured Exact String
Match, Simple
String Match

Music Sheet
Name

Images are music sheets posted
to Noteflight. Questions and an-
swers were created by a human
annotator.

Exact Exact String
Match

Insect Order Clas-
sification

Images and labels come from the
BIOSCAN-1M dataset (Gharaee
et al., 2024). Questions and an-
swers were adapted by a human
annotator.

Contextual Simple String
Match

Signage Naviga-
tion

Images come from various web-
sites. Questions and answers
were created by a human anno-
tator.

Exact Exact String
Match

Song Title Iden-
tification From
Lyrics

Screenshots were taken by the
human annotator on the Spotify
Web Player. Questions and an-
swers were created by the anno-
tator.

Structured Exact String
Match

Knowledge Sign
Recognition

Images come from various web-
sites. Questions were created by
a human annotator.

MC String Set Equal-
ity Comma

Brand Logo
Recognition And
Elaboration

Images come from the Flick-
rLogo (Romberg et al., 2011)
dataset and various websites.
Questions were created by a hu-
man annotator.

Structured Multi Ref Phrase
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Task Name Source Description Output Format Metrics

Logo2k Same
Type Logo Re-
trieval

Images come from the Logo2K+
dataset (Wang et al., 2020)
dataset and various websites.
Questions were created by a hu-
man annotator.

Structured Exact Str Match
Case Insensitive,
Set Equality

Chinese Idiom
Recognition

Images come from various web-
sites. Questions and answers
were created by a human anno-
tator.

Exact Exact String
Match

Multi Lingual
Ruozhiba Expla-
nation French

Some images and labels are from
the COIG-CQIA dataset (Bai
et al., 2024) and some images are
from Baidu Tieba and annotated
by a human annotator.

Open GPT-4o as Judge

Multi Lingual
Ruozhiba Expla-
nation Arabic

Some images and labels are from
the COIG-CQIA dataset (Bai
et al., 2024) and some images are
from Baidu Tieba and annotated
by a human annotator.

Open GPT-4o as Judge

Multi Lingual
Ruozhiba Expla-
nation Spanish

Some images and labels are from
the COIG-CQIA dataset (Bai
et al., 2024) and some images are
from Baidu Tieba and annotated
by a human annotator.

Open GPT-4o as Judge

Multi Lingual
Ruozhiba Expla-
nation English

Some images and labels are from
the COIG-CQIA dataset (Bai
et al., 2024) and some images are
from Baidu Tieba and annotated
by a human annotator.

Open GPT-4o as Judge

Multi Lingual
Ruozhiba Expla-
nation Japanese

Some images and labels are from
the COIG-CQIA dataset (Bai
et al., 2024) and some images are
from Baidu Tieba and annotated
by a human annotator.

Open GPT-4o as Judge

Multi Lingual
Ruozhiba Expla-
nation Russian

Some images and labels are from
the COIG-CQIA dataset (Bai
et al., 2024) and some images are
from Baidu Tieba and annotated
by a human annotator.

Open GPT-4o as Judge

Font Recognition Images and labels are taken from
Identifont. Questions are created
by a human annotator.

Exact Exact String
Match

Traffic Accident
Analysis

Images and labels are taken from
Jia Kao Bao Dian. Questions are
created by a human annotator.

Open GPT-4o as Judge

Multiple States
Identify Asia

Images come from various web-
sites and were edited by the an-
notator. Questions and answers
were created by a human annota-
tor.

Contextual Sequence Ac-
curacy Case
Insensitive
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Task Name Source Description Output Format Metrics

Multiple States
Identify Americas

Images come from various web-
sites and were edited by the an-
notator. Questions and answers
were created by a human annota-
tor.

Contextual Sequence Ac-
curacy Case
Insensitive

Multiple States
Identify Europe

Images come from various web-
sites and were edited by the an-
notator. Questions and answers
were created by a human annota-
tor.

Contextual Sequence Ac-
curacy Case
Insensitive

Multiple States
Identify Africa

Images come from various web-
sites and were edited by the an-
notator. Questions and answers
were created by a human annota-
tor.

Contextual Sequence Ac-
curacy Case
Insensitive

Worldle Images and labels are taken from
Worldle Daily, a free Geoguessr
alternative. Questions and an-
swers are created by a human an-
notator.

Structured Exact String
Match

Location Vqa Images and labels come from
various websites. Questions
were created by a human anno-
tator.

Exact Exact String
Match

Vibe Eval Open Images and labels come from
the Vibe-Eval dataset Padlewski
et al. (2024). Questions were cre-
ated by a human annotator.

Contextual Multi Ref Phrase

Vibe Eval Phrase Images and labels come from
the Vibe-Eval dataset Padlewski
et al. (2024). Questions were cre-
ated by a human annotator.

Open GPT-4o as Judge

Ancient Map Un-
derstanding

Images and labels come from
various websites. Questions
were created by a human anno-
tator.

Exact Exact String
Match

Rocks Samples
Compare

Images and labels come from
ChinaNeolithic.com’s online
rock store. Questions were
created by a human annotator.

Contextual Simple String
Match

Painting Qa Images and labels come from the
MMMU benchmark Yue et al.
(2024a). Questions and answers
were adapted by a human anno-
tator.

Exact Exact String
Match

Art Explanation Images come from various web-
sites. Questions were created by
a human annotator.

Open GPT-4o as Judge
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Task Name Source Description Output Format Metrics

Memorization
Chinese Celebrity

Images and labels come from
various websites. Questions
were created by a human anno-
tator.

Structured Multi Ref Phrase

Memorization Pa-
pers

Images and labels come from
various websites. Questions
were created by a human anno-
tator.

Structured Simple String
Match

Memorization Fa-
mous Treaty

Images and labels come from
various websites. Questions
were created by a human anno-
tator.

Structured Exact String
Match, Multi Ref
Phrase

Memorization In-
dian Celebrity

Images and labels come from
various websites. Questions
were created by a human anno-
tator.

Structured Exact String
Match, Multi Ref
Phrase

Soccer Offside Images come from various web-
sites. Questions were created by
a human annotator.

MC Exact String
Match

Deciphering Ora-
cle Bone

Images and labels come from the
“Deciphering Oracle Bone Lan-
guage with Diffusion Models”
paper (Guan et al., 2024). Ques-
tions were created by a human
annotator.

Exact Exact String
Match

Kvqa Knowledge
Aware Qa

Images and labels come from the
MapQA dataset (Chang et al.,
2022). Questions and answers
were adapted by a human anno-
tator.

Contextual Simple String
Match

Character Recog-
nition In Tv
Shows

Screenshots were taken by the
human annotator on the Amazon
Prime Video webpage. Ques-
tions and answers were created
by the annotator.

Contextual Set Equality

Actor Recogni-
tion In Movie

Screenshots were taken by the
human annotator on the Amazon
Prime Video webpage. Ques-
tions and answers were created
by the annotator.

Exact Exact String
Match

Landmark Recog-
nition And Qa

Images and labels come from the
Landmark v2 dataset (Weyand
et al., 2020). Questions and an-
swers were adapted by a human
annotator.

Structured Exact String
Match, Multi Ref
Phrase, Near Str
Match

Famous Building
Recognition

Images and labels come from
various websites. Questions
were created by a human anno-
tator.

Structured Exact Str Match
Case Insensitive,
Exact String
Match
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Task Name Source Description Output Format Metrics

Landmark Check
Two Images

Images and labels come from the
Landmark v2 dataset (Weyand
et al., 2020). Questions and an-
swers were adapted by a human
annotator.

Structured Exact Str Match
Case Insensitive

Defeasible Rea-
soning

Images and labels come from
various websites. Questions
were created by a human anno-
tator.

Open GPT-4o as Judge

Poetry Limerick Images come from various web-
sites. Questions and evaluation
constraints were created by a hu-
man annotator.

Open Constrained Gen-
eration

Poetry Shake-
spearean Sonnet

Images come from various web-
sites. Questions and evaluation
constraints were created by a hu-
man annotator.

Open Constrained Gen-
eration

Poetry Custom
Rhyming Scheme

Images come from various web-
sites. Questions and evaluation
constraints were created by a hu-
man annotator.

Open Constrained Gen-
eration

Poetry Acrostic
Alliteration

Images come from various web-
sites. Questions and evaluation
constraints were created by a hu-
man annotator.

Open Constrained Gen-
eration

Poetry Haiku Images come from various web-
sites. Questions and evaluation
constraints were created by a hu-
man annotator.

Open Constrained Gen-
eration

Poetry Petrar-
chian Sonnet
Optional Meter

Images come from various web-
sites. Questions and evaluation
constraints were created by a hu-
man annotator.

Open Constrained Gen-
eration

Poetry Acrostic Images come from various web-
sites. Questions and evaluation
constraints were created by a hu-
man annotator.

Open Constrained Gen-
eration

Ascii Art 30 Images come from various web-
sites. Reference ASCII art
images were created using the
ASCII Art Archive’s “Image to
ASCII Art” tool.

Contextual ASCII Art GPT-
4o Judge

Mathematics
Graph Shortest
Path Kamada
Kawai

Data collected from Visual
Graph Arena Dataset by human
annotator, and the questions and
answers are adapted to match
strings

Numerical Exact String
Match
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Task Name Source Description Output Format Metrics

Graph Shortest
Path Planar

Data collected from Visual
Graph Arena Dataset by human
annotator, and the questions and
answers are adapted to match
strings

Numerical Exact String
Match

Graph Connectiv-
ity

Data collected from
IsoBench (Fu et al., 2024b),
and the questions and answers
are adapted by human annotator

Structured Exact String
Match

Graph Theory Data collected from MathVi-
sion (Wang et al., 2024b), and
the questions and answers are
adapted by human annotator

Exact Exact String
Match

Graph Isomor-
phism

Data collected from
IsoBench (Fu et al., 2024b),
and the questions and answers
are adapted by human annotator

MC Exact String
Match

Graph Hamilto-
nian Cycle

Data collected from Visual
Graph Arena Dataset by human
annotator, and the questions and
answers are adapted to match set
precision

Structured Exact String
Match, Set Preci-
sion

Graph Hamilto-
nian Path

Data collected from Visual
Graph Arena Dataset by human
annotator, and the questions and
answers are adapted to match set
precision

Structured Exact String
Match, Set Preci-
sion

Graph Chordless
Cycle

Data collected from Visual
Graph Arena Dataset by human
annotator, and the questions and
answers are adapted to match
strings

Numerical Exact String
Match

Topological Sort Data collected from screenshots
by human annotator

Structured Set Equality

Graph Maxflow Data collected from
IsoBench (Fu et al., 2024b),
and the questions and answers
are adapted by human annotator

Numerical Exact String
Match

Scibench Calcu-
lus Wo Solution

Data collected from
Scibench (Wang et al., 2023b)

Numerical General Single
Numerical Match

Clevr Arithmetic Data collected from Clevr (John-
son et al., 2017)

Numerical Exact String
Match

Iconqa Count And
Reasoning

Data collected from IConQA (Lu
et al., 2021), with annotation
refractered from the original
IConQA dataset

Numerical Multi Ref Phrase

Number Compari-
son

Data collected from screenshots
by human annotator

Numerical Exact String
Match
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Math Exams V Data collected from MMMU-
Pro (Yue et al., 2024b), and
the questions and answers are
adapted to match numerical data

MC General Single
Numerical Match

Theoremqa Data collected from screenshots
by human annotator

Contextual Boxed Single Nu-
merical Match

Math Data collected from screenshots
by human annotator

Numerical Boxed Single Nu-
merical Match

Math Parity Data collected from
IsoBench (Fu et al., 2024b),
and the questions and answers
are adapted by human annotator

MC Exact String
Match

Math Breakpoint Data collected from
IsoBench (Fu et al., 2024b),
and the questions and answers
are adapted by human annotator

Numerical Exact String
Match

Math Convexity
Value Estimation

Data collected from
IsoBench (Fu et al., 2024b),
and the questions and answers
are adapted by human annotator

Structured Exact String
Match, Number
Rel Diff Ratio

Geometry Rea-
soning Count
Line Intersections

Data collected from Vision lan-
guage models are blind (Rah-
manzadehgervi et al., 2024), and
the questions and answers are
adapted by human annotator

Structured Exact String
Match

Geometry Length Data collected from MathVi-
sion (Wang et al., 2024b), and
the questions and answers are
adapted by human annotator

Contextual General Single
Numerical Match

Geometry Rea-
soning Nested
Squares

Data collected from Vision lan-
guage models are blind (Rah-
manzadehgervi et al., 2024), and
the questions and answers are
adapted by human annotator

Structured Exact String
Match

Geometry Trans-
formation

Data collected from MathVi-
sion (Wang et al., 2024b), and
the questions and answers are
adapted by human annotator

Contextual General Single
Numerical Match

Geometry Rea-
soning Over-
lapped Circle

Data collected from Vision lan-
guage models are blind (Rah-
manzadehgervi et al., 2024), and
the questions and answers are
adapted by human annotator

Structured Exact String
Match

Geometry Area Data collected from MathVi-
sion (Wang et al., 2024b), and
the questions and answers are
adapted by human annotator

Numerical Exact String
Match
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Table 18 – continued from previous page
Task Name Source Description Output Format Metrics

Geometry Rea-
soning Grid

Data collected from Vision lan-
guage models are blind (Rah-
manzadehgervi et al., 2024), and
the questions and answers are
adapted by human annotator

Structured Exact String
Match

Polygon Interior
Angles

Data collected from screenshots
by human annotator

Numerical Angle Seq Float
Rmse

Geometry Solid Data collected from MathVi-
sion (Wang et al., 2024b), and
the questions and answers are
adapted by human annotator

Contextual General Single
Numerical Match

Geometry Ana-
lytic

Data collected from MathVi-
sion (Wang et al., 2024b), and
the questions and answers are
adapted by human annotator

Contextual General Single
Numerical Match

Geometry De-
scriptive

Data collected from MathVi-
sion (Wang et al., 2024b), and
the questions and answers are
adapted by human annotator

Contextual General Single
Numerical Match

Counterfactual
Arithmetic

Data collected from screenshots
by human annotator

Numerical Exact String
Match

Algebra Data collected from MathVi-
sion (Wang et al., 2024b), and
the questions and answers are
adapted by human annotator

Contextual General Single
Numerical Match
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