
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OUTLIER GRADIENT ANALYSIS:
EFFICIENTLY IDENTIFYING DETRIMENTAL TRAINING
SAMPLES FOR DEEP LEARNING MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

A core data-centric learning challenge is the identification of training samples that
are detrimental to model performance. Influence functions serve as a prominent
tool for this task and offer a robust framework for assessing training data influence
on model predictions. Despite their widespread use, their high computational
cost associated with calculating the inverse of the Hessian matrix pose constraints,
particularly when analyzing large-sized deep models. In this paper, we establish a
bridge between identifying detrimental training samples via influence functions and
outlier gradient detection. This transformation not only presents a straightforward
and Hessian-free formulation but also provides insights into the role of the gradient
in sample impact. Through systematic empirical evaluations, we first validate
the hypothesis of our proposed outlier gradient analysis approach on synthetic
datasets. We then demonstrate its effectiveness in detecting mislabeled samples
in vision models and selecting data samples for improving performance of natural
language processing transformer models. We also extend its use to influential
sample identification for fine-tuning Large Language Models.

1 INTRODUCTION

Data-centric learning focuses on enhancing algorithmic performance from the perspective of the
training data (Oala et al., 2023). In contrast to model-centric learning, which designs novel algorithms
or optimization techniques for performance improvement with fixed training data, data-centric
learning operates with a fixed learning algorithm while modifying the training data through trimming,
augmenting, or other processing for improving utility (Zha et al., 2023). Data-centric learning holds
significant potential in many areas such as model interpretation, subset training set selection, data
generation, noisy label detection, active learning, and others (Chhabra et al., 2024; Kwon et al., 2024).

The essence of data-centric learning lies in estimating data influence, also known as data valuation in
the context of a learning task (Hammoudeh & Lowd, 2022),. Intuitively, the impact of an individual
data sample can be measured by assessing the change in learning utility when training with and
without that specific sample. This leave-one-out influence (Cook & Weisberg, 1982) provides a
rough gauge of the relative data influence of the specific sample on the otherwise full fixed training
set. Shapley value (Ghorbani & Zou, 2019; Jia et al., 2019), originating from cooperative game
theory, quantifies the increase in value when a group of samples collaborates to achieve the learning
goal. Unlike leave-one-out influence, Shapley value represents the weighted average utility change
resulting from adding the sample to different training subsets. Despite the absence of assumptions
on the learning model, the aforementioned retraining-based methods incur significant computational
costs, especially for large-scale data analysis and deep models (Schioppa et al., 2022).

A popular choice for data valuation applications, such as identifying training samples detrimental to
model performance, are influence functions (Koh & Liang, 2017). Essentially, influence functions
assess data influence without requiring model retraining. They measure the effect of changing an
infinitesimal weight of training samples based on a utility-evaluating function. While influence func-
tions can be accurate or acceptable proxies for convex and certain shallow models, their applicability
to deep models is constrained by the strong convexity assumption and the computational cost linked
to calculating the inverse of the Hessian matrix (Basu et al., 2020a).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Our Contributions. In this paper, we delve into the classical data-centric problem: identify-
ing/trimming detrimental samples. We tackle the computational challenge of the inverse of the
Hessian matrix in influence functions in the context of detrimental sample identification and removal.
Our major contributions are as follows:

• We build a bridge between identifying detrimental training samples via influence functions and
outlier detection on the gradient space of samples, and propose our outlier gradient analysis ap-
proach. The transformation features a straightforward and Hessian-free formulation, and reduces the
computational cost associated with the Hessian matrix and its inverse.

• Empirically, we utilize both linear and non-linear synthetic datasets to illustrate the ineffectiveness
of the current Hessian approximation and to validate our hypothesis regarding outlier gradient analysis,
showcasing our method’s high accuracy in identifying mislabeled detrimental samples.

• Subsequently, we demonstrate the effectiveness of outlier gradient analysis in trimming mislabeled
samples from vision datasets across various noise regimes. Additionally, we explore textual appli-
cations by conducting experiments on data selection for fine-tuning deep transformer models and
identifying influential data for text generation tasks using fine-tuned Large Language Models..

2 RELATED WORK

Retraining-Based Influence Estimation. Influence estimation approaches can be generally catego-
rized as either retraining-based or gradient-based (Hammoudeh & Lowd, 2022). Retraining-based
methods consist of the classical leave-one-out influence approach (Cook & Weisberg, 1982), which
consists of removing one training sample at a time, and retraining the model to measure sample
influence via performance change. Other representative methods include Shapley value approaches
(Ghorbani & Zou, 2019; Jia et al., 2019; Kwon & Zou, 2022), which are model agnostic, but also
computationally untenable for large datasets and deep models due to exponential time complexity.
Computationally efficient approaches such as KNN-Shap (Jia et al., 2018) can only employ KNN
classifiers and hence are not directly applicable to the deep models.

Gradient-Based Influence Estimation. For models trained using gradient descent, gradient-based
influence approaches can be used to approximately estimate influence without requiring retraining.
The seminal work in this category is that of Koh & Liang (2017), which utilizes a Taylor-series
approximation and LiSSA optimization (Agarwal et al., 2017) to compute sample influences.
However, the limiting underlying assumption in the formulation is that the model and loss function
are convex, which is not true for deep models. Follow-up works such as representer point (Yeh
et al., 2018) and Hydra (Chen et al., 2021) inherit these convexity assumptions and suffer from
similar issues of applicability. While influence functions have been used for numerous applications
in data-centric learning (Feldman & Zhang, 2020; Chhabra et al., 2024; Richardson et al., 2023), they
tend to be too computationally expensive for large models, and cannot run in reasonable time. More
recently, efficient influence estimation methods such as DataInf (Kwon et al., 2024), Arnoldi iteration
(Schioppa et al., 2022), and Kronecker-factored approximation curvature (Grosse et al., 2023) have
been proposed which can be employed for large models. Some approaches simply consider the
gradients directly as a measure of influence (Pruthi et al., 2020; Charpiat et al., 2019), followed by
some ensemble strategies (Bae et al., 2024; Kim et al., 2024). Recent work has also investigated
the role of the Hessian and convexity in influence estimation (Schioppa et al., 2024). In contrast,
our work aims to circumvent these issues for detrimental sample identification by operating on the
gradient space in a skillful manner. Hence, our work paves the way for an efficient and accurate
detrimental sample identification framework and adds to the “influence function toolset” for deep
models and large datasets. Finally, recent work has also found that self-influence (influence computed
on training samples) can be beneficial in detecting detrimental samples (Bejan et al., 2023; Thakkar
et al., 2023). For related works on miscellaneous data-centric learning, please refer to Appendix A.

3 PROPOSED APPROACH

We first introduce influence functions conceptually and outline how they are applied to the task of
detrimental samples identification. We then detail our transformation by converting the original formu-
lation into a gradient space outlier analysis problem. Subsequently, we provide insights for extending
influence functions to non-convex learning models and propose our outlier gradient analysis approach.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3.1 PRELIMINARIES ON INFLUENCE FUNCTIONS

Let T={zi}ni=1 be a training set, where zi =(xi, yi) includes the input space feature xi and output
space label yi. A classifier trained using empirical risk minimization on the empirical loss ℓ can be
written as: θ̂=argminθ∈Θ

1
n

∑n
i=1 ℓ(zi; θ). Influence functions (Cook & Weisberg, 1982; Hampel,

1974; Martin & Yohai, 1986) measure the effect of changing an infinitesimal weight of training sam-
ples, based on a function that evaluates model utility. Downweighting a training sample zj by a very
small fraction ϵ leads to a model parameter: θ̂(zj ;−ϵ) = argminθ∈Θ

1
n (

∑n
i=1 ℓ(zi; θ)−ϵℓ(zj ; θ)).

By evaluating the limit as ϵ approaches 1, the seminal work of Koh & Liang (2017) provides an
estimation for the influence score associated with the removal of zj from the training set in terms of
training/validation loss as follows:

I(zj) = −
∑

z∈T/V

∇θ̂ℓ(z; θ̂)
⊤H−1

θ̂
∇θ̂ℓ(zj ; θ̂), (1)

where T/V denotes the training/validation set, ∇θ̂ℓ(zj ; θ̂) is the gradient of the loss with respect to
network parameters, and Hθ̂=

∑n
i=1∇2

θ̂
ℓ(zi; θ̂) denotes the Hessian matrix.

One key application of influence functions lies in identifying detrimental samples. This is because an
intuitive way of assessing whether a sample is detrimental is by training the model both with and
without the specific training sample and computing metrics like training/validation loss. In other
words, if the performance improves when excluding a particular sample, it is deemed detrimental to
the learning task. By computing the influence score without needing to retrain the model, one can
estimate the impact of a sample to assess if it is beneficial or detrimental, as follows:

Ĩ(zj) =
{
0 (Detrimental Sample) I(zj) < 0.

1 (Beneficial Sample) I(zj) ≥ 0.
(2)

Ĩ(zj) can be regarded as a the discrete version of I(zj). Specifically, a value of 0 for Ĩ(zj) means
that removing the sample zj enhances the model’s utility, and that zj is a detrimental sample.

Remark. While influence functions offer a swift estimation for identifying detrimental training
samples without the need for costly model retraining, their practical applications to large models
are constrained by two prominent drawbacks. The first limitation lies in the necessity of a strictly
convex loss function to guarantee the existence of the inverse of the Hessian matrix. The second
challenge pertains to the considerable computational expense associated with calculating the inverse
of the Hessian. For the first challenge, several possible solutions have been proposed: (1) a convex
surrogate model can be used instead of the non-convex model (Chhabra et al., 2024); (2) a damping
term can be added to the Hessian to ensure it is positive definite and invertible (Han et al., 2020); and
(3) alternative formulations (Basu et al., 2020b; Alaa & Van Der Schaar, 2020) can be used (e.g. the
Gauss Newton Hessian (Grosse et al., 2023) instead of the standard Hessian). Note that some studies
bypass the convexity assumption and directly apply influence functions to deep models, yielding
effective results. (Grosse et al., 2023). For the second challenge, various matrix inverse techniques are
employed to expedite the computation process, including LiSSA optimization (Koh & Liang, 2017)
and swapping the order of the matrix inversion (Kwon et al., 2024), among several others. Consider-
able efforts have been dedicated to addressing the aforementioned challenges with promising results–
however, in this paper we target the second challenge for identifying/removing detrimental samples.

3.2 BRIDGING INFLUENCE ESTIMATION AND OUTLIER ANALYSIS

We transform the problem of identifying detrimental samples via influence estimation to an outlier
analysis problem in the gradient space. Upon scrutinizing the influence estimation of zj in Eq. (1),
it becomes evident that the influence score is the result of three terms, with the first two remaining
the same across all training samples and not solely dependent on zj . While all three terms contribute
to the concrete value of the influence score, it is the final term ∇θ̂ℓ(zj ; θ̂) that assumes a decisive
role in determining whether zj is a beneficial or detrimental sample. This is because the third term
has zj as the only training sample as an input. With the following observation below regarding
detrimental samples, we can build the connection between identifying detrimental samples via
influence estimation and outlier analysis:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Observation 3.1. For a converged model trained using empirical risk minimization, the majority of
training samples positively contribute to the model’s utility, and a much smaller subset than beneficial
samples (with respect to the overall size of the training set) exhibits detrimental effects.

Clearly, Observation 3.1 holds true as the empirical loss is an average of error between predictive
and true values over all training samples. Hence, detrimental samples can be regarded as a minority
outlier set compared to the beneficial sample majority. Based on Observation 3.1 and the decisive
role of ∇θ̂ℓ(zj ; θ̂) in influence estimation, we have the following hypothesis:
Hypothesis 3.2. There exist outlier analysis algorithms capable of detecting detrimental samples in
the gradient space. This algorithm would enable us to evaluate whether a training sample positively
or negatively impacts model utility through influence estimation, effectively equating this evaluation
with the application of the outlier analysis algorithm in the gradient space.

Hypothesis 3.2 establishes a conceptual transformation between the identification of detrimental
training samples via influence estimation and the detection of outliers in the gradient space. The
outlying nature of detrimental samples has also been observed in past work (Kim et al., 2024).
This transformation not only features a straightforward and Hessian-free formulation, reducing the
computational cost associated with the Hessian matrix and its inverse, but also yields insights into the
role of the gradient in sample impact beyond model optimization.

3.3 OUR APPROACH: OUTLIER GRADIENT ANALYSIS

As demonstrated in Hypothesis 3.2, outlier analysis can effectively be used to evaluate the discrete
influence of training samples. Notably, we can circumvent the need for computing and inverting
the Hessian for non-convex deep models by measuring discrete influence via Eq. (2). The primary
contribution and discovery of our work lies in the realization that simple and efficient outlier analysis
techniques can be applied to the gradient space for a discrete estimation of which samples are
beneficial or detrimental to the model’s utility.

As Hypothesis 3.2 cannot prescribe a specific outlier detection algorithm, one of our choices for outlier
analysis is the Isolation Forest (iForest) algorithm (Liu et al., 2008), owing to several factors. Firstly,
iForest boasts a linear time complexity with a low constant, requiring minimal memory, rendering
it well-suited for handling the high-dimensional gradient space inherent in deep models. Secondly,
iForest constructs an ensemble of iTrees, where each iTree builds partial models and employs sub-
sampling, demonstrating the ability to identify a suitable subspace for the detection of detrimental sam-
ples. Thirdly, iForest is known for its simplicity and effectiveness in identifying outliers that are non-
linearly separated from inliers. Along with iForest, we also consider two simple outlier analysis ap-
proaches based on L1-norm and L2-norm thresholding, that work well in practice (Knorr et al., 2000).

Algorithm 1 : Outlier Gradient Analysis and Trimming

Input: Training set T , loss ℓ, trained model param
θ̂, outlier analysis algorithm A, trimming budget k
Output: Set L containing beneficial/detrimental
sample labels, Trimmed training set T ∗

1: initialize G ← ∅, T ∗ ← ∅.
2: G ← G ∪ {∇θ̂ℓ(xi, yi; θ̂)};∀(xi, yi) ∈ T .
3: L← A(G, k).
4: T ∗ ← T ∗ ∪ {xi};∀Li is not an outlier.
5: return L, T ∗.

Upon obtaining outlyingness labels
through the application of an outlier
detection algorithm to the gradient space,
denoted as the set L, we can assess the
influence of training samples on model
performance. Subsequently, we then
trim k (the designated deletion budget)
detrimental training samples. Retraining
the model on this pruned sample set leads
to potential performance improvements.
The approach is outlined in Algorithm 1.

4 HYPOTHESIS VERIFICATION ON SYNTHETIC DATA

We seek to validate the hypothesis of our proposed idea and showcase the effectiveness of our outlier
gradient analysis method on two synthetic 2D toy datasets1 and two models for binary classification
in Figure 1. In this figure, subfigures A-D present a linear dataset employing a Logistic Regression
model, while subfigures E-H exhibit a non-linear dataset utilizing a non-convex Multilayer Perceptron
(MLP) model as the base model. Specifically, subfigures A and B depict the training and test sets

1Comprehensive details regarding datasets and model training for experiments are provided in Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Illustrating our outlier gradient analysis approach on two synthetic datasets and convex/non-
convex models. A-D showcase our outlier gradient analysis approach on a 2D linearly separable
synthetic dataset. This dataset includes a small subset of detrimental samples with incorrect labels
used to train a Logistic Regression binary classification model. Meanwhile, E-H depict our outlier
gradient analysis on a non-linear synthetic dataset with mislabeled samples employed in training a
Multilayer Perceptron (MLP) neural network. In subfigures A and E, the training sets are represented
with class labels 0 (red) and 1 (blue) in the convex and non-convex cases, respectively. Detrimental
samples with incorrect class labels are marked with ×, while regular samples are marked with ◦. B
and F denote the test sets used to evaluate model performance. C and G display the influence scores
calculated by Eq. (1). Note that G demonstrates that influence scores are not reliable indicators for
detecting detrimental samples in the non-convex case. After applying outlier analysis on the gradient
space of the non-convex MLP model, most detrimental samples are detected. D and H showcase the
gradient space obtained for each sample from the Logistic Regression and MLP models, respectively.
It is evident that the outlier samples correspond to detrimental samples with mislabeled classes, which
are linearly or non-linearly separated from inliers. Note that the benefits of outlier gradient trimming
can be clearly observed—removing predicted outlier samples via iForest and retraining the MLP
enhances classification performance from 90%→ 96% on the test set (refer to Table 1).

of a linearly separable dataset comprising 150 and 100 samples, respectively. Notably, the training
set includes 10 manually generated noisy samples with misspecified labels. Subfigure C displays
the influence score of each training sample, computed using Eq. (1), and subfigure D provides a
visualization of the gradient space. Similarly, subfigures E and F represent the training and test sets
of the two half moons dataset, with the training set consisting of 250 samples and the test set of 100
samples, equally distributed between two classes. The training set in this case also contains 20 noisy
samples. Subfigures G and H showcase the influence score and gradient space of the non-convex case.

Table 1: Outlier detection and classification performance
of noisy label correction and influence-based approaches
including our proposed outlier gradient trimming on the
two half moons dataset (top performer in bold).

Method Outlier Detection
Accuracy (%)

Classification
Post-Trimming (%)

Multilayer Perceptron - 90.0

Normalized Margin 82.0 89.0
Self-Confidence 82.0 89.0
Confidence Entropy 82.0 89.0

Exact Hessian 90.0 90.0
Gradient Tracing 82.0 91.0
LiSSA 82.0 91.0
DataInf 82.0 91.0
Self-LiSSA 82.0 90.0
Self-DataInf 90.0 87.0
Outlier Gradient (iForest) 96.0 96.0
Outlier Gradient (L1) 98.0 87.0
Outlier Gradient (L2) 98.0 87.0

In the linear case, as illustrated in sub-
figure C, the influence score proves to
be a reliable indicator for distinguishing
detrimental samples from beneficial
ones. Notably, detrimental samples
exhibit large negative scores, while
other samples display positive or nearly
zero values. Additionally, subfigure D
affirms that these detrimental samples
are distinctly separated in the gradient
space, confirming the validity of the
equivalent transformation outlined in
Hypothesis 3.2. However, the limitations
of influence scores become evident in
the context of non-convex models, as
observed in subfigure G, where the
influence scores of detrimental samples
are mixed with those of normal ones. Nevertheless, in the gradient space illustrated in subfigure H,
the detrimental samples are effectively isolated from inliers. Notably, our method does not rely on the
Hessian for computing influence and operates directly on the gradient space using outlier analysis.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We also conduct a quantitative evaluation to assess the advantages of our approach compared to
three recently proposed noisy label correction methods and six influence function-based approaches,
as detailed in Table 1. Specifically, we measure ground-truth outlier predictive accuracy and the
performance gain achieved by removing detrimental samples. For noisy label correction approaches
we consider: Normalized Margin (Northcutt et al., 2021), Self-Confidence (Müller & Markert, 2019),
and Confidence-Weighted Entropy (Kuan & Mueller, 2022). The influence function approaches
include computing the Hessian exactly (Cook & Weisberg, 1982), using the Hessian-free gradient
tracing approach2 by (Pruthi et al., 2020), LiSSA-based optimization (Koh & Liang, 2017), the
recently proposed influence estimation approach DataInf (Kwon et al., 2024), self-influence using
LiSSA as in (Bejan et al., 2023), and self-influence using DataInf. We compute influences only using
the training samples and performance is measured on the test set.

Our outlier gradient analysis approaches demonstrate high accuracy in identifying mislabeled outliers
(96-98%), outperforming all three noisy label correction baselines (only 82% accuracy) and among
influence baselines, all exhibit similar performance except for exact Hessian computation, which
attains 90% accuracy. Next, we evaluate model performance gain by removing detected outlier
samples and retraining the MLP on the trimmed dataset. Here the benefits of our iForest outlier
gradient analysis can be observed, as it increases performance from 90% to 96% while the overtly
simple L1/L2-norm outlier analysis approaches are not as effective. The other baselines exhibit
performance variations between 89-91%. This emphasizes the effectiveness of our iForest approach,
while exhibiting low time complexity (refer to Appendix C.3 for details on computational complexity).

5 NOISY LABEL CORRECTION FOR VISION DATASETS

Here we demonstrate the effectiveness of our approach in addressing noisy label correction using the
CIFAR-10N and CIFAR-100N real-world noisy label datasets (Wei et al., 2022). These datasets stem
from the original CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009), but introduce label
inaccuracies due to crowdsourced labeling. CIFAR-10N has 3 different noise settings: Aggregate,
Random, and Worst– these correspond to majority voting across 3 annotators, the first annotator label,
and selecting the worst annotator label, respectively. CIFAR-100N only has a single noise setting.

Table 2: Accuracy (5 runs) on CIFAR-10N and CIFAR-
100N for a ResNet-34 model trained via cross entropy and
performance post trimming using noisy label correction
approaches and influence-based methods, including our
outlier gradient analysis (top-2 performers in bold).

Method CIFAR-10N CIFAR-100N
Aggregate Random Worst Noisy100

Cross Entropy 90.87 89.17 82.27 57.36

Normalized Margin 91.33 90.06 83.57 60.94
Self-Confidence 91.38 90.09 83.65 60.51
Confidence Entropy 91.11 90.05 83.63 60.62

Gradient Tracing 91.47 89.98 83.38 60.73
LiSSA 91.49 90.05 83.38 60.48
DataInf 91.46 90.05 83.40 60.70
Self-LiSSA 92.07 89.58 83.01 59.48
Self-DataInf 91.41 89.81 83.15 60.56
Outlier Gradient (L1) 91.86 90.66 84.20 60.32
Outlier Gradient (L2) 92.21 90.25 82.99 61.40
Outlier Gradient (iForest) 91.36 90.20 83.72 60.99

Table 2 shows the accuracy performance
of outlier gradient analysis (L1/L2-norm,
iForest) compared to label correction ap-
proaches and influence-based baselines
covered in the previous section. Exact
Hessian computation is excluded due to
its computational intractability for large
datasets. Our outlier gradient analysis
methods consistently outperform other
baselines across diverse noise settings
and datasets. Notably, even in challeng-
ing scenarios like the Worst noise set-
ting in CIFAR-10N (40.21% noise rate),
our approaches are the top performers–
L1-norm based outlier analysis achieves
highest accuracy gain, improving from
82.27% (vanilla ResNet-34) to 84.20%.
Similar superior performance is observed in the Random noise setting (17.23% noise rate), where
L2-norm outlier analysis achieves a final accuracy of 90.25% compared to original cross-entropy
accuracy of 89.17% and in CIFAR-100N, where it attains the highest performance of 61.40%, sur-
passing the cross-entropy performance of 57.36%. In the CIFAR-10N Aggregate noise setting (noise
rate 9.03%), outlier gradient analysis is again the top performer. Due to space constraints, we omit
standard deviations from Table 2, but these are provided in Appendix C.1.

Additionally, visual examples of mislabeled samples detected by our outlier gradient analysis
approach (iForest) are provided in Figure 2. All displayed images contain mislabeled samples, and
their removal from the training set contributes to improved model performance on the test set. In

2We only use the last checkpoint in Gradient Tracing (Pruthi et al., 2020) for fair comparisons.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2, we set the trimming budget for outlier gradient analysis (k) at 5% of the training data size.
An empirical analysis for the choice of k is undertaken in Appendix C.2, where we vary the outlier
budget (from 2.5% to 12.5%) and measure test set accuracy across the CIFAR-10N dataset.

Figure 2: Some detrimental samples de-
tected using our proposed outlier gradient
analysis. Top row: CIFAR-10N; bottom
row: CIFAR-100N. Top label (red): noisy
label; bottom label (green): correct class.

Additional Analyses. We conduct ablations on the
iForest parameters in Appendix C.4. Further, we pro-
vide running time experiments on CIFAR-10N and
CIFAR-100N in Appendix C.3 along with the other
baselines. We also provide results with ResNet-18
as the base model in Appendix C.5 and on Ima-
geNet (Deng et al., 2009) in Appendix C.6, showing
similar trends. Finally, approaches for noisy learning
can be categorized into methods that either change the
loss function or model architecture or methods that
identify noisy samples and remove/relabel them for im-
proving performance (Algan & Ulusoy, 2021). Since
our approach belongs to the latter category, we only

compare against other approaches from this category. For completeness, we also present results
comparing our approach with some others in the former category in Appendix C.7. We would like to
emphasize that this is not an exhaustive list of baselines and noisy learning by adjusting the loss/model
is not the focus of our work (but detecting detrimental samples is). Moreover, our algorithm could
also be combined with approaches from both categories for additional gains.

6 DATA SELECTION FOR FINE-TUNING NLP MODELS

We conduct experiments on data selection for fine-tuning on NLP models, following the experimental
setup by Kwon et al. (2024) for DataInf, where the RoBERTa transformer model (Liu et al., 2019)
is fine-tuned on four binary GLUE datasets (Wang et al., 2018): QNLI, SST2, QQP, and MRPC. To
assess if influence-based methods can enhance NLP model performance via Low Rank Adaptation
(LoRA) (Hu et al., 2022) fine-tuning, Kwon et al. (2024) introduce noisy versions of all four datasets
by flipping the binary label for 20% randomly chosen training data samples. The goal of the data
selection task is to select the best representative subset of the training data so that performance
is maximized on an unseen test set. Specifically, 70% of the most beneficial samples are selected
according to each influence computation approach, and the model is fine-tuned for 10 epochs and
rank of LoRA matrix is set to 4. Then, as the model trains over each epoch, performance is measured
on the unseen test set. Clearly, for fairness, the sample influence is computed only using the training
set, and the test set remains unknown until inference.

The results over three runs are presented in Figure 3 for all four GLUE datasets. We only show trends
for iForest based outlier gradient analysis to aid visualization since performance is similar for the
L1/L2-norm methods. It can be seen that our outlier gradient trimming approach markedly outper-
forms all other baselines but the Self-LiSSA (Bejan et al., 2023) self-influence baseline is competitive
with our approach. More specifically, outlier gradient analysis achieves slightly better test set results
on QNLI, SST2, QQP, and on MRPC, Self-LiSSA and outlier gradient analysis are on par with each
other. Here, we would like to emphasize that despite competitive performance, our outlier gradient
analysis is orders of magnitude faster than Self-LiSSA, as shown in experiments of Appendix C.3.
These results highlight the effectiveness of our proposed outlier gradient analysis/trimming approach
in selecting relevant data for fine-tuning NLP models while being more computationally efficient.

Figure 3: Performance of the data selection task utilizing outlier gradient trimming and other
influence-based baselines for fine-tuning RoBERTa via LoRA over 3 runs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Results for outlier gradient analysis on LLM influential data identification benchmarks.

7 EXTENDING TO INFLUENTIAL DATA IDENTIFICATION FOR LLMS

We now consider an alternate task– demonstrating the effectiveness of our proposed outlier gradient
analysis in identifying influential data samples for Large Language Models (LLMs), using the
proposed benchmarks from DataInf (Kwon et al., 2024). The LLM influential data identification task
at its core is a similarity measurement task, as it seeks to ascertain which fine-tuning prompts are
most similar to a given test sample. More specifically, the goal is to assess what training set prompts
(used for LoRA fine-tuning) are most influential for a given unseen test prompt. The robustness and
effectiveness of influence estimation are gauged based on whether the identified training set prompts
belong to the same class category as the given test prompt. We utilize the three benchmark datasets
introduced in DataInf (Kwon et al., 2024): Sentence Transformations, Math Without Reasoning,
and Math With Reasoning, to conduct the influential data identification experiment on the Llama-2-
13B-chat3 LLM. For each of the influence identification benchmark datasets, there are 900 training
samples for LoRA fine-tuning, and 10 categories or classes of task types with 90 samples belonging to
each class. For each dataset there are 100 test set prompts with 10 test set prompts per class category.

Table 3: AUC/Recall for outlier gradient analysis and base-
lines for influential class detection on three text generation
tasks on Llama2-13B-chat LLM.

Task Method Class Detection
(AUC)

Class Detection
(Recall)

Sentence
Transformations

Gradient Tracing 0.999 ± 0.001 0.982 ± 0.032
DataInf 1.000 ± 0.000 0.996 ± 0.012
Outlier Gradient 1.000 ± 0.000 1.000 ± 0.000

Math Problems
Without Reasoning

Gradient Tracing 0.724 ± 0.192 0.241 ± 0.385
DataInf 0.999 ± 0.005 0.993 ± 0.046
Outlier Gradient 1.000 ± 0.000 1.000 ± 0.000

Math Problems
With Reasoning

Gradient Tracing 0.722 ± 0.192 0.226 ± 0.376
DataInf 0.999 ± 0.004 0.990 ± 0.049
Outlier Gradient 1.000 ± 0.000 1.000 ± 0.000

In Kwon et al. (2024), to predict the most
influential training samples given a test
set prompt, the authors assign a pseudo
label to every data point in the training
set (1 if it is in the same class/task cate-
gory as the test data prompt, or 0 oth-
erwise). This set serves as a ground-
truth for measuring performance of iden-
tifying influential data samples. Next,
they calculate the Area Under the Curve
(AUC) by comparing the absolute values
of the influence function (for each training set prompt corresponding to a given test prompt) with
these pseudo labels. Clearly, a high AUC signifies that training data samples from the same category
have a significant influence on the given test prompt. The average AUC across all test data points is
then recorded, and is denoted as the Class Detection (AUC) metric. Additionally, another metric is
used– for every test data prompt, the authors determine if the proportion of training data prompts
belonging to the same class/category are within the top 90 (# of training prompts in each category)
influential samples. The average % across all test data points is calculated and this metric is denoted
as Class Detection (Recall), where higher recall is better.

As part of this task, we need to measure similarity between train and test set samples. Note that for
our experiments on identifying detrimental samples outlier gradient analysis only operated on the

3https://ai.meta.com/llama/.

8

https://ai.meta.com/llama/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

training set (i.e., it uses the training set gradients). However, to extend outlier analysis to this task
while maintaining consistency with the previous experiments and methods, we will train 10 individual
iForest estimators for each class prompt category, as the ultimate objective is to use outlier gradient
analysis for prompt class detection. Each class’s iForest estimator is trained solely on the gradient
space of training prompts from that category. Subsequently, for each test set prompt, we utilize each
iForest estimator to generate an outlier score based on the gradient space of that test sample. This
enables us to conduct the influential data identification experiment for our proposed method. The
other baseline influence methods already have access to the given test set sample and can use that
information directly for analyzing which training sample is most influential.

Our outlier gradient analysis performs exceptionally well on this task, achieving perfect scores for
both AUC and Recall in Table 3. It outperforms DataInf and Gradient Tracing, with LiSSA omitted
as it fails to converge due to instability on LLMs (Kwon et al., 2024). Self-influence baselines also
cannot be used since a similarity matrix with the full set of test prompts needs to be constructed
(information leakage). Figure 4 further illustrates the individual influence predictions, with darker
colors indicating lower outlier score magnitudes. The heatmaps correspond to three benchmark
datasets, with test samples ordered sequentially based on their categories. The accurate influence
estimation is evident from the highest influence values along the diagonal. The most influential
sample identified by our approach closely resembles the given test prompts.

8 DISCUSSION

Computational complexity and running time. Throughout, we have emphasized that outlier
gradient analysis is efficient while being highly accurate at identifying detrimental training samples.
We also conduct experiments to validate this empirically. In Table 6 (Appendix C.3), we benchmark
the running time for all the methods considered for the various noise settings of CIFAR-10N and
CIFAR-100N. It can be observed that outlier gradient analysis features in the top-performing methods
in terms of computational efficiency, while simultaneously also featuring as a top-performing method
for accurately detecting detrimental samples (as seen in Table 2). We observe similar trends for the
ImageNet dataset in Table 10 (Appendix C.6). Note that this is also evident in terms of worst-case
computational complexity, as outlier gradient analysis possesses linear (in both number of samples
and parameters) time complexity (see Table 7 in Appendix C.3 for more details).

Adapting outlier gradient analysis to a validation/test set distribution. In some scenarios we might
wish to utilize a validation set distribution to accurately adjust influence estimation. This is especially
true for distribution shift scenarios, where the training and validation distributions are different. In the
original influence formulation, the first term provides this information. For outlier gradient analysis,
we only use training set gradients. To rectify this, we can instead employ a semi-supervised outlier
analysis algorithm A with validation samples provided as inliers. We utilize the semi-supervised
OneClassSVM (Li et al., 2003) outlier analysis algorithm and the distribution shift experimental
framework from Chhabra et al. (2024) to assess performance. These results indicate that outlier gradi-
ent analysis is the top-performer across baselines, as can be seen in Table 12 (Appendix C.8). While a
full extensive analysis of validation set adaptation is beyond the scope of this paper, these preliminary
experiments showcase the benefits of outlier gradient analysis beyond just the training distribution.

9 CONCLUSION

In this paper, we focused on the key data-centric learning task of identifying detrimental training
samples. Influence functions are a leading approach often used for this problem, but possess certain
deficiencies when applied to deep models. As part of our proposed solution, we address the key
challenge associated with influence functions usage in deep models— the computational demands for
inverting the Hessian matrix. This results in a computationally efficient method that possesses high
detection accuracy. Our approach, outlier gradient analysis, is based on a conceptual transformation
between the influence function formulation and outlier analysis in the gradient space. Through
comprehensive experiments on synthetic datasets and various application domains (code details in
Appendix E), including noisy label correction for vision models, data selection for NLP models, and
even influential data identification in LLMs, we demonstrated that our method outperformed many
existing influence-based approaches and baselines in deep learning scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. The Journal of Machine Learning Research, 2017.

Ahmed Alaa and Mihaela Van Der Schaar. Discriminative jackknife: Quantifying uncertainty in deep
learning via higher-order influence functions. In International Conference on Machine Learning,
2020.

Görkem Algan and Ilkay Ulusoy. Image classification with deep learning in the presence of noisy
labels: A survey. Knowledge-Based Systems, 215:106771, 2021.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate
unrolled differentation. arXiv preprint arXiv:2405.12186, 2024.

Samyadeep Basu, Phil Pope, and Soheil Feizi. Influence Functions in Deep Learning Are Fragile. In
International Conference on Learning Representations, 2020a.

Samyadeep Basu, Xuchen You, and Soheil Feizi. On second-order group influence functions for
black-box predictions. In International Conference on Machine Learning, 2020b.

Irina Bejan, Artem Sokolov, and Katja Filippova. Make every example count: On the stability and
utility of self-influence for learning from noisy nlp datasets. In Conference on Empirical Methods
in Natural Language Processing, 2023.

Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang. Feature selection in machine learning: A new
perspective. Neurocomputing, 2018.

Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka. Input similarity from the
neural network perspective. Advances in Neural Information Processing Systems, 2019.

Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. Hydra: Hypergradient
data relevance analysis for interpreting deep neural networks. In AAAI Conference on Artificial
Intelligence, 2021.

Anshuman Chhabra, Adish Singla, and Prasant Mohapatra. Fair clustering using antidote data. In
Algorithmic Fairness through the Lens of Causality and Robustness Workshop, 2022.

Anshuman Chhabra, Peizhao Li, Prasant Mohapatra, and Hongfu Liu. Robust fair clustering: A novel
fairness attack and defense framework. In International Conference on Learning Representations,
2023.

Anshuman Chhabra, Peizhao Li, Prasant Mohapatra, and Hongfu Liu. What Data Benefits My
Classifier? Enhancing Model Performance and Interpretability through Influence-Based Data
Selection. In International Conference on Learning Representations, 2024.

David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical models.
Journal of Artificial Intelligence Research, 1996.

R Dennis Cook and Sanford Weisberg. Residuals and influence in regression. New York: Chapman
and Hall, 1982.

Zheng Dai and David K Gifford. Training data attribution for diffusion models. arXiv preprint
arXiv:2306.02174, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
2009.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
machine learning. In Advances in Neural Information Processing Systems, 2021.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
International Workshop on Paraphrasing, 2005.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
tail via influence estimation. Advances in Neural Information Processing Systems, 2020.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International Conference on Machine Learning, 2019.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
with influence functions. arXiv preprint arXiv:2308.03296, 2023.

Mark A Hall. Correlation-based feature selection for machine learning. PhD thesis, The University
of Waikato, 1999.

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
arXiv preprint arXiv:2212.04612, 2022.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the American
Statistical Association, 1974.

Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov. Explaining black box predictions and
unveiling data artifacts through influence functions. In Annual Meeting of the Association for
Computational Linguistics, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In International
Conference on Learning Representations, 2022.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. arXiv preprint arXiv:2202.00622, 2022.

Eeshaan Jain, Tushar Nandy, Gaurav Aggarwal, Ashish V. Tendulkar, Rishabh K Iyer, and Abir De.
Efficient Data Subset Selection to Generalize Training Across Models: Transductive and Inductive
Networks. Advances in Neural Information Processing Systems, 2023.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas Spanos, and Dawn Song. Efficient task specific data valuation for nearest neighbor
algorithms. Proceedings of the VLDB Endowment, 2018.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the shapley
value. In International Conference on Artificial Intelligence and Statistics, 2019.

Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and Rishabh Iyer. Retrieve: Coreset selection for
efficient and robust semi-supervised learning. Advances in Neural Information Processing Systems,
2021.

SungYub Kim, Kyungsu Kim, and Eunho Yang. Gex: A flexible method for approximating influence
via geometric ensemble. Advances in Neural Information Processing Systems, 36, 2024.

Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. Distance-based outliers: algorithms and
applications. The VLDB Journal, 2000.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, 2017.

Shuming Kong, Yanyan Shen, and Linpeng Huang. Resolving training biases via influence-based
data relabeling. In International Conference on Learning Representations, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
University of Toronto, 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Johnson Kuan and Jonas Mueller. Model-agnostic label quality scoring to detect real-world label
errors. In ICML DataPerf Workshop, 2022.

Yongchan Kwon and James Zou. Beta Shapley: a unified and noise-reduced data valuation framework
for machine learning. In International Conference on Artificial Intelligence and Statistics, 2022.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. DataInf: Efficiently Estimating Data
Influence in LoRA-tuned LLMs and Diffusion Models. In International Conference on Learning
Representations, 2024.

Kun-Lun Li, Hou-Kuan Huang, Sheng-Feng Tian, and Wei Xu. Improving one-class svm for anomaly
detection. In International Conference on Machine Learning and Cybernetics, 2003.

Peizhao Li, Ethan Xia, and Hongfu Liu. Learning antidote data to individual unfairness. In
International Conference on Machine Learning, 2023.

Ping Li, Trevor J Hastie, and Kenneth W Church. Very sparse random projections. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2006.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In IEEE International Conference
on Data Mining, 2008.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zhuoming Liu, Hao Ding, Huaping Zhong, Weijia Li, Jifeng Dai, and Conghui He. Influence selection
for active learning. In IEEE/CVF International Conference on Computer Vision, 2021.

Hyeonsu Lyu, Jonggyu Jang, Sehyun Ryu, and Hyun Jong Yang. Deeper understanding of black-box
predictions via generalized influence functions. arXiv preprint arXiv:2312.05586, 2023.

R Douglas Martin and Victor J Yohai. Influence functionals for time series. The Annals of Statistics,
1986.

Ninareh Mehrabi, Muhammad Naveed, Fred Morstatter, and Aram Galstyan. Exacerbating algorith-
mic bias through fairness attacks. In AAAI Conference on Artificial Intelligence, 2021.

Nicolas M Müller and Karla Markert. Identifying mislabeled instances in classification datasets. In
International Joint Conference on Neural Networks, 2019.

Vu-Linh Nguyen, Mohammad Hossein Shaker, and Eyke Hüllermeier. How to measure uncertainty
in uncertainty sampling for active learning. Machine Learning, 2022.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in dataset
labels. Journal of Artificial Intelligence Research, 2021.

Luis Oala, Manil Maskey, Lilith Bat-Leah, Alicia Parrish, Nezihe Merve Gürel, Tzu-Sheng Kuo,
Yang Liu, Rotem Dror, Danilo Brajovic, Xiaozhe Yao, et al. Dmlr: Data-centric machine learning
research–past, present and future. arXiv preprint arXiv:2311.13028, 2023.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in Neural Information Processing Systems, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 2020.

Brianna Richardson, Prasanna Sattigeri, Dennis Wei, Karthikeyan Natesan Ramamurthy, Kush
Varshney, Amit Dhurandhar, and Juan E Gilbert. Add-remove-or-relabel: Practitioner-friendly
bias mitigation via influential fairness. In ACM Conference on Fairness, Accountability, and
Transparency, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions.
In AAAI Conference on Artificial Intelligence, 2022.

Andrea Schioppa, Katja Filippova, Ivan Titov, and Polina Zablotskaia. Theoretical and practical
perspectives on what influence functions do. Advances in Neural Information Processing Systems,
2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Conference on Empirical Methods in Natural Language Processing, 2013.

David Solans, Battista Biggio, and Carlos Castillo. Poisoning attacks on algorithmic fairness. In
Machine Learning and Knowledge Discovery in Databases: European Conference, 2021.

Haoru Tan, Sitong Wu, Fei Du, Yukang Chen, Zhibin Wang, Fan Wang, and Xiaojuan Qi. Data
pruning via moving-one-sample-out. Advances in Neural Information Processing Systems, 2024.

Megh Thakkar, Tolga Bolukbasi, Sriram Ganapathy, Shikhar Vashishth, Sarath Chandar, and Partha
Talukdar. Self-influence guided data reweighting for language model pre-training. In Conference
on Empirical Methods in Natural Language Processing, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. arXiv
preprint arXiv:1804.07461., 2018.

Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with
noisy labels revisited: A study using real-world human annotations. In International Conference
on Learning Representations, 2022.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning.
In International Conference on Machine Learning, 2015.

Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reducing
training data by examining generalization influence. In International Conference on Learning
Representations, 2022.

Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection
for explaining deep neural networks. Advances in Neural Information Processing Systems, 2018.

Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong, and
Xia Hu. Data-centric artificial intelligence: A survey. arXiv preprint arXiv:2303.10158, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A ADDITIONAL RELATED WORK ON MISCELLANEOUS DATA-CENTRIC
LEARNING

Many works in the data-centric learning domain study other relevant research questions beyond
detrimental sample identification and influence estimation. For instance, datamodels (Ilyas et al.,
2022) also estimate training sample contributions, but only for one test sample at a time. Data effi-
ciency approaches (Jain et al., 2023; Paul et al., 2021; Killamsetty et al., 2021) aim to accelerate deep
learning training time via subset selection. Data pruning approaches based on novel approximations
for leave-one-out influence estimation (Tan et al., 2024) and the model’s generalization gap (Yang
et al., 2022) have also been proposed. Model pruning via generalized influence functions has also
been studied in Lyu et al. (2023). Note that after identifying detrimental training samples, one can
adopt multiple strategies for recourse. While we focus on removal in this paper, other alternatives
could also be used, such as relabeling (Richardson et al., 2023; Kong et al., 2021). Antidote data
augmentation (Chhabra et al., 2022; Li et al., 2023) methods aim to generate synthetic data samples
to improve model performance, whereas feature selection approaches (Hall, 1999; Cai et al., 2018)
seek to optimize the feature space to only those important for model performance. Active learning
(Cohn et al., 1996) methods aim to iteratively identify optimal samples to annotate given a large
unlabeled training data pool (Liu et al., 2021; Nguyen et al., 2022; Wei et al., 2015). Finally, works
on poisoning attacks seek to analyze model robustness by perturbing training set samples (Solans
et al., 2021; Mehrabi et al., 2021; Chhabra et al., 2023) under natural input constraints. The study
of training sample influence has also been extended to recent generative models, such as diffusion
models (Dai & Gifford, 2023), through the use of ensembles.

B DETAILED INFORMATION ON DATASETS AND MODEL TRAINING

We describe dataset details as well as model training and other information used in the main paper.

B.1 DATASETS

We first cover our generated synthetic datasets, then the vision datasets– CIFAR-10N and CIFAR-
100N, then provide more details on the four GLUE binary classification NLP datasets, and finally
discuss details regarding the benchmark datasets for influential data identification in LLMs– Sentence
Transformations, Math Without Reasoning, and Math With Reasoning.

B.1.1 SYNTHETIC DATASETS

We conduct experiments for our proposed outlier gradient analysis and other baselines on two synthetic
datasets. The first dataset is linearly separable for logistic regression classification and consists of 150
training samples and 100 test samples. These are created using the scikit-learn (Pedregosa et al., 2011)
library’s make blobs function. For each of the two binary classes, we manually flip the labels of
10 samples (5 for each class) to add noise to the dataset. The second dataset is the non-linear half
moons dataset so that we can train an MLP network with two hidden layers with ReLU activations.
The training set has 250 samples and the test set has 100 samples, and the dataset is generated using
the scikit-learn library’s make moons function. Here too, we manually flip the labels of 20 samples
(10 from each class) to add noise to the data.

B.1.2 CIFAR-10N AND CIFAR-100N

Both the CIFAR-10N and CIFAR-100N datasets (Wei et al., 2022) consist of the same input images
that make up the CIFAR-10 (10 classes) and CIFAR-100 (100 classes) datasets (Krizhevsky et al.,
2009), respectively. Each input is a 32x32 RGB image with dimension (3,32,32). However, for
CIFAR-10N and CIFAR-100N, the labels are noisy, as they contain real-world human annotation
errors collected using 3 annotators on Amazon Mechanical Turk. As these datasets are based on
human-annotated noise, they model noisy real-world datasets more realistically, compared to synthetic
data alternatives. The training set for both datasets contains 50,000 image-label pairs, and the test set

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

contains 10,000 image-label pairs that are free from noise. For CIFAR-10N we utilize three noise
settings for experiments in the paper– (1) Worst, which is the dataset version with the highest noise
rate (40.21%) as the worst possible annotation label for the image is chosen, (2) Aggregate, which is
the least noisy dataset (9.03%) as labels are chosen via majority voting amongst the annotations, and
(3) Random which has intermediate noise (17.23%) and consists of picking one of the annotators’
labels. We use the first annotator for the random labels. For CIFAR-100N there is only a single noisy
setting (Noisy100) due to the large number of labeling classes, and the overall noise rate is 40.20%.

B.1.3 GLUE DATASETS

The GLUE or the General Language Understanding Evaluation (Wang et al., 2018) benchmark
datasets consist of a number of benchmarks for training, evaluating, and analyzing natural language
models. As in the DataInf paper (Kwon et al., 2024), we utilize the four binary classification subset
datasets: QNLI, SST2, QQP, and MRPC for experiments. Here, these datasets cover a wide variety
of natural language task domains. For instance, QNLI (Wang et al., 2018) covers natural language
inference, SST2 (Socher et al., 2013) covers sentiment analysis, QQP 4 covers question answering,
and MRPC (Dolan & Brockett, 2005) covers paraphrase detection. We use the same datasets as in
Kwon et al. (2024), where the training and test splits are obtained from the Huggingface datasets5

library. For QQP and SST2 in Kwon et al. (2024) 4500 training samples and 500 test samples were
randomly sampled from the full sets, so we utilize these in our experiments for a fair comparison.

B.1.4 Sentence Transformations

For this benchmark dataset proposed in Kwon et al. (2024), the LLM is required to perform a specific
transformation on an input sentence. There are 10 different sentence transformations. To help the
model learn different transformations, “chatbot” name identifiers are used and each is uniquely
associated with each transformation. These are the categories of sentence transformations (taking an
example input sentence as “Welcome to the real world.”):

• Reverse Order of Words: world. real the to Welcome
• Capitalize Every Other Letter: wElCoMe To ThE rEaL wOrLd.
• Insert Number 1 Between Every Word: Welcome 1to 1the 1real 1world.
• Replace Vowels with * : W*lc*m* t* th* r**l w*rld.
• Double Every Consonant: Wwellccomme tto tthhe rreall wworrlldd.
• Capitalize Every Word: Welcome To The Real World.
• Remove All Vowels: Wlcm t th rl wrld.
• Add ly To End of Each Word: Welcomely toly thely really world.ly
• Remove All Consonants: eoe o e ea o.
• Repeat Each Word Twice: Welcome Welcome to to the the real real world. world.

B.1.5 Math With/Without Reasoning

Both these datasets consist of the same math problems that the LLM is tasked to solve, with the only
difference being whether or not an intermediate reasoning step is used in prompting the model. More
specifically the LLM is asked to provide a direct answer to an arithmetic math word problem. There
are 10 types of word problems and random positive integers are used to construct unique prompts.
These are as follows:

• Pizza: Jane ate A slices of pizza and her brother ate B slices from a pizza that originally had
C slices. How many slices of the pizza are left? Reason: Combined slices eaten = A + B.
Left = C - (A + B).

• Chaperones: For every A students going on a field trip, there are B adults needed as
chaperones. If C students are attending, how many adults are needed? Reason: Adults
needed = (B * C) // A.

• Purchase: In an aquarium, there are A sharks and B dolphins. If they bought C more sharks,
how many sharks would be there in total? Reason: Total sharks = A + C.

• Game: John scored A points in the first game, B points in the second, C in the third, and D
in the fourth game. What is his total points? Reason: Total points = A + B + C + D.

4https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
5https://huggingface.co/docs/datasets

15

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://huggingface.co/docs/datasets

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• Reading: Elise reads for A hours each day. How many hours does she read in total in B
days? Reason: Total hours read = A * B.

• Discount: A shirt costs A. There’s a B-dollar off sale. How much does the shirt cost after
the discount? Reason: Cost after discount = A - B.

• Area: A rectangular garden has a length of A meters and a width of B meters. What is its
area? Reason: Area = A * B.

• Savings: If James saves A each week, how much will he save after B weeks? Reason: Total
savings = A * B.

• Cupcakes: A bakery sells cupcakes in boxes of A. If they have B cupcakes, how many
boxes can they fill? Reason: Boxes filled = B // A.

• Interest: Jake invests A at an annual interest rate of B%. How much interest will he earn
after C years? Reason: Interest = (A * B * C) // 100.

B.2 MODELS AND METHODS

We now describe the models and the methods used in our experiments throughout the main paper.
First, we describe the ResNet-34 (He et al., 2016) architecture used as the base model for the noisy
vision datasets, then the RoBERTa (Liu et al., 2019) NLP transformer model, and then the Llama-
2 LLM.6 We also describe implementation details and parameter values for the label correction
baselines in Sections 4 and 5 and the influence-based baselines used throughout the paper. Finally,
we also describe some key implementation details regarding our outlier gradient analysis approach.

B.2.1 RESNET-34

The ResNet-34 model was proposed in He et al. (2016) and is a 34-layer convolutional neural network
pretrained on the ImageNet-1K dataset at resolution 224 × 224. The pretrained model block is fine-
tuned on the CIFAR-10N/CIFAR-100N training set experiments with default parameters– minibatch
size (128), optimizer (SGD), initial learning rate (0.1), momentum (0.9), weight decay (0.0005),
and number of epochs (100), for all experiments. Moreover, we directly used the implementation
provided by Wei et al. (2022) and made modifications to their code.

B.2.2 ROBERTA

As in Kwon et al. (2024), we utilize LoRA fine-tuning to fine-tune the RoBERTa-large model, a
355M parameter transformer language model that improves upon the original BERT model in key
ways such as implementation and hyperparameter selection. LoRA is applied to every value matrix
of the attention layers of the RoBERTa model. The pre-trained model from Huggingface is used.7 A
learning rate of 0.0003 and a batch size of 32 is used. The model is fine-tuned over 10 epochs using
LoRA and dropout is set to be 0.05 while the rank of the LoRA matrix is set to 4, as recommended
in Kwon et al. (2024). The loss function used is a negative log-likelihood as the datasets are all for
binary classification. The LoRA training is enabled using the Huggingface PEFT library.8 For the
influence experiments we have utilized the code provided in Kwon et al. (2024) and adapted it for our
experiments. Moreover, we only compute influences using the training set gradients, and keep the
test set hidden from the learning model for fair evaluation.

B.2.3 LLAMA2-13B-CHAT LLM

We fine-tune the Llama2 13B parameter instruction tuned LLM using LoRA fine-tuning (applied to
every query and value matrix of the attention layer) as in Kwon et al. (2024). The LoRA parameters
are as follows: learning rate is set to be 0.0003, rank of LoRA matrix is set to 8, α = 32 in 8-bit
quantization, and the batch size is set to 32 across 25 fine-tuning epochs. A negative log-likelihood
of the generated response is used as the loss function for fine-tuning as before. Here too, we adapt
the code provided by Kwon et al. (2024) for our use cases.

6https://huggingface.co/meta-llama/Llama-2-13b-chat-hf.
7https://huggingface.co/docs/transformers/model_doc/roberta.
8https://huggingface.co/docs/peft/index.

16

https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/docs/transformers/model_doc/roberta
https://huggingface.co/docs/peft/index

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Accuracy ± Standard Deviation results obtained for 5 runs on the CIFAR-10N and CIFAR-
100N datasets for a ResNet-34 model trained via cross entropy as well performance post trimming
using noisy label correction approaches and influence-based methods, including our proposed outlier
gradient analysis methods.

Method CIFAR-10N CIFAR-100N
Aggregate Random Worst Noisy100

Cross Entropy 90.87 ± 0.23 89.17 ± 0.31 82.27 ± 0.37 57.36 ± 0.43
Normalized Margin (Northcutt et al., 2021) 91.33 ± 0.11 90.06 ± 0.14 83.57 ± 0.32 60.94 ± 0.59
Self-Confidence (Müller & Markert, 2019) 91.38 ± 0.19 90.09 ± 0.17 83.65 ± 0.21 60.51 ± 0.51
Confidence Entropy (Kuan & Mueller, 2022) 91.11 ± 0.34 90.05 ± 0.26 83.63 ± 0.41 60.62 ± 0.26
Gradient Tracing (Pruthi et al., 2020) 91.47 ± 0.21 89.98 ± 0.20 83.38 ± 0.58 60.73 ± 0.38
LiSSA (Koh & Liang, 2017) 91.49 ± 0.34 90.05 ± 0.31 83.38 ± 0.58 60.48 ± 0.29
DataInf (Kwon et al., 2024) 91.46 ± 0.17 90.05 ± 0.38 83.40 ± 0.56 60.70 ± 0.31
Self-LiSSA (Bejan et al., 2023) 92.07 ± 0.15 89.58 ± 0.11 83.01 ± 0.34 59.48 ± 0.43
Self-DataInf 91.41 ± 0.17 89.81 ± 0.37 83.15 ± 0.22 60.56 ± 0.28
Outlier Gradient Analysis (L1) 91.86 ± 0.14 90.66 ± 0.33 84.20 ± 0.19 60.32 ± 0.42
Outlier Gradient Analysis (L2) 92.21 ± 0.14 90.25 ± 0.22 82.99 ± 0.54 61.40 ± 0.22
Outlier Gradient Analysis (iForest) 91.36 ± 0.09 90.20 ± 0.07 83.72 ± 0.18 60.99 ± 0.27

B.2.4 LABEL CORRECTION BASELINES

For label correction baselines in Sections 4 and 5– Normalized Margin (Northcutt et al., 2021),
Self-Confidence (Müller & Markert, 2019), and Confidence-Weighted Entropy (Kuan & Mueller,
2022), we utilize the implementation provided in the Cleanlab9 library. We use default parameters for
all three baselines. Note that the baselines are model agnostic and only require predicted labels and
associated probabilities for predictions, which we can easily obtain from classifiers.

B.2.5 INFLUENCE-BASED BASELINES

We utilize three influence-based baselines in experiments: LiSSA (Koh & Liang, 2017), Gradient
Tracing (Pruthi et al., 2020), DataInf (Kwon et al., 2024). For each of these baselines, we utilize the
implementation provided in Kwon et al. (2024) and adapt it to our application scenarios. For each
baseline influence estimation is undertaken only on the training set.

B.2.6 OUTLIER GRADIENT ANALYSIS

We now discuss implementation details regarding outlier gradient analysis. Owing to the simplicity
of our approach, the implementation is straightforward and follows directly from the algorithm.
In most cases, we directly utilize the gradients obtained from the last layer of the model being
considered. However, in some cases, the gradient space of samples can be high dimensional. For
instance, for CIFAR-100N, the gradient space is of dimension 50000 × 51200 which unnecessarily
increases memory and time complexity of outlier detection. As a result, we reduce the gradient space
dimensionality by employing a sparse random projection step (Li et al., 2006) where the reduced
dimension is ascertained using the scikit-learn library. We also utilize sparse random projection in
this manner for the Llama-2-13B-chat LLM model experiments to reduce the dimensionality of the
gradient space obtained.

C ADDITIONAL RESULTS AND EXPERIMENTS

We now provide details on additional experiments. We first provide results for the noisy label
datasets and vision models shown in the main paper, but with standard deviation included. Then we
conduct ablation experiments on the outlier detection threshold k for the outlier gradient analysis
algorithm. We also provide experiments on running time of our proposed approach (as well as
details on computational complexity), ablation experiments on varying iForest parameters, results on
ImageNet, experiments with ResNet-18 as the base model instead of ResNet-34, among others.

C.1 FULL RESULTS WITH STANDARD DEVIATION FOR VISION MODEL EXPERIMENTS

In the main paper results of Section 5 we provide accuracy values without the standard deviation
listed, due to space constraints. Here, we augment those results by also providing the standard

9https://github.com/cleanlab/cleanlab/.

17

https://github.com/cleanlab/cleanlab/.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Varying the trimming budget k and measuring test set performance across noisy datasets
(top-2 performers at each k in bold).

CIFAR10N (Aggregate) 2.5% 5% 7.5% 10% 12.5%
Gradient Tracing 92.11 91.47 92.17 91.99 91.98
LiSSA 92.08 91.49 91.83 92.27 91.74
DataInf 92.34 91.46 91.81 91.80 92.07
Self-LiSSA 91.71 92.07 91.32 91.72 91.33
Self-DataInf 91.22 91.41 91.37 91.29 91.15
Outlier Gradient (L1) 91.39 91.86 92.05 92.36 92.21
Outlier Gradient (L2) 92.10 92.21 92.70 92.63 92.78
Outlier Gradient (iForest) 91.77 91.36 91.57 91.92 92.08
CIFAR10N (Random) 2.5% 5% 7.5% 10% 12.5%
Gradient Tracing 90.71 89.98 90.41 90.75 90.96
LiSSA 90.21 90.05 91.09 90.88 90.00
DataInf 90.77 90.05 90.30 90.26 90.80
Self-LiSSA 89.76 89.58 89.50 88.94 89.49
Self-DataInf 89.91 89.81 90.32 89.91 90.00
Outlier Gradient (L1) 90.51 90.66 90.24 90.45 91.17
Outlier Gradient (L2) 90.72 90.25 90.63 90.50 91.21
Outlier Gradient (iForest) 90.03 90.20 90.06 90.38 90.62
CIFAR10N (Worst) 2.5% 5% 7.5% 10% 12.5%
Gradient Tracing 83.56 83.38 83.61 84.12 84.49
LiSSA 84.51 83.38 84.25 83.63 83.89
DataInf 84.31 83.40 83.45 84.01 84.12
Self-LiSSA 82.65 83.01 82.75 82.71 82.66
Self-DataInf 83.70 83.15 83.53 82.96 83.84
Outlier Gradient (L1) 84.26 84.20 84.12 84.32 84.25
Outlier Gradient (L2) 84.48 82.99 84.09 84.35 84.43
Outlier Gradient (iForest) 83.74 83.72 84.22 84.44 83.25

deviation obtained over the 5 runs. These results are denoted in Table 4. It can be seen that the
standard deviations are in general low, and overall, outlier gradient trimming has low variance.

C.2 ADDITIONAL RESULTS FOR DIFFERENT TRIMMING BUDGET k

We now conduct experiments varying k from 2.5% to 12.5% for all three noise settings and baselines
in the CIFAR-10N dataset. These results are shown in Table 5. As can be observed, our outlier
analysis approaches features in the top-2 irrespective of the value of k. Moreover, the highest values
across each noise regime are obtained by outlier gradient analysis (L2 norm at 12.5% for Aggregate
and Random; and L2 norm at 2.5% for Worst). Finally, we find that setting k as 5% and 12.5% are
good overall choices leading to consistently desirable performance. Hence, we select 5% as the
outlier budget in experiments.

C.3 EXPERIMENTS ON RUNNING TIME AND COMPUTATIONAL COMPLEXITY

We now present running time experiments for outlier gradient analysis on both the CIFAR-10N and
CIFAR-100N datasets compared to the other baselines compared in the paper in Table 6. It can be
seen that outlier gradient analysis is computationally efficient and a fraction of the original running
time of the model. Moreover, it is order of magnitudes faster than the other baselines. Thus, our
outlier gradient analysis approach is computationally efficient as an option for trimming detrimental
samples and improving model performance. Most notably, only Gradient Tracing is faster than
outlier gradient analysis, but as we demonstrated in the main paper results, it seldom as accurate in
detecting detrimental samples as outlier analysis. Thus, outlier gradient analysis is ideal for balancing
performance with computational efficiency. We also provide analytical time complexity comparisons
in Table 7. Although, it is important to note that in practice, outlier gradient analysis is much faster
than the worst case time complexity, as can be seen in Table 6.

C.4 EXPERIMENTS WITH VARYING TREE ESTIMATORS

We conduct further ablations for our iForest outlier gradient analysis approach. The main parameter
(other than the trimming budget k, which we investigate in Appendix C.2) of iForest based outlier

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Running time for our outlier gradient analysis approaches and other baselines (top-2 in bold).

Method Time Taken (seconds)
CIFAR-10N (Aggregate) CIFAR-10N (Random) CIFAR-10N (Worst) CIFAR-100N (Noisy100)

Gradient Tracing 0.30 0.30 0.39 5.45
DataInf 3.89 3.99 4.01 15.22
LiSSA 23.75 23.25 23.26 115.19
Self-DataInf 5.29 5.51 5.5 12.1
Self-LiSSA 30.44 31.64 31.07 94.93
Outlier Gradient Analysis (L1) 0.54 0.54 0.74 10.3
Outlier Gradient Analysis (L2) 0.55 0.55 0.8 8.99
Outlier Gradient Analysis (iForest) 2.09 2.15 2.19 8.46

Table 7: Computational complexity of outlier gradient analysis methods and other baseline approaches
(n is #training samples, v is #validation/test samples, p is #model parameters, m is #inputs for LLM
and o is #outputs for LLM).

Method Type Time Complexity
Exact (Eq 1) Hessian-based O(nv3)
LiSSA (Koh & Liang, 2017) Hessian-based O(nvp)
DataInf (Kwon et al., 2024) Hessian-based O(nvp)
EK-FAC LLM Baseline (Grosse et al., 2023) Hessian-based O(m2o+ p2o)
Self-LiSSA (Bejan et al., 2023) Self-influence O(np)
Self-DataInf Self-influence O(np)
Gradient Tracing Hessian-free O(nvp)
Ours (Outlier Gradient Analysis) Hessian-free O(np)

gradient analysis is the number of tree estimators being used. As a result, we vary the number of
these estimators, and measure performance. We observe that test set performance on CIFAR-10N
(Worst noise setting) for outlier gradient analysis remains stable across the board when the number of
estimators are varied, as can be seen in Table 8.

Table 8: Results on varying the number of tree estimators used in iForest outlier gradient analysis.

Tree Estimators 25 50 75 100 125 150 175 200
Accuracy on Test Set (%) 83.70 84.38 83.71 83.72 83.66 83.97 83.84 83.42

C.5 EXPERIMENTS ON RESNET-18 ARCHITECTURE

We also provide results for ResNet-18 (He et al., 2016) being used as the base model IN Table 9
instead of the ResNet-34 model. The overall performance of the ResNet-18 model is lower than
ResNet-34 for all datasets and noise settings, since the ResNet-18 model has fewer residual
connections than the ResNet-34 model. Moreover, it can be observed that outlier gradient analysis
leads to improved performance post trimming, compared to the cross entropy baseline. Outlier
gradient trimming is advantageous as a data selection strategy irrespective of the base model.

Table 9: Accuracy ± Standard Deviation results for 5 runs on the CIFAR-10N and CIFAR-100N
datasets for a ResNet-18 model trained via cross entropy as well performance post trimming using
noisy label correction approaches and our proposed outlier gradient analysis.

Method CIFAR-10N CIFAR-100N
Aggregate Random Worst Noisy100

Cross Entropy 90.78 ± 0.12 89.01 ± 0.31 81.85 ± 0.45 57.22 ± 0.12
Outlier Gradient Trimming (Ours) 91.17 ± 0.14 89.91 ± 0.21 83.08 ± 0.26 60.58 ± 0.28

C.6 EXPERIMENTS ON IMAGENET

Although noisy label experiments have not been conducted on ImageNet (Deng et al., 2009), we
decided to undertake a simple experiment on a subset of ImageNet. We created a subset of ImageNet
containing 50000 images (50 images from each of the 1000 classes) as the training set, and flipped
40% of the corresponding image labels to create noisy labels (20 images from each class). The
validation set is the same as ImageNet with 50000 images. We obtain results for performance on
this set for a baseline ResNet-18 (He et al., 2016) model, DataInf, Gradient Tracing, iForest based
outlier gradient analysis, as well as simple L1-norm and L2-norm thresholding based outlier gradient
analysis. The models are trained for 10 epochs. In this limited experimental setting, we obtain the
following results in Table 10 and find that outlier gradient analysis methods achieve competitive

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

performance to other methods while being highly computationally efficient.

Table 10: Results on ImageNet (top-3 performers based on performance and time taken are in bold).

Method Accuracy (%) Time Taken (s)
Cross Entropy 49.2 -
Gradient Tracing 51.0 23.51
DataInf 51.5 182.3
Outlier Gradient Analysis (iForest) 50.3 103.5
Outlier Gradient Analysis (L1) 51.5 44.81
Outlier Gradient Analysis (L2) 51.2 44.68

C.7 EXPERIMENTS ON OTHER NOISY LEARNING BASELINES

As we discussed previously, approaches for noisy learning can be categorized into (1) methods
that either change the loss function or model architecture or (2) those that identify noisy samples
and remove/relabel them for improving model performance (Algan & Ulusoy, 2021). Since our
approach belongs to the latter category, we only compared against other approaches from this category
in the main paper. For completeness we now present results comparing our approach with some
others in the former category for the ResNet-34 architecture and CIFAR-10N dataset. As can be
seen in Table 11, outlier gradient analysis features in the top-2 performers compared to the other
noisy learning baselines. We would like to emphasize that this is not an exhaustive list of baselines
and noisy learning by adjusting the loss/model is not the primary focus of our work (but detecting
detrimental samples is). Note that our algorithm could also be combined with approaches from this
other category for additional gains.

C.8 EXPERIMENTS ON ADAPTING OUTLIER GRADIENT ANALYSIS TO VALIDATION/TEST SET

We also conduct experiments for the distribution shift benchmark from the influence function work
by Chhabra et al. (2024). These experiments will showcase the applicability of outlier gradient
analysis in adapting to a validation/test set distribution (instead of solely relying on the training
set distribution). In Chhabra et al. (2024), three distribution shift scenarios are considered on the
Folktables ACS-Income (Ding et al., 2021) dataset: time-shifted, location-shifted, and time+location-
shifted. Essentially, in each of these settings, either the train/test distribution are time-shifted (e.g.
2014/2018), location-shifted (e.g. CA/MI), or both (e.g. 2014 & CA / 2018 & MI). We undertake the
same experiments but using the OneClassSVM semi-supervised outlier analysis approach (Li et al.,
2003) instead of iForest, L1/L2 norm, and provide the test set as inliers to correct the distribution
of the training set influence estimation. Then, we utilize outlier gradient analysis for each setting,
with results shown in Table 12. Our approach is highly adaptable to differing test/validation set
distributions (concept drift) and can significantly outperform other baselines in this setting as well.

D BROADER IMPACT AND LIMITATIONS

Our work and proposed techniques aim to address the data-centric task of identifying detrimental
samples. We improve upon the influence function analysis framework that is used to undertake
this problem, but possesses deficiencies when applied to deep learning models. Enabling influence
estimation for deep models allows practitioners to assess whether training samples are beneficial or
detrimental to performance, and can make models more interpretable and performant. As we show
through extensive experiments on multiple problem settings, our proposed outlier gradient analysis
approach outperforms existing baselines and can augment model performance by identifying/trimming
detrimental samples in a computationally efficient manner. As a result, our work paves the way
for significant positive societal impact, especially with the increased adoption of larger and deeper
neural networks such as LLMs. However, as with any work, there are limitations to our approaches
that can be overcome in future work. For instance, it might be possible to derive specific outlier
analysis algorithms that are computationally more efficient than iForest or norm thresholding, and
significantly more performant. Another limitation that can be overcome is the further study and
benchmarks for influence based analysis in LLMs– going beyond the datasets and approaches we
used in this work. Finally, influence approaches can also be studied for generation tasks in vision
based diffusion models.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 11: Comparing with the alternate category of noisy learning baselines.

Method CIFAR-10N (Aggregate) CIFAR-10N (Random) CIFAR-10N (Worst)
Backward-T (Patrini et al, 2017) 88.13 ± 0.29 87.14 ± 0.34 77.61 ± 1.05
Forward-T (Patrini et al, 2017) 88.24 ± 0.22 86.88 ± 0.50 79.79 ± 0.46
T-Revision (Xia et al, 2019) 88.52 ± 0.17 88.33 ± 0.32 80.48 ± 1.20
VolMinNet (Li et al, 2021) 89.70 ± 0.21 88.30 ± 0.12 80.53 ± 0.20
GCE (Zhang and Sabuncu, 2018) 87.85 ± 0.70 87.61 ± 0.28 80.66 ± 0.35
Peer Loss (Liu and Guo, 2020) 90.75 ± 0.25 89.06 ± 0.11 82.00 ± 0.60
F-Div (Wei and Liu, 2020) 91.64 ± 0.34 89.70 ± 0.40 82.53 ± 0.52
Positive-LS (Lukasik et al, 2020) 91.57 ± 0.07 89.80 ± 0.28 82.76 ± 0.53
Negative-LS (Wei et al, 2021) 91.97 ± 0.46 90.29 ± 0.32 82.99 ± 0.36
Co-teaching+ (Yu et al, 2019) 90.61 ± 0.22 89.70 ± 0.27 83.26 ± 0.17
JoCoR (Wei et al, 2020) 91.44 ± 0.05 90.30 ± 0.20 83.37 ± 0.30
ELR (Liu et al, 2020) 92.38 ± 0.64 91.46 ± 0.38 83.58 ± 1.13
CORES-2 (Cheng et al, 2020) 91.23 ± 0.11 89.66 ± 0.32 83.60 ± 0.53
Outlier Gradient Analysis (L1) 91.86 ± 0.14 90.66 ± 0.33 84.20 ± 0.19
Outlier Gradient Analysis (L2) 92.21 ± 0.14 90.25 ± 0.22 82.99 ± 0.54
Outlier Gradient Analysis (iForest) 91.36 ± 0.09 90.20 ± 0.07 83.72 ± 0.18

Table 12: Using OneClassSVM as the outlier analysis approach in the distribution shift experiments
of Chhabra et al. (2024) on the Folktables ACS-Income dataset.

Method Time Loc Time + Loc
Gradient Tracing 0.7523 0.7628 0.7483
DataInf 0.7390 0.7830 0.7547
LiSSA 0.7490 0.7657 0.7498
Self-DataInf 0.7783 0.7797 0.7812
Self-LiSSA 0.7782 0.7798 0.7782
Outlier Gradient Analysis (L1) 0.7683 0.7797 0.7742
Outlier Gradient Analysis (L2) 0.7687 0.7760 0.7690
Outlier Gradient Analysis (iForest) 0.7708 0.7892 0.7750
Outlier Gradient Analysis (OneClassSVM) 0.7765 0.8063 0.7840

E CODE AND REPRODUCIBILITY

We provide our code, instructions, and implementation in an open-source repository: https:
//anonymous.4open.science/r/outlier-gradient-analysis/. The experiments
were conducted on two separate Linux (Ubuntu 20.04.6 LTS) servers– the experiments of Sections 6
and 7 were conducted on NVIDIA GeForce RTX A6000 GPUs with 50GB VRAM running CUDA
version 12.0 and all other experiments were conducted on an NVIDIA Tesla V100 with 32GB VRAM
and CUDA version 11.4.

21

https://anonymous.4open.science/r/outlier-gradient-analysis/
https://anonymous.4open.science/r/outlier-gradient-analysis/

	Introduction
	Related Work
	Proposed Approach
	Preliminaries on Influence Functions
	Bridging Influence Estimation and Outlier Analysis
	Our Approach: Outlier Gradient Analysis

	Hypothesis Verification on Synthetic Data
	Noisy Label Correction for Vision Datasets
	Data Selection for Fine-tuning NLP Models
	Extending to Influential Data Identification for LLMs
	Discussion
	Conclusion
	Additional Related Work on Miscellaneous Data-Centric Learning
	Detailed Information on Datasets and Model Training
	Datasets
	Synthetic Datasets
	CIFAR-10N and CIFAR-100N
	GLUE Datasets
	Sentence Transformations
	Math With/Without Reasoning

	Models and Methods
	ResNet-34
	RoBERTa
	Llama2-13B-chat LLM
	Label Correction Baselines
	Influence-Based Baselines
	Outlier Gradient Analysis

	Additional Results and Experiments
	Full Results with Standard Deviation for Vision Model Experiments
	Additional Results for Different Trimming Budget k
	Experiments on Running Time and Computational Complexity
	Experiments with Varying Tree Estimators
	Experiments on ResNet-18 Architecture
	Experiments on ImageNet
	Experiments on Other Noisy Learning Baselines
	Experiments on Adapting Outlier Gradient Analysis to Validation/Test Set

	Broader Impact and Limitations
	Code and Reproducibility

