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Abstract

We propose C-MELT , a novel framework for multimodal self-supervised learning
of Electrocardiogram (ECG) and text encoders. C-MELT pre-trains a contrastive-
enhanced masked auto-encoder architecture using ECG-text paired data. It exploits
the generative strengths with improved discriminative capabilities to enable robust
cross-modal alignment. This is accomplished through a carefully designed model,
loss functions, and a novel negative sampling strategy. Our preliminary experiments
demonstrate significant performance improvements with up to 12% in downstream
cardiac arrhythmia classification and patient identification tasks. Our findings
demonstrate C-MELT ’s capacity to extract rich, clinically relevant features from
ECG-text pairs, paving the way for more accurate and efficient cardiac diagnoses
in real-world healthcare settings.

1 Introduction

Electrocardiograms (ECGs) provide critical insights into the heart’s electrical activity through non-
invasive electrodes, with the standard 12-lead ECG being key to diagnosing conditions like arrhyth-
mias and myocardial infarction. While deep learning has revolutionized automated ECG interpretation,
it often depends on large, labeled datasets, which are expensive to obtain. Self-supervised learning
(SSL) has emerged as a promising alternative, allowing models to learn meaningful representations
from vast unlabeled ECG data that can be fine-tuned or used for zero-shot learning on downstream
tasks [22, 7, 19].

SSL methods in the ECG domain primarily follow two tracks: contrastive and generative. Contrastive
approaches [2, 3, 10, 12, 16, 15] learn by distinguishing between positive and negative pairs, while
generative approaches [11, 24, 25] aim to reconstruct missing segments of the ECG signal. Despite
these advances, most SSL models overlook clinical text reports, which contain valuable diagnostic
information [26, 4]. Recent efforts [14, 13] have begun integrating ECG signals and clinical reports
through cross-modal contrastive learning, but joint ECG-text representation learning using generative
methods remains underexplored. Furthermore, their contrastive methods often rely on randomly
sampled negative pairs, which can be especially risky in the medical domain.

In this work, we introduce C-MELT , a hybrid framework combining contrastive and generative
learning to capture ECG-text representations. Our model employs a masked multimodal autoencoder
with carefully designed loss functions and a novel nearest-neighbor negative sampling strategy to
enhance discriminative ability. We conduct extensive experiments by fine-tuning the pre-trained
ECG encoder on popular downstream tasks, demonstrating that C-MELT significantly outperforms
state-of-the-art baselines across all evaluations.
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2 Method

We propose C-MELT , a framework designed to learn generalizable cross-modal representations by
aligning electrocardiogram (ECG) signals and corresponding medical text reports. C-MELT leverages
masked reconstruction tasks and contrastive learning objectives to capture intricate relationships
between these modalities.
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Figure 1: Illustration of our C-MELT framework for learning ECG-Text multimodal representations.

Figure 1 shows the architecture of C-MELT , comprising ECG and text encoders for cross-modal
representation learning. The ECG encoder uses a transformer-based model [1] to process ECG
signals into embeddings Hx, while the text encoder employs the pre-trained Flan-T5 model [5] to
extract embeddings Ht from clinical text. A fusion module with cross-attention integrates these
representations into fused embeddings Hf . The model includes decoders for reconstructing masked
ECG signals and text, and a contrastive prediction head for ECG-text matching. We add projection
heads gx and gt to facilitate discriminative representation learning with the Siglep loss. Our model is
trained to optimize jointly four loss functions: masked language modeling (LMLM ), masked ECG
modeling (LMEM ), ECG-text matching (LETM ), and the Siglep loss (LSiglep).

2.1 Multi-Modal masked auto-encoders.

ECG Encoder. We implement the ECG encoder (denoted as Fx) using a transformer architec-
ture [20] for efficient parallel processing of sequential data. Following [16], we apply a masking
strategy to the ECG input X ∈ RL×C , where L is the signal length and C is the number of channels,
to encourage robust feature learning. The masked input passes through convolutional layers with
GELU activations and group normalization, projecting the features into a 768-dimensional space.
We then employ eight transformer encoder layers with multi-head self-attention to capture complex
dependencies in the ECG data. A feed-forward network further processes the features, and positional
encoding is added to preserve the temporal order of the ECG sequence.

Text Encoder. For our text encoder, we utilize the Flan-T5-base encoder (denoted as Ft), which
outputs 768-dimensional embeddings. The input to the encoder consists of token indices generated by
the Flan-T5 tokenizer, represented as T ∈ ZM , where M is the maximum sequence length. Flan-T5
is an advanced version of the T5 model [17], which has been pre-trained on a massive and diverse
text dataset covering numerous tasks, such as summarization and question answering.

Fusion Module. The fusion module begins with linear projections that map the outputs of the ECG
and language encoders to a 768-dimensional space. We apply modality-specific embeddings to the
projected features to distinguish between ECG and text data. Importantly, we employ cross-attention
to integrate the ECG and textual information, allowing each modality to inform the other by learning
the relevant features. This cross-attention mechanism is crucial as it enables the model to leverage
the complementary strengths of both ECG and text data more effectively.

Decoders and Loss Functions. Our model has three distinct network heads, each associated with
a specific loss function: masked language modeling (MLM), masked ECG modeling (MEM), and
ECG-text matching (ETM). MLM and MEM are designed for reconstruction tasks, while ETM
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adopts a contrastive learning approach to align the different modalities. We detail each head and its
corresponding loss function below:

Masked Language Modeling (MLM). The MLM head consists of a dense layer that outputs a proba-
bility distribution over the vocabulary. It focuses on predicting the masked tokens in the input text
sequence, encouraging the model to learn contextualized word embeddings through a reconstruction
task. We use the cross-entropy (CE) loss for MLM, as shown in Equation 1:

LMLM = − 1

B

B∑
j=1

∑
m∈Mj

logP (tj,m|tj\Mj
; θ), (1)

where B is batch size, Mj is the set of masked positions in the jth sequence, tj,m is the masked
token at position m in the jth sequence, tj\Mj

represents the jth input sequence with masked tokens
removed, and θ represents the model parameters.

Masked ECG Modeling (MEM). MEM reconstructs masked ECG inputs, analogous to Masked
Language Modeling. We embed the input sequence into a 384-dimensional space, incorporate
learnable mask tokens and positional encodings to preserve the temporal structure and employ a
multi-layer transformer decoder to capture sequence dependencies. A linear projection outputs the
predicted ECG features, and we train MEM using the mean squared error loss (Equation 2):

LMEM =
1

B

B∑
i=1

||x̂i − xi||22 (2)

ECG-Text Matching (ETM). Finally, we use ETM to promote alignment between ECG signals and
their corresponding text reports. This is formulated as a binary classification task, where the ETM
head consists of a single dense layer that outputs a scalar ẑxk,tk representing the predicted probability.
The ETM loss is defined as the binary cross-entropy loss:

LETM = − 1

B

B∑
k=1

[yk log σ(ẑxk,tk) + (1− yk) log(1− σ(ẑxk,tk))] , (3)

where σ is the sigmoid function, yk = 1 if (xk, tk) is a positive pair, and yk = 0 otherwise.

2.2 Improving Contrastive Learning

Siglep Loss Function. To enhance the learning of discriminative features essential for down-
stream tasks, we address limitations of reconstruction-focused multi-modal masked autoencoders [4]
and the ETM loss, which is not optimized for individual encoder discrimination. We adapt the
Siglip method [23] to the ECG-text domain, introducing the Siglep loss function. Siglep operates
independently on each ECG-text pair, eliminating the need for computationally expensive global
normalization required by traditional softmax-based contrastive losses, thereby improving memory
efficiency and scalability. We augment the ECG and text encoders with additional network heads,
each comprising a pooling layer, a Tanh activation, and a dense layer to output 768-dimensional
embeddings (x′

i, t
′
j ∈ R768). The Siglep loss is defined as:

LSiglep = − 1

B

B∑
i=1

B∑
j=1

log

(
1

1 + e−yijx′⊤
i t′j

)
, (4)

where yij = 1 for matching ECG-text pairs and yij = −1 otherwise.

Nearest-neighbor-based negative sampling. In contrastive learning, effective negative sample
selection is crucial [21]; random sampling often leads to false negatives in medical datasets due
to report similarities, impeding learning. We propose a nearest-neighbor-based negative sampling
strategy that enhances negative sample quality by selecting negatives dissimilar to positive samples in
the Flan-T5 feature space. Specifically, we utilize a pre-trained Flan-T5 (small) to embed each text
report t ∈ Dtrain as vt ∈ R512. During training, for each ECG and positive text pair (xk, t

+
k ) in half

of the batch B, we select the negative report t−k as one of the top 64 most dissimilar reports from vt+k
based on cosine distance. This approach ensures negatives are challenging yet distinct, promoting
effective contrastive learning. We employ FAISS [6] for efficient nearest-neighbor search, enabling
scalable application to large datasets.
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Table 1: Test performances when fine-tuning on the five lead combinations. In fine-tuning, we fill
unavailable leads with zero, which is denoted as P-N-lead (Padded-N-lead).

Methods Tasks # Leads

12-lead P-6-lead P-3-lead P-2-lead P-1-lead

W2V [1] Dx. 71.4 64.3 67.6 61.1 52.5
Id. 49.2 41.1 47.0 41.4 24.7

CMSC [12] Dx. 62.5 52.2 57.5 50.7 40.6
Id. 51.3 39.2 51.0 37.8 22.7

3KG [8] Dx. 60.0 51.5 56.3 50.5 41.8
Id. 40.7 32.0 36.7 31.0 19.8

SimCLR(RLM) [2] Dx. 57.8 49.7 53.5 48.4 39.3
Id. 35.3 28.9 36.8 30.4 19.2

W2V+CMSC [16] Dx. 71.7 61.6 65.6 58.6 48.2
Id. 55.0 43.7 46.6 41.0 28.0

W2V+CMSC+RLM [16] Dx. 73.2 66.2 71.4 65.6 55.4
Id. 57.7 45.9 54.8 45.7 31.3

Ours Dx. 85.7 81.1 84.2 81.9 76.5
Id. 65.4 57.3 60.5 57.7 41.1

3 Experiments

3.1 Implementation details.

We pre-trained our model on the MIMIC-IV-ECG v1.0 database [9], comprising 779,891 ECG-
report pairs from 161,352 unique subjects after preprocessing. Each ECG is a 10-second, 500 Hz
recording from Beth Israel Deaconess Medical Center, with corresponding text reports consolidated
into a single diagnosis per recording. We removed invalid ECGs and cleaned text (lowercasing,
stripping, punctuation removal) to prepare the dataset. Implementing our model with the fairseq-
signals framework, we pre-trained it for 300,000 steps with a batch size of 128 on a single NVIDIA
H100-80GB GPU. We optimized using Adam (β1 = 0.9, β2 = 0.98, ϵ = 1× 10−6, weight decay
0.01) with a learning rate of 5× 10−5, adjusted via a tri-stage scheduler with ratios 0.1, 0.4, and 0.5.

We evaluate our pre-trained model on the PhysioNet 2021 dataset [18], focusing on subsets as
described in [16]. Two downstream tasks are considered: 1) Cardiac Arrhythmia Classification (Dx.),
a 26-multi-label task predicting cardiac abnormalities, and 2) Patient Identification (Id.), predicting
patient ownership of ECG recordings. For evaluation, we add a single dense layer to the pre-trained
ECG encoder and fine-tune the entire model. Performance is assessed using the CinC score for
arrhythmia detection and accuracy for patient identification, across five lead combinations, as in [16].

3.2 Empirical Results.

Table 1 shows that our method consistently outperforms previous approaches in both tasks. In
classification, our model achieves 76.5% accuracy with a single lead, surpassing the best baseline’s
73.2% in all lead settings. The 3-lead combination provides nearly as good results, just 2% below
using all leads, while the 2-lead and 6-lead combinations are comparable at around 81.5%. This
suggests the selected leads (I, II, V2) provide effective information for the task. Similarly, for
identification, our model reaches 41.1% accuracy with 1-lead, 60.5% with 3-lead, and 65.5% with all
lead usage, outperforming the best baseline by 7%.

4 Conclusion

In this paper, we propose C-MELT a multimodal self-supervised learning technique for learning
representations from ECG signals and corresponding texts, utilizing a novel masked transformer-
based architecture. Our approach is a hybrid of generative and contrastive learning, enhanced with
Siglep loss function, and nearest neighbor negative sampling to support contrastive aspects. The
experimental results demonstrate that our method outperforms previous approaches in fully fine-
tuned cardiac arrhythmia classification classification and patient identification tasks. C-MELT shows
promise in advancing ECG-based diagnostic models.
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