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ABSTRACT

Implicit neural representations (INRs) exhibit growing promise in addressing
Earth representation challenges, ranging from emissions monitoring to climate
modeling. However, existing methods disproportionately prioritize global av-
erage performance, whereas practitioners require fine-grained insights to under-
stand biases and variations in these models. To bridge this gap, we introduce
FAIR-EARTH: a first-of-its-kind dataset explicitly crafted to challenge and ex-
amine inequities in Earth representations. FAIR-EARTH comprises various high-
resolution Earth signals, and uniquely aggregates extensive metadata along strati-
fications like landmass size and population density to assess the fairness of mod-
els. Evaluating state-of-the-art INRs across the various modalities of FAIR-
EARTH, we uncover striking performance disparities. Certain subgroups, espe-
cially those associated with high-frequency signals (e.g., islands, coastlines), are
consistently poorly modeled by existing methods. In response, we propose spher-
ical wavelet encodings, building on previous spatial encoding research for INRs.
Leveraging the multi-resolution analysis capabilities of wavelets, our encodings
yield more consistent performance over various scales and locations, offering
more accurate and robust representations of the biased subgroups. These open-
source contributions represent a crucial step towards facilitating the equitable as-
sessment and deployment of implicit Earth representations.

Figure 1: Heatmap of the spatial distribution of approximation errors using a state-of-the-art INR (Rußwurm
et al., 2024) to model land-sea data of the Earth. Leveraging the resolution of FAIR-EARTH, we uncover clear
bias against islands where the error magnitude is significantly higher. Against the same task, we observe
SPHERICAL WAVELETS resolves these issues by reconciling global signals with fine and localized signals.
Further details and plots, including distribution of training points available in Appendix A.4
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1 INTRODUCTION

Implicit neural representations (INRs) have experienced a rapid surge in popularity since the ground-
breaking work of Mildenhall et al. (2020) first demonstrated their effectiveness in mapping com-
plex 3D scenes to continuous functions. Fundamentally, early INRs were formulated as a function
fθ : X → Y with sinusoidal activation and weights θ, where X is typically a coordinate space and
Y is the target space (Sitzmann et al., 2020). The key enabling feature of this representation was the
continuous support of fθ, yielding resolution-independent representations.

In recent years, the versatility and advantages of INRs have made them increasingly attractive across
diverse fields (Molaei et al., 2023; Chen et al., 2023; Rußwurm et al., 2024). Unlike traditional dis-
crete methods, INRs are essentially infinite-resolution models, enabling them to effectively handle
signal-processing tasks involving sharp discontinuities or high variance features (Xu et al., 2022).
Furthermore, they naturally excel in scenarios requiring differentiable representations, facilitating
tasks such as gradient-based optimization in physics-informed machine learning (Raissi et al., 2017).
The compact and flexible parameterization of INRs also offers substantial memory savings com-
pared to grid-based methods, a critical consideration for any practitioner working with resource
constraints (Liu et al., 2024).

More recently, INRs have made notable strides in Earth science applications, with transformative po-
tential for pressing tasks such as climate modeling and environmental monitoring (Rußwurm et al.,
2024; Grana et al., 2021). While existing methods span various techniques such as observation-
based networks (Palecki et al., 2013), satellite-based remote sensing (Sorooshian et al., 2014), and
more recently, computer-based climate simulations (Geneva and Foster, 2024), these methods suffer
from some combination of discretization error, data inconsistency, and resource-intensive inference
(Allen et al., 2002). In contrast, the ability of INRs to learn nonparametric models from arbitrarily
high-resolution, multi-modal data presents an efficient and promising alternative. Specifically, the
use of INRs to learn the underlying dynamics of explicitly geospatial data has rapidly garnered
interest (Cole et al., 2023). These methods encode the generative process and representation of
the data through an implicit function, typically a Deep Neural Network (DNN), that maps spatial
coordinates to data realizations (Hillier et al., 2023).

However, as INRs transition into these realms of Earth science application, it is imperative to thor-
oughly evaluate the fairness and potential biases of these models. Skewed or unfair models in this
domain can have far-reaching consequences, potentially amplifying existing societal inequalities or
misallocating resources in vulnerable communities (Munday and Washington, 2018; Flores et al.,
2022). For instance, two concrete instances of modeling bias in the Earth science and INR domains
underscore the critical importance of fairness considerations:

• Federal Emergency Management Agency (FEMA) flood maps, which rely on an ensem-
ble of machine learning models for risk assessment, have been shown to systematically
underestimate flood risk in lower-income neighborhoods (Flores et al., 2022).

• Global climate models, including those used in the Coupled Model Intercomparison Project
(CMIP), exhibit systematic errors in simulating precipitation patterns over Africa, consis-
tently overestimating precipitation in southern regions while underestimating it in central
regions (Munday and Washington, 2018).

While such fairness concerns should evidently be top-of-mind, as of writing, there exist no system-
atic datasets to target such biases for implicit Earth representations. Hence, we introduce the first-
of-its-kind FAIR-EARTH (Fairness Assessment for Implicit Representations of Earth Data) dataset,
a comprehensive framework for evaluating and mitigating biases of implicit Earth representations.

Contribution 1: FAIR-EARTH comprises a diverse set of benchmark datasets representing a wide
spectrum of Earth science signals, from global precipitation to carbon emissions (Section 3.2).
Uniquely, it also includes a suite of methodologies and metadata designed to quantify disparities
in model performance across different stratifications, setting it apart from existing datasets (Ta-
ble 7). In essence, FAIR-EARTH unifies disparate existing geospatial datasets under a consistent
framework, enriched with extensive metadata spanning fields such as geographical features (e.g.,
islands, coastlines), demographic information (e.g., population density) and geopolitical boundaries
(e.g., country divisions).
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Extensive experiments against FAIR-EARTH reveal significant disparities in the performance of
state-of-the-art INR methods across different subgroups (Section 4.1). In particular, our analysis
uncovers a strong negative correlation between landmass size and representation loss, with areas
corresponding to localized signals and high-frequency features exhibiting consistently poor perfor-
mance (Fig. 3).

To address these fairness issues, we build upon recent research into location encodings, which aim
to simplify downstream Earth representation tasks by transforming the input into a more learning-
friendly format. Previous work in this domain (Rußwurm et al., 2024) has focused on improving
location encodings via decomposition onto the harmonic domain. While these Fourier-inspired ap-
proaches have demonstrated improvements in global accuracy and longitudinal consistency, our
empirical results show that the global support of Fourier bases introduces biases against localized
signals, compromising more fine-scaled geographic representations (Fig. 1).

Contribution 2: With these limitations in mind, we propose SPHERICAL WAVELETS (SW), a novel
encoding mechanism grounded in existing research in the wavelet domain (Section 4.2). By ex-
plicitly modeling geospatial phenomena at multiple scales, SPHERICAL WAVELETS enable efficient
and accurate modeling of regions with highly localized signals (Fig. 19). Our approach is motivated
by the inherent multi-scale nature of Earth systems, and allows for more equitable representation
across diverse geographical contexts. Against the FAIR-EARTH framework, we demonstrate that
our encodings significantly reduce performance disparities compared to existing methods, paving
the way for fairer Earth science applications (Fig. 5).

We summarize our contributions below:

• We introduce FAIR-EARTH, a comprehensive framework for assessing fairness of implicit
Earth representations that comprises multiple modalities, enabling users to perform any
fine-grained fairness study as required by their application (Section 3.2).

• We perform a thorough fairness evaluation on FAIR-EARTH of current INR framework.
We discover significant subgroup disparities in current state-of-the-art INR methods (Sec-
tion 4.1).

• We propose spherical wavelet encodings for INRs, motivated by the shortcomings of exist-
ing INRs when dealing with multi-resolution data. Against FAIR-EARTH, we demonstrate
competitive performance while significantly mitigating per-group biases (Section 4.3).

The codebase and datasets will be released upon completion of the review process. We hope that
our study will pave the way towards more fair and equitable implicit Earth representations.

2 BACKGROUND

Fairness of Implicit Neural Representations Recent work has shown that optimizing solely for
average test performance can have detrimental effects on sub-group performance in natural image
classification tasks (Balestriero et al., 2022; Kirichenko et al., 2023). These findings raise natural
concerns about potential fairness issues in implicit neural representations (INRs), particularly in
the context of Earth data. For example, algorithms fine-tuned to low-frequency global signals may
overlook high-frequency fluctuations, potentially leading to biased representations. However, to the
best of our knowledge, a systematic study of fairness in INRs for Earth data has yet to be conducted.

We focus on the work by Rußwurm et al. (2024), which set state-of-the-art benchmark performance
by decomposing positional information onto spherical harmonic basis functions and integrating
these encodings with SirenNets (Sitzmann et al., 2020). The core contribution is the representation
of Earth data as continuous signals on the globe f : (λ, ϕ) 7→ R, where λ and ϕ denote longitude
and latitude, respectively. For well-behaved functions with exponential decay of their eigenvalues,
the signal can be precisely recovered using the following decomposition:

f(λ, ϕ) =

∞∑
l=0

l∑
m=−l

wm
l Y

m
l (λ, ϕ), (1)
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where Y is the class of spherical harmonic functions, w are learnable scalar weights, and l andm are
the degree and order of the basis function Y m

l . Both as a practice and a necessity (Fig. 17), an upper
bound on l is imposed, restricting the embedding size to l2 and capping the representable frequency.

Location Encodings for INRs The work in Rußwurm et al. (2024) notably represents a significant
advancement in the task of constructing proper location encodings for implicit Earth representations.
In a general sense, location encodings can be viewed as a simpler alternative to embeddings, a
familiar concept in natural language or multimodal learning fields. Like embeddings, encodings
play a crucial role in transforming the complex task of learning the distribution P (y|x) into a simpler
task P (y|x*), where x is the location, y is the predictive task, and x* is the location encoding (Mai
et al., 2022).

(a) CARTESIAN3D
(Tseng et al., 2022)

(b) THEORY (Mai et al.,
2020)

(c) GRID AND SPHERE
(Mai et al., 2023)

(d) SPHERICAL HAR-
MONIC (Rußwurm et al.,
2024)

Figure 2: Visualization of existing encoding mechanisms.

Early location encodings leveraged Gaussian processes and kernel methods (Mai et al., 2022), while
more recent approaches have improved performance even with simpler mappings like DIRECT
((ϕ, λ) 7→ (ϕ, λ)) and CARTESIAN3D ((ϕ, λ) 7→ (x, y, z)). As datasets have grown in dimensional-
ity, the field has built upon variants of GRID/THEORY embeddings, which involve simple interaction
terms between sine and and cosine functions on the globe. Notable examples include the GRID AND
SPHERE family of encodings (SPHEREC+ and SPHEREM+) which generalizes and combines these
previous encodings (Mai et al. (2023)). More recently, as INRs have gained popularity, the focus
has shifted towards more complex periodic representations of geospatial data, as exemplified by the
harmonic-based encodings in Rußwurm et al. (2024).

However, these global decomposition methods may not be accurate or efficient for common natural
signals across the globe (Fig. 2). Fourier and harmonic-based methods are especially known to alias
in localized, sharp, or discontinuous portions of the signal (Mallat, 1999), which intuitively can lead
to biased representations of important Earth features.

Measuring Fairness As described, the global approach adopted by many existing implicit Earth
representations is problematic when dealing with naturally localized or discontinuous signals. Be-
fore attempting to mitigate these biases, it is crucial for practitioners to understand their nature and
extent. More specifically, there is a pressing need to quantify the trade-offs in per-group perfor-
mance of existing models (Garcia-Silva et al., 2018). This emphasis on group-specific performance
is not merely an academic exercise but is driven by practical considerations: for tasks like natural
disaster risk assessment where consequences are severe, there is a natural emphasis on improving
worst-case performance rather than average-case metrics (Kemp et al., 2022).

An ideal framework for measuring fairness in Earth representations should encompass several key
components: consistent high-resolution data for uniform assessment, multi-modal integration to
reflect various Earth systems, and standardized fairness metrics to quantify biases along various
themes. By developing such a comprehensive framework, the implicit learning and Earth science
communities can work towards constructing more equitable models, aligning themselves with the
growing emphasis on fairness and accountability in AI systems.
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3 THE FAIR-EARTH DATASET

The introduction of FAIR-EARTH, the first-of-its-kind dataset to target per-group performance, is
highly motivated by both the natural tendencies of geospatial data and the well-studied biases of
existing INRs. We first examine the specific inadequacies of existing datasets, and then outline the
main contributions of the FAIR-EARTH dataset.

3.1 THE NEED FOR A FAIRNESS DATASET

The current landscape of Earth system datasets is not well-suited for the nuanced analyses described
earlier. Commonly used datasets and benchmarks suffer from inherent limitations that can introduce
or exacerbate biases. We point to two concrete examples below.

The Shuttle Radar Topography Mission (SRTM) land elevation model, despite its widespread
use, suffers significant data gaps and inconsistencies in areas with steep terrain or dense vegetation
(NASA Shuttle Radar Topography Mission, 2013). These gaps can lead to skewed representations
of topographical features, potentially affecting critical applications such as flood risk assessment or
infrastructure planning in vulnerable areas.

The Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime lights dataset, often employed
as a proxy for economic activity and urbanization, has limitations in detecting low levels of light
emissions (Murphy et al., 2006). This shortcoming may underestimate activity in rural or underde-
veloped areas, reinforcing existing biases in policy decisions.

These examples underscore a critical gap in the field: while existing datasets and Earth system
models are clearly at risk of exhibiting biases across different stratifications, there is no established
framework specifically designed to quantify these biases.

3.2 PROPOSED EVALUATION DATASET

To mitigate the limitations of some data sources highlighted in Section 3.1, FAIR-EARTH is based
around several clean, accessible, and interpretable data modalities. Additionally, we collect a com-
prehensive suite of metadata to assess biases that may arise from both the data and representation
model; this metadata lays the crucial groundwork for our novel fairness assessment of implicit Earth
representations.

Land-Sea Boundaries. Based on NASA’s Integrated Multi-satellitE Retrievals for GPM (IMERG)
dataset (Huffman et al., 2014), this component contains (Fig. 6) coarse signals like continental land-
masses while also providing high-resolution boundaries for fine-grained signals such as islands and
coastlines.

CO2 Emissions. Using data primarily from NASA’s Orbiting Carbon Observatory-2 (OCO-2)
satellite, this component provides ultra fine-grained and precise information into carbon emissions
(OCO-2 Science Team/Michael Gunson, Annmarie Eldering, 2020; O’Dell et al., 2018; Taylor et al.,
2023). OCO-2 is the second high-precision CO2 satellite, and inaccuracies due to reflectance or
cloud cover are mitigated via data assimilation. This high-resolution emissions data (Fig. 12) is
crucial for environmental justice applications, for instance enabling researchers to identify localized
pollution hotspots, or investigate correlations between emissions patterns and health disparities.

Precipitation and Temperature. Derived from the CHELSA (Karger et al., 2017) dataset, this
component provides an assortment of coarse and ultra-fine-grained signals, as well as high resolution
along the time dimension (Fig. 9). This temporal granularity allows for analysis of both long-term
climate trends and short-term weather patterns.

Population Density. Leveraging the Gridded Population of the World, Version 4 (GPWv4) popu-
lation dataset (Center for International Earth Science Information Network - CIESIN - Columbia
University, 2018b), which integrates censuses, population registers, and spatial distributions, we
synthesize population density data for each point in the grid (Fig. 11).

We emphasize FAIR-EARTH is a unified framework. All data is sampled and projected onto a uni-
form 0.1◦ x 0.1◦ grid, a state-of-the-art resolution for fine-grained analysis. Moreover, we propose
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attributes and metadata including landmass size, coast distance, and population density for each lo-
cation hence enabling to disentangle the global prediction performance into meaningful subgroups
(metadata specifications available in Appendix A.1). In particular, our metadata comprises two main
subgroups. First, geographical features are composed: based on a combination of existing data and
ad-hoc definitions (Appendix A.1), we label relevant subgroups including islands, coastlines (strat-
ified by distance), land, and sea. Additionally, we incorporate metadata on population density and
administrative boundaries.

While core geospatial data is derived from existing datasets, we highlight the differences between
FAIR-EARTH and existing stand-alone datasets (Table 7). Unlike datasets such as NaturalEarth
(Nat) that emphasize geographic features, we combine multiple dimensions of data (environmental,
demographic, and emissions) within one integrated format, allowing practitioners to model and
assess the interdependence of multiple modalities. In contrast to existing climate datasets such as
ERA5 (Hersbach et al., 1999), our environmental signals incorporate interconnected emissions data
and metadata, crucial for nuanced investigation of environmental justice issues.

3.3 FAIR-EARTH LIMITATIONS

While the design choices for FAIR-EARTH facilitate subgroup-level fairness evaluations, they also
yield certain tradeoffs. In particular, temporal and pole biases may manifest from the gridded for-
mat of FAIR-EARTH data; we later discover (4.3) that this format indeed induces bias in the training
data. Given the agile framework of FAIR-EARTH, we strongly encourage practitioners to evaluate
and incorporate their own datasets when necessary, and to adopt best practices in sampling to miti-
gate such biases.

4 MEASURING AND IMPROVING THE (UN)FAIRNESS OF INRS

4.1 EVALUATION OF EXISTING REPRESENTATIONS

Global Performance is not Representative of Local Performance To properly understand the
behavior of existing INRs, we depart from hyperparameter fine-tuning, and instead perform exten-
sive training over a cross-product of each model’s hyperparameter space. This allows us to move
past “best-case” analysis, and instead incorporate nuanced analysis of model tradeoffs. Moreover, as
downstream tasks often require further tuning anyways, it is natural to instead consider the overall
behavior of the implicit representation. Cross-validation details are available in Appendix A.2.

In particular, we explore the correlations of subgroup performance. While certain disparities in
performance are intrinsic to the task (e.g., islands and coastlines exhibit higher representation loss as
land-sea boundaries are harder to learn than constant signals), a fair model should in general show
concurrent improvement in subgroups. Leveraging the metadata in FAIR-EARTH, we compare
representation performance between areas that correspond to local signals (e.g., islands) and ones
that correspond to global signals (e.g., large landmasses).

Training Samples Pearson Correlation (R)
SW (Ours) SH THEORY

5000 0.51 −0.73 −0.53
10000 0.42 −0.88 −0.62
15000 0.04 −0.88 −0.10
20000 0.31 −0.68 −0.28

Table 1: Land-island performance correlations across encodings and training resolutions. While
existing encodings compromise local-global performance, SPHERICAL WAVELET reconciles im-
provement over multi-scale features. We omit SPHEREC+ due to abnormally high bias.

Strikingly, our correlation analysis indicates a stark disparity in representation loss between global
and local groups among all state-of-the-art encodings (Appendix A.5, Section 4.1). For SPHERICAL
HARMONICS, we notice a strong negative correlation between land and island loss when stratified
along training resolution (Section 4.1), suggesting that when optimized for total loss, state-of-the
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art INRs exhibit a clear tradeoff between global and local performance. Regardless of stratification,
INRs of the form Eq. (1) appear incapable of competitive performance across all subgroups at once
(Table 2).

Figure 3: Model behavior at different resolutions and regularizations. Smaller models fail to capture
fine/local signals. Larger models poorly reconcile local signals with existing global signals.

Aliasing as a Result of Overfitting As described earlier, Eq. (1) is global in nature. We observe
the implications of this construction in Fig. 3, where the smoothness of land and sea signals are
compromised in an effort to represent islands and coastlines. We corroborate this observation with
an ablation over encoding size, which shows increasing encoding size results in plateauing land
performance and deteriorating island performance (Fig. 21).

Concretely, the observed aliasing in the high-resolution case is indicative of the Gibbs phenomenon,
exhibiting unnatural oscillations around the island and coastline ‘discontinuities’ (Dyke and Dyke,
2001). In the effort to precisely fit the islands, Eq. (1) is forced to learn an unnatural representation
of the land and sea masses.

Our correlation analysis and aliasing investigation confirms that no SPHERICAL HARMONIC-based
model is able to maintain competitive performance in both sub-groups simultaneously, suggesting
that current solutions in implicit Earth representations require further development to reach truly
equitable predictions.

Biases Across Multiple Modalities and Subgroups While the land-sea binary classification task
reveals natural biases against fine and localized areas, we emphasize that one of FAIR-EARTH’s
main strengths is in its ability to easily quantify subgroup disparities across multiple modalities. In
particular, we perform similar stratified evaluation against FAIR-EARTH’s benchmarks for environ-
mental signals. For the surface temperature dataset, which exhibits similar sharp variations across
recognizable boundaries, we note similar trends (Fig. 4). Namely, FAIR-EARTH reveals systematic
patterns in representation quality: regions with sharper variations, particularly near the coast, show
significantly higher average representation loss (MSELand = 0.87, MSECoast = 0.101) compared to
regions with smoother variations (MSESea = 0.43, MSEIsland = 0.49) (Table 14).

Moreover, this analysis extends naturally to downstream biases through FAIR-EARTH’s rich meta-
data. At the country level, we observe that representation challenges at the feature level manifest as
systematic performance disparities. For instance, SPHERICAL HARMONIC and THEORY encodings
particularly struggle with to demarcate the Spain’s fine Mediterranean coastline, while all studied
encodings show degraded performance in coastal countries due to sharp temperature gradients at
land-sea boundaries (15).

4.2 SPHERICAL WAVELETS FOR FAIR EARTH REPRESENTATIONS

As explored in Section 2, a major limitation of SPHERICAL HARMONIC was their global support,
which struggled to reconcile localized signals with global ones. In particular, SH required a large
amount of basis functions to properly represent localized signals, and this excessive parameterization

7
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a) Predictions Results b) (Binned) Error Plot

Figure 4: Qualitative performance of SPHERICAL HARMONIC on surface temperature regression
task. SH exhibit bias against high-frequency details, with loss concentrated in areas of abrupt change
(e.g., coastlines).

resulted in aliasing in other regions. The ad-hoc solution involving re-weighting subgroups depends
on extensive labels; moreover, the effect on global performance is unknown (Stone et al., 2024).

To this end, we are motivated to leverage the theoretical guarantees of wavelets, which allow for
multi-scale resolution analysis of signals, efficiently representing signals at various scales and loca-
tions. To extend towards Earth data, we refer to past work in Demanet and Vandergheynst (2003)
that introduces spherical wavelet basis functions. Similar to the formulation in Eq. (1), any func-
tion on the sphere can also be approximated by a discrete sum of wavelet basis functions, where
coefficients are similarly learned via the INR mechanism.

The following sections briefly outline the construction of a novel encoding mechanism SPHERICAL
WAVELET, and its seamless integration into the currently studied INR pipeline. We direct interested
readers towards McEwen et al. (2007); Demanet and Vandergheynst (2003) for analysis on the cor-
rectness of the construction, and towards A.6 for evidence that SW encodings are surprisingly more
efficient and stable than their SH counterparts.

Spherical Morlet Wavelet via Inverse Projection A concise, computationally tractable construc-
tion for spherical wavelets arises from inverse stereographic projection of Euclidean wavelets (De-
manet and Vandergheynst, 2003). We note that due to the nature of this projection, the SPHERICAL
WAVELET is ill-defined at the poles.

As proven in Sanz et al. (2006), this inverse stereographic projection Π−1 of an admissible Euclidean
wavelet yields an admissible spherical wavelet; that is, the projected wavelet ψ(θ, φ) satisfies the
necessary zero-mean condition (Demanet and Vandergheynst, 2003). Empirically, we find that the
Morlet mother wavelet shows consistently superior performance (Fig. 24). Thus, applying the in-
verse projection onto the 2D Morlet wavelet with width factor and wave number w, k = 1 yields the
admissible spherical Morlet mother wavelet:

ψM (θ, ϕ) = [Π−1ψR2 ](θ, ϕ) =
ei tan(θ/2) cos(ϕ)e−(1/2) tan2(θ/2)

1 + cos θ
(2)

Lifting Scheme From an admissible mother wavelet, we can now construct a wavelet basis
from affine transformation on the sphere. Analogous to time-frequency localization of Euclidean
wavelets, spherical wavelets provide rotation-dilation localization. The rotation operator R(ρ) ≡
R(α, β, γ) and dilation operator D(a) both transport a function from and into f ∈ L2(S2, dµ(θ, ϕ));
refer to McEwen et al. (2007) for rigid formulation. Applying these transformations, we then define
a set of orthogonal basis functions {ψa,ρ ≡ R(ρ)D(a)ψM}
Finally, we discretize the reconstruction formula. First, we deterministically distribute ρ across N
points on the sphere following the Fibonacci lattice FN (González, 2009). To discretize rotation, we
take a ∈ {2

i
Q , 0 < i ≤M}, where Q ≤ 8 is a fixed value (Mallat, 1999). This yields an embedding

size on the order of O(NM), and the discretized approximation

f(θ, ϕ)N,M ≡
∑

ρ∈FN

M∑
i=1

wa,ρψa,ρ(θ, ϕ)

8
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Spherical Harmonic

Spherical Wavelet

Figure 5: Comparisons of SPHERICAL HARMONIC and SPHERICAL WAVELET behavior in local-
ized regions. Full figures available in Fig. 18 and Fig. 19.

Localization Properties The spherical Morlet wavelet, by design, exhibits dual localization in both
dilation and rotation, offering significant advantages in signal representation on the sphere (McEwen
et al., 2007). These properties enable a more nuanced and adaptive analysis of spherical data. In
particular, the Morlet variant is parameterized as follows (Fig. 15):

• Dilation allows the wavelet to adapt its scale, effectively increasing the resolvable fre-
quency range of our representation.

• Rotation facilitates representation of directional and localized features on the sphere.
• The wave number and scale factors parameterize oscillation.

4.3 SPHERICAL WAVELET EXPERIMENTS

SPHERICAL WAVELET Corrects Localized Biases To examine the biases present, we begin by
analyzing the trends in training and evaluation. In particular, we leverage FAIR-EARTH and deploy
a large cross-product of parameters (N = 984) to cross-validate algorithm performance between
local signals and global signals over various configurations. As a baseline, we compare to results
to [SPHERICAL HARMONIC, THEORY, and GRID AND SPHERE] encodings trained under identical
settings, therefore isolating the effects of the encodings.

We observe a sharp contrast between the local-global correlation of our encodings; that is, SPHER-
ICAL WAVELET learns to efficiently represent islands even at coarser resolution, therefore inducing
a positive trend between global (land) and localized (island) performance, whereas our baseline en-
codings exhibit a tradeoff between global/local performance even for finer resolutions Section 4.1.

Specifically, in contrast to SPHERICAL HARMONIC, where finer features are often blended together
(Fig. 1), SPHERICAL WAVELET has a significantly higher resolvable resolution for similar parameter
counts. Especially in localized areas such as islands, our encodings tend to produce sharper, more
fine boundaries compared to spherical harmonic encodings (Fig. 5).

SPHERICAL WAVELET is Competitive with Existing Methods While our correlation analysis
showed performance of SPHERICAL WAVELET exhibited fair and stable trends, we also seek to show
performance is competitive with existing methods. First, we re-examine the previous experiment and
compare general global performance of SPHERICAL WAVELET and SPHERICAL HARMONIC across
well-defined hyperparameter spaces.
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In general, we observe that the learned representation is similar to that of spherical harmonics, as
indicated by the visual similarities in their learned representations (Fig. 5). However, SW in fact
exhibits competitive or superior performance over SH through various training resolutions: we
maintain significantly superior average performance across all training resolutions (Table 2).

Samples SPHERICAL WAVELET SPHERICAL HARMONIC

5000 0.1404 / 0.1473 0.1392 / 0.1524

10000 0.1111 / 0.1169 0.1137 / 0.1218

15000 0.1000 / 0.1056 0.1003 / 0.1086

20000 0.0912 / 0.0962 0.0892 / 0.0969

Table 2: Comparison of best/average cross-entropy loss between SH and SW over land-sea
cross-validation. Top encodings per stratification are bolded.

The degradation in performance for SPHERICAL WAVELET for higher resolutions may be attributed
to the misspecifications of certain parameters in our model (e.g. wave number, scaling factors).

To this end, we also evaluate fine-tuned performance on the temperature and precipitation regres-
sion tasks, observing more consistent performance: when properly parameterized, SPHERICAL
WAVELET performs roughly on par with SPHERICAL HARMONIC encodings across all FAIR-
EARTH tasks (Appendix A.5).

SPHERICAL WAVELET Tradeoffs While SPHERICAL WAVELET demonstrates robust perfor-
mance across various tasks, like all signal-based methods, it faces certain limitations. We investigate
these limitations using two challenging external datasets:

• On the checkerboard classification task Rußwurm et al. (2024), which features coarse,
single-scale signals, SPHERICAL WAVELET performs well relative to most baselines but
consistently falls short of SPHERICAL HARMONIC. This suggests that the wavelet decom-
position may introduce unnecessary complexity for simple, single-scale tasks.

• In the land-sea classification task Rußwurm et al. (2024), which uses non-gridded, ul-
tra high-resolution data, SPHERICAL WAVELET only marginally outperforms SPHERICAL
HARMONIC. Our latitudinal analysis (Fig. 22) reveals that this limited improvement stems
primarily from degraded performance near the poles.

5 CONCLUSION

Measuring the fairness of implicit Earth representations is pressing yet lacking field in both the Earth
science and implicit representation fields. Our contributions in measuring and improving certain bi-
ases in state-of-the-art INRs represents a step forward in this important direction. By introducing
FAIR-EARTH, a novel framework for high-resolution assessment of subgroup-level performance,
we aim to develop and assess models pertinent to the needs of practitioners, informing of existing
biases and limitations of Earth models. Leveraging this new framework, our comprehensive assess-
ment uncovers striking biases against certain subgroups across state-of-the-art INRs. Based on these
observed performance disparities, we propose SPHERICAL WAVELET, injecting localized location
encodings that are naturally motivated. Against the many benchmarks of FAIR-EARTH, we resolve
many of the biases evident in SPHERICAL HARMONIC, while maintaining competitive performance.
We invite iteration and updates on FAIR-EARTH to improve the coverage of subgroups and signals,
and stay relevant with changes and trends within the community. Additionally, given the limitations
of SPHERICAL WAVELET, we hope further research can develop heuristics or structural changes
to address these shortcomings; in particular, we point to the integration of non-projection based
SPHERICAL WAVELET constructions as a promising direction for future work Sanz et al. (2006).
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A APPENDIX

A.1 FAIR-EARTH DETAILS

Table 3: FAIR-Earth Components

Category Description Misc. Source
Land-Sea Binary and continuous data, based on

bathymetric data on percent water sur-
face coverage for every grid point.

Metadata in-
cludes: islands,
coastlines, land-
mass sizes, coast
distance.

(Huffman
et al., 2014)

Population Population density data, derived from
combination of spatial distribution with
national census and population register
data.

Errors in Egypt
and Greenland
are flagged,
and tentatively
smoothed via
nearest-neighbor
interpolation.

(Center for
International
Earth Science
Information
Network -
CIESIN -
Columbia
University,
2018a)

Precipitation Global accumulated precipitation,
based on composite of measurements
and modeling.

Monthly Resolu-
tion

(Beck et al.,
2019)

Temperature Air surface temperature, based on satel-
lite measurements and reflectance mod-
eling.

Monthly Resolu-
tion

(Karger et al.,
2017)

Emissions Measured and modeled CO2 emissions
from the OCO-2 satellite.

Daily Resolution (Dou et al.,
2023)

Metadata Details In particular, for subgroups with ill-defined thresholds (e.g., classification of
islands and coastlines), we provide flexibility with adjustable thresholds. This feature allows re-
searchers to fine-tune their analyses based on specific definitions or needs, which can vary depend-
ing on the research question or application domain. For the purposes of our analyses, islands are
defined as landmasses with size under 30, 000 sq. miles, encapsulating most of the “minor islands”
as defined by Depraetere et al. (2007).

Second, we incorporate demographics and geographical boundaries leveraging the Gridded Popu-
lation of the World, Version 4 (GPWv4) population dataset (Center for International Earth Science
Information Network - CIESIN - Columbia University, 2018b), which integrates censuses, popu-
lation registers, and spatial distributions, we synthesize population density data for each point in
the grid. Then, leveraging high-resolution NaturalEarth (Nat) data, we label each grid point with
appropriate country labels. These labels are essential for equal representation of both densely and
sparsely populated areas, preventing the overrepresentation of urban centers or the underrepresenta-
tion of rural regions, a common bias seen in survey and modeling tasks.

A.1.1 DATASET FIGURES
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Figure 6: Binary land-sea

Figure 7: Coastline
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Figure 8: Islands (in dark purple)

Figure 9: Air surface temperature plot (Jan. 2018)
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Figure 10: Cumulative precipitation plot (Jan. 2018)

Figure 11: Global population plot
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Figure 12: CO2 emissions plot

Figure 13: Color-coded country plot
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A.2 TRAINING SPECIFICATIONS

a) Sampled Points (N = 10000) b) Landmass Size Percentiles for Nland = 3233

Figure 14: Coverage of different landmass sizes using uniform sampling. At N = 10000, at least
64 points are sampled on landmasses of size less than 40, 000 square miles, roughly the size of the
main island of Cuba.

Land-Sea Binary Classification Training We conducted a comprehensive ablation study to ex-
amine model trends on the land-sea binary classification task. The study was performed using a
grid-search, and relevant parameters are available in Table 4. Note that the parameter sizes for en-
codings were chosen to be similar, to control for any effects from simple increase in embedding
space.

Table 4: Grid search and encoding parameters

Parameter Values Applicable Encoding
Training Samples {5000, 10000, 15000, 20000} Both
Weight Decay {1e-5, 1e-4, 1e-3} All
Maximum Scale {3, 4, 5} SW
Maximum Rotations {50, 90, 130, 170} SW
Legendre Polynomials {5, 7, 10, 12, 15, 17, 20, 22, 25} SH
K Value 6 SW
Scale Factor 1 SW
Minimum Radius {45, 90} THEORY,

GRID AND SPHERE
Frequency Numbers {16, 32, 64} THEORY,

GRID AND SPHERE
Batch Size 2048 All
Learning Rate 1e-4 All
Maximum Epochs 500 All

To initialize training, we set identical data generation seeds for each model. Validation data was
sampled similar to Fig. 14 , but with Nvalidation = 0.2 ∗Ntraining and different initialization seeds.

For fine-tuning, we perform a similar grid search over a similar continuous range of variables.
The specific parameters are shown in Table 5. Due to the extra parameterization of SPHERICAL
WAVELET, we quadruple the number of trials to 120, compared to 30 for all other encodings
(Fig. 20).

Precipitation and Temperature Training Training over these environmental signals was nearly
identical to training on the land-sea binary classification task. We note a couple of minor discrepan-
cies:

• Mean-squared error loss was applied to a normalized version of the data, as opposed to
binary cross-entropy.

• For the sake of precision and brevity, all precipitation losses in the paper are increased by
a magnitude of 10. We emphasize that this doesn’t affect our analyses.
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Table 5: Hyperparameter ranges for model optimization

Category Hyperparameter Range Step

Architecture Hidden Dimension 32 – 96 32
Number of Layers 1 – 3 1

SPHERICAL WAVELET

Maximum Scale 2 – 5 1
Maximum Rotations 20 – 200 40
K Value 4 – 10 -
Scale Factor 0.75 – 1.25 -

SPHERICAL HARMONIC Legendre Polynomial Degree 10 – 30 -

Training Learning Rate 10−4 – 10−1 log scale
Weight Decay 10−8 – 10−1 log scale

A.3 SPHERICAL WAVELET FIGURES

a) Mother Wavelet (Eq. (2)) b) Rotated Wavelet

c) Wave number controls central
frequency of the Gaussian envelope d) Dilation factor controls energy concentration

Figure 15: SPHERICAL WAVELET parameterization. All filters are identical to (Eq. (2)) except for
one change in the specificed parameter.

A.4 MISCELLANEOUS FIGURES

Figure 16: Zoomed-in inset plots for main diagram
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Figure 17: At higher frequencies (L = 30), the closed-form calculations provided in Rußwurm et al.
(2024) run into numerical error.

Figure 18: SPHERICAL HARMONIC encoding prediction plot

Figure 19: SPHERICAL WAVELET encoding prediction plot
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Table 6: Comparison of existing location encodings

Encoding Resolution-Adaptive Basis Type Localized Basis
SPHERICAL WAVELET ✓ Wavelet ✓
SPHERICAL HARMONIC ✓ Harmonic ×
CARTESIAN3D × Coordinate ×
THEORY ✓ Sinusoidal + Coordinate ×
GRID AND SPHERE ✓ Sinusoidal + Coordinate ×

Table 7: Comparison of common geospatial datasets

Dataset Multimodal Temporal Resolution Metadata
FAIR-EARTH ✓ ✓ ✓
NaturalEarth ✓ × ×
ERA5 (Hersbach et al., 1999) × ✓ ✓
OpenStreetMap (OpenStreetMap contributors, 2017) × ✓ ✓
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RESOLUTION 5000 10000 15000 20000 25000 30000

TOTAL 0.16 ± 0.02 0.13 ± 0.03 0.12 ± 0.03 0.11 ± 0.04 0.10 ± 0.04 0.10 ± 0.04
LAND 0.21 ± 0.03 0.15 ± 0.04 0.14 ± 0.05 0.14 ± 0.05 0.12 ± 0.06 0.16 ± 0.06
SEA 0.11 ± 0.02 0.16 ± 0.02 0.09 ± 0.03 0.08 ± 0.03 0.08 ± 0.03 0.80 ± 0.03
ISLAND 2.74 ± 0.03 3.25 ± 0.49 2.85 ± 0.33 2.66 ± 0.26 2.61 ± 0.20 2.51 ± 0.21
COASTLINE 1.06 ± 0.08 1.00 ± 0.06 0.95 ± 0.05 0.90 ± 0.04 0.82 ± 0.04 0.81 ± 0.05

Table 8: Per sub-group cross-entropy test loss across various spatial resolution of the dataset. We
observe that the bias of the model in missing “island” and “coastline” persists even for high
resolution dataset, as improvement plateaus.
A.5 EXTENDED EXPERIMENTAL RESULTS

Figure 20: Fine tuning dynamics for different training resolutions, showing 5-iteration median win-
dow. Despite the larger parameter space, fine-tuning of SPHERICAL WAVELET converges at a com-
parable, slightly slower rate than SPHERICAL HARMONIC.

Figure 21: Land and island loss for SH, SW representations, trained on the same resolution with
varying encoding sizes. The improved performance of SPHERICAL WAVELET may be attributed
to better representation of these fine-scale features. Interestingly, SPHERICAL HARMONIC’s biases
against islands worsen with increased encoding size.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

PE ↓ Resolution → 5000 10000 15000 20000

SPHERICAL WAVELET 0.1419 ± 0.0009 0.0890 ± 0.0003 0.1017 ± 0.0007 0.0762 ± 0.0005
SPHERICAL HARMONIC 0.1462 ± 0.0013 0.0933 ± 0.0010 0.1057 ± 0.0010 0.0767 ± 0.0005
THEORY 0.1586 ± 0.0034 0.1137 ± 0.0012 0.1324 ± 0.0061 0.1016 ± 0.0073
SPHEREM+ 0.6314 ± 0.0006 0.6307 ± 0.0003 0.6358 ± 0.0001 0.6259 ± 0.0001
SPHEREC+ 0.6307 ± 0.0017 0.6308 ± 0.0002 0.6357 ± 0.0004 0.6259 ± 0.0002

Table 9: FAIR-EARTH: Land-Sea Binary Cross-Entropy Loss

PE ↓ Resolution → 5000 10000 15000 20000

SPHERICAL WAVELET 0.0177 ± 0.0005 0.0108 ± 0.0002 0.0095 ± 0.0001 0.0084 ± 0.0001
SPHERICAL HARMONIC 0.0158 ± 0.0005 0.0104 ± 0.0005 0.0089 ± 0.0002 0.0078 ± 0.0003
THEORY 0.0254 ± 0.0028 0.0144 ± 0.0016 0.0133 ± 0.0008 0.0114 ± 0.0010
SPHEREM+ 2.1551 ± 0.0043 2.2086 ± 0.0012 2.1889 ± 0.0019 2.2089 ± 0.0015
SPHEREC+ 2.1599 ± 0.0032 2.2055 ± 0.0010 2.1856 ± 0.0018 2.2074 ± 0.0013

Table 10: FAIR-EARTH: Carbon Emission Mean-Squared Error

PE ↓ Resolution → 5000 10000 15000 20000

SPHERICAL WAVELET 0.0306 ± 0.0008 0.0237 ± 0.0001 0.0169 ± 0.0001 0.0175 ± 0.0002
SPHERICAL HARMONIC 0.0269 ± 0.0004 0.0203 ± 0.0004 0.0158 ± 0.0003 0.0161 ± 0.0003
THEORY 0.0535 ± 0.0060 0.0270 ± 0.0010 0.0190 ± 0.0006 0.0194 ± 0.0023
SPHEREM+ 1.9559 ± 0.0141 1.8413 ± 0.0019 1.9528 ± 0.0026 1.8573 ± 0.0007
SPHEREC+ 1.9621 ± 0.0086 1.8433 ± 0.0025 1.9534 ± 0.0024 1.8578 ± 0.0007

Table 11: FAIR-EARTH: Surface Temperature Mean-Squared Error

PE ↓ Resolution → 5000 10000 15000 20000

SPHERICAL WAVELET 0.0993 ± 0.0004 0.0980 ± 0.0007 0.0986 ± 0.0002 0.0976 ± 0.0006
SPHERICAL HARMONIC 0.0984 ± 0.0004 0.0984 ± 0.0006 0.0982 ± 0.0004 0.0984 ± 0.0005
THEORY 0.1150 ± 0.0067 0.1162 ± 0.0022 0.1195 ± 0.0014 0.1201 ± 0.0054
SPHEREM+ 0.5981 ± 0.0002 0.5979 ± 0.0001 0.5981 ± 0.0003 0.5982 ± 0.0001
SPHEREC+ 0.5981 ± 0.0001 0.5986 ± 0.0002 0.5980 ± 0.0002 0.5983 ± 0.0002

Table 12: Land-Sea (Rußwurm et al. (2024)) Cross-Entropy Loss

PE ↓ Resolution → 5000 10000 15000 20000

SPHERICAL WAVELET 0.1622 ± 0.0011 0.1116 ± 0.0007 0.0848 ± 0.0010 0.0718 ± 0.0002
SPHERICAL HARMONIC 0.1631 ± 0.0011 0.1080 ± 0.0010 0.0773 ± 0.0007 0.0652 ± 0.0011
THEORY 0.2456 ± 0.0124 0.1796 ± 0.0068 0.1382 ± 0.0055 0.1265 ± 0.0068
SPHEREM+ 1.3853 ± 0.0003 1.3861 ± 0.0001 1.3862 ± 0.0001 1.3862 ± 0.0000
SPHEREC+ 1.3856 ± 0.0002 1.3861 ± 0.0001 1.3863 ± 0.0000 1.3862 ± 0.0000

Table 13: Checkerboard (Rußwurm et al. (2024)) Cross-Entropy Loss

Subgroup SW SH THEORY SPHEREC+
Land 0.087 0.076 0.217 5.867
Sea 0.043 0.028 0.063 2.152
Island 0.049 0.041 0.047 2.101
Coast 0.101 0.083 0.249 5.835

Table 14: Surface temperature regression subgroup losses for various encodings. Coast (underlined)
consistently exhibits greater losses.
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Land-Sea Classification Surface Temperature Regression

Encoding Best Country Worst Country Best Country Worst Country
(Value) (Value) (Value) (Value)

SPHERICAL WAVELET Finland Guyana Denmark Cambodia
(0.002) (0.816) (0.009) (0.232)

SPHERICAL HARMONIC Honduras Spain Georgia Panama
(0.001) (0.795) (0.001) (0.333)

THEORY Kyrgyzstan Spain Sierra Leone Vietnam
(0.001) (1.114) (0.002) (0.561)

SPHEREC+ Austria Chile Romania Greenland
(0.418) (1.257) (0.143) (10.425)

Table 15: Country discrepancies via FAIR-EARTH. Losses are respective to each dataset, and
only countries with over 100 sampled points are included to mitigate noise. All encoding-dataset
combinations exhibit a wide disparity in country-level performance.

Figure 22: Differences in latitudinal loss on land-sea (Rußwurm et al. (2024)) classification, where
means and error bars are based off of 1000 uniform samples at each latitude. SPHERICAL WAVELET
performance clearly deteriorates as we move from the equator to the poles.
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A.6 WAVELET NOTES

Computational Analysis While wavelets are more heavily parameterized than their Fourier coun-
terparts, one might expect them to be more computationally expensive to compute and tune. How-
ever, empirical evidence shows that hyperparameter searches converge at similar rates (Fig. 20), and
SPHERICAL WAVELET demonstrates superior efficiency for large encodings (Table 16).

A comparison of the computational requirements for SPHERICAL WAVELET and SPHERICAL HAR-
MONIC encodings reveals the source of this discrepacny. Starting from our previous formulation,
we define a family of valid wavelets as:

{ψa,ρ ≡ R(ρ)D(a)ψM}

where the dilation operator D(a) is defined as: [D(a)s](ω) = [λ(a, ω)]1/2s(ω1/a), with λ being a
scalar-valued operator.

The rotation operator R requires only a transformation into Euler space and three 3 × 3 matrix
multiplications. Since the generation of rotation points is a one-time computation, this yields a
computational complexity that scales linearly with encoding size.

In contrast, the closed-form SPHERICAL HARMONIC encoding with L Legendre polynomials re-
quires calculation of: √

2l + 1

4π

(l − |m|)!
(l + |m|)!

Pm
l (cosλ)

for all m ≤ l ≤ L. This higher computational burden makes SPHERICAL WAVELET comparatively
efficient for larger encoding sizes. Additionally, computational and representational challenges of
the factorials lead to instability at higher L values (17), thus we restrict our analyses to L = 30.

Generation Time (ms) Encoding Parameters
Size SH SW Legendre Polyn. Dilations Rotations

25 2.60 ± 0.08 5.83 ± 0.67 5 1 25
100 16.44 ± 0.72 22.67 ± 2.85 10 4 25
625 220.13 ± 9.05 129.58 ± 18.43 25 5 125
900 368.73 ± 17.93 204.25 ± 27.05 30 6 150

Table 16: Encoding generation time comparison between SPHERICAL HARMONIC and SPHERI-
CAL WAVELET for different sizes, with faster times underlined. For large encodings, SPHERICAL
WAVELET is actually faster than SPHERICAL HARMONIC, as the factorial operation overtakes the
overhead of matrix multiplication.

Non-Gabor Filters We extended our investigation beyond Gabor wavelets to include preliminary
experiments with spherical Butterfly and Mexican Hat wavelets, applying the same procedure with
different mother wavelets. However, visualizing these wavelets’ projections on the sphere suggests
they are poorly suited for general Earth signals (Fig. 23). In our experiments on the FAIR-EARTH
land-sea classification task, these alternatives performed worse than Gabor wavelets and even certain
baseline encodings when controlling for all other parameters (Fig. 24). Future research directions
could explore which signals these filters might be better suited for, and whether wavelet-related
adjustments to INRs (Saragadam et al. (2023)) could address their current limitations.
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Figure 23: Visualizations of various wavelet filters on the sphere. Of the three, only Gabor consis-
tently reaches state-of-the-art performance.

Land-Sea Surface Temperature

Filter 5000 10000 5000 10000

Gabor (Ours) 0.1419 ± 0.0009 0.0890 ± 0.0003 0.0306 ± 0.0008 0.0237 ± 0.0001
Butterfly 0.1943 ± 0.0005 0.1223 ± 0.0003 0.0523 ± 0.0005 0.0492 ± 0.0010
Mexican Hat 0.4001 ± 0.0010 0.3624 ± 0.0021 0.1550 ± 0.0018 0.1374 ± 0.0009

Figure 24: A comparison of different wavelet filter performance on the FAIR-EARTH land-sea clas-
sification task. Loss metric is respective to each dataset, and all other parameters are held constant.
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