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Abstract

The Forward-Forward (FF) learning algorithm provides a bottom-up alternative
to backpropagation (BP) for training neural networks, relying on a layer-wise
"goodness" function with well-designed negative samples for contrastive learning.
Existing goodness functions are typically defined as the sum of squared postsynap-
tic activations, neglecting correlated variability between neurons. In this work, we
propose a novel goodness function termed dimensionality compression that uses the
effective dimensionality (ED) of fluctuating neural responses to incorporate second-
order statistical structure. Our objective minimizes ED for noisy copies of individ-
ual inputs while maximizing it across the sample distribution, promoting structured
representations without the need to prepare negative samples. We demonstrate
that this formulation achieves competitive performance compared to other non-BP
methods. Moreover, we show that noise plays a constructive role that can enhance
generalization and improve inference when predictions are derived from the mean
of squared output, which is equivalent to making predictions based on an energy
term. Our findings contribute to the development of more biologically plausible
learning algorithms and suggest a natural fit for neuromorphic computing, where
stochasticity is a computational resource rather than a nuisance. The code is avail-
able at https://github.com/ZhichaoZhu/StochasticForwardForward.

1 Introduction

Despite being central to the success of traditional deep learning, backpropagation (BP) poses chal-
lenges for on-chip learning in neuromorphic systems, as it requires global error signals and symmetric
weight transport, both of which are widely regarded biologically implausible and difficult to imple-
ment efficiently on neuromorphic hardware [1–5]. Therefore, the forward-forward (FF) learning
algorithm proposed by Hinton [6] provides an elegant bottom-up alternative that each layer learns
independently by maximizing a "goodness" measure of its activations, eliminating the need for error
backward propagation.

Although FF learning is conceptually simple, its success relies on generating high-quality negative
samples, which is highly task-specific and presents a significant practical challenge. Moreover, the
goodness function in the original FF learning is the sum of squared postsynaptic activations and it
does not account for the role of noise, a ubiquitous feature in both biological neural systems [7, 8] and
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neuromorphic computing hardware [9, 10]. Substantial evidence suggests that neuronal correlated
variability could carry rich information [11–13] and can be considered a computational resource [14–
18]. Leveraging noise and incorporating postsynaptic neuron correlation into FF learning could
potentially lead to more biologically plausible and hardware-adapted alternatives.

In this work, we extend the FF framework by introducing a novel goodness function termed di-
mensionality compression that is derived from the effective dimensionality (ED) [19] of neuronal
responses. Essentially, ED depicts the second-order statistical structure of neural responses, which
can be used to describe representational selectivity. Within-class responses should have low ED,
indicating that samples are tied to a specific variable, while across-class responses should have
high ED to avoid representation collapse. Instead of generating negative samples, we introduce
noise to create isologues of the samples, with the objective of minimizing ED for each sample
while maximizing it for all inputs. This promotes locally structured representations that are both
compact and discriminative, bypassing the need for negative samples and fitting smoothly into the
FF training pipeline. The numerical experiments on standard datasets demonstrate that the proposed
method can achieve performance comparable to that of other non-BP methods. Furthermore, this
approach inherently recommends using the mean of squared outputs rather than just averaging them
for prediction, which means that variability in the outputs can also carry the information interested
and can be interpreted as an extension of energy-based learning (EBL) [20–22]. Collectively, our
findings provide both a theoretical link between dimensionality and representation learning and a
practical direction toward biologically plausible, noise-driven computation.

2 Background and related works

We begin by reformulating the learning problem of a network in classification tasks. Given an input-
target pair (X, t) from T targets, the input is processed through L blocks with X(l) = f(X(l−1), θ(l))
and X(0) = X . A linear classifier W then produces class scores Y = X(L)WT and denotes Yi the
score for the target i. The question posed is how to modify the model parameters in the absence
of BP, while still guaranteeing that the output Yt associated with the true target t achieves maximal
discrimination.

Since learning performance is ultimately assessed through a linear classifier, it is intuitive to assume
that if each block produces more discriminative representations, stacking such blocks can improve
overall classification. For example, direct feedback alignment (DFA) [23] demonstrates that deep
networks can learn effectively without requiring symmetric feedback connections. Instead, DFA
delivers global error signals to each layer through fixed random feedback pathways, showing that
precise gradient transmission is not essential for credit assignment.

While DFA relaxes the need for symmetric feedback by transmitting error signals through random
fixed pathways, EBL [20–22] eliminates the requirement to propagate explicit errors altogether.
Instead, EBL frames learning as minimizing an energy function that depends on local neuronal
interactions. During training, the network first clamps the input and fixes the output to the target,
allowing neural activities to evolve toward an equilibrium state that minimizes this energy. Weight
updates are then computed locally based on the pre- and post-synaptic activities. However, because
the energy landscape of one layer depends on others, finding a global equilibrium in deep architectures
can be computationally demanding and slow to converge.

One can simplify the interaction between blocks by training the blocks independently from the
bottom up. Greedy InfoMax (GIM) [24] optimizes individual blocks by encouraging each block to
preserve information about its input, which can be interpreted as reinforcing each block to learn slow
features [25] from its inputs, allowing more scalable unsupervised representation learning without
global backpropagation. Hinton’s FF algorithm[6] offers a simpler energy-based approach, using a
scalar goodness function to distinguish ’positive’ and ’negative’ samples in each layer. Initially, this
function, similar to the energy function in EBLs, is the square of postsynaptic neuronal activities.
However, it is necessary to use high-quality negative samples for contrast learning, as optimizing the
network with this function alone will fail because it encourages maximum neuron activation. Hinton
also noted that binary objectives consisting of one "positive" and one "negative" sample inject limited
information per update, which will slow the rate at which meaningful structure can be encoded in the
weights.
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Recent advancements in FF-inspired algorithms have removed the requirement for negative samples
by employing a supervised learning approach. The Cascaded Forward (CaFo) model [26] enhances
the FF algorithm through the integration of convolutional layer blocks, allowing these blocks to
independently generate label distributions without requiring negative samples. Papachristodoulou
et al. [27] further subdivided the channels within the convolutional layers into T groups, optimizing
the mean activation of each group to be more pronounced for certain classes, thus improving linear
separability. While these modifications can be effective, implementing such strong label-based
supervision in a biologically brain can be challenging, as it necessitates knowing a label for each
input pattern.

Hebbian learning is acknowledged as a biologically realistic mechanism for synaptic plasticity,
enabling weight adjustments in an unsupervised manner. However, the principal obstacle lies in its
limited efficacy, particularly when deployed in large networks and more complex datasets. Although
Journé et al. [28] and Nimmo and Mondragon [29] showed that combining unsupervised Hebbian
learning with a well-designed winner-take-all (WTA) mechanism yields satisfactory results, their
success involves complex softmax activation functions combining with several optimization tricks.
These complications hinder a deeper understanding of the core question: What should a neural block
learn when limited to local information and how to define the goodness of neuronal response for goal
achievement?

In this study, we aim to answer these questions by leveraging the continuous, second-order structure
in neural responses, providing a more efficient and biologically grounded alternative to contrastive
objectives.

3 Effective dimensionality as a goodness function

Historically, the effective dimensionality (ED) is introduced to describe the equivalent number of
orthogonal dimensions that would produce the same overall pattern of covariation of a set of correlated
variables [19]. In practice, ED is typically based on the covariance matrix of the data [30, 31].
However, in neural or network representations where the mean activity itself encodes task or stimulus
information, it is more appropriate to consider the uncentered second moment as it reflects both the
signal (mean configuration) and interaction structure (correlation). Therefore, in this work, we define

ED(X(l)) =
tr(E[X(l)TX(l)])2

∥E[X(l)TX(l)]∥2F
=

(
∑d

i=1 λi)
2∑d

i=1 λ
2
i

, (1)

where λi are the eigenvalues of the uncentered covariance matrix of neural activity X(l). If X(l) has
zero mean, this definition reduces to the standard ED based on the covariance matrix that gives a good
indication of the number of principal components needed to capture most of the variance of X(l)

(Fig. 1a). When then mean is nonzero, ED based on E[X(l)TX(l)] not only measures the diversity
of local variations but also incorporates the global structure imposed by the mean configuration.
By varying the mean and covariance of a two-dimensional distribution, we illustrate that ED is
maximized for distributions whose dimensions are uncorrelated with identical mean and variance but
will reduce otherwise (Fig. 1b).

In particular, E[X(l)TX(l)] is also a valid representation of the energy landscape of the l-th block. In
conventional EBL, the energy term is typically defined as tr(E[X(l)TX(l)]) that quantifies the total
expected energy and the overall magnitude of population activity while neglecting the correlation
structure between neurons. In contrast, ED incorporates the full spectral structure of E[X(l)TX(l)],
thus providing a correlation-aware measure of the energy landscape. In this sense, ED-based learning
can be regarded as an extension of EBL that preserves the connection to energy while emphasizing
the structural geometry of the representation.

To illustrate this concept, we start by considering a population of neurons where each neuron is
selectively responsive to a particular type of stimuli (Fig. 1c) and where the response of the neuron
conditioned on a specific input is a function of some stimulus features s, commonly referred to as
a tuning curve in neuroscience [12]. Consider a representational space spanned by two neurons
in Fig. 1c that are selectively activated for a specific feature s informative about the input class.
Then, neural responses to inputs within the same class are expected to be more aligned along a
specific direction (Fig. 1d). In such an ideal case, the ED for within-class responses (blue and orange
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Figure 1: Assessing the informativeness of neuronal responses through effective dimensionality
(ED). a. Illustration of what ED quantifies for a zero-mean Gaussian distribution. The eigenvalues
λi computed from the uncentered second moment. ED approaches 1 when variance is concentrated
along a single principal direction (left) and increases toward 2 as variance becomes isotropic (right).
b. Influence of mean and covariance on ED. In the left and middle panels µ2 = 0, σ2

1 = σ2
2 = 1 and

µ2 = µ1 = 0, σ2
2 = 5 are fixed while varying µ1 and σ2

1 respectively. In the right panel, µ = 0, σ2 =
1 are fixed while varying the correlation coefficient ρ12. c. Example tuning curves showing neurons
selectively responsive to some category-informative features, forming a population code that encodes
categorical information. d. ED as a measure of class separability in a two-dimensional response
space. Points represent noisy samples from two classes (blue and orange). Within-class responses
form clusters with low ED, whereas their mixture (whose uncentered covariance is represented by the
dashed gray ellipse) exhibits higher ED, reflecting representational diversity.

dots) is expected to be close to one, indicating that inputs can be well explained by fewer variables
compared to the dimensionality of the representational space. In contrast, the ED for the mixed
responses across classes (whose uncentered covariance is represented by the dashed gray circle) is
expected to approach two. Therefore, inputs belonging to different classes are explained by unique
variables orthogonal to each other, leading to a linearly separable representation. The learning goal of
ED-based learning is thus straightforward: we should minimize ED for responses within each class
to promote consistency and robustness, while maximizing ED across all inputs to ensure diversity
and discriminability.

The problem is, the label information is infeasible in the unsupervised setting. To compute ED in the
absence of true class labels, we introduce noise into the computing process, which is an essential
characteristic of both biological systems and neuromorphic hardware [7, 14, 17, 18, 10].

A crucial point is that introducing moderate noise does not hinder the identification of its class (Fig.
A1). In other words, the essential features that form the concept of its class remain intact. This
strategy enables unsupervised learning of robust and discriminative features, but bypasses the need
for explicit class labels or negative sampling. Formally, let X ′ ∈ RB×F be a batch of data samples
and use dropout to create its noisy copies, X , by randomly setting the elements in X ′ to zero with
probability p. For the l-th block, we denote its output (i.e. the corresponding neural responses)
as X(l) and X

(l)
i are the neural responses to a particular input sample in the batch. The objective

function for each block is then consisting of a consistency term and a diversity term, defined as:

EDc =
1

B

B∑
i=1

ED
(
X

(l)
i

)
, (2)

and
EDd = ED

(
E[X(l)]

)
(3)

where B is the batch size, E[X(l)] denotes the averaging of noisy copies of the input batch. EDc

describes the mean ED of neural responses to noisy realizations of individual input samples and
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Figure 2: Network architecture and training pipeline. The first dropout layer generates N noisy
variants per input and remains active during inference, while the dropout in the linear classifier is
used only for regularization during training. Batch normalization (BN) layers stabilize inputs and
contain no trainable parameters. Each convolutional block includes a Fixed Orthonormal Projection
(FOP) module that projects its output onto a subspace with a pregenerated random orthonormal
basis before computing the dimensionality compression loss L. Training proceeds in two phases:
(1) Each convolutional block is trained layer-wise for 3 epochs using the proposed loss function L.
(2) The convolutional blocks are then frozen, and a linear classifier is trained for 60 epochs using
cross-entropy loss, where prediction score for each sample is computed as the mean of squared
classifier outputs over the noisy variants. The overall architecture and training pipeline are consistent
across all experiments, except for the classifier’s input dimensionality, which varies by dataset.

captures the noise variability, whereas EDd describes the ED of the response distribution in different
input samples and captures the variability of the data.

The dimensionality compression loss is then formulated by merging the two components, with a
trade-off parameter α that is assigned a default value of 0.5.

L = αEDc − (1− α)EDd. (4)

Conceptually, minimizing EDc implicitly suggests a WTA dynamic [28, 29] so that the responses are
more distinct in some directions compared to others, leading to a more compact representation. In
contrast, maximizing EDd prevents the collapse of representation as it reinforces the overall responses
that can be explained by as many directions as possible. In this way, the network is encouraged to
learn class-discriminative features, leading to a more linearly separable representation.

Notably, this learning objective also motivates a modification of the inference procedure. Let Yi be
the output of the linear classifier for a noisy input sample Xi. Rather than averaging the output, we
propose using E[Y 2

i ] as the classification score. This approach is equivalent to selecting the neuron
that has the minimum energy, as inline with EBL.

4 Experimental design and results

Architecture. As shown in shown in Fig. 2, we use a network architecture similar to that used by
Journé et al. [28] and Nimmo and Mondragon [29] except the activation function chosen to verify the
effectiveness of the proposed goodness function. The network consists of three convolutional blocks
followed by a fully connected layer for classification. The first block has 96 channels, and the number
of channels increases by 4 for each subsequent layer. Each channel is regarded as a neuron due to
weight sharing, and the corresponding feature map is treated as samples drawn from an unknown
distribution conditioned on the input. See Appendix A1.1 for details.

Datasets and data preprocessing. We use the MNIST[32], CIFAR-10 and CIFAR-100 datasets
[33] to verify the effectiveness of the proposed goodness function. For MNIST, we only use random
crop for data augmentation. For CIFAR-10 and CIFAR-100, we first apply zero phase component
whitening and then random crop and random horizontal flip for data augmentation.

Training Pipeline. We divide the training process into two phases. In the first phase, convolutional
blocks are trained using the proposed goodness function layer-wise for 3 epochs. Specifically, for
each epoch, we train the first block with the proposed loss L, fix it, and then train the next block.
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Table 1: Comparison of validation accuracy (%) of the proposed method against recent non-BP and
FF-inspired approaches, along with BP, that adhere to our architecture across various datasets. The
performance of the proposed method are estimated over 5 runs.

Method Validation Accuracy (%)
MNIST CIFAR10 CIFAR100

BP 99.33 ± 0.04 82.50 ± 0.09 61.28 ± 0.25

Original FF [6] 98.73 59 -
CaFo FF [26] 98.95 69.49 42.13
CwC FF [27] 99.42 ± 0.08 78.11 ± 0.44 51.32
DFA [23] 98.98 ± 0.05 73.10 ± 0.50 41.00 ± 0.3
Soft Hebbian [28] 99.35 ± 0.03 80.31 ± 0.14 56.00
Hard Hebbian [29] - 76 -
GIM* [24] 99.29 ± 0.03 78.19 ± 0.34 50.09 ± 0.45
EBL [21] 99.56 89.6 65.8

Proposed method 99.31 ± 0.07 76.96. ± 0.73 53.29 ± 1.02

* Reimplementation results.

This process is repeated for all blocks. Given that the number of neurons far exceeds both the
number of samples and the number of classes, direct estimation of ED may become unreliable due
to the sparsity of samples. To address this, we propose projecting the output of each block onto
a lower-dimensional subspace using a randomly generated set of orthogonal basis vectors before
computing the dimensionality compression loss. This projection operation is expected to reduce the
estimation variance while preserving the structural properties of the representation. We gradually
reduce the projection dimensionality until it aligns with the number of output classes.

In the second phase, convolutional blocks are frozen, and we train the linear classifier for 60 epochs
with the standard cross-entropy loss, where the prediction score is based on the mean of squared
outputs over the noisy variants. The best validation accuracy is reported as we care more about the
upper bound of the performance. All experiments utilize a NVIDIA RTX 3090 GPU and an Intel
Xeon(R) Gold 6226R CPU, as detailed in the Appendix A1.2.

4.1 Proposed method achieves comparable performance with other non-BP methods

As the development of non-BP methods is still in its infancy, researchers use different network
architecture, training protocols, and datasets to evaluate the performance of their methods, making
it difficult to make a fair comparison. Therefore, we use other non-BP methods’ results reported in
their papers for comparison. The results are summarized in Table 1.

We find that the proposed method achieves comparable performance with other non-BP methods on
MNIST and CIFAR-10 datasets, and show its ability to learn useful features in CIFAR100. In the
realm of FF methods, the work by Hinton [6] is seen as the baseline. CaFo FF [26] modifies the initial
goodness function by independently training each convolutional block for classification. Our method
consistently surpasses these two methods in all datasets, as well as the DFA proposed by Nøkland
[23]. For CwC FF [27] which revises the convolutional framework by dividing the channels into C
groups for supervised learning, our method can match its performance without labels and specific
requirements for network architectures. Given that our network architecture mirrors that of Hebbian
learning combined with soft or hard WTA mechanisms [28, 29], our results are directly comparable
to those works and attain similar performance levels. In addition, as previously noted, optimizing
ED naturally introduces a competition mechanism, which can be considered as a general learning
principle that these methods strive to achieve. The GIM [24] also achieves a performance similar to
that of our method when reimplemented using this network architecture (see Appendix A1.2).

For EBL methods, Scellier et al. [21] conducts a comparative study of existing EBL approaches, utiliz-
ing a five-layer convolutional Hopfield network to demonstrate that equilibrium-backpropagation [20]
achieves superior performance. Although our findings are inferior compared to theirs, the discrep-
ancies may be attributed to the deeper network used and the ability of EBLs to leverage top-down
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Figure 3: Effect of the trade-off factor α on weight optimization. a. Visualization of the first-layer
convolutional kernels trained on CIFAR-10 under different values of α. Each column shows the top
10 channels ranked by the standard deviation of their weights trained with different α. b. Cosine
orthogonality score (COS, blue line) and mean standard deviation of first-layer kernels (orange line) as
functions of α. A higher COS indicates greater diversity among channels’ weights. c. Classification
accuracy comparison for α = 0.0 and α = 0.5 (default). Error bars denote one standard deviation
across 5 independent training runs.

information for optimization. Unfortunately, adding more than three convolutional blocks in our
experiments leads to a performance drop, which we attribute to the difficulty in preventing the collapse
of class-specific features after a stack of highly nonlinear transformation, a technical problem that
needs to be solved in future works.

In contrast to BP under the same architecture and training protocol, the proposed method performs
similarly on MNIST. However, the disparities widen with CIFAR-10 and CIFAR-100, a frequent issue
for non-BP methods. Since the power of BP comes from its ability to optimize a network globally so
that the final output ultimately meets the task’s requirements, it leaves room for future work to explore
how top-down and bottom-up learning can be combined in a more biological plausible manner, thus
making the implementation on hardware more friendly.

Since one distinct feature of our method is the introduction of noise during training, we also conduct
experiments by varying the noise strength (changing the dropout rate p) and sampling size to assess
its impact on performance in the Appendix A1.3. These results demonstrate that both noise strength
and sampling size significantly influence model performance. In general, moderate noise levels and
appropriate sampling sizes yield optimal results.

In summary, the proposed method achieves a performance comparable to that of other non-BP
methods and even outperforms some of them. Although we currently are unable to demonstrate
the efficiency of our method in deeper networks or more complex datasets, the use of noise and the
simplicity of the learning objective make it a promising direction to explore how noise can facilitate
learning in a biologically plausible manner.

4.2 Compressing dimensionality leads to orthogonal weights

We next train the first convolutional blocks on CIFAR10 by varying α from 0 to 1 with a step increase
of 0.1 to investigate the effect of the trade-off factor α on weight optimization. Each column in Fig. 3a
displays the weights of the ten channels with the highest standard deviation in their weights among
all channels trained under a given α. The plots indicate a transition point at α = 0.5. When α > 0.5
is applied for training, the channel weights collapse into a similar pattern, suggesting the limited
capacity of the layer to learn a varied combination of input features. In contrast, when α ≤ 0.5,
diverse weight patterns emerge.

To quantify this observation, we compute the cosine orthogonality score (COS) of the kernels, defined
as

COS =
1

K

∑
j<i

(
1−

∣∣∣∣ ⟨wi, wj⟩
∥wi∥∥wj∥

∣∣∣∣) , (5)
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Figure 4: Factors affecting task performance. a. Classification accuracy under different inference
strategies. E[Y 2]: proposed method, using the mean squared outputs (energy) based on generated
noisy samples as prediction score; E[Y ]: uses the mean of outputs as prediction score. Direct
forward: standard inference without noise, using raw inputs. b. Accuracy under different training
schemes. Unsup: proposed method, where EDc is computed at the instance level based on generated
noisy samples. Sup+sampling: generated noisy samples are further grouped by class labels before
computing EDc. Sup: computes EDc directly on labeled data without the need to generate noisy
samples. c. Accuracy under different projection strategies. Graded: block outputs are projected with
gradually decreasing dimensions (30-20-10 for MNIST and CIFAR-10; 90-150-100 for CIFAR-100).
Fixed: all blocks projected to a constant dimension equal to the number of classes. Random: projected
to a randomly selected dimension per block. None: no projection.

where wi is the i-th channel and K = c(c−1)
2 is the number of pairs {i,j} with c being the number

of channels. As shown in Fig. 3b, the COS (blue line) is consistently close to one if α ≤ 0.5 ,
indicating that the kernels are fully orthogonal to each other. When α > 0.5, the COS decreases
significantly and indicates that the weights of different channels tend to be similar, leading to highly
redundant feature extraction. This is consistent with the observation in Fig. 3a that all the weights of
the channels are similar to each other when α > 0.5.

This transition point is also observed when using the mean standard deviation of the channels (Fig. 3b,
orange line). When α > 0.5, the average standard deviation decreases substantially, suggesting
that the numerical values of the weights of a channel tend to be identical, with a low probability of
forming a distinctive structure for feature extraction. Similar trends are also observed with the same
analysis on MNIST (Fig. A2).

Clearly, setting α to exceed 0.5, the task would not succeed as the first block would be unable
to explore the input’s rich features effectively. Hence, simply decreasing EDc cannot facilitate
learning. Therefore, we investigate the impact of EDc by assigning α = 0.0 and performing the same
experiments as outlined in the previous section to illustrate how task performance is influenced. As
shown in Fig. 3c, although depending solely on EDd still results in some learning, the performance
is inferior to the standard configuration, particularly for CIFAR10 and CIFAR100. Consequently,
optimizing EDc is an indispensable component for learning.

4.3 Ablation study

In standard deep learning, the inference stage typically deactivates dropout and involves a standard
feedforward pass through the network, with the network’s output serving as the prediction score.
In Bayesian neural networks, the inference phase generally utilizes the mean of the outputs for
the prediction score. Here, due to the stochastic nature of both the goodness function and the
training procedure, we advocate using the average energy of the outputs (E[Y 2]) as the prediction
score. We then compare these three inference strategies by running the second training phase with
different prediction scores while the trained convolutional blocks are fixed. As shown in Fig. 4a, the
performance of the proposed method is slightly better than that of the other two methods, indicating
that both the mean and the variance can carry information about the labels, while the mean plays the
primary role. Interestingly, when we apply t-distributed stochastic neighbor embedding (t-SNE) [34]
to visualize the model output as defined by E[Y 2] (see Fig. A3), the outputs within the same class
exhibit a unique fluctuating direction. Moreover, similar classes are not only in close proximity to
each other, but also exhibit shared fluctuating directions.
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Figure 5: Layerwise analysis of representations after training a. Effective dimensionality (ED) of
block outputs projected into a lower-dimensional space. EDd and EDc are colored by blue and orange
respectively and the shades denote one standard deviation of EDc across classes. The horizontal
dashed line marks the projection dimensionality, and the black dashed line shows the compression
ratio EDd/EDc b. Linear separability of each block’s representation, measured by training a linear
classifier on the output of each block. c. Information decomposition of classifier outputs from
each block, assuming a Gaussian mixture model. We report total mutual information (tot), linearly
decodable informationlin, and second-order interaction terms (cor), where tot = lin + cor. Results
shown are from a randomly selected model trained on CIFAR-10.

We next investigate whether incorporating label information and grouping same-class samples during
goodness optimization improve performance. Since our proposed unsupervised method relies on
the generation of noisy variants of each sample, we compare it with two supervised alternatives:
Sup+sampling uses labels and applies the same noise sampling as in the unsupervised setting while
Sup only uses label information to compute L directly (within-class samples for EDc and batch data
for EDd). As shown in Fig. 4b, the unsupervised method slightly outperforms the supervised one,
suggesting that the model can learn effectively without labels and achieve comparable accuracy.
Notably, noise sampling can improve performance, as Sup + sampling is better than Sup. Although
such a sampling operation increases computational cost, the advance of neuromorphic hardware has
the potential to mitigate this by leveraging intrinsic physical noise.

Finally, we investigate the role of the projection scheme by considering three strategies, Graded
(gradual reduction, as used in the main experiments), Fixed (set to the number of classes), and
Random (arbitrary dimensionality no less than the number of classes), performance remains largely
comparable. As shown in Fig. 4c, all three projection strategies yield similar performance. However,
omitting projection entirely (None) leads to a notable performance drop, indicating that projection is
essential for task-related performance.

4.4 Higher compression ratio leads to better performance

To better understand how the ED is related to task performance, we calculate the EDd and EDc of the
outputs of each block after projecting it into the same subspace used in training (Fig. 5a). Ignoring
that each block has a distinct projection dimensionality indicated by the short horizontal dashed lines,
we observe that both EDd and EDc decrease across the blocks. However, the reduction in EDc is
more pronounced compared to EDd, resulting in an increase in the compression ratio (depicted by the
black dashed line). From the perspective of such a lower-dimensional manifold, the input samples
belonging to the same class can be gradually explained by fewer dimensions, while samples from
different classes are more likely to be explained by different dimensions.

The compression ratio may serve as a valuable indicator of task-related performance efficiency.
To demonstrate, we train two linear classifiers on the outputs of the first two blocks respectively,
each following the same protocol as that employed for the final block, to assess changes in linear
separability across the blocks. As depicted in Fig. 5b), performance improves steadily with the
addition of more stacked blocks, corresponding to the increase in compression ratio.

However, the gradually increased compression ratio in the projected space does not necessarily imply
a similar trend in the original space. In Appendix A1.4, we empirically evaluated the activation
sparsity in trained models using Hoyer’s sparseness [35] and found that the sparsity may not increase
monotonically with depth. In addition, the dataset, projection strategy, and network depth can all
affect the activation sparsity.
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To better understand how information is represented across layers, we apply information breakdown
analysis [36–38] to the output of each block after it passes through the corresponding linear clas-
sifier (see Appendix A1.5 for details). We model the classifier output as samples from a Gaussian
mixture and estimate the mutual information between these outputs and the class labels. Although
the Gaussian assumption may not fully capture the true distribution, it provides insights into the
representational structure through moment matching. As shown in Fig. 5c), the mutual information
Itot is mainly contributed by the linearly decodable component Ilin, with the second order interaction
Icor contributing modestly. This suggests that while most label-relevant information is accessible
to the linear classifier, a small portion remains embedded in neuron-to-neuron correlations and is
not linearly separable. We perform a similar analysis on MNIST (Appendix Fig. A4). Given the
simplicity of the task, linear separability is nearly saturated across all layers, even as the final block
exhibits a higher compression ratio than the previous one. Here, Icor is negligible compared to
Ilin, indicating that almost all the information relevant to the task is captured by linear projections,
consistent with the high classification accuracy observed.

5 Conclusion and discussion

We have shown that the proposed dimensionality compression loss L enables effective unsupervised
learning within the FF framework without requiring negative samples. By injecting noise to create
stochastic variants of each input, the model is trained to minimize the effective dimensionality
of responses within a class (EDc) while maximizing that across classes (EDd). Experiments on
MNIST, CIFAR-10, and CIFAR-100 demonstrate competitive performance using a shallow three-
layer CNN, and our ablation studies further indicate that noise benefits learning and that stronger
dimensionality compression correlates with better classification accuracy. Despite promising results,
our method does not yet achieve state-of-the-art accuracy and has difficulty when scaling to large-
scale datasets or deeper architectures. These remain important directions for future research along
with the development of biologically plausible implementations on neuromorphic hardware.

The ED objective may also be applied end-to-end and conceptually relates to self-supervised learning
methods such as Barlow Twins [39] and VICReg [40]. However, unlike these approaches, which
explicitly enforce feature decorrelation or variance–covariance constraints, our method encourages
noisy copies of the same sample to reside on a low-dimensional manifold while ensuring distinct
representational directions across different inputs.

The high-level principle of our method also relates to predictive coding [41–43], which posits that the
brain continuously generates predictions about the incoming sensory input and updates its internal
model based on prediction errors. In our framework, minimizing EDc encourages stable represen-
tations that suppress noise-induced variability, whereas maximizing EDd maintains discriminative
information across stimuli. Such a dual objective balances accurate prediction with representational
diversity, aligning with recent advances in predictive coding related learning algorithms [24, 44, 45].

There are two main advantages of the proposed method that makes it biological plausible. Firstly,
noise is ubiquitous in the brain [7] and can significantly affect the way a neural system represents and
processes information [46, 8, 13], an essential characteristic that distinguishes it from deterministic
digital computing. In such a stochastic system, we have to measure its outputs multiple times
to obtain a reliable estimate. Intuitively, we would like to average the output, which implicitly
assumes that variability is just noise that should be ignored. While such firing rate coding is
widely adopted in neuroscience, accumulating evidence suggests that variability itself can also be
information carriers [11, 47, 48]. Our proposed method uses noise to generate multiple variants of
each input sample, which offers an alternative perspective on how the brain may utilize noise and
how neuromorphic computing can exploit the intrinsic noise of physical devices to facilitate learning
and computation [17, 18, 15, 16, 18].

Secondly, optimizing ED is relatively easy to implement based on biologically feasible mechanisms.
For instance, WTA competition is widely observed in various brain regions [49–51], which can be
used to reduce EDc by encouraging a sparse response. Maximizing EDd is more subtle but still
achievable in biologically plausible neural circuits. For example, Bergoin et al. [52] demonstrate that
inhibitory neurons and their plasticity can consolidate and selectively separate learned assemblies
and limit memory capacity. Future work could explore the design of local learning rules that balance
the power of WTA and inhibitory competition to adaptively meet the proposed objective.
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tion between neural spike trains increases with firing rate. Nature, 448(7155):802–806, August
2007. doi: 10.1038/nature06028.

[47] Jonathan W. Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M. Litke, E. J.
Chichilnisky, and Eero P. Simoncelli. Spatio-temporal correlations and visual signalling in
a complete neuronal population. Nature, 454(7207):995–999, August 2008. doi: 10.1038/
nature07140.

[48] Mohamady El-Gaby, Hayley M. Reeve, Vítor Lopes-dos-Santos, Natalia Campo-Urriza, Pavel V.
Perestenko, Alexander Morley, Lauren A. M. Strickland, István P. Lukács, Ole Paulsen, and
David Dupret. An emergent neural coactivity code for dynamic memory. Nature Neuroscience,
24(5):694–704, May 2021. doi: 10.1038/s41593-021-00820-w.

[49] Wolfgang Maass. On the Computational Power of Winner-Take-All. Neural Computation, 12
(11):2519–2535, November 2000. doi: 10.1162/089976600300014827.

[50] Rodney J. Douglas and Kevan A.C. Martin. Neuronal circuits of the neocortex. Annual Review
of Neuroscience, 27(1):419–451, July 2004. doi: 10.1146/annurev.neuro.27.070203.144152.

13



[51] T. Binzegger, R. J. Douglas, and K. A. C. Martin. Topology and dynamics of the canonical
circuit of cat V1. Neural Networks, 22(8):1071–1078, October 2009. doi: 10.1016/j.neunet.
2009.07.011.

[52] Raphaël Bergoin, Alessandro Torcini, Gustavo Deco, Mathias Quoy, and Gorka Zamora-López.
Inhibitory neurons control the consolidation of neural assemblies via adaptation to selective
stimuli. Scientific Reports, 13(1):6949, April 2023. doi: 10.1038/s41598-023-34165-0.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contributions and scope are included in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in the Conclusion and discussion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15



Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have fully disclose all the information needed to reproduce the main exper-
imental results of the paper. The code used in this paper is included in the Supplementary
Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide scripts to reproduce all experimental results. See codes in the
Supplementary Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details are included in Section A1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results are accompanied by 1-sigma error bars estimated in 5 independent
runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments utilize an NVIDIA RTX 3090 GPU and an Intel Xeon(R)
Gold 6226R CPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We think our works will attract the interest of researchers who concerns
biological plausible learning rules and brain-inspired computing. We disccused the potental
applicaltion in the introduction and conclusion sections. This research has no immediate
negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original paper that produced the code package and the dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code is packed in an anonymized zip file. See the supplementary material
for details.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing, editing, and formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A1 Details of the methods

A1.1 Network architecture

The network architecture used in this work is summarized in Table A1. For all experiments, the
setting of the convolutional blocks is the same, and the only difference is the input dimension of the
fully connected layer.

Table A1: The details of the network architecture.

Block index Components

1

BatchNorm (No affine)
Dropout, p = 0.2, creating N = 20 noisy copies
5× 5 standard conv, 96 channels, stride 1, padding 2
ReLU
4× 4 MaxPooling, stride 2, padding 1

2

BatchNorm (No affine)
3× 3 depthwise conv, 384 channels, stride 1, padding 1
ReLU
4× 4 MaxPooling, stride 2, padding 1

3

BatchNorm (No affine)
3× 3 depthwise conv, 1536 channels, stride 1, padding 1
ReLU
2× 2 AvgPooling, stride 2, padding 0

4
Flatten
Dropout, p = 0.5, inplace, for Regularization
Linear, 13824 input dims for MNIST, 24576 for CIFAR10 and CIFAR100

A1.2 Details of the experimental design

All models were trained using the AdamW optimizer with a learning rate of 0.001 and a weight
decay of 0.01. A cosine annealing learning rate schedule was applied, with a maximum of 3 and 60
iterations for phase 1 and phase 2 training, respectively. The batch size was fixed at 128 across all
experiments.

During phase 1 training, given an input batch X ′ ∈ RB×C×H×W , after passing through the batch
normalization layer of the first convolutional block, we applied dropout with a probability of 0.2 to
generate N = 20 noisy variants per sample, resulting in (X ∈ RB×N×C×H×W ). This dropout was
only used in the first block and remained active during inference.

The output of each block was projected onto a predefined lower-dimensional space using randomly
generated orthogonal basis vectors sampled from the Haar distribution (via SciPy). Under the default
Graded setting, the projection dimensions were 30-20-10 for MNIST and CIFAR-10 and 90-150-100
for CIFAR-100. The block was then optimized using the proposed L objective computed on the
projected output. By default, a trade-off factor α = 0.5 was used. To ensure purely local optimization,
we detached the output tensors from the computation graph before passing them to the next block,
preventing gradient flow across layers.

During the second phase of training, we trained a linear classifier using cross-entropy loss. Due to
the sampling in the first block, the classifier output Y had the shape of B × 20× 10 for MNIST and
CIFAR-10, and b× 20× 100 for CIFAR-100. The uncentered second moment across the sampling
dimension was used as the prediction score, and the cross-entropy loss was computed against the
ground truth labels.

To assess the role of α (Fig 3 a-b and Fig. A2), we varied α from 0 to 1 in increments of 0.1 when
training the first block in MNIST and CIFAR-10 to investigate changes in channel weights. We also
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trained models five times with α = 1.0 and compared their task performance with the default setting
(Fig. 3 c).

To study how inference strategies influence performance (Fig 4 a), we reused the trained convolutional
blocks and retrained the classifier using two alternative strategies. The first used the mean of the
output as the prediction score, denoted by E[Y ] while the second used a regular feedforward without
the sampling operation.

We also evaluated other projection approaches. In the Fixed setting, the projection dimension for each
block was matched to the class count. The blocks used a dimension of 10 for MNIST and CIFAR-10.
For CIFAR-100, due to channel constraints, the dimensions were 90 for the first block and 100 for
the second and third. In the Random setup, the projection dimensionality for each block was chosen
randomly. For MNIST and CIFAR-10, it varied between 10 and 60; for CIFAR-100, it spanned 100
to 300 (except for the first block, set at 90). In the None configuration, the projection operation was
omitted.

To minimize the effort of reimplementing Greedy InfoMax (GIM) [24] for comparison, we resued
the scripts provided by the authors and modified the network architecture to align with ours, leaving
the hyperparameters used for this method unchanged. The training procedure for phase 1 and phase 2
remained the same as in the main experiments except for two differences. Firstly, for the MNIST
dataset, to ensure that there were enough patches for prediction, we scaled the input images to 32×32
while keeping other settings unchanged. Secondly, instead of layer-wise training, the scripts provided
by the authors trained all blocks simultaneously in each iteration. For each dataset, we trained models
five times with GIM and reported the mean and standard deviation of the test accuracy.

A1.3 The effect of noise strength and sampling size

To better understand the effect of noise, we conducted experiments by varying the probability of
dropout p from 0.1 to 0.5 and the sampling size from 4 to 20 to empirically investigate how the noise
level affects performance. Other training settings remained unchanged as in the main experiments.
The results are summarized below.

Table A2: The effect of noise strength and sampling size when training on MNIST.

sample size / p 0.1 0.2 0.3 0.4 0.5
4 99.4 99.37 99.23 98.61 97.95
8 99.35 99.41 99.38 99.29 98.29
12 99.36 99.32 99.42 98.86 98.51
16 99.35 99.36 99.41 98.75 98.54
20 99.44 99.41 99.34 98.65 98.56

Table A3: The effect of noise strength and sampling size when training on CIFAR10.

sample size / p 0.1 0.2 0.3 0.4 0.5
4 74.87 74.64 75.6 74.68 74.54
8 76.57 77.02 75.8 77.1 75.73
12 76.8 77.32 77.24 76.33 76.2
16 76.6 76.87 77.62 77.66 76.7
20 77.19 76.97 76.75 77.12 77.12

Table A4: The effect of noise strength and sampling size when training on CIFAR100.

sample size / p 0.1 0.2 0.3 0.4 0.5
4 52.08 51.99 51.19 51.19 48.59
8 50.84 52.79 52.51 52.29 50.63
12 51.48 51.51 51.88 50.95 33.54
16 53.21 52.97 52.45 51.52 49.44
20 52.6 52.66 53.79 49.95 25.21

23



A1.4 The sparseness of neural activation

We empirically evaluated the activation sparsity in trained models with Hoyer’s sparseness measure:

S(x) =

√
d− ∥x∥1

∥x∥2√
d− 1

, (6)

where x is the activation vector of a layer with d neurons. Here, the vector x is the flattened feature
map of a convolutional layer from N noisy variants of an input sample and d is the length of x. We then
calculated the mean and standard deviation of Hoyer’s sparseness across five independently trained
models for each dataset, with 100 samples per class. The results are summarized in Table A5. Here,

Table A5: Sparseness of neural activation across different layers.

Layer index MNIST (FOP/NP) CIFAR10 (FOP/NP) CIFAR100 (FOP/NP)
Layer 1 0.52± 0.05 / 0.29± 0.06 0.34± 0.06 / 0.47± 0.04 0.55± 0.08 / 0.49± 0.05
Layer 2 0.24± 0.02 / 0.45± 0.07 0.29± 0.05 / 0.38± 0.10 0.42± 0.06 / 0.38± 0.09
Layer 3 0.46± 0.03 / 0.87± 0.04 0.43± 0.04 / 0.54± 0.06 0.39± 0.07 / 0.54± 0.06

FOP means that the model was trained by first projecting the layer’s output to a fixed dimensionality
using the Graded projecting scheme, and NP means directly optimizing the layer’s parameters without
the projection operation. These results showed that the sparsity varied with datasets, projection
strategy, and network depth. It could range from highly sparse (0.87) to quite dense (0.24).

A1.5 Information breakdown analysis

The mutual information between the target t and the readout Y is defined in terms of the difference
between the readout entropy on all stimuli and the conditional entropy for a given class of stimuli as
follows.

Itot(Y ; t) = h(Y )− h(Y |t). (7)
The entropy h(Y ) and the conditional entropy h(Y |t) are given by

h(Y ) = −
∫

p(Y ) log p(Y )dY, (8)

h(Y |t) = −
∑
t

p(t)

∫
p(Y |t) log p(Y |t)dY, (9)

where the readout distribution p(Y |t) is modeled as a Gaussian distribution with mean µ̂ and
covariance Σ̂ conditioned on the stimulus class t. The readout distribution over all stimuli is
calculated as

p(Y ) =
∑
t

p(t)p(Y |t). (10)

We used the information breakdown analysis [36] which further dissects mutual information Itot into
three components, allowing us to assess the amount of contributions of individual readout components
Ilin, signal similarity among readout components Isigsim, and noise correlation in readouts Icor. The
quantity Ilin measures the total amount of information that would be transmitted if all readout
components were independent, which is given by

Ilin =
∑
j

[h(Yj)− h(Yj |t)], (11)

where Yj is the j-th component of the readout. The quantity Isigsim measures the information loss
arising from the redundancy due to overlaps between the tuning curves of each readout component,
which is given by

Isigsim = h(Yind)−
∑
j

h(Yj), (12)

where the independent population response Yind is defined by the distribution

p(Yind|t) =
∏
j

p(Yj |t). (13)
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Figure A1: Example of a noisy image from the CIFAR-10 dataset. Each column represents five
example images corrupted by randomly dropping its pixels with a probability increment of 0.05.

Figure A2: Extension of Fig 3 analysis to MNIST dataset.

The last component Icor accounts for the rest part of Itot, that is, the total amount of information due
to noise correlations in the readout.

Icor = Itot − Ilin − Isigsim. (14)

For simplicity, we absorb Isigsim in Ilin and use Ilin to represent the information that can be obtained
using linear methods.

We initially used the trained linear classifier shown in Fig. 5b and Fig A4 b to derive the prediction
scores E[Y 2] for each block. Subsequently, these scores were aggregated according to the labels of
the inputs, allowing the calculation of their mean and covariance. Using a Gaussian mixture model
with 10 components, each sharing the derived mean and covariance, we generated 100,000 samples
from each Gaussian component to conduct the information breakdown analysis.

A2 Visualization and additional analysis
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MNIST CIFAR10

Dimensionality Compression BP BPDimensionality Compression

Figure A3: Comparison of outputs of models trained by the proposed method and backpropagation
using T-SNE visualization. a and b are results on MNIST and CIFAR-10 datasets respectively.

Figure A4: Extension of Fig 5 analysis to MNIST dataset.
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