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Abstract001

Federated Learning (FL) enables privacy-002
preserving collaborative instruction tuning of003
large language models (LLMs) by leveraging004
massively distributed data. However, the decen-005
tralized nature of FL exacerbates data quality006
challenges, as local clients lack global visibil-007
ity to filter noisy or low-quality samples be-008
fore training. To resolve this issue, we propose009
FedDQC, a novel federated instruction tuning010
framework with dynamic data quality control.011
Our approach introduces two key innovations.012
First, we propose instruction-response align-013
ment (IRA)—an efficient client-side metric for014
quality evaluation requiring only low-cost in-015
ference. We validate that higher-IRA data cor-016
responds to more relevant and easier-to-learn017
question-answer pairs. Second, mirroring the018
human easy-to-hard knowledge acquisition pro-019
cess, we design a quality-aware hierarchical FL020
training framework, where the LLM is progres-021
sively fine-tuned from high- to low-IRA data022
in a collaborative manner. The framework also023
supports adaptive data quality assessment at024
each hierarchy, enabling dynamic adjustments025
throughout the training process. Extensive ex-026
periments on synthetic and real-world datasets027
show that our method significantly improves028
LLM performance on mixed-quality data in FL.029

1 Introduction030

For large language models (LLMs) train-031

ing (Roumeliotis and Tselikas, 2023; Chowdhery032

et al., 2023; Touvron et al., 2023; Jiang et al.,033

2023a), both the quantity and quality of the034

training data significantly impact their perfor-035

mance (Zhao et al., 2023; Minaee et al., 2024).036

The scaling law suggests that more training data037

can lead to more powerful LLMs (Kaplan et al.,038

2020). However, in specific domains such as039

healthcare (Thirunavukarasu et al., 2023) and040

finance (Wu et al., 2023c), privacy concerns (Al-041

brecht, 2016) prevent the aggregation of large-scale042

Q: 1000 men have provisions for 15 days. If 200 more men
join them, for how many days will the provisions last now?
A: 1000×15 = 1200x, x = 12

1000 men have provisions for 15 days. If 200 more men
join them, for how many days will the provisions last now?

1000×15 = 1200x, x = 12.5
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Figure 1: Top figure is an example of low-quality data
and high-quality data. The left figure shows federated
quality heterogeneity. The right figure shows how data
quality affects federated training performance and Fed-
DQC eliminates low-quality data effects.

datasets, making it challenging to expand the 043

dataset scale. Federated Learning (FL) (McMahan 044

et al., 2017), as an emerging distributed training 045

approach, preserves privacy by allowing multiple 046

clients to train a unified model collaboratively 047

without sharing their data. This enables dataset 048

scaling while ensuring data privacy (Chen et al., 049

2023a; Ye et al., 2024c; Kuang et al., 2024; Fan 050

et al., 2023; Ye et al., 2024a). 051

While FL addresses the data quantity issue by in- 052

corporating more local clients, it brings more data 053

quality issues (Shaheen et al., 2022). In FL, train- 054

ing data for each client are collected from various 055

sources locally, making it difficult to detect low- 056

quality data or noises in local datasets. Such vul- 057

nerabilities adversely affect general model training. 058

Although numerous methods (Wu et al., 2023b; Liu 059

et al., 2023; Cao et al., 2023; Chen et al., 2023b; 060

Zhou et al., 2024) are proposed for data quality 061

control in LLM instruction tuning, their designs 062

typically require access to the entire training data, 063

making them impractical for FL scenarios. There- 064

fore, in this work, we aim to bridge this gap and 065

address the under-explored issue of federated data 066

quality control in instruction-tuning LLM tasks. 067
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Existing data quality control methods focus on068

designing data quality evaluation metrics to quan-069

tify data quality. They can be broadly catego-070

rized into two types. The first category consists071

of heuristic-based methods specifically designed072

for instruction-tuning tasks. (Wang et al., 2024a)073

These methods quantify the quality of instruction-074

response pairs (Li et al., 2023a; Du et al., 2023;075

Cao et al., 2023) by quantity of information. How-076

ever, they rely on the assumption that all data are077

clean and reliable making them difficult to deal078

with noises and errors in dataset. The second cate-079

gory is traditional data attribution methods (Kwon080

et al., 2023; Ghorbani and Zou, 2019; Ilyas et al.,081

2022), which require re-training and evaluation on082

the whole dataset. However, in FL each client only083

has limited computation resources for re-training084

and does not allow access to the local dataset, mak-085

ing these methods impractical for FL.086

To fill this gap, we propose FedDQC (Feder-087

ated Data Quality Control), a novel FL frame-088

work with data quality control for LLM instruc-089

tion tuning. First, we propose an efficient and090

privacy-preserving data quality scoring metric:091

IRA (Instruction-Response Alignment), which092

could be computed on the client side with mini-093

mum cost. This metric evaluates the data quality094

by estimating the mutual information between the095

instruction and response on LLM. Specifically, it096

calculates the response inference loss difference097

between given instruction and without instruction.098

This approach fully leverages the knowledge em-099

bedded in the pre-trained LLM and eliminates the100

impact of response format inconsistency with pre-101

trained data. In the context of instruction tuning,102

higher alignment indicates that the instruction and103

response are better matched, enabling the model to104

learn how to answer questions more easily.105

Based on the proposed IRA scores, we propose106

an FL training framework fully leveraging data107

quality evaluation to handle data quality issues.108

The key idea behind FedDQC is a combination109

of hierarchical training and adaptive scoring during110

training. Specifically, it consists of two stages: the111

scoring stage and the hierarchical training stage. In112

the scoring stage, each client independently com-113

putes IRA scores for local data samples using the114

current global model through localized inference115

without requiring external data access. All data116

is then re-ordered based on IRA scores, and high-117

quality data is selected and partitioned into hierar-118

chical subsets for subsequent training. in the hi-119

erarchical training stage, the model initially trains 120

on high-quality, easily learnable samples (higher 121

IRA scores) and gradually transitions to more com- 122

plex data (lower IRA scores). This staged approach 123

reduces interference from challenging samples in 124

early training phases, thereby enhancing learning 125

efficiency. These two stages iterate until the final 126

hierarchy, effectively enabling adaptively scoring 127

during training. This progressive knowledge inte- 128

gration mechanism allows the model to incorporate 129

more challenging data as its capacity improves. 130

This leads to enhanced model robustness and per- 131

formance, particularly when dealing with noisy or 132

heterogeneous data. 133

Our experiments demonstrate that FedDQC not 134

only outperforms all baseline models in both IID 135

(independent and identically distributed) and non- 136

IID settings on four synthetic datasets but also 137

shows effectiveness on the real-world federated 138

dataset, Fed-WildChat (Ye et al., 2024b). As for 139

computation, we show that the scoring metric IRA 140

consumes only 1% training time for data quality 141

evaluation, making it computation-efficient and 142

scalable for larger datasets. 143

2 Related work 144

2.1 Federated Learning 145

Federated Learning (Kairouz et al., 2021; McMa- 146

han et al., 2017; Li et al., 2020) has emerged as a 147

powerful method for privacy-preserving collabo- 148

rative training, allowing multiple clients to jointly 149

train a global model without sharing raw data, co- 150

ordinated by a central server. Existing research on 151

data quality in FL primarily focused on the classifi- 152

cation tasks, with noisy label issues. (Li et al., 2021) 153

We classify related data quality control works from 154

three levels: client, model and sample level. At 155

the client level, efforts have concentrated on identi- 156

fying malicious clients (Jiang et al., 2023b; Yang 157

et al., 2021) through feature (Yang et al., 2022) or 158

model weight clustering (Wang et al., 2022). While 159

at the sample level, studies have typically focused 160

on label correction strategies (Xu et al., 2022) or 161

confidence-based sample reweighting (Fang and 162

Ye, 2022). At the model level, approaches like 163

distillation (Wang et al., 2024b) or modifying the 164

loss function (Wu et al., 2023a) aimed to increase 165

robustness against noisy labels. However, these 166

methods do not effectively address the unique chal- 167

lenges of federated LLM training, the generation 168

task. This highlights the gap in current approaches 169

and underscores the need for specialized solutions 170
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Figure 2: Overview of FedDQC, which iterates in two stages: (1) Scoring stage: utilize IRA and global model to
evaluate data quality; (2) Hierarchical training: progressively fine-tuned from high-IRA to low-IRA data, mirroring
the easy-to-hard learning process.

tailored to generative tasks in FL.171

2.2 Data quality control172

Data quality control is complex and a throughout173

problem in machine learning (Zha et al., 2023). To174

solve the task for this work, we split the related175

work into two lines: the traditional data attribution176

with its adaptation to LLM setting, and current data177

selection work for LLM.178

Data attribution Traditional data attribution179

methods, used to explain model predictions by180

identifying influential training examples, are gener-181

ally categorized into retraining-based and gradient-182

based techniques. (Hammoudeh and Lowd, 2024)183

Retraining-based approaches, such as leave-one-184

out (Ling, 1984), Shapley value (Ghorbani and185

Zou, 2019), and Datamodels (Ilyas et al., 2022),186

estimate the effect of data points by repeatedly187

retraining the model on different subsets of data.188

These data attribution approaches are post-hoc189

and computationally costly, making them unsuit-190

able for LLM setting. Gradient-based approaches,191

like represented point selection (Yeh et al., 2018),192

TracIn (Pruthi et al., 2020), and influence func-193

tions (Koh and Liang, 2017), estimate training194

data’s impact through parameter sensitivity. Re-195

cent studies have developed more efficient adap-196

tations of this gradient-based method for gener-197

ative tasks (Guo et al., 2020) and LLM settings,198

streamlining data selection processes such as pre-199

training (Park et al., 2023) and instruction-tuning200

in transfer learning scenarios (Xia et al., 2024).201

Despite these advancements in reducing computa-202

tional complexity through approximations, comput-203

ing these methods for LLM data selection is still204

costly due to the increasing size of large model and205

data volumes.206

Data selection for LLMs Current data selection207

works for LLM instruction-tuning are heuristic and208

aimed at core set selection. They either depend on209

a powerful external model for scoring or require it-210

erative training or selection. External model-based211

scoring techniques, such as AlpaGasus (Chen et al., 212

2023c), DEITA (Liu et al., 2023) and INSTAG (Lu 213

et al., 2023) prompt ChatGPT (Roumeliotis and 214

Tselikas, 2023) for various dimension of data qual- 215

ity scoring. While effective, these methods are 216

costly and compromise privacy by requiring direct 217

data sharing. This is particularly problematic in 218

privacy-sensitive settings. Other methods that com- 219

ply with privacy constraints still require large com- 220

putation and are not well-suited for local dataset 221

management essential in FL environments. For in- 222

stance, IFD (Li et al., 2023a) and MoDS (Du et al., 223

2023) require a computationally intensive initial 224

training stage that may involve low-quality data. 225

Similarly, InstructionMining (Cao et al., 2023) de- 226

spite utilizing innovative statistical regression to 227

fit quality influence factors with performance, is 228

dataset-specific and requires retraining. Addition- 229

ally, approaches like SelectIT (Liu et al., 2024) 230

and NUGGETS (Li et al., 2023b) utilize in-context 231

learning but highly depend on the predefined task 232

set, which is sometimes applicable for FL. These 233

challenges underscore the need for a new, locally 234

implementable, efficient scoring method that pre- 235

serves privacy and reduces computational over- 236

head. 237

3 Problem formulation 238

3.1 Preliminary: Federated Learning 239

We consider there are N clients participating in 240

FL to collaboratively train a model θ. Each client 241

holds a dataset Dn and optimizes its local model 242

via a loss function L(·). The goal of FL is to find 243

the optimal global model θ∗ that minimizes the 244

aggregated loss of all clients. Mathematically, the 245

global objective of FL is: 246

θ∗ = argmin
θ

N∑
n=1

wn

|Dn|
∑
x∈Dn

L(x, θ) 247

where wn = |Dn|∑N
i=1 |Di|

represents the weight as- 248

signed to client, |Dn| is dataset size of Dn. 249
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In the basic FedAvg, each training round r pro-250

ceeds as follows: 1) Sever broadcasts the global251

model θr to clients; 2) Each client n performs lo-252

cal model training using t SGD steps to obtain a253

trained model denoted by θr,t; 3) Clients upload254

the locally trained models θr,t to the server and255

the server updates the global model based on the256

aggregated local model: θr+1 =
∑N

n=1wnθ
r,t
n .257

3.2 Federated Instruction Tuning258

In federated instruction tuning, each client holds259

a dataset where each sample is a pair: (ques-260

tion, answer). For client n, the dataset is de-261

noted as Dn = {(qi, ai)|i = 1, 2, . . . , |Dn|},262

where qi and ai denote the i-th instruction and263

answer. The instruction tuning training loss for264

the i-th sample is formulated as L((ai, qi), θ) =265

−
∑li

j=1 log p(a
i
j |qi ⊕ ai<j ; θ), where ⊕ is the con-266

catenation operator, li is the token length of output267

ai and ai<j denotes the tokens before index j.268

4 Methodology269

This section presents the two-stage FedDQC frame-270

work: the scoring stage and the training stage.271

Firstly, Section 4.1 gives an overview of FedDQC.272

Then Section 4.2 and Section 4.3 introduce the273

scoring and training stage respectively.274

4.1 Overview275

FedDQC operates through an iterative two-stage276

process: the scoring stage and the training stage.277

These stages alternate in a continuous cycle, al-278

lowing the model to select and progressively learn279

from high-quality data.280

Scoring Stage: At the beginning of each hierarchy,281

clients assess the quality of their local data using282

the IRA metric, which evaluates the alignment be-283

tween instructions and responses. Based on these284

scores, clients sort and filter their data, retaining285

only high-quality samples for federated training.286

Training Stage: Client partition the filtered high-287

quality local data into several subsets based on288

sorted sequence, with each subset with equal size.289

In each hierarchy training, clients only choose the290

highest-scored subset to participate in federated291

training in this hierarchy.292

Please refer to Fig. 2 and an algorithmic sum-293

mary in Algorithm 1.294

4.2 Scoring Stage: Data Quality Assessment295

FedDQC controls data quality in FL by locally296

assessing data under privacy and computation con-297

straints, allowing clients to select and sort data298

based on quality.299

Quality evaluation metric We propose the 300

Instruction-Response Alignment (IRA) metric for 301

data quality assessment, inspired by mutual infor- 302

mation (Kraskov et al., 2004), to evaluate the rele- 303

vance between instructional prompts and responses 304

using the global model. Specifically, IRA is com- 305

puted locally with the global model to calculate the 306

difference in inference loss between unconditioned 307

responses and responses conditioned on their cor- 308

responding instructions. The following equation 309

defines the scoring function fIRA: 310

fIRA((q
i, ai) ∈ D, θ) = L(ai; θ)− L((ai, qi); θ) 311

where L(ai; θ) = −
∑li

j=1 log p(a
i
j |ai<j ; θ) calcu- 312

lates the cross-entropy loss of generating response 313

ai without given the instruction qi, L((ai, qi); θ) is 314

the cross-entropy loss given instruction qi, which is 315

defined in Section 3.2. D is dataset and θ represents 316

model parameter for data quality evaluation. 317

This metric subtly connects data quality with 318

learning difficulty by reflecting how well the in- 319

struction aligns with the response, which in turn 320

influences how easily the model can learn from the 321

data. Visualization in Fig. 3(c) supports this, see 322

discussion in Section 6.3. 323

Local dataset sort and select Using the efficient 324

IRA, clients process the local dataset in two steps. 325

First, clients sort their untrained local data in a de- 326

scending order based on IRA values. Then client 327

filter out low-quality samples using a global thresh- 328

old λ, retaining only the high-quality data. 329

Rather than solely relying on the pre-trained 330

model to evaluate data quality, our approach incor- 331

porates re-scoring before each hierarchical feder- 332

ated training stage, dynamically adjusting the data 333

selection process according to the model’s evolv- 334

ing capabilities throughout training. This adaptive 335

approach offers a key advantage: better handling of 336

low-quality data. As the model’s abilities improve 337

during training, it becomes more adept at distin- 338

guishing between challenging, valuable data and 339

noisy or irrelevant data, making it more capable in 340

selecting the right data and ensuring a more reliable 341

and stable model. Section 6.3 provides visualiza- 342

tions that offer strong evidence of the effectiveness 343

of this methodology. 344

4.3 Training Stage: Hierarchical Training 345

After controlling data quality in local dataset, the 346

next step is federated training. In this stage, we 347

propose quality-aware hierarchical training based 348

on previous IRA scoring, where models learn pro- 349
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Table 1: Performance comparisons on real and synthetic datasets in both IID and NIID settings show that FedDQC
outperforms all methods and even surpasses full clean data training. The best performance for each data quality
control method is bolded.

Real Dataset Sythetic Dataset

Fed-WildChat IID NIID
PubMedQA FiQA AQUA-RAT Mol-Instructions PubMedQA FiQA AQUA-RAT Mol-Instructions

MT-bench Acc Win% Acc BertScore Acc Win% Acc BertScore
FedAvg (oracle) 4.475 0.750 - 0.299 0.812 0.747 - 0.252 0.812
FedAvg - 0.681 0.266 0.205 0.809 0.664 0.354 0.205 0.809
FedAvg+PPL 4.525 0.703 0.437 0.224 0.809 0.684 0.544 0.217 0.804
FedAvg+DataInf 4.443 0.728 0.457 0.224 0.811 0.675 0.464 0.232 0.807
FedAvg+IFD 4.600 0.714 0.622 0.244 0.812 0.699 0.664 0.275 0.815
FedAvg+NUGGETS 4.443 0.708 0.565 0.240 0.815 0.682 0.566 0.232 0.814
FedDQC 4.780 0.751 0.721 0.290 0.819 0.751 0.821 0.280 0.824

gressively from easier to harder data. This typically350

involves two steps:351

Step 1: Split to subsets: For hierarchy k in to-352

tal K hierarchies, the retained data for client n353

is partitioned into K − k separate hierarchies in354

a descending Hnk, . . . ,HnK order with IRA val-355

ues. Each hierarchy contains an equal number of356

samples, and any samples that have already been357

trained in previous hierarchies are removed. The358

subset Hnk with the highest score is selected as the359

training set for this hierarchical federated training.360

Step 2: Federated training inside hierarchy:361

During training, each clients choose the high-362

est scored subset Hnk for training. By prioritiz-363

ing high-quality, easy-to-learn data, the FL pro-364

cess starts with basic, highly relevant instruction-365

response samples, then gradually applies its366

instruction-following skills to more generalized367

tasks, and eventually progresses to solving more368

complex problems. This approach offers two key369

benefits: 1) it enables the model to build a strong370

foundational understanding, improving learning ef-371

fectiveness and robustness; 2) it ensures consistent372

data quality in each training round, reducing the373

risk of divergence in the aggregated model. See374

visualization in Section 6.3375

In each round of global aggregation and local up-376

dating, any federated algorithm could easily adapt377

to FedDQC. Section 6.2 demonstrate the effective-378

ness of FedDQC plugged in various FL algorithms.379

5 Disscussion380

Communication, privacy and computation381

"Privacy and communication efficiency are two382

primary concerns in FL". (Kairouz et al., 2019)383

Our proposed FedDQC does not compromise on ei-384

ther of these aspects, as it does not introduce extra385

communication costs or privacy leakage, through386

training. Regarding computation, FedDQC adds387

only one step compared to FedAvg: scoring all388

the training data, which only requires inferencing389

rather than training. When keeping the batch size390

the same for training and inference, the scoring 391

time accounts for approximately 1% of the total 392

training time. See Section 6.4.2. 393

6 Experiments 394

6.1 Experiment Setup 395

Dataset and evaluation metric We explore a 396

real-world dataset and four task-specific datasets, 397

PubMedQA (Jin et al., 2019), FiQA (Yang et al., 398

2023), AQUA-RAT (Ling et al., 2017) and Mol- 399

Instructions (Fang et al., 2023) covering diverse 400

domains (i.e., medical, finance, math, and molecu- 401

lar science). To simulate real-world mixed-quality 402

data, we introduced synthetic low-quality data at a 403

50% proportion across the four domain-specific 404

datasets. For more details please refer to Ap- 405

pendix A.1. 406

Models and training settings Our experiment 407

is implemented on the OpenFedLLM (Ye et al., 408

2024c) framework. We use LLama2-7b(Touvron 409

et al., 2023) as the pre-trained model and adapt 410

Low-Rank Adaptation (LoRA) (Hu et al., 2021) to 411

achieve fine-tuning. See Appendix A.4.1. 412

Baselines We include four types of data qual- 413

ity evaluation metrics as data quality control base- 414

lines: perplexity (PPL) (De la Rosa et al., 2022), 415

loss, IFD (Li et al., 2023a), NUGGETS (Li et al., 416

2023b), and DataInf (Kwon et al., 2023). These 417

four metrics are applied at the data-scoring stage. 418

We select the high-score data for later federated 419

training. In our experiments, DataInf and IFD are 420

slightly adapted to federated scenarios, refer to Ap- 421

pendix A.3 for more details. 422

6.2 Main result 423

We conduct experiments on a real-world dataset 424

and four synthetic domain-specific datasets with 425

synthetic low-quality data on both IID and NIID 426

settings, shown in Table 1. 427

Applicability on synthetic dataset We compare 428

FedAvg with the original dataset (referred as oracle 429
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Table 2: Performance comparisons of random batching and two hierarchical training sequences with 5 quality
evaluation metrics on PubMedQA in IID setting. IRA is a training-aware quality evaluation metric compatible with
descending hierarchical training. The red box highlights the best result among all baselines, while the blue box
highlights the best performance within the baseline.

PubMedQA AQUA-RAT Mol-Instructions FiQA
Train order random ascend descend random ascend descend random ascend descend random ascend descend
random 0.681 0.205 0.809 26.60
PPL 0.703 0.663 0.685 0.240 0.217 0.220 0.809 0.809 0.807 0.437 0.338 0.333
NUGGETS 0.708 0.682 0.674 0.240 0.193 0.201 0.815 0.814 0.810 0.457 0.681 0.320
IFD 0.714 0.697 0.656 0.244 0.217 0.193 0.814 0.820 0.799 0.622 0.612 0.287
DataInf 0.728 0.720 0.717 0.224 0.181 0.169 0.811 0.806 0.810 0.565 0.223 0.300
IRA 0.725 0.718 0.751 0.252 0.197 0.290 0.817 0.803 0.819 0.690 0.432 0.721

in table), and the synthetic mixed-quality dataset,430

applying 4 data selection baselines and the Fed-431

DQC. For FiQA datasets, all win rate are com-432

pared with high-quality data with FedAvg in both433

settings. To ensure fairness, we adjust the global434

threshold λ to keep the number of training samples435

consistent and maintain the same number of train-436

ing rounds. Key observations from Table 1 include:437

1) FedDQC consistently mitigates the impact of438

low-quality data and outperforms other baseline. 2)439

In some cases, FedDQC even surpasses the perfor-440

mance of training on fully clean data, benefiting441

from progressive training and the fact that not all442

data in the oracle dataset is equally valuable.443

Applicability on real-world dataset We present444

the results on the real-world dataset, Fed-WildChat,445

in Table 1, where various data scoring metrics were446

applied to select 70% of the oracle training data for447

the same number of training rounds. We can see448

that: 1) FedDQC outperforms all other baselines449

and even surpasses the full dataset training perfor-450

mance, indicating the presence of low-quality data451

in the real-world dataset. 2) Data selection methods452

based on DataInf and NUGGEST perform worse453

than using the full dataset. This suggests that using454

gradients for data attribution in real-world datasets,455

as in the case of DataInf, is challenging. Addi-456

tionally, the diverse distribution of real-world data457

makes it difficult to evaluate data quality using a458

fixed validation set, as shown by the performance459

of NUGGEST.460

Applicability on different FL algorithms We461

combine FedDQC with several FL algorithms be-462

yond FedAvg, including FedAvgM (Hsu et al.,463

2019), FedAgrad (Reddi et al.), FedYOGI (Reddi464

et al.), and FedAdam (Reddi et al.). Table 3465

shows that FedDQC significantly boosts perfor-466

mance across these algorithms. For example, in the467

mix-quality scenario, FedAdagrad’s performance468

improved from 0.709 to 0.731 with FedDQC, illus-469

trating the effectiveness of FedDQC in enhancing470

model performance when paired with other FL al-471

gorithms.472

Table 3: Compatability with other 4 federated algo-
rithms on PubMedQA, IID setting. The last line shows
the improvement on mixed-quality data with FedDQC
added.

FedAvg FedAvgM FedAdagrad FedYOGI FedAdam

oracle 0.750 0.732 0.717 0.512 0.527
mix-quality 0.681 0.676 0.709 0.498 0.476
+FedDQC 0.751 0.729 0.731 0.512 0.531

(+7%) (+5.3%) (+2.2%) (+1.4%) (+5.5%)

6.3 Visualization 473

Data Map (Swayamdipta et al., 2020) is a data 474

training dynamics visualization tool, which tracks 475

each sample’s inference probability across training 476

epochs. The Confidence (y-axis) is the mean of 477

these probabilities and the Variance (x-axis) is the 478

variance of these probabilities. Fig 3 shows 5 types 479

of low-quality data (noisy token, deleted token, 480

truncation, and swapped responses) in a central- 481

ized setting on LLaMA-2-7b (Touvron et al., 2023) 482

model and dataset PMC-Llama (Wu et al., 2024) 483

with 8000 samples, of which 50% are low-quality 484

samples. 485

Relation of IRA and training difficulty IRA 486

metric subtly connects data quality with learning 487

difficulty. Fig. 3(b) shows how this evaluation 488

method closely reflects the relationship between 489

IRA scores and the dynamic process of data dur- 490

ing training. The Data Map in Fig. 3(a) reveals a 491

clear pattern between data quality and its training 492

dynamics. For instance, data with high confidence 493

and high variance are easier for the model to learn 494

and perform better on, while low-variance, low- 495

confidence data, like those in the bottom-left corner, 496

are harder to learn and represent low-quality data. 497

As Fig. 3(b) illustrated, IRA aligns well with this 498

dynamic tracking approach: 1) high-scoring data 499

are easier to learn, with higher variance and lower 500

confidence; 2) low-scoring data tend to cluster in 501

the lower-left corner, with both lower confidence 502

and variance, indicating more difficulty in learning, 503

making them more likely to be noisy or irrelevant 504

and negatively impacting model performance. 505

Effectiveness of iterative scoring As shown in 506

Fig.3(c), the model re-scored after training dis- 507
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Figure 3: Data Map visualization. (a) Data Map with ground truth quality label. (b) Data Map with IRA scores on a
pre-trained model. (c) Data Map with IRA scores on fine-tuned model.
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Figure 4: Comparison of additional computation costs
and performance gain after applying to different quality
evaluation metrics on PubMedQA IID setting. IRA adds
minimal computational overhead while significantly im-
proves performance by data quality control.

tinguishes data quality more clearly than the pre-508

trained model in Fig.3(b). Notably, high-scoring509

data tend to appear in regions with higher variance,510

indicating that the model is more confident in these511

challenging, yet informative samples.512

6.4 Emperical analysis of FedDQC513

6.4.1 The effectiveness of hierarchical training514

To demonstrate the close integration of IRA scores515

with hierarchical training, we compared 3 training516

sequences: random, ascending, and descending;517

across 4 domain-specific datasets in the IID setting,518

as shown in Table 2. The experiments reveal that:519

1) IRA’s relationship with easy-to-hard hierarchi-520

cal training is mutually reinforcing, with descend-521

ing sequence training significantly improving IRA-522

based data selection across all datasets. Notably,523

IRA consistently outperforms other quality evalu-524

ation metrics, regardless of the training sequence.525

2) Other quality metrics do not consistently ben-526

efit from hierarchical training, highlighting their527

incompatibility with this approach.528

6.4.2 Computational analysis529

We evaluated the additional computational costs of530

four data quality evaluation metrics compared to531

IRA during the data scoring stage, alongside their532

training performance on the PubMedQA dataset533

under an IID setting in Figure 4. The experiment534
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Figure 5: Model similarity comparison between FedAvg
and FedDQC on PubMedQA dataset in NIID settings.

shows that: 1) compared to the total training time in 535

FedAvg, 300.6 minutes, IRA only takes 1% train- 536

ing time for data scoring, making it scalable for 537

large datasets; 2) Compared to PPL, which is too 538

simple to be effective. IRA uses an extra 1 minute, 539

around 0.3% training time, for scoring than PPL but 540

has much higher performance; 3) Compared to the 541

second well-performed metric, DataInf, IRA takes 542

extremely less time, around 1/150 of the scoring 543

time than DataInf. In conclusion, IRA is a compu- 544

tationally efficient, scalable data quality measuring 545

metric, greatly enhancing data quality control. 546

6.4.3 Data quality impact analysis 547

To examine how data quality impacts training, we 548

quantify the dataset’s overall quality as the ratio of 549

aligned data to total data, and conduct experiments 550

with varying data quality ratios (0.5 to 1.0) across 551

four domain-specific datasets in the IID setting. For 552

FiQA, we use win rates compared to the original 553

dataset trained with FedAvg, so we exclude the 1.0 554

quality ratio for FedAvg. Key observations from 555

Fig 7 include: 1) FedAvg performance decreases as 556

the data quality ratio drops, showing the significant 557

impact of low-quality data on training. 2) FedDQC 558

outperforms FedAvg in all quality ratio settings, 559

demonstrating the robustness of its data quality 560

control. 3) Even with a quality ratio of 1.0 (no 561

synthetic low-quality data), FedDQC consistently 562

outperforms FedAvg, indicating its effectiveness 563

in enhancing training performance, even in non- 564

synthetic datasets. 565
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Figure 6: Ablation study. (a) Effect of global threshold on overall data quantity and training performance of
FedDQC. Experiments show that FedDQC is robust to the global threshold. (b) Effects of global threshold on the
quality ratio of all training data. (c) The effect of various hierarchies on training performance in FedDQC training.
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Figure 7: Comparison of FedAvg and FedDQC in var-
ious data quality ratios. (a)-(d) show the performance
under different data quality ratio on various datasets.
FedDQC is consistently higher than FedAvg in all data
quality ratio on four datasets.

6.4.4 Convergence and Model Similarity566

analysis567

To demonstrate FedDQC’s impact on convergence568

and data heterogeneity, we compared local model569

similarity at round 50 between FedAvg and Fed-570

DQC in a quality NIID setting with 5 clients. Fig. 5571

shows that, in FedAvg, model similarity is gener-572

ally low due to data quality differences, particularly573

for client 5 with lower-quality data. In contrast,574

FedDQC’s hierarchical training improves model575

similarity by filtering out low-quality data, reduc-576

ing its negative impact, and enhancing aggregation.577

This results in a more stable global model, minimiz-578

ing data heterogeneity and improving performance579

in heterogeneous settings.580

6.5 Hyperparameter ablation581

Global threshold To demonstrate the threshold582

robustness of FedDQC, we further examine the im-583

pact of the global threshold λ on the PubMedQA 584

dataset with the IID setting. As shown in Fig. 6(a), 585

the performance of FedDQC remains stable across 586

varying λ values, indicating its insensitivity to the 587

threshold. Even with changing data quantities, Fed- 588

DQC consistently outperforms FedAvg, demon- 589

strating its robustness. Additionally, as the thresh- 590

old decreases, the data quality ratio in the selected 591

data increases, see Figure 6(a) 6(c), but perfor- 592

mance is more sensitive to the total data quantity 593

than to data quality. This is evident from the asym- 594

metric performance drop around 4k training data, 595

where a decrease in data quantity results in a more 596

pronounced performance decline. 597

Number of hierarchies Under the IID setting 598

on PubMedQA, we tune the number of hierarchies 599

in FedDQC K ∈ {1, 2, 3, 4, 5}. Figure 6(c) show 600

that: 1) K = 3 is optimal; 2) Beyond K = 3 fur- 601

ther increasing the number of hierarchies leads to a 602

slight decline in accuracy. This suggests that while 603

hierarchical training enhances learning, too many 604

hierarchies may reduce diversity, slightly hindering 605

performance. 606

7 Conclusions 607

In this paper, we introduce FedDQC, a novel 608

framework for data quality control in federated 609

instruction-tuning of LLMs. FedDQC combines 610

a new data quality assessment metric (IRA) with 611

federated hierarchical training, where data qual- 612

ity is dynamically evaluated during training. Our 613

experiments demonstrate that FedDQC adds min- 614

imal computational overhead while significantly 615

improving model performance. The integration of 616

IRA, adaptive scoring, and hierarchical training en- 617

hances both efficiency and robustness, making Fed- 618

DQC a promising approach for effective controlled 619

data quality in mixed-quality distributed scenario. 620
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8 Limitations621

A limitation of this study is that it assumes all lo-622

cal models share the same architecture, which is623

achievable when fine-tuning with the LoRA adapter.624

However, this approach may not be suitable for sce-625

narios involving different local model architectures.626

Additionally, the study does not address the inte-627

gration of data diversity into the design.628
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A Appendix952

A.1 Dataset and Evaluation Metric953

Table 4 shows descriptions of these datasets, in-954

cluding information about the domain, evaluation955

metrics, number of samples, average length of in-956

struction, and average length of response.957

PubMedQA PubMedQA1 (Jin et al., 2019) is958

a multiple-choice question-answering dataset op-959

timized for medical reasoning. In this paper we960

utilize the version sourced from PMC-LLama (Wu961

et al., 2024). It features enhanced QA pairs962

with structured explanations derived from Chat-963

GPT (Roumeliotis and Tselikas, 2023), facilitating964

in-depth medical analysis. PubMedQA dataset con-965

sists of 211.3k training samples.966

FiQA FiQA dataset2 is a subset from Fin-967

GPT (Yang et al., 2023), which consists 17.1k fi-968

nancial open question-answers. We split out 200969

samples for evaluation and adopted the MT-Bench970

instruction template (see Table 10) to call Chat-971

GPT (Roumeliotis and Tselikas, 2023) API (gpt-972

4-1106-preview). For the evaluation metric, we973

utilize the win rate to demonstrate the data quality974

ratio: win_rate = win_counts/(win_counts +975

lose_counts).976

AQUA_RAT The AQUA-RAT (Ling et al., 2017)977

dataset3 is a large-scale mathematical dataset with a978

collection of around 100k algebraic word problems.979

Each problem in the dataset is accompanied by a980

detailed, step-by-step solution narrative, articulated981

in natural language. This dataset consists of 97.5k982

training samples and 245 test samples. We use983

accuracy as the evaluation metric.984

Mol-Instructions The Mol-Instructions (Fang985

et al., 2023) dataset 4 consists of a subset:986

biomolecular text instructions, specifically de-987

signed for natural language processing tasks in988

bioinformatics and chemoinformatics. It en-989

compasses six distinct information extraction990

and question-answering (Q&A) tasks, structured991

through 53k detailed instructions. This design sup-992

ports advanced NLP applications that require pre-993

cise and context-specific understanding in the sci-994

entific domains of biology and chemistry. Our ex-995

periment only samples the open-Q&A task with996

1https://huggingface.co/datasets/axiong/pmc_llama_instructions
2https://huggingface.co/datasets/FinGPT/fingpt-fiqa_qa
3https://huggingface.co/datasets/aqua_rat
4https://huggingface.co/datasets/zjunlp/Mol-Instructions

37k training set and 1k test set. For evaluation, 997

the BertSocre (Zhang et al., 2019), an automatic 998

evaluation metric for text generation, is applied on 999

a predefined test set of size 200. 1000

Fed-WildChat Fed-WildChat is a key compo- 1001

nent of the FedLLM-Bench (Ye et al., 2024b), a 1002

benchmark designed for evaluating FL methods 1003

in the context of LLMs. This dataset specifically 1004

focuses on multi-turn chat instruction tuning, pro- 1005

viding a realistic representation of user-chatbot in- 1006

teractions. Fed-WildChat (Zhao et al., 2024) is 1007

derived from a collection of conversations between 1008

humans and ChatGPT, WildChat, featuring a di- 1009

verse array of interactions. It comprises data from 1010

100 clients, totaling approximately 53,000 samples. 1011

This dataset is structured to reflect real-world sce- 1012

narios by partitioning the data based on user IP 1013

addresses, ensuring that each client has a substan- 1014

tial number of samples (at least 200) for effective 1015

training and evaluation 1016

A.2 FedDQC algorithm 1017

To control the data quality for training, two steps 1018

need to be conducted: data selection with data 1019

quality assessment, and training process with high- 1020

quality data. Since in FL, data is preserved at the 1021

client side, only the client could assess their data 1022

quality and select its data based on the data quality 1023

score. In our FedDQC framework, data manipu- 1024

lations are mainly on the client side including the 1025

data quality measurement and local data training. 1026

The key idea of this framework is to integrate data 1027

quality assessment with the training process, which 1028

consists of two components the alignment-based 1029

data quality assessment and the quality-aware hier- 1030

archical training. These components are detailed 1031

in Algorithm 1 and illustrated in Figure 2. 1032

A.3 Baselines 1033

Comparisons with current methods Compared 1034

to NUGGETS (Li et al., 2023b) and AlpaGa- 1035

sus (Chen et al., 2023c), which utilize an external 1036

model for quality evaluation, FedDQC evaluates 1037

the data on the client side and preserves local data 1038

privacy. Unlike DataInf (Kwon et al., 2023) and 1039

NUGGETS (Li et al., 2023b), which require an 1040

extra validation set from the server, these methods 1041

become inapplicable in scenarios where the server 1042

cannot provide this set. Additionally, their compu- 1043

tational cost is related to the size of the validation 1044

set. Compared to IFD (Li et al., 2023a), FedDQC 1045
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Table 4: Dataset information and evaluation metrics

Dataset Evaluation metrics Domain #samples L̂inst. L̂Resp.

PubMedQA (Jin et al., 2019) Acc medical 211 k 471.1 71.4
FiQA (Yang et al., 2023) Win rate financial 17.1 k 42.1 255.7
AQUA-RAT (Ling et al., 2017) Acc math 97.5 k 77.4 105.7
Mol-Instructions (Fang et al., 2023) Bert score molecular 38 k 110.5 107.8
Alpaca-GPT4 (Peng et al., 2023) - general 52 k 21 163

Algorithm 1 FedDQC: Federated Data Quality Control

1: Initialization: Initial global model: θ0; Training datasets: D = {D1,D2, . . . ,DN}; Number of
training rounds: R; Number of hierarchies: K; Global quality threshold: λ

2: for k = 1 to K do
3: // Scoring Stage:
4: for n = 1 to N do
5: Dn = Dn \ Hn(k−1) ▷ Remove the trained data from Dn

6: Sn = {si : si = fIRA((q
i, ai) ∈ Dn, θ

(R/K)∗(k−1))} ▷ Assess data quality of Dn

7: D′
n = {(qi, ai) ∈ Dn, si ≥ λ} ▷ Select data points with quality scores above λ

8: end for
9: // Training Stage:

10: for r = (R/K) ∗ (k − 1) to (R/K) ∗ k − 1 do
11: for n = 1 to N do
12: Sort D′

n by quality scores si in descending order
13: Split sorted D′

n into hierarchies Hnk, . . . ,HnK with equal size floor(|D′
n|/(K − k)

14: ▷ Split local dataset to hierarchies
15: Local update θrn with Hnk ▷ Local easy-to-hard hierarchical training
16: end for
17: θr+1 =

∑N
n=1wnθ

r,t
n ▷ Aggregate local models to update global model θr

18: Distribute global model θr+1 to each client n
19: end for
20: end for
21: Return: Global model θR

does not require extra dataset adaptation training,1046

thus, is computation effective.1047

Perplexity Perplexity, a probability-based metric,1048

is defined as the exponentiated average of the nega-1049

tive log-likelihoods of a tokenized sequence X =1050

(x0, x1, . . . , xt). Specifically, the perplexity of X ,1051

denoted as PPL(X), is calculated using the for-1052

mula PPL(X) = exp
{
−
∑t

i log pθ(xi | x<i)/t
}

,1053

where log pθ(xi | x<i) represents the log-1054

likelihood of the ith token, conditional on its pre-1055

ceding tokens x<i. This measure is frequently em-1056

ployed to data cleaning within a pre-trained cor-1057

pus (Wenzek et al., 2019).1058

DataInf Influence functions, a gradient-based1059

scoring method, rely on the model’s performance1060

on a validation set. DataInf, as introduced1061

by (Kwon et al., 2023), stands out as the first 1062

computationally efficient approximation of influ- 1063

ence functions that can be practically implemented 1064

in LLMs. This Hessian-based standard influ- 1065

ence functions, provide scores DataInf(xj)i = 1066

∇L(xj ; θ
⋆)H−1

θ⋆ ∇L(xi; θ
⋆) for every xi in Dk and 1067

xj in Dval, where θ⋆ denotes the parameters of the 1068

model trained on the training dataset, and Hθ⋆ is 1069

the Hessian matrix of the empirical loss function. 1070

However, this method needs the model’s conver- 1071

gence, which is unreal. To adapt to a federated 1072

setting, we first use the full dataset trained for 100 1073

rounds for domain-specific datasets and 200 rounds 1074

for the general dataset. Then using this well-trained 1075

model to estimate the data influence score. 1076

IFD The Instruction-Following Difficulty 1077

(IFD) metric is calculated by the formula 1078
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Table 5: Comparison between the performance of high-quality data and low-quality data according to the IRA
metric.

PubMedQA AQUA-RAT Mol-Instructions FiQA
Acc Acc Acc Win rate

Full data 0.750 0.2992 0.812 -
High-score 0.73 0.2559 0.822 0.7810
Low-score 0.723 0.1732 0.800 0.3733

IFDθ(Q,A) = sθ(A|Q)
sθ(A) , where sθ(A) =1079

− 1
N

∑N
i=1 logP (wA

i |wA
1 , ..., w

A
i−1; θ), sθ(A|Q) =1080

− 1
N

∑N
i=1 logP (wA

i |Q,wA
1 , ..., w

A
i−1; θ). IFD1081

metric measures the difficulty of following1082

instructions of a given sample. We train our1083

model for 20 rounds on the targeted dataset, and1084

subsequently, this pre-trained model is used for1085

experiments with IFD as the scoring metric.1086

NUGGETS NUGGETS leverages the disparity1087

between one-shot and zero-shot scores to calculate1088

a definitive gold score for each instruction. Exploit-1089

ing the inherent contextual learning capabilities of1090

large models.1091

A.4 Experimental complements1092

A.4.1 Training setting1093

All the experiments are conducted on machines1094

with the same hardware configuration using one1095

NVIDIA GeForce RTX 4090. In all experiments,1096

we use 8-bit quantization with batch size equal1097

to 16, max length equal to 1024, and LoRA rank1098

equal to 64 with a constant α = 128. For the1099

federated setting, we consider 100 communication1100

rounds, 5 clients with 8k training data in total for1101

domain-specific dataset and 5 clients with around1102

8k training data in total for Fed-WildChat dataset.1103

We randomly sample 2 clients for each round with1104

10 local steps using AdamW (Loshchilov and Hut-1105

ter, 2017) optimizer of model training. This setting1106

is equivalent to 3 epochs for local training. For the1107

NIID setting, we follow the Dirichlet distribution1108

(with hyperparameter set to 5 for PubmedQA and1109

FiQA, and 3 for AQUA-RAT and Mol-Instructions).1110

We apply a cosine learning rate schedule according1111

to the round index. The initial learning rate in the1112

first round is 1e− 4, and the final learning rate in1113

the last round is 1e − 6. We use the Alpaca tem-1114

plate (Taori et al., 2023) to format the instruction,1115

as shown in Appendix A.5.1116

A.4.2 How Data quality affects training 1117

performance 1118

We compare the high-score proportion of data with 1119

the low-score proportion of data and show that the 1120

data quality indeed affects training performance. 1121

See Table 5. 1122

A.4.3 IRA metric analysis 1123

Here, simplicity and complexity refer to learning 1124

difficulty. We analyzed the correlation between 1125

IRA scores and gradient magnitudes, finding that 1126

higher IRA scores correspond to smaller gradients, 1127

which indicate easier learning. 1128
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Figure 8: IRA score v.s. Gradient Norm

A.4.4 More FL settings. 1129

We compare more federated settings with the num- 1130

ber of clients equal to 5 and 20. See Table 7. 1131

A.4.5 Other types of low-quality data 1132

We have supplemented the experiments by adding 1133

comparisons with other baselines under different 1134

bad data construction scenarios, as well as mixed 1135

types of bad datasets. All datasets have 50% data 1136

corrupted. 1137

The Table 6 below shows the proportion of high- 1138

quality samples globally before and after data se- 1139

lection, referred to as the data quality ratio. A 1140

ratio closer to 1 indicates more high-quality data. 1141

Our method, IRA, maintains a higher proportion of 1142

high-quality data after selection. 1143

15



Table 6: Comparison of the Proportion of High - Quality Samples Before and After Data Selection: An Analysis of
the Performance of Different Methods

- PPL DataInf IFD NUGGESTS IRA

Data quality ratio 0.5 0.8839 0.5003 0.700 0.6701 0.9345

Table 7: Comparison with other NIID settings and client numbers.

client = 20 client = 5
IID IID NIID-0.1 NIID-1 NIID-5 NIID-10

oracle 0.741 0.750 0.737 0.743 0.747 0.758
mix-quality 0.691 0.681 0.662 0.655 0.664 0.685
selection 0.743 0.751 0.746 0.742 0.758 0.751

A.5 Prompt Template1144

A.6 Case Study1145

A.6.1 Examples of synthetic low-quality data1146

The low-quality data we construct needs to be chal-1147

lenging for data cleansing and have a significant1148

impact on performance. Therefore, we adopted a1149

method of constructing low-quality data by swap-1150

ping answers, simulating the scenario of incorrect1151

data responses in real situations. Additionally, this1152

construction method also maintains the content in-1153

variance of the corpus. Examples are presented1154

below.1155

Table 11, 12, 13, 14 shows examples of1156

synthetic low-quality data in 4 domain-specific1157

datasets. Each dataset showcases a pair of data,1158

including the questions, the authentic correct an-1159

swers, and the incorrect answers generated by1160

swapping the correct ones. The synthetic low-1161

quality data is created by pairing the same question1162

with its incorrect answer.1163

A.6.2 Examples of scored data1164

Figures 9, 10, 11, 12 shows examples of scored1165

data in 4 mixed-quality domain-specific datasets.1166

Each dataset’s size is 8k, with 50% low-quality1167

data generated by swapping correct answers. The1168

remaining 50% is considered high-quality data.1169

We use IRA as the scoring metric and show typical1170

data examples with scores in top 1% and lowest1171

1%.1172

1173

Typically, high-quality data scores high and1174

low-quality data scores low. This is because the1175

incorrect answers in low-quality data significantly1176

diminish the instruction-response relativeness,1177

leading to an increase in IRA. However, the1178

high-quality data example in Figure 9 scores low, 1179

due to the presence of complicated and verbose 1180

input. Consequently, the model finds it challenging 1181

to establish the relativeness between the instruction 1182

and response. 1183
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Table 8: Performance comparison of FedAvg and various baseline methods under different bad data construction
scenarios, with 50% data corruption across different types of data alteration strategies. The best-performing results
are highlighted in bold.

Bad type - Swap Delete Cut Substitute Noisy Mixture Avg

FedAvg 0.757 0.681 0.691 0.730 0.720 0.734 0.700 0.709
FedAvg+PPL - 0.703 0.722 0.694 0.689 0.727 0.644 0.696

FedAvg+DataInf - 0.728 0.705 0.690 0.708 0.683 0.711 0.704
FedAvg+IFD - 0.714 0.718 0.698 0.708 0.716 0.689 0.707

FedAvg+NUGGETS - 0.708 0.102 0.301 0.269 0.722 0.477 0.429

FedDQC 0.750 0.751 0.710 0.741 0.739 0.737 0.731 0.734

Table 9: Alpaca Template for federated instruction tuning

Below is an instruction that describes a task. Write a response that appropriately completes the
request.

### Instruction:
{Instruction}

### Response:

Table 10: Alpaca Template for federated instruction tuning

[System]
Please act as an impartial judge and evaluate the quality of the responses provided by two AI
assistants to the user question displayed below. You should choose the assistant that follows the
user’s instructions and answers the user’s question better. Your evaluation should consider factors
such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses.
Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any
position biases and ensure that the order in which the responses were presented does not influence
your decision. Do not allow the length of the responses to influence your evaluation. Do not
favor certain names of the assistants. Be as objective as possible. Don’t provide your explanation,
output your final verdict by strictly following this format: "[[A]]" if assistant A is better, "[[B]]" if
assistant B is better, and "[[C]]" for a tie.
[User Question]
{question}
[The Start of Assistant A’s Answer]
{answer_a}
[The End of Assistant A’s Answer]
[The Start of Assistant B’s Answer]
{answer_b}
[The End of Assistant B’s Answer]
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Table 11: Synthetic low-quality data in PubMedQA

Question Correct Answer Incorrect Answer

Given your profession as a doc-
tor, please provide responses to
the medical questions using the
patient’s description.
Analyze the question given its
context. Give both long answer
and yes/no decision.
###Question: Does mineralo-
corticoid receptor blockade in-
hibit accelerated atherosclerosis
induced by a low sodium diet in
apolipoprotein E-deficient mice?
###Context: A low-sodium diet
(LSD) was shown to increase
both angiotensin II (AngII) and
aldosterone levels ...

In E0 mice, Epl inhibited LSD-
accelerated atherosclerosis,
despite the elevation of renin
and aldosterone levels. It is
therefore suggested that the
atherogenic action of LSD
could be mediated, at least
in part, by activation of the
mineralocorticoid receptor.
In addition, eplerenone may
have direct anti-inflammatory
actions.

###Answer: yes

Therefore, the technique could
be considered an alternative
method in increasing the kera-
tinized tissue for cases that have
a minimal amount of keratinized
tissue.

###Answer: yes

In your capacity as a doctor, it
is expected that you answer the
medical questions relying on the
patient’s description.
Analyze the question given its
context. Give both long answer
and yes/no decision.
###Question: Do simultaneous
placement of an interpositional
free gingival graft with nonsub-
merged implant placement?
###Context: Various surgical
techniques target achieving ad-
equate keratinized tissue around
dental implants ...

Therefore, the technique could
be considered an alternative
method in increasing the kera-
tinized tissue for cases that have
a minimal amount of keratinized
tissue.

###Answer: yes

In E0 mice, Epl inhibited LSD-
accelerated atherosclerosis,
despite the elevation of renin
and aldosterone levels. It is
therefore suggested that the
atherogenic action of LSD
could be mediated, at least
in part, by activation of the
mineralocorticoid receptor.
In addition, eplerenone may
have direct anti-inflammatory
actions.

###Answer: yes
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Table 12: Synthetic low-quality data in FiQA

Question Correct Answer Incorrect Answer

Share your insights or perspec-
tive on the financial matter pre-
sented in the input.
###Question: What one bit of
financial advice do you wish
you could’ve given yourself five
years ago?",

Compound interest. Next time
you buy a 100$ toy realize that
if you save it - in x years that
100$ you saved and invested
could potentially be more than
100$ where as most likely what-
ever you’re buying will be worth
much less.

If the building has no income, it
also probably has minimal ex-
penses. The heat, water and
electricity costs are nearly zero.
They are letting the value depre-
ciate, and taking it off the taxes.
I also suspect the condition of
the building is poor, so any ef-
fort to make the building produc-
tive would be very costly. Many
cities combat this by setting the
tax on empty buildings or empty
lots at a much higher rate. ...

Utilize your financial knowl-
edge, give your answer or opin-
ion to the input question or sub-
ject . Answer format is not lim-
ited.
###Question: Tax deductions on
empty property

If the building has no income, it
also probably has minimal ex-
penses. The heat, water and
electricity costs are nearly zero.
They are letting the value depre-
ciate, and taking it off the taxes.
I also suspect the condition of
the building is poor, so any ef-
fort to make the building produc-
tive would be very costly. Many
cities combat this by setting the
tax on empty buildings or empty
lots at a much higher rate. ...

Compound interest. Next time
you buy a 100$ toy realize that
if you save it - in x years that
100$ you saved and invested
could potentially be more than
100$ where as most likely what-
ever you’re buying will be worth
much less.

19



Table 13: Synthetic low-quality data in AQUA-RAT

Question Correct Answer Incorrect Answer

###Instruction: Choose the cor-
rect option for the following
math question.
###Question: 1000 men have
provisions for 15 days. If 200
more men join them, for how
many days will the provisions
last now?
###Options:
A. 12.8
B. 12.4
C. 12.5
D. 16.8
E. 92.7

###Rationale: 1000*15 =
1200*x
x = 12.5

###Answer: OPTION C
IS CORRECT.

###Rationale: Explanation:
Let the sum of money be x
then
(x × 4 × 8)/100 = (560 × 12 ×
8)/100
x × 4 × 8 = 560 × 12 × 8
x × 4 = 560 × 12
x = 560 × 3 = 1680

###Answer: OPTION D
IS CORRECT.

###Instruction: Choose the cor-
rect option for the following
math question.
###Question: If simple interest
on a certain sum of money for 8
years at 4% per annum is same
as the simple interest on Rs. 560
for 8 years at the rate of 12% per
annum then the sum of money is
###Options:
A. Rs.1820
B. Rs.1040
C. Rs.1120
D. Rs.1680
E. None of these

###Rationale: Explanation:
Let the sum of money be x
then
(x × 4 × 8)/100 = (560 × 12 ×
8)/100
x × 4 × 8 = 560 × 12 × 8
x × 4 = 560 × 12
x = 560 × 3 = 1680

###Answer: OPTION D
IS CORRECT.

###Rationale: 1000*15 =
1200*x
x = 12.5

###Answer: OPTION C
IS CORRECT.
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Scored data examples in PubMedQA

High-quality, High-score
IRA score: 4.08

[Instruction]
Considering your role as a medical practitioner,
please use the patient’s description to answer the
medical questions.
Analyze the question given its context. Give both
long answer and yes/no decision.
[Input]
###Question: Does [ Hemorrhagic shock increase
the occurrence of bacterial translocation ]?
###Context: To determine whether hemorrhagic
shock (HS) increases the occurrence of bacterial
translocation (BT). 100 patients were divided into
4 groups: control group (group I, 34 patients);
group with hemorrhagic shock (HS) caused by
closed blunt abdominal trauma (group II, 23);
group caused by closed blunt abdominal trauma
without HS (group III 15); and group with HS
caused by intra-abdominal viscus hemorrhage
(group IV 28). Preoperative and postoperative
samples were taken from peripheral blood, vis-
ceral peritoneal swab, portal vein blood, ileal
mesenteric lymph node, liver and spleen biopsy re-
spectively for aerobic and anaerobic culture. The
positive culture rates of these groups were 6%,
65%, 13%, 68% respectively. The difference be-
tween the control and experimental groups was
significant(P < 0.05). The difference was also sig-
nificant between group I and II and between I and
IV (P < 0.01), whereas it was not significant be-
tween I and III, and between II and IV (P > 0.05).
[Output]
HS increases the occurrence of BT.

###Answer: yes

High-quality, Low-score
IRA score: -0.61

[Instruction]
Given your background as a doctor, please
provide your insight in addressing the medical
questions based on the patient’s account.
Analyze the question given its context. Give both
long answer and yes/no decision.
[Input]
###Question: Does globulin-platelet model pre-
dict minimal fibrosis and cirrhosis in chronic hep-
atitis B virus infected patients?
###Context: To establish a simple model consist-
ing of the routine laboratory variables to predict
both minimal fibrosis and cirrhosis in chronic hep-
atitis B virus (HBV)-infected patients. We retro-
spectively investigated 114 chronic HBV-infected
patients who underwent liver biopsy in two differ-
ent hospitals. Thirteen parameters were analyzed
by step-wise regression analysis and correlation
analysis. A new fibrosis index [globulin/platelet
(GP) model] was developed, including globulin
(GLOB) and platelet count (PLT). GP model =
GLOB (g/mL) × 100/PLT (× 10(9)/L). We evalu-
ated the receiver operating characteristics analysis
used to predict minimal fibrosis and compared
six other available models. Thirteen clinical bio-
chemical and hematological variables [sex, age,
PLT, alanine aminotransferase, aspartate amino-
transferase (AST), albumin, GLOB, total biliru-
bin (T.bil), direct bilirubin (D.bil), glutamyltrans-
ferase, alkaline phosphatase, HBV DNA and pro-
thrombin time (PT)] were analyzed according to
three stages of liver fibrosis (F0-F1, F2-F3 and
F4). Bivariate Spearman’s rank correlation analy-
sis showed that six variables, including age, PLT,
T.bil, D.bil, GLOB and PT, were correlated with
the three fibrosis stages (FS). Correlation coeffi-
cients were ...
[Output]
By establishing a simple model using available
laboratory variables, chronic HBV-infected
patients with minimal fibrosis and cirrhosis
can be diagnosed accurately, and the clinical
application of this model may reduce the need for
liver biopsy in HBV-infected patients.

###Answer: yes

Figure 9: The examples of scored data in mixed-quality PubMedQA dataset include a high-quality datapoint with a
high score and a high-quality datapoint with a low score.21



Scored data examples in FiQA

High-quality, High-score
IRA score: 3.16

[Instruction]
Share your insights or perspective on the financial
matter presented in the input.
[Input]
###Question: On a debt collection agency’s letter,
what does “balance” refer to?
[Output]
The balance is the amount due.

Low-quality, Low-score
IRA score: -0.28

[Instruction]
Utilize your financial knowledge, give your
answer or opinion to the input question or subject
. Answer format is not limited.
[Input]
###Question: How can a person with really bad
credit history rent decent housing?
[Output]
I can’t give you a detailed answer because I’m
away from the computer where I use kMyMoney,
but IIRC to add investments you have to cre-
ate new transactions on the ’brokerage account’
linked to your investment account.

Figure 10: The examples of scored data in mixed-quality FiQA datasets include a high-quality datapoint with a high
score and a low-quality datapoint with a low score.
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Scored data examples in AQUA-RAT

High-quality, High-score
IRA score: 1.92

[Instruction]
###Instruction: Choose the correct option for the
following math question.
[Input]
###Question: What should come in place of
question mark(?) in the following equation?
8597 – ? = 7429 – 4358
###Options:
A. 5706
B. 5526
C. 5426
D. 5626
E. None of these

[Output]
###Rationale: 8597 – ? = 7429 – 4358
? = 5526

###Answer: OPTION B IS CORRECT.

Low-quality, Low-score
IRA score: -0.04

[Instruction]
###Instruction: Choose the correct option for the
following math question.
[Input]
###Question: A jar contains only red, yellow, and
orange marbles. If there are 3 red, 5 yellow, and 4
orange marbles, and 2 marbles are chosen from
the jar at random without replacing any of them,
what is the probability that 2 yellow, 1 red, and
no orange marbles will be chosen?
###Options:
A. 1/60
B. 1/45
C. 2/45
D. 3/22
E. 6/22

[Output]
###Rationale: P= 16 = 16+3 = 19 = S
O = 15 =15+3 =18 = R
SIMILARLY,
P = 16 = 16+3 = 19 = S
R = 18 = 18+3 = 21 = U
I = 9 = 9+3 = 12 = L
Y = 25 = 25 +3 = 28 = B
A = 1 = 1+3 = 4 = D
SO ANS IS
SULB

###Answer: OPTION D IS CORRECT.

Figure 11: The examples of scored data in mixed-quality AQUA-RAT dataset include a high-quality datapoint with
a high score and a low-quality datapoint with a low score.
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Scored data examples in Mol-Instructions

High-quality, High-score
IRA score: 3.95

[Instruction]
Answer this question truthfully
[Input]
###Question: How long after the beginning of the
secondary aggregation process does the mitotic
coefficient reach a first maximum? [Output]
The mitotic coefficient reaches a first maximum
8 hours after the beginning of the secondary
aggregation process.

Low-quality, Low-score
IRA score: -0.63

[Instruction]
Answer this question truthfully
[Input]
###Question: What are system invariants?
[Output]
The results suggest that multiple pathways ex-
ist in soybean to regulate expression of Aox genes.

Figure 12: The examples of scored data in mixed-quality Mol-Instructions dataset include a high-quality datapoint
with a high score and a low-quality datapoint with a low score.
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Table 14: Synthetic low-quality data in Mol-Instructions

Question Correct Answer Incorrect Answer

Answer this question truthfully
###Question: What is the pre-
dicted relative molecular mass
of the protein encoded by
PVAS2?

The predicted relative molecular
mass of the protein encoded by
PVAS2 is 65810 Da.

Resonance Raman spectroscopy
is a form of spectroscopy used
to analyze the vibrational, rota-
tional, and other structural char-
acteristics of molecules.

Answer this question truthfully
###Question: What is Reso-
nance Raman spectroscopy?

Resonance Raman spectroscopy
is a form of spectroscopy used
to analyze the vibrational, rota-
tional, and other structural char-
acteristics of molecules.

The predicted relative molecular
mass of the protein encoded by
PVAS2 is 65810 Da.
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