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ABSTRACT

Simplicial Embeddings (SEM) are representations learned through self-supervised
learning (SSL), wherein a representation is projected into L simplices of V dimen-
sions each using a softmax operation. This procedure conditions the representation
onto a constrained space during pre-training and imparts an inductive bias for
discrete representations. For downstream classification, we provide an upper bound
and argue that using SEM leads to a better expected error than the unnormalized
representation. Furthermore, we empirically demonstrate that SSL methods trained
with SEMs have improved generalization on natural image datasets such as CIFAR-
100 and ImageNet. Finally, when used in a downstream classification task, we
show that SEM features exhibit emergent semantic coherence where small groups
of learned features are distinctly predictive of semantically-relevant classes.

1 INTRODUCTION
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Figure 1: Linear probe accuracy of
BYOL and BYOL + SEM on Ima-
geNet trained for 200 epochs with a
ResNet-50 architecture.

Self-supervised learning (SSL) is an emerging family of meth-
ods that aim to learn representations of data without manual
supervision, such as class labels. Recent works (Hjelm et al.,
2019; Grill et al., 2020; Saeed et al., 2020; You et al., 2020)
learn dense representations that can solve complex tasks by
simply fitting a linear model on top of the learned represen-
tation. While SSL is already highly effective, we show that
changing the type of representation learned can improve both
the performance and interpretability of these methods.

For this we draw inspiration from overcomplete representa-
tions: representations of an input that are non-unique combi-
nations of a number of basis vectors greater than the input’s
dimensionality (Lewicki & Sejnowski, 2000). Mostly stud-
ied in the context of the sparse coding literature (Gregor &
LeCun, 2010; Goodfellow et al., 2012; Olshausen, 2013), sparse overcomplete representations have
been shown to increase stability in the presence of noise (Donoho et al., 2006), have applications in
neuroscience (Olshausen & Field, 1996; Lee et al., 2007), and lead to more interpretable representa-
tions (Murphy et al., 2012; Fyshe et al., 2015; Faruqui et al., 2015). But, the basis vector is learned
using linear models (Lewicki & Sejnowski, 2000; Teh et al., 2003).

In this work, we show that SSL may be used to learn discrete, sparse and overcomplete representations.
Prior work has considered sparse representation but not sparse and overcomplete representation
learning with SSL; for example, Dessì et al. (2021) propose to discretize the output of the encoder in
a SSL model using Gumbel-Softmax (Jang et al., 2017). However, we show that discretization during
pre-training is not necessary to achieve a sparse representation. Instead, we propose to project the
encoder’s output into L vectors of V dimensions onto which we apply a softmax function to impart an
inductive bias toward sparse one-hot vectors (Correia et al., 2019; Goyal et al., 2022), also alleviating
the need to use high-variance gradient estimators to train the encoder. We refer to this embedding as
Simplicial Embeddings (SEM), as the softmax functions map the unnormalized representations onto
L simplices. The procedure to induce SEM is simple, efficient, and generally applicable.

*Correspondence to: samuel.lavoie.m@gmail.com
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The SSL pre-training phase, used with SEM, learns a set of L approximately one-hot vectors. Key to
controlling the inductive bias of SEM during pre-training is the softmax temperature parameter: the
lower the temperature, the stronger the bias toward sparsity. Consistent with earlier attempts at sparse
representation learning (Coates & Ng, 2011), we find that the optimal sparsity for pre-training need
not match the optimal level for downstream learning.

For downstream classification, we may discretize the learned representation by, for example, taking
the argmax for each simplex. But, we can also use SEM to control the representation’s expressivity
via the softmax’s temperature. We provide a theoretical bound showing that the expected error follows
a trade-off between the training error and the representations’ expressivity that can be controlled by
the softmax’s temperature used to normalize the representation for downstream classification. Our
bound also shows improved expected error as we increase L and V for SEM.

SEM is generally applicable to recent SSL methods. Applying it to seven different SSL methods (Chen
et al., 2020b; He et al., 2020; Grill et al., 2020; Caron et al., 2020; 2021; Zbontar et al., 2021; Bardes
et al., 2022), we find accuracy increases of 2% to 4% on CIFAR-100. We observe monotonic improve-
ment as we increase the number of vectors L, showing the benefit of the overcomplete representations
learned by SEM, while this improvement is absent when we do not use softmax normalization. When
training a SSL method with SEM on ImageNet we also observe improvements on in-distribution
compared to the baseline (Figure 1). We also observe improvement on out-of-distribution test sets,
semi-supervised learning benchmark and transfer learning datasets, demonstrating the potential of
SEM for large scale applications. Finally, we find that SEM learns features that are closely aligned to
the semantic categories in the data. This demonstrates that SEM learns disentangled and interpretable
representations, as previously observed in overcomplete representations (Faruqui et al., 2015).

2 RELATED WORK

The softmax operation has been used in other contexts, notably as an architectural component for
models to attend to context-dependent queries via, for example, an attention mechanism (Bahdanau
et al., 2016; Vaswani et al., 2017; Correia et al., 2019; Goyal et al., 2022), a mixture of experts (Jordan
& Jacobs, 1993) or memory augmented networks (Graves et al., 2014). This operation is also used for
the computation of several SSL objectives such as InfoNCE (van den Oord et al., 2018; Hjelm et al.,
2019), and as a normalization of the output to compute the objective in DINO and SWaV (Caron
et al., 2020; 2021). Different from these, our method places the softmax at the output of an encoder
to constrain the representation into a set of L sparse vectors.

Similar to our approach, other architectural constraints such as Dropout (Srivastava et al., 2014),
BatchNorm (Ioffe & Szegedy, 2015) and LayerNorm (Ba et al., 2016) also improve the training
of large neural networks. However, contrary to SEMs, they are not used to induce sparsity on
the representation or control its expressivity for downstream tasks. Closer to our work, Liu et al.
(2021) propose to constrain the expressivity of the representation of a neural network with a set of
discrete-valued symbols obtained using a set of Vector Quantized (Oord et al., 2018) bottlenecks.
Similarly, Dessi et al. (2021) propose a communication game with a discrete bottleneck. The idea of
discretizing the encoder’s output is similar to using SEM vectors that are one-hot (e.g. temperature
= 0) and only one symbol (e.g. L = 1, V = 2048). In our work, we find success in removing the
hard-discretization and having L > 1, which can be interepreted as combining several symbols.

3 SIMPLICIAL EMBEDDINGS

Simplicial Embeddings (SEM) are representations that can be integrated easily into a contrastive
learning model (Hjelm et al., 2019; Chen et al., 2020b), the BYOL method (Grill et al., 2020), and
other SSL methods (Caron et al., 2020; 2021; Zbontar et al., 2021). For example, in BYOL, we insert
the SEM after the encoder and before the projector and the rest is unchanged as shown in Figure 2c.
In this figure, t and t′ are augmentations defined by the practitioner, ξ are parameters of the target
network that are updated as moving average of the parameters θ of the online networks trained with
SGD. So, ξ are updated as follow: ξ ← αξ + (1− α)θ, with α ∈ [0, 1].

To produce SEM representation, the encoder’s output e is embedded into L vectors zi ∈ RV . A
temperature parameter τ scales zi, and then a softmax re-normalizes each vector zi to produce z̄i.
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Figure 2: (a) Procedure to obtain Simplicial Embeddings (SEM). A matrix z ∈ RL×V contains L
vectors zi ∈ RV . The vectors zi are normalized with στ , the softmax operation with temperature τ .
The normalized vectors are concatenated into the vector ẑ. (b) Normalized histogram of the entropies
H(z̄i) of each simplex z̄i for the sample in CIFAR’s training dataset at the end of pre-training with
various τ . The peak at ln(2) for τ = 0.01 and τ = 0.1 are a large number of simplices with two
elements close to 0.5. (c) Integration of SEM with BYOL (Grill et al., 2020). The encoder outputs a
latent vector which is embedded into the matrix z ∈ RL×V and then transformed into SEM.

Finally, the normalized vectors z̄i are concatenated to produce the vector ẑ of length L · V . We
illustrate SEM in Figure 2a. Formally, the re-normalization is as follows:

z̄i := στ (zi), στ (zi)j =
ezij/τ∑V
k=1 e

zik/τ
, ẑ := Concat(z̄1, . . . , z̄L), ∀i ∈ [L],∀j ∈ [V ]. (1)

3.1 INDUCTIVE BIAS TOWARDS SPARSITY DURING PRE-TRAINING

In SEM, L controls the numbers of simplices and V controls the dimensionality of each simplex.
As such, the higher V is, the sparser the representation can be. During pre-training, the constraint
induced by embedding the representation into a simplex biases each vector towards sparse vectors by
creating a zero-sum competition between the components of the vector. In order for a component to
increase by α, then the other elements must decrease by α, and all elements are bounded by 0. For
networks to learn useful features and minimize their objective, they must prioritize some components
at the expense of others. The strength of this bias is controlled via the pretraining temperature τp of
the softmax, and the size of the vectors V as it was noted in the context of attention (Vaswani et al.,
2017; Wang et al., 2021b). For SSL methods with a target network, the temperature for the target
network can be different to the online network’s as no gradient is back-propagated through it.

To visualize the effect of the temperature on SEM after pre-training, we interpret each simplex as
a probability mass function p(z̄ij) where, for all i ∈ [L],

∑V
j=1 p(z̄ij) = 1 and p(z̄ij) ≥ 0 ∀j. The

entropy of a simplex z̄i, defined as H(z̄i) := −
∑V
j=1 p(z̄ij) log p(z̄ij), informs whether the simplex

is a sparse or a dense vector. That is, if H(z̄
(x)
i ) = 0 then the vector is one-hot. On the other hand, if

H(z̄
(x)
i ) = ln(V ) then the vector is dense and uniform. While the temperature τp is merely a scaling

of the logits, it has an important control over the learned representation’s entropy and resulting SEM
sparsity. We demonstrate this by learning a representation on CIFAR-100 using BYOL, and analyze
the entropies of the resulting simplices. In Figure 2b, we plot the histogram of the entropies H(z̄i),
for a given τp, of each simplex for each sample in the training set of CIFAR-100. We observe that
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even after pre-training, small temperatures (τp = 0.01) yields representations that are close to one-hot
vectors while high temperatures yields vectors that are close to uniform vectors.

By pre-training using a softmax, SEMs create representations that are conditioned to fit onto simplices.
In pre-training, we select τp for optimal inductive bias: τp too small yields vanishing gradients (Wang
et al., 2021b) and τp too large yields a bias that is too weak. We may select a different optimal τd for
downstream performance as discussed formally in the next subsection.

3.2 SEM IMPROVEMENT ON THE GENERALIZATION OF THE DOWNSTREAM CLASSIFIER

In this subsection, we theoretically demonstrate the benefit of training a downstream classifier with
SEM normalized input compared to a baseline classifier with unnormalized input. We show that: (1)
there is a trade-off between the training loss and the generalization gap, which is controlled by the
value of τd (denoted τ := τd in this subsection), (2) SEM can improve the base model performance
when we attain good balance in this trade-off, and (3) the improvement due to SEM is expected to
increase or stay constant as L and V increase. In the remainder of this subsection, we introduce the
notation and assumptions needed to understand and derive the result, then present our theoretical
claim and discuss its implications.

Notation. We use a training dataset S = (z(i), y(i))ni=1 of n samples for supervised training of a
classifier, using the representation z extracted from the pre-trained model* and the corresponding
label y ∈ Y where Y is the space of possible labels. Assume that z ∈ Z = [−1,+1]L×V , which
means that z is a matrix with L rows and V columns. We denote the element of z at row i and column
j as zij . Let g represent the downstream classifier. We refer to the baseline downstream model with
unnormalized input as fbase, and fbase(z) = g(z). The corresponding downstream model trained
with the SEM normalization is fSEM(τ)(z) = (g ◦ στ )(z), where στ is applied element-wise along

each row of z such that στ (zij) = ezij/τ∑V
t=1 e

zit/τ
for j = 1, . . . , V . Moreover, we define fSbase and

fSSEM(τ) the base and the SEM normalized models obtained by fitting the dataset S. Finally, letH be
the union of the hypothesis spaces of fSEM(τ) and fbase.

To compare the quality of the base model and the model with SEM normalization, we analyze
the generalization gap Ez,y[l(fS(z), y)]− 1

n

∑n
i=1 l(fS(z(i)), y(i)) for each fS ∈ {fSSEM(τ), f

S
base},

where l : R× Y → R≥0 is the per-sample loss.

The key insight that we exploit for the theorem is that the softmax operation στ controls the ex-
pressivity of the input’s representation to g via the temperature τ . We denote ϕfbase as an upper
bound on the expressivity of zi for the baseline model fbase, and ϕfSEM(τ)

as the upper bound on
the expressivity of στ (zi) for the model with SEM normalization fSEM(τ). The formal definition of
ϕfbase

and ϕfSEM(τ)
requires proof devices that will hinder the readability of this section, so we refer

the reader to Appendix A for a detailed definition. Let ϕf ∈ {ϕfbase , ϕfSEM(τ)
}. Intuitively, ϕfS

measures the largest possible distance that two embeddings can have such that the largest component
remains the same for both embeddings. We note that this measure depends only on V for fbase, and
on both V and τ for fSEM(τ). We use ϕfS (V, τ) to denote the measure given by either model and
note that τ has no effect for fbase.

Assumptions. We assume that the per-sample loss is bounded such that l(f(z), y) ≤ B for all f ∈ H
and for all (z, y) ∈ Z × Y . For example, B = 1 for the 0-1 loss. Next, let ly be the per-sample loss
given y. We assume that ly◦g are uniformly Lipschitz functions for all y ∈ Y and g ∈ GS , where GS is
the set of classifiers g returned by the training algorithm using the dataset S. Let R be such a uniform
Lipschitz constant. This means that |(ly ◦ g)(σf (z)) − (ly ◦ g)(σf (z′))| ≤ R‖σf (z) − σf (z′)‖F ,
where ly(g ◦ σf (z)) = l(g ◦ σf (z), y), and σf = στ when f = fSEM(τ) and σf is identity when
f = fbase. Finally, we assume that there exists ∆ > 0 such that for all representations z of the
underlying distribution we have that for any i ∈ [L], if k = arg maxj∈[V ] zij , then zik ≥ zij + ∆ for
any j 6= k. Since ∆ can be arbitrarily small (e.g. as small as machine precision), this assumption
typically holds in practice. We are now ready to state our theoretical claim.

Theorem 1 illuminates the advantage of SEM and the effect of the hyper-parameter τ on the perfor-
mance of the downstream classifier. We present the proof in Appendix A.

*In this subsection, we refer to the extracted representation as z, the embedder’s output
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Theorem 1. Let V ≥ 2. For any 1 ≥ δ > 0, with probability at least 1− δ, the following holds for
any fS ∈ {fSSEM(τ), f

S
base}:

Ez,y[l(fS(z), y)] ≤ 1

n

n∑
i=1

l(fS(z(i)), y(i)) +R
√
LϕfS (V, τ) + c

√
ln(2/δ)

n
,

where c > 0 is a constant in (n, f,H, δ, τ, S). Moreover,

ϕfS
SEM(τ)

→ 0 as τ → 0 and ϕfS
SEM(τ)

− ϕfSbase ≤
3

4
(1− V ) < 0 ∀τ > 0.

The first statement of Theorem 1 shows that the expected loss is bounded by the three terms: the

training loss 1
n

∑n
i=1 l(fS(z(i)), y(i)), the second term R

√
LϕfS , and the third term c

√
ln(2/δ)
n .

Since c is a constant in (n, f,H, δ, τ, S), the third term goes to zero as n → ∞ and is the same
with and without SEM. Thus, for the purpose of assessing the impact of SEM, we can focus on the
second term, where a difference arises. Theorem 1 shows that R

√
LϕfS goes to zero with SEM; i.e.,

ϕ(fSSEM(τ))→ 0 as τ → 0. Also, for any τ > 0, the second term with SEM is strictly smaller than
that without SEM as ϕfS

SEM(τ)
− ϕfSbase ≤

3
4 (1 − V ) < 0 and demonstrates that the improvement

due to SEM is expected to asymptotically increase as V increases. Moreover, L is a multiplicative
constant of ϕ which shows that, as L increases, the improvement due to SEM is also expected to be
higher. Overall, Theorem 1 shows the benefit of SEM as well as the trade-off with τ . When τ → 0,
the second term goes to zero, but the training loss (the first term) can increase due to underfitting
resulting from the reduction in representation expressivity. Thus, τ should be chosen to optimally
balance this trade-off.

4 EMPIRICAL ANALYSIS

We empirically study the effect of SEM on the representation of SSL methods and demonstrate that
SEM improves the test set accuracy on CIFAR-100 (Krizhevsky, 2009). We compare SEM with
other methods for inducing sparse representations during pretraining and demonstrate that SEM lead
to better downstream accuracy. On IMAGENET (Deng et al., 2009), we study the effect of SEM
on robustness, semi-supervised learning and transfer learning datasets, demonstrating consistent
improvement attributed to SEM. Finally, we present evidences that features produced by SEMs are
more naturally aligned with the semantic categories of the data. The code for reproducing the results
is available at: https://github.com/lavoiems/simplicial-embeddings/.

Training setup. For all experiments, we build off the implementation of the baseline models from the
Solo-Learn library (da Costa et al., 2021). We probe the encoder’s output for the baseline methods, as
typically done in the literature. For models with SEM, we probe the SEM normalized representation
(i.e. ẑ). In our experiments, the embedder is a linear layer followed by BatchNorm (Ioffe & Szegedy,
2015). Unless mentioned otherwise, we use L = 5000 and V = 13 for the SEM representation.
We do not perform any search for the non-SEM hyper-parameters. The SEM hyper-parameters are
selected by using a validation set of 10% of the training set of CIFAR-100 and 10 samples per class
on the in distribution dataset for IMAGENET. The test accuracy is obtained by retraining the model
with all of the training data using the parameters found with the validation set. We pre-train the SSL
models for 200 epochs on IMAGENET and 1000 epochs on CIFAR-100.

Table 1: Linear probe top-1 accuracy on CIFAR-100 trained for 1000 epochs with a ResNet-18/50
encoder. We compare the test accuracy of several SSL models with and without SEM. Boldface
indicates highest accuracy. Green rows indicate a SSL method + SEM.

SIMCLR MOCO BYOL BARLOW-TWINS SWAV DINO VICREG
ResNet-18:
Baseline 66.8 69.3 70.7 70.7 64.6 66.8 68.5
With SEM 69.5 71.0 73.9 73.0 67.7 69.2 71.4
ResNet-50:
Baseline 70.5 73.24 74.2 72.0 − − 70.8
With SEM 73.2 75.8 77.5 73.3 − − 73.3
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4.1 SEM IMPROVES ON DOWNSTREAM CLASSIFICATION

Baseline comparison. We evaluate the effect of adding SEMs in seven modern SSL approaches.
We take standard SimCLR (Chen et al., 2020b), MoCo-v2 (He et al., 2020), BYOL (Grill et al.,
2020) Barlow-Twins (Zbontar et al., 2021), SwAV (Caron et al., 2020), DINO (Caron et al., 2021)
and VicReg (Bardes et al., 2022) models and implement SEM after the encoder. We compare our
approach on CIFAR-100 with a ResNet-18 and ResNet-50 in Table 1. We found SWaV and DINO
to be unstable with ResNet-50 thus have decided not to compare them with SEM. For every SSL
methods, using SEMs improves the baseline methods by 2% to 4% demonstrating that SEM is a
general approach that improves in-distribution generalization for SSL methods.
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Figure 3: Effect of the Softmax
when scaling up L on the linear
probe accuracy. Using a RN-50.

Table 2: Comparing SEM with hard
discretization using Gumbel Soft-
max (G.S.) and Vector Quantization
(V.Q.). RN-18 base on CIFAR-100.
Accuracy eθ ẑθ
BYOL 70.7 -
BYOL+G.S. 63.3 54.5
BYOL+V.Q. 65.6 60.3
BYOL+SEM (τd = 0) - 73.2
BYOL+SEM (τd = 0.1) - 73.9

Increasing the representation’s size of SEM increases the
performance. We find that increasing L (the number of sim-
plices of SEM) beyond the over-complete regime increases the
downstream accuracy. This increased performance is not ob-
served when we abstain from using the softmax normalization
of SEM. In Figure 3, using a ResNet-50 encoder, we compare
BYOL + SEM, with an identical model without the Softmax
normalization which we call BYOL + Embed and BYOL to
which we increase the representation’s size before the mean-
pooling using the method proposed in (Dubois et al., 2022)
and described in their Appendix F. To be clear, the extracted
representation of BYOL + Embed is the embedder’s output
zθ and the extracted representation for BYOL is the encoder’s
output eθ. We fix V = 13 and scale L ∈ [10, 10000] to get a
range of representation sizes.

Comparison of SEM with hard discretization approaches.
Several other methods can be used to induce a sparse and over-
complete representation during pre-training and downstream
classification. For example, we may sample L discrete one-hot
codes of V dimensions using Gumbel Softmax (Jang et al.,
2017) as done in Dessì et al. (2021). We can also use Vector
Quantization (VQ) (Oord et al., 2018) and consider L latent
embedding spaces with V embedding vectors each, wherein
the vectors are in Rd. In contrast to SEM, it is not possible to propagate the gradient through
the bottleneck trivially and VQ uses straight-through estimation in the embedding space to back-
propagate the gradient to the encoder. Here, we observe that these alternative approaches exhibit a
considerable decrease in performance in comparison to the baseline as demonstrated in Table 2. In
this table, we reproduce the same setup as SEM but we replace the Softmax with hard discretization
baselines methods. For discretization with Gumbel Straight-Through estimation, we use the same
setup as SEM with L = 5000 and V = 13, that is 5000 one-hot vectors of 13 dimensions and τ = 2†.
For VQ, we found that L = 512 and V = 128 led to the best performance. That is, we have 512
latent embedding spaces, each with 128 possible embedding vectors that are in R32.

We note that while we have not found hard-discretization to be successful during pre-training, we
may hard-discretize a SEM representation for downstream task. In Table 2, we also present SEM with
τDS = 0, which correspond to using the discretized representation for downstream classification. We
obtain the discrete representation by taking the argmax for each simplex. This result demonstrating
that SEM with pre-training can be used to learn meaningful discrete codes for downstream applications
and yields better performance than the baselines, implying that pre-training with SEM could be be
used in applications that require discretization.

Memory and computational efficiency of SEM. SEM’s performance improvements come at a
cost of increased memory allocation (VRAM) due to additional parameters needed to perform the
matrix multiplication, and slightly more computation (FLOPs/sample). For very large over-complete
representation the increased memory requirement can impede practical application. We propose a
more efficient version of SEM by sparsifying the matrix multiplication of the embedder and of the
projector and detail this procedure in Appendix D.1. As shown in Table 17, SEM with sparse matrix

†A hyper-parameter search was performed to select the best performing hyper-parameter.
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multiplication use only slightly more memory and compute but outperforms the BYOL baseline
on CIFAR-100 though underperforming the regular SEM. We also note that SEM’s memory cost
becomes relatively minor as we scale up the encoder. As well, the computational cost of SEM is
small compared to the total cost of pre-training and achieves higher accuracy using fewer FLOPs
compared to scaling the encoder as shown in Figure 1.

4.2 ANALYZING THE PARAMETERS OF SEM

We present two figures in this section to better understand the effect of the parameters of SEM on the
downstream accuracy. In Figure 4, we evaluate the effect of changing τp and τd on the downstream
accuracy. In Figure 5, we evaluate the effect of L and V on the downstream accuracy and also
contrast fbase and fSEM(τ = 1) by using the same encoder pre-trained with SEM. This allows us to
relate some observations to the theorey presented in Section 3.2. Now, we discuss the effect of each
of SEM’s parameter on the resulting downstream classification.

Increasing V yields a steep performance increase for small V but quickly plateau. In Figure 5b,
we observe a steep increase of the accuracy for V < 13 followed by a plateau for V > 13. In
Figure 4a, we observe that the optimal accuracy obtained for V = 1024 and L = 64 is similar to the
one obtained for L = 50 (Embedding size=650) in Figure 3.

Increasing L yields monotonical improvement for downstream classification. In the regime that
we can test it, increasing L lead to consistent improvement on the downstream accuracy as observed in
Figure 3 and Figure 5a. Using SEM in pre-training only is not enough and using it in the downstream
classifier is necessary for the improved performance as demonstrated in Figure 5a.

The optimal τp depends on V . As previously noted in the context of Attention (Vaswani et al., 2017;
Wang et al., 2021a), the optimal attention’s temperature is proportional to attention’s vector size. We
also observe this in SEM. As presented in Figure 4a, the optimal τp for larger V is higher.

Models with larger L are more robust to smaller τd. In Figure 4, we observe that SSL models are
more robust to smaller τd as L increase. We speculate that the information can be scattered across the
simplices for large L, allowing to reduce the expressivity of each vector with minimal impact on the
downstream accuracy.
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Figure 4: Effect of τp and τd on a RN-50.
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Figure 5: Comparing fSEM and fbase on a RN-18.

4.3 SEM IMPROVEMENT ON LARGE-SCALE DATASETS WITH IMAGENET

Figure 1 in the introduction demonstrates that using SEM leads to better in distribution generalization
for IMAGENET and is a more efficient method of scaling up the model as compared to scaling up the
width of the ResNet-50 encoder. Here, we demonstrate that SEM generally improves the accuracy on
several robustness test sets, a semi-supervised learning benchmark and transfer learning datasets. We
use BYOL+SEM with an embedding size of 105 000 features (L = 5000 and V = 21) for these
experiments. The embedding is pre-trained for 200 epochs using the BYOL SSL procedure.

Robustness to out-of-distribution test sets. We perform a comparative study using several test sets:
(IN) the in-distribution test set provided in IMAGENET; (IN-C) IMAGENET-C, which exhibits a set of
common image corruptions (Hendrycks & Dietterich, 2019); (IN-R) IMAGENET-R (Hendrycks et al.,
2021) which consists of different renderings for several IMAGENET classes; and (IN-V2) IMAGENET-
V2 (Recht et al., 2019), a distinct test set for IMAGENET collected using the same process; (IN-A)
IMAGENET-A (Chen et al., 2020a) contains a set of samples that are miclassifier by a IMAGENET
ResNet-50 classifier. We use the methodology and software proposed in Djolonga et al. (2020; 2021)
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Table 3: Robustness via linear probe top-
1 test accuracies on IMAGENET variant
datasets, using representations pre-trained
for 200 epochs. * Taken from (Chen & He,
2020)

IN IN-V2 IN-R IN-C IN-A
BYOL* 70.6 - - - -
BYOL 71.9 59.2 18.8 39.5 1.65
BYOL+SEM 74.1 61.2 22.1 43.4 2.53

Table 4: Top-1 transfer learning accuracy from IMA-
GENET pre-trained representation.

FOOD101 C10 C100 SUN DTD FLOWER
Linear probe:
BYOL 74.2 91.8 74.9 60.9 72.2 88.9
BYOL+SEM 74.7 93.5 78.6 62.1 71.9 91.5
Fine-tuned:
BYOL 83.1 97.2 83.6 59.1 69.2 85.4
BYOL+SEM 84.7 97.2 85.6 63.3 71.3 91.7

to perform our experiments. We observe that BYOL + SEM outperforms BYOL on every robustness
datasets probed, demonstrating that SEM also improves generalization to out-of-distribution test sets.

Transfer learning. We probe the effectiveness of SEM in BYOL and MoCo when transferring
representations trained on IMAGENET to other classification tasks. We follow the linear evaluation
and fine-tuning methodologies described in previous works (Grill et al., 2020; Lee et al., 2021), which
entails training a linear classifier with logistic regression using sklearn (Pedregosa et al., 2011) on the
embeddings of the samples and fine-tuning the encoder respectively. To avoid out-of-memory issues
that may occur in the linear probe experiment with the sklearn solver when the number of features,
we discretize our features and use sparse matrix to fit the logistic regression. This is equivalent
to forcing τd = 0 for all the experiments. For the fine-tuning experiments, we fix τd = 1 since
the evaluation method allows for mini-batch gradient descent. We perform our transfer learning
experiments on the following datasets: FOOD (Bossard et al., 2014), CIFAR-10 (C-10) (Krizhevsky,
2009), CIFAR-100 (C-100) (Krizhevsky, 2009), SUN (Xiao et al., 2010), DTD (Cimpoi et al.,
2014) and FLOWER (Nilsback & Zisserman, 2008).

This task evaluates the generality of the encoder as it has to encode samples from various out-of-
distribution domains with categories that it may not have seen during training. We present our results
in Table 4 and observe that SEM improves the transfer accuracy over the baseline for every datasets
but DTD for the linear probe experiment. For DTD, we hypothesize that the drop in performance is
due to the fact that we use a temperature that is too small. Since this is a texture dataset with higher
frequency, it might be the case that we need more expressivity to correctly fit the data. We support
the conjecture with the fine-tuning experiment where BYOL + SEM out-performs the baseline.

Table 5: Semi-supervised learning accu-
racy by fine-tuning on IMAGENET.

Top-1 Top-5
1% 10% 1% 10%

BYOL 51.6 67.5 78.0 88.9
BYOL+SEM 56.7 69.9 81.0 90.0

Semi-supervised learning. We evaluate the effect of us-
ing SEM when fine-tuning on a classification task with a
small subset of IMAGENET’s training set. We follow the
semi-supervised learning procedure of Chen et al. (2020b);
Grill et al. (2020) and use the same fixed splits of 1% and
10% of ImageNet labelled training set. In Table 5, we
demonstrate that using SEM lead to an important increased
performance, especially in the low supervised data regime.

4.4 SEMANTIC COHERENCE OF SEM FEATURES

Here we demonstrate that SEM features are coherently aligned with the semantics present in the
training data. Qualitatively, we visualize the most predictive features of a downstream linear classifier
trained on CIFAR-100 and see that the classes with similar predictive features are semantically
related. Quantitatively we propose a metric that returns the ratio of features mostly predictive for a
classes that are in the same super class to total number of class predictive for this feature.

For both our analysis, we use a linear classifier trained on the features extracted from BYOL with
and without SEM. Consider the trained linear classifier with a weight matrix W ∈ RN×C , with N
features, and C classes. By preserving the top K parameters of the weight matrix W for each class
and pruning the features predictive for only one class, we create a bipartite graph between two set of
nodes: the CIFAR-100 classes and the features of the representation. We denote this graphWK .

The qualitative analysis is given by plotting the subsetW5, obtained by taking the top 5 features for
each class. We present a subset of the graph for BYOL+SEM in Figure 6a and for BYOL in Figure 6b.
The full graphs are presented in the Appendix. In the SEM plot, a set of connected components
emerge, and the connected components of the graph are semantically related. For example, the
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Figure 6: Semantic coherence of the features. (a) and (b) Subset ofW5, the bipartite graph of the
most 5 highest magnitude features on BYOL + SEM features (a) and BYOL on the encoded features
(b). (c) Coherence of the top K features to the semantics of the super-class of the categories of
CIFAR-100. It is taken as the number of pairwise categories in the same super-class for which a
feature is among its top K most predictive features over the total number of pairwise categories.

first set of connected components are flowers, and the last set of connected components are aquatic
mammals.‡. The same class coherence is not observed with either the BYOL baseline or with BYOL
augmented with a large representation. In particular, we do not see a small number of semantically
related connected components. Instead, we see a large fully connected graphs.

Next, we describe how we quantitatively measure the semantic coherence of the features. Notice that
two classes share a common predictive feature onWK if they are 2-neighbour. Let N (ci) returns
all pairs (ci, cj) for all j 2-neighbour of ci. Moreover, define the operation is_super(ci, cj) which
returns 1 if ci and cj are from the same CIFAR-100 superclass and 0 otherwise. We reproduce the
superclass of CIFAR-100 in Table 22 in the Appendix. We measure semantic coherence as follows:

Coherence(WK) :=
1

C

C∑
i=1

∑
(ci,cj)∈N (ci)

is_super(ci, cj)

|N (ci)|
, (2)

where C = 100 for CIFAR-100 and | · | is the cardinality of a set.

We compare the semantic coherence of BYOL+SEM with the control experiments on BYOL: regular
BYOL, BYOL with an embedding of the same size as BYOL+SEM but without the normalization
and BYOL to which we applied linear ICA (Hyvärinen & Oja, 2000) in an attempt to disentangle the
features. In Figure 10, we plot the full graphW5 for BYOL+SEM and the baselines. We observe
that using the SEM yields semantically coherent features for all the classes of CIFAR-100. This
observation is consistent with the qualitative and quantitative experiments presented earlier and
demonstrates that SEM’s inductive bias during pre-training leads to features that are semantically
coherent with the semantic categories extant in the data. This arguably have important implications
for improving the interpretability of SSL representations.

5 CONCLUSION

SEM is a simple, drop-in module that induces discrete sparse overcomplete representations for
standard SSL methods using a softmax operation. This simple modification leads to improved
generalization on downstream classification across several state-of-the-art SSL methods. Furthermore,
SEM improves performance on out-of-distribution, semi-supervised, and transfer learning tasks across
the board and also scales with encoder size. By analyzing semantic coherence, we find that SEMs
naturally disentangle data into semantic categories without any explicit training objectives.

‡Although "flatfish" may seem out of place in the third set, manually checking CIFAR images showed that
many images labelled "flatfish" are often humans holding flatfish.
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A PROOF OF THEOREM 1

Let us introduce additional notations used in the proofs. Define r = (z, y) ∈ R, `(f, r) = l(f(z), y),

C̃y,k1,...,kL = {(z, ŷ) ∈ Z × Y : ŷ = y, kj = arg max
t∈[V ]

zj,t ∀j ∈ [L]},

and
Z̃k1,...,kL = {z ∈ Z : kj = arg max

t∈[V ]

zj,t ∀j ∈ [L]}.

We then define Ck to be the flatten version of C̃y,k1,...,kL ; i.e., {Ck}Kk=1 =

{C̃y,k1,...,kL,y}y∈Y,k1,...,kL∈[V ] with C1 = C̃1,1,...,1, C2 = C̃2,1,...,1, C|Y| = C̃|Y|,1,...,1, C|Y|+1 =

C̃1,2,1,...,1, C2|Y| = C̃|Y|,2,1,...,1, and so on. Similarly, define Zk to be the flatten version of Z̃k1,...,kL .
We also use Qi = {q ∈ [−1,+1]V : i = arg maxj∈[V ] qj}, Ik := ISk := {i ∈ [n] : ri ∈ Ck},
and αk(h) := Er[`(h, r)|r ∈ Ck]. Moreover, we define ϕ(fSbase) = supi∈[V ] supq,q′∈Qi ‖q − q

′‖22,
and ϕ(fSSEM(τ)) = supi∈[V ] supq,q′∈Qi ‖στ (q) − στ (q′)‖22 where στ (q)j = eqj/τ∑V

t=1 e
qt/τ

for
j = 1, . . . , V .

We first decompose the generalization gap into two terms using the following lemma:
Lemma 1. For any δ > 0, with probability at least 1− δ,the following holds for all h ∈ H:

Er[`(h, r)]−
1

n

n∑
i=1

`(h, ri) ≤
1

n

K∑
k=1

|Ik|

αk(h)− 1

|Ik|
∑
i∈Ik

`(h, ri)

+ c

√
ln(2/δ)

n
.

Proof. We first write the expected error as the sum of the conditional expected error:

Er[`(h, r)] =

K∑
k=1

Er[`(h, r)|r ∈ Ck] Pr(r ∈ Ck) =

K∑
k=1

Erk [`(h, rk)] Pr(r ∈ Ck),

where rk is the random variable for the conditional with r ∈ Ck. Using this, we decompose the
generalization error into two terms:

Er[`(h, r)]−
1

n

n∑
i=1

`(h, ri) (3)

=

K∑
k=1

Erk [`(h, rk)]

(
Pr(r ∈ Ck)− |Ik|

n

)
+

 K∑
k=1

Erk [`(h, rk)]
|Ik|
n
− 1

n

n∑
i=1

`(h, ri)

 .

The second term in the right-hand side of (3) is further simplified by using

1

n

n∑
i=1

`(h, ri) =
1

n

K∑
k=1

∑
i∈Ik

`(h, ri),

as
K∑
k=1

Erk [`(h, rk)]
|Ik|
n
− 1

n

n∑
i=1

`(h, ri) =
1

n

K∑
k=1

|Ik|

Erk [`(h, rk)]− 1

|Ik|
∑
i∈Ik

`(h, ri)


Substituting these into equation (3) yields

Er[`(h, r)]−
1

n

n∑
i=1

`(h, ri) (4)

=

K∑
k=1

Erk [`(h, rk)]

(
Pr(r ∈ Ck)− |Ik|

n

)
+

1

n

K∑
k=1

|Ik|

Erk [`(h, rk)]− 1

|Ik|
∑
i∈Ik

`(h, ri)


≤ B

K∑
k=1

∣∣∣∣Pr(r ∈ Ck)− |Ik|
n

∣∣∣∣+
1

n

K∑
k=1

|Ik|

Erk [`(h, rk)]− 1

|Ik|
∑
i∈Ik

`(h, ri)


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By using the Bretagnolle-Huber-Carol inequality (van der Vaart & Wellner, 1996, A6.6 Proposition),
we have that for any δ > 0, with probability at least 1− δ,

K∑
k=1

∣∣∣∣Pr(r ∈ Ck)− |Ik|
n

∣∣∣∣ ≤
√

2K ln(2/δ)

n
. (5)

Here, notice that the term of
∑K
k=1

∣∣∣Pr(r ∈ Ck)− |Ik|n
∣∣∣ does not depend on h ∈ H. Moreover,

note that for any (f, h,M) such that M > 0 and B ≥ 0 for all X , we have that P(f(X) ≥ M) ≥
P(f(X) > M) ≥ P(Bf(X) + h(X) > BM + h(X)), where the probability is with respect to the
randomness of X . Thus, by combining (4) and (5), we have that for any h ∈ H, for any δ > 0, with
probability at least 1− δ, the following holds for all h ∈ H,

Er[`(h, r)]−
1

n

n∑
i=1

`(h, ri) ≤
1

n

K∑
k=1

|Ik|

αk(h)− 1

|Ik|
∑
i∈Ik

`(h, ri)

+ c

√
ln(2/δ)

n
.

In particular, the first term from the previous lemma will be bounded with the following lemma:
Lemma 2. For any f ∈ {fSSEM(τ), f

S
base},

1

n

K∑
k=1

|Ik|

αk(f)− 1

|Ik|
∑
i∈Ik

`(f, ri)

 ≤ R√Lϕ(f).

Proof. By using the triangle inequality,

1

n

K∑
k=1

|Ik|

Er[`(f, r)|r ∈ Ck]− 1

|Ik|
∑
i∈Ik

`(f, ri)


≤ 1

n

K∑
k=1

|Ik|

∣∣∣∣∣∣Er[`(f, r)|r ∈ Ck]− 1

|Ik|
∑
i∈Ik

`(f, ri)

∣∣∣∣∣∣ .
Furthermore, by using the triangle inequality,∣∣∣∣∣∣Er[`(f, r)|r ∈ Ck]− 1

|Ik|
∑
i∈Ik

`(f, ri)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

|Ik|
∑
i∈Ik

Er[`(f, r)|r ∈ Ck]− 1

|Ik|
∑
i∈Ik

`(f, ri)

∣∣∣∣∣∣
≤ 1

|Ik|
∑
i∈Ik

∣∣Er[`(f, r)|r ∈ Ck]− `(f, ri)
∣∣

≤ sup
r,r′∈Ck

∣∣`(f, r)− `(f, r′)∣∣ .
If f = fSSEM(τ) = gSSEM(τ)◦στ , since gSSEM(τ) ∈ GS , by using the Lipschitz continuity, boundedness,
and non-negativity,

sup
r,r′∈Ck

∣∣`(f, r)− `(f, r′)∣∣ = sup
y∈Y

sup
z,z′∈Zk

|(ly ◦ gSSEM(τ))(στ (z))− (ly ◦ gSSEM(τ))(στ (z′))|

≤ R sup
z,z′∈Zk

‖στ (z)− στ (z′)‖F

= R sup
z,z′∈Zk

√√√√ L∑
t=1

V∑
j=1

(στ (zt,j)− στ (z′t,j))
2
2

≤ R

√√√√ L∑
t=1

sup
i∈[V ]

sup
q,q′∈Qi

‖στ (q)− στ (q′)‖22

= R
√
Lϕ(fSSEM(τ))
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Similarly, if f = fSbase = gSbase, since gSbase ∈ GS , by using the Lipschitz continuity, boundedness,
and non-negativity,

sup
r,r′∈Ck

∣∣`(f, r)− `(f, r′)∣∣ = sup
y∈Y

sup
z,z′∈Zk

|(ly ◦ gSbase)(z)− (ly ◦ gSbase)(z′)|

≤ R sup
z,z′∈Zk

‖z − z′‖F

≤ R
√
Lϕ(fSbase).

Therefore, for any f ∈ {fSSEM(τ), f
S
base},

1

n

K∑
k=1

|Ik|

αk(f)− 1

|Ik|
∑
i∈Ik

`(f, ri)

 ≤ 1

n

K∑
k=1

|Ik|R
√
Lϕ(f) = R

√
Lϕ(f).

Combining Lemma 1 and Lemma 2, we obtain the following upper bound on the gap:

Lemma 3. For any δ > 0, with probability at least 1 − δ, the following holds for any f ∈
{fSSEM(τ), f

S
base}:

Er[`(f, r)]−
1

n

n∑
i=1

`(f, ri) ≤ R
√
Lϕ(f) + c

√
ln(2/δ)

n
.

Proof. This follows directly from combining Lemma 1 and Lemma 2.

We now provide an upper bound on ϕ(fSSEM(τ)) in the following lemma:

Lemma 4. For any τ > 0,

ϕ(fSSEM(τ)) ≤

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣
2

+ (V − 1)

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣
2

.

Proof. Recall the definition:

ϕ(fSSEM(τ)) = sup
i∈[V ]

sup
q,q′∈Qi

‖στ (q)− στ (q′)‖22.

where

στ (q)j =
eqj/τ∑V
t=1 e

qt/τ
,

for j = 1, . . . , V . By the symmetry and independence over i ∈ [V ] inside of the first supremum, we
have

ϕ(fSSEM(τ)) = sup
q,q′∈Q1

‖στ (q)− στ (q′)‖22.

For any q, q′ ∈ Q1 and i ∈ {2, . . . , V } (with q = (q1, . . . , qV ) and q′ = (q′1, . . . , q
′
V )), there exists

δi, δ
′
i > 0 such that

qi = q1 − δi
and

q′i = q′1 − δ′i.
Here, since zik −∆ ≥ zij from the assumption, we have that for all i ∈ {2, . . . , V },

δi, δ
′
i ≥ ∆ > 0.
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Thus, we can rewrite

V∑
t=1

eqt/τ = eq1/τ +

V∑
i=2

e(q1−δi)/τ

= eq1/τ + eq1/τ
V∑
i=2

e−δi/τ

= eq1/τ

1 +

V∑
i=2

e−δi/τ


Similarly,

V∑
t=1

eq
′
t/τ = eq

′
1/τ

1 +

V∑
i=2

e−δ
′
i/τ

 .

Using these,

στ (q)1 =
eq1/τ∑V
t=1 e

qt/τ
=

eq1/τ

eq1/τ
(

1 +
∑V
i=2 e

−δi/τ
) =

1

1 +
∑V
i=2 e

−δi/τ

and for all j ∈ {2, . . . , V },

στ (q)j =
eqj/τ∑V
t=1 e

qt/τ

=
e(q1−δj)/τ

eq1/τ
(

1 +
∑V
i=2 e

−δi/τ
)

=
e−δj/τ

1 +
∑V
i=2 e

−δi/τ

=
1

1 + eδj/τ +
∑V
i∈Ij e

(δj−δi)/τ

where Ij := {2, . . . , V } \ {j}. Similarly,

στ (q′)1 =
1

1 +
∑V
i=2 e

−δ′i/τ
,

and for all j ∈ {2, . . . , V },

στ (q′)j =
1

1 + eδ
′
j/τ +

∑V
i∈Ij e

(δ′j−δ′i)/τ
.

Using these, for any q, q′ ∈ Q1,

|στ (q)1 − στ (q′)1| =

∣∣∣∣∣ 1

1 +
∑V
i=2 e

−δi/τ
− 1

1 +
∑V
i=2 e

−δ′i/τ

∣∣∣∣∣
≤

∣∣∣∣∣ 1

1 +
∑V
i=2 e

−2/τ
− 1

1 +
∑V
i=2 e

−∆/τ

∣∣∣∣∣
=

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣ ,
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and for all j ∈ {2, . . . , V },

|στ (q)j − στ (q′)j | =

∣∣∣∣∣∣ 1

1 + eδj/τ +
∑V
i∈Ij e

(δj−δi)/τ
− 1

1 + eδ
′
j/τ +

∑V
i∈Ij e

(δ′j−δ′i)/τ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

1 + e∆/τ +
∑V
i∈Ij e

(∆−2)/τ
− 1

1 + e2/τ +
∑V
i∈Ij e

(2−∆)/τ

∣∣∣∣∣∣
=

∣∣∣∣∣ 1

1 + e∆/τ + (V − 2)e(∆−2)/τ
− 1

1 + e2/τ + (V − 2)e(2−∆)/τ

∣∣∣∣∣
=

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣ .
By combining these,

sup
q,q′∈Q1

‖στ (q)− στ (q′)‖22

= sup
q,q′∈Q1

V∑
j=1

|στ (q)j − στ (q′)j |2

≤

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣
2

+ (V − 1)

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣
2

.

Using the previous lemma, we will conclude the asymptotic behavior of ϕ(fSSEM(τ)) in the following
lemma:
Lemma 5. It holds that

ϕ(fSSEM(τ))→ 0 as τ → 0.

Proof. Using Lemma 4,

lim
τ→0

ϕ(fSSEM(τ)) ≤ lim
τ→0

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣
2

+ n(V − 1) lim
τ→0

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣
2

.

Moreover,

lim
τ→0

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣
2

=

∣∣∣∣11 − 1

1

∣∣∣∣2 = 0,

and

lim
τ→0

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣
2

= |0− 0|2 = 0.

Therefore,
lim
τ→0

ϕ(fSSEM(τ)) ≤ 0.

Since ϕ(fSSEM(τ)) ≥ 0, this implies the statement of this lemma.
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As we have analyzed ϕ(fSSEM(τ)) in the previous two lemmas, we are now ready to compare
ϕ(fSSEM(τ)) and ϕ(fSbase), which is done in the following lemma:

Lemma 6. For any τ > 0,

ϕ(fSSEM(τ))− ϕ(fSbase) ≤ 3

4
(1− V ) < 0.

Proof. From Lemma 4, for any τ > 0,

ϕ(fSSEM(τ)) ≤

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)e−∆/τ

∣∣∣∣∣
2

+ n(V − 1)

∣∣∣∣∣ 1

1 + e∆/τ (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2)e−∆/τ )

∣∣∣∣∣
2

≤

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

1 + (V − 1)

∣∣∣∣∣
2

+ (V − 1)

∣∣∣∣∣ 1

1 + (1 + (V − 2)e−2/τ )
− 1

1 + e2/τ (1 + (V − 2))

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

1 + (V − 1)e−2/τ
− 1

V

∣∣∣∣∣
2

+ (V − 1)

∣∣∣∣∣ 1

2 + (V − 2)e−2/τ
− 1

1 + e2/τ (V − 1)

∣∣∣∣∣
2

≤
∣∣∣∣11 − 1

V

∣∣∣∣2 + (V − 1)

∣∣∣∣12 − 0

∣∣∣∣2
=

(
1

1
− 1

V

)2

+ (V − 1)
1

4
.

Recall the definition of
ϕ(fSbase) = sup

i∈[V ]

sup
q,q′∈Qi

‖q − q′‖22.

By choosing an element in the set over which the supremum is taken, for any δ ≥ ∆ > 0,

ϕ(fSbase) ≥ sup
q,q′∈Q1

‖q − q′‖22 ≥ ‖q̂ − q̂′‖22 =

V∑
j=1

(q̂j − q̂′j)2
2 = (2− δ)2V,

where q̂1 = 1, q̂j = 1− δ for j ∈ {2, . . . , V }, q̂′1 = δ − 1, and q̂′j = −1 for j ∈ {2, . . . , V }.
By combining those, for for any τ > 0 and δ ≥ ∆ > 0,

ϕ(fSSEM(τ))− ϕ(fSbase) ≤
(

1

1
− 1

V

)2

+ (V − 1)
1

4
− (2− δ)2V

≤ 1 +
1

4
V − 1

4
− (2− δ)2V

=
3

4
+

1

4
V − (2− δ)2V

=
3

4
− V

(
(2− δ)2 − 1

4

)
≤ 3

4
− V

(
1− 1

4

)
=

3

4
(1− V )
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We combine the lemmas above to prove Theorem 1, which is restated below with its proof:
Theorem 1. Let V ≥ 2. For any 1 ≥ δ > 0, with probability at least 1− δ, the following holds for
any fS ∈ {fSSEM(τ), f

S
base}:

Ez,y[l(fS(z), y)] ≤ 1

n

n∑
i=1

l(fS(z(i)), y(i)) +R
√
LϕfS (V, τ) + c

√
ln(2/δ)

n
,

where c > 0 is a constant in (n, f,H, δ, τ, S). Moreover,

ϕfS
SEM(τ)

→ 0 as τ → 0 and ϕfS
SEM(τ)

− ϕfSbase ≤
3

4
(1− V ) < 0 ∀τ > 0.

Proof. The first statement directly follows from Lemma 3. The second statement is proven by
Lemma 5 and Lemma 6.

B EXPERIMENT DETAILS FOR IMAGENET

B.1 IMAGE AUGMENTATION

The augmentation applied in order during training are:

• Random Resize crop to a 224× 224 image. A random patch of the image is selected and
resized to a 224× 224 image.

• Random color jitter. Modifying the brightness, the contrast, the saturation and the hue.
• Random gray scale. Randomly applying a gray scale filter to the image
• Random Gaussian blur. Randomly applying a Gaussian bluer filter.
• Random solarization. Randomly applying a solarization filter.

The parameters of the augmentations are presented in Table 16. At validation and test time, we resize
the images to 256× 256 and then center crop a patch of 224× 224.

For both training and evaluation, we re-normalize the image using the statistic of the training set.g

B.2 LINEAR EVALUATION

We follow the evaluation protocol from (Chen et al., 2020b). The linear evaluation is done by training
a linear classifier on the frozen representation of the ImageNet training samples. We train a linear
classifier with a cross-entropy objective for 100 epochs using SGD with nesterov, a momentum of
0.9 and a batch size of 256. We perform learning rate scheduling at epoch 60 and epoch 80 where we
divide the learning rate by a factor of 10. During training, we apply random resized crop to 224×224
pixels and random horizontal flip. We sweep over a set of 4 learning rates: {0.5, 0.1, 0.05, 0.01}, 3
l1 weight decays: {0, 1e− 6, 1e− 5} and 3 τd for SEM: {0.01, 0.1, 1}, using a validation set of 10
images per class and re-traing using the full training set. We report the results on the test set.

B.3 ROBUSTNESS EXPERIMENTS

We follow the evaluation procedure from (Lee et al., 2021). We treated the robustness datasets as
additional "test sets" in that we simply evaluated them using the evaluation procedure described
above. The images were resized to a 256× 256 before being center cropped to a 224× 224 image.
The evaluation procedure was performed using the public robustness benchmark evaluation code
of (Djolonga et al., 2020)§.

B.4 TRANSFER LEARNING LINEAR PROBE

We follow the linear evaluation protocol of (Kolesnikov et al., 2019; Chen et al., 2020b) We train a
linear classifier using a regularized multinomial logistic regression from the scikit-learn package (Pe-
dregosa et al., 2011). The representation is frozen, so that we do not train the encoder backbone nor

§https://github.com/google-research/robustness_metrics
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the batch-normalization statistics. We do not perform any augmentations and the images are resized
to 224 pixels using bicubic resampling and the normalized using the statistics on ImageNet’s training
set. We tune the regularizer term from a range of 45 logarithmically-spaced values between 10−6 and
105 using a small validation set and re-train using the full training set. For SEM, we set τd = 0 for all
experiments.

B.5 TRANSFER LEARNING FINE-TUNING

We follow the same fine-tuning protocol of (Chen et al., 2020b; Grill et al., 2020). We initialize the
encoder with the pre-trained model and a classifier head with random initialization. We train for
20,000 steps with a batch size of 256 using SGD with a Nesterov momentum of 0.9. We set the
momentum parameter for the batch normalization to be max(1− 10/s, 0.9) where s is the number
of steps per epoch. During pre-training, we use random resize to 224 × 224 pixels and random
horizontal flipping. At test time, we resize the images along the shortest size to 256 pixels using
cubic resampling following by a center resize to 224× 224 pixels. Due to computational constraint,
we only tune the learning rate using a search of 7 values spaces on logarithmic scales between 0.0001
and 0.1. For SEM, we set τd = 1. for all experiments After choosing the best learning rate of a
validation set, we re-run the models using the full training set and evaluate it on the test set, which we
use to report the numbers.

B.6 SEMI-SUPERVISED LEARNING

We follow the semi-supervised learning protocol of (Chen et al., 2020b; Grill et al., 2020). We
initialize the network using the pre-trained representation and initialize a classification head using
random initialization. We fine-tune the encoder while training the classification head using a small
subset of ImageNet. We choose the same subset used in prior works which is defined in the
TensorFlow-Dataset software. During training, we random resize the images to 224 × 224 pixels
along the shorter size using bicubic resampling followed by a center crop and random horizontal
flipping. At test time, we resize the image to 224 × 224. We optimize the cross entropy loss with
nestorov and a momentum of 0.9 using batch sizes of 224. We train models for {30, 50} and take
the best performing on the validation set. The learning rate used is chosen among a set of 5 learning
rates: {0.01, 0.02, 0.05, 0.1, 0.005}. For SEM, we also search τd ∈ {0.01, 0.1, 1}. We perform the
search on the best performing one on the validation set and the number are returned are obtained
using the test set after re-training using the full training set.

C HYPERPARAMETERS

The implementation of the SSL methods used in this work are taken from Solo-Learn (da Costa et al.,
2021) to which we added the SEM module. The pre-training hyper-parameters of every SSL methods
trained on CIFAR-100 with ResNet-18 used in this work are the default provided in the companion
repository of Solo-Learn. The hyper-parameters are also provided in the launch scripts accompanying
this work. Due to the large number of SSL methods probed in this work and the amount of space it
would require to exhaustively detail all of the hyper-parameters, we refer the reader to the code.

For the CIFAR-100 results obtained with BYOL and a ResNet-50, we have slightly modified the
default parameters. Otherwise, the baseline BYOL model would not obtain competitive results. The
hyper-parameters were tuned using the BYOL baseline and the SEM module was not considered in
the selection of the SSL hyper-parameters. The BYOL hyper-parameters are presented in the launch
script accompanying this work and presented below for completeness.

For the ImageNet experiments, we took the hyper-parameters proposed in the launch scripts of
Solo-Learn to which we only modified the amount of epochs (100 epochs to 200 epochs.)

Here, we present all of the SEM hyper-parameters used in every experiments. These hyper-parameters
can also be found in the launch scripts accompanying this work.

We present the hype-parameters used to train for BYOL+SEM and MoCo+SEM on CIFAR100.
Unless mentioned otherwise, these are the parameters used.
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Table 6: BYOL with ResNet-50 for
CIFAR-100.

precision 16
Learning rate 0.5
Weight-decay 1e-4
Optimizer sgd + lars
LR scheduler warmup + cosine
eta lars 0.001
exclude bias n norm (lars) True
batch size 256
base ema momentum 0.99
final ema momentum 1.0
proj output dim 256
proj hidden dim 4096
pred hidden dim 4096
augmentations:
solarization_prob view 1: 0 view 2: 0.2
crop size 32
hue 0.1
saturation 0.2
contrast 0.4
brightness 0.4

Table 7: SEM SimCLR RN-18 for
CIFAR-100

L V τp τ ′p
5000 13 0.17 0.78

Table 8: SEM MoCo RN-18 for CIFAR-
100

L V τp τ ′p
5000 13 0.04 0.01

Table 9: SEM BYOL RN-18 for CIFAR-
100

L V τp
5000 13 1.0 1.0

Table 10: SEM SwAV RN-18 for
CIFAR-100

L V τp τ ′p
5000 13 0.85 1.5

Table 11: SEM DINO RN-18 for CIFAR-
100

L V τp τ ′p
5000 13 1.0 1.0

Table 12: SEM Barlow RN-18 for
CIFAR-100

L V τp τ ′p
5000 13 1.0 0.99

Table 13: SEM VicREG RN-18 for
CIFAR-100

L V τp τ ′p
5000 13 1.0 1.0

Table 14: SEM BYOL RN-50 for CIFAR-100
L V τp τ ′p

5000 13 1 1

Table 15: SEM BYOL all ResNets for ImageNet
L V τp τ ′p

5000 21 0.16 0.04

C.1 COMPUTATIONAL RESOURCES

For all our CIFAR-100 training, we used 1 RTX-8000 per experiment. For our ImageNet experiments,
we used parallel training with 2 40GB A100 for the training with ResNet50 and ResNet50-x2 and 4
40GB A100 for the training with ResNet50-x4. With this setup, the training takes about a week for
the ResNet50 experiments and about 10 days for the ResNet50-x2 and ResNet50-x4 experiments.

D ADDITIONAL STUDIES OF SEM

In Section 4.2, we discussed the effect of scalingL and V as well as changing the Softmax temperature
during pre-training of the online network and changing the Softmax temperature for the downstream
task. Here, we propose additional studies of SEM to provide a better mastery of the method. We
provide a method for reducing the memory overhead of SEM and experiments demonstrating that
despite this version still largely outperform the baseline. We additionally present the effect of
modifying the embedder contributing to the insight on how to get the most out of SEM. Next, we
have discussion with a study of the spectrum of the covariance matrix of the SEM representation and
the BYOL representation, showing insight how SEM can particularly improve the training signal
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Table 16: BYOL with all ResNet-50 architectures for ImageNet.

precision 16
Learning rate 0.4
Weight-decay 1e-6
Optimizer sgd + lars
LR scheduler warmup + cosine
eta lars 0.001
exclude bias n norm (lars) True
batch size 256
base ema momentum 0.99
final ema momentum 1.0
proj output dim 256
proj hidden dim 4096
pred hidden dim 4096
augmentations:
solarization_prob view 1: 0 view 2: 0.2
gaussian_prob view 1: 1.0 view 2: 0.1
crop size 224
hue 0.1
saturation 0.2
contrast 0.4
brightness 0.4

Table 17: # of parameters, # of activations, allocated memory, computation efficiency (FLOPs/sample)
and CIFAR-100 accuracy of BYOL, BYOL with SEM and its memory-efficient variant with 8 blocks
(denoted BYOL + SEM/8).

# params # activations vRAM (GiB) FLOPs Accuracy
Resnet-18:
BYOL 16.5M 0.731M 4.0 7.20e8 70.7
BYOL+SEM 313.7M 0.797M 13.1 1.01e9 73.9
BYOL+SEM/8 51.9M 0.796M 5.3 7.46e8 73.3
Resnet-50:
BYOL 35M 4.05M 11.1 1.65e9 74.3
BYOL+SEM 425.6M 4.12M 21.9 2.04e9 77.4
BYOL+SEM/8 76.7M 4.12M 11.8 1.69e9 76.6

during pre-training. We provide a scaling analysis of BYOL and BYOL + SEM on CIFAR-100. We
end with an experiment showing that pre-training with SEM is necessary to get the best performance.

D.1 AN EFFICIENT VARIANT OF SEM

A large over-complete representation may induce a significant memory footprint due to the additional
parameters of the fully connected linear layer used to map to and from the representation. For SEM we
require two such mappings as depicted in Figure 2c for BYOL. To reduce the amount of parameters,
we propose to sparsify the weight matrix of the fully connected linear layer. We propose to do so by
taking the block diagonal of the parameters of the matrix multiplication and setting the parameters
outside the block diagonal to 0. Formally, let v ∈ Rb×m, w ∈ Rm×o and y = v · w be the fully
connected matrix multiplication. Instead, we partition v into n blocks with vi ∈ Rb×mn and define n
smaller wi ∈ Rm

n ×
o
n , where i ∈ [L] is the ith block. Then, we perform a batch matrix multiplication

of vi and wi that we concatenate as follows: yi = vi · wi and ȳi = Concat([y1, . . . , yn]). Thus,
the amount of parameters of this matrix multiplication scales in O(m·on ), allowing us to reduce the
memory consumption by increasing n, the number of blocks.

We perform an experiment where we partition the embedder and the first linear layer of the projector
into 8 blocks. We present the results in Table 17 in which we compare the # of parameters, the
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# of activations, the allocated vRAM by pytorch, the FLOPs/sample and the accuracy of BYOL,
BYOL+SEM and BYOL+SEM/8 representing the model with 8 blocks obtained following the method
described above. We observe that partitioning the matrix multiplications of SEM allows to vastly
reduce the computation parameters while still yielding an important improvement over the baseline.
This result demosntrate that SEM can be beneficial while inducing minimal computational overhead.

Attentive readers may notice that this performance is better compared to the ablation presented in
Figure 3. The difference in performance is due to probing the embedder’s output (i.e. zθ) in Figure 3
and probing the encoder’s output (i.e. eθ) in Table 17. Using the each ablation’s representation for
probing to the other recovers the performance observed by each.

D.2 ADDITIONAL ABLATION OF THE SEM PARAMETERS

Ablating the embedder In the main text, we mentioned that we use batch normalization)) at
the output of the embedder. The reason we use batch normalization is mostly due to the fact that
we wanted to avoid tuning any hyper-parameters that were not related to SEM to emphasize its
contribution. Using BatchNorm gave the best performance without tuning the hyper-parameters of
the baseline models.

Here, we want to emphasize that SEM can be used without batch norm, but more hyper-parameters
might need to be tuned for it to perform as well as the model with batch norm in the encoder. For
example, we found that using no weight decay was important to get better performance when we did
not have batch normalization as illustrated in Table table 18. We leave the full study of the interaction
of SEM with the SSL related parameters for future work.

Table 18: Understanding the relationship between the use of BatchNorm in the embedder and the
weight decay hyper-parameter.

BatchNorm weight decay Accuracy
0 67.2

1e-5 57.9
X 0 68.3
X 1e-5 73.9

Another decision is to use a linear layer as the embedder. Other alternative may include using
the Identidy function (i.e. the output of the encoder is used for SEM). However, if we want to
systematically use the same encoder as the SSL model, then we are constrained to a representation
size that is the one of the ResNet encoder (i.e. 512 for a ResNet-18).

Finally, we showcase that using a more expressive embedder leads to exacerbated performance and
recommend practitioner to limit the expressivity of their embedder.

Table 19: Comparing alternative embedders.

Accuracy
Identity 63.0
Linear 73.9

1 hidden layer MLP 65.0

A very very large embedding Using a ResNet-18 encoder and the method proposed in Section D.1,
we further scale the embedding size of SEM to see where the performance saturates for classification.
In Figure 7 we observe that the performance saturates for L = 10000 for the classification task. We
conjecture that the optimal L might be different for other tasks, but we leave that study for future
work.

D.3 ANALYZE OF THE SPECTRUM OF THE COVARIANCE MATRIX OF THE REPRESENTATION

To obtain a better insight on why the SEM representation leads to better downstream performance, we
analyze the spectrum of the covariance matrix of the representation using the methodology presented
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Figure 7: Study of very very large L using a ResNet-18 backbone and 8 SEM/8 blocks using the
method described in Section D.1.

in Jing et al. (2022). That is, we collect the embedding vectors of the test set of CIFAR-100 using a
pre-trained model using ResNet-50. For BYOL, we have an additional embedder without softmax
normalization (as done in Figure 3). For BYOL and BYOL+SEM we use the embedder’s output
(zθ) to perform the evaluation. To compute the covariance matrix C ∈ RL·V×L·V of the embedding
layer z, we define z̄ :=

∑N
i=1 zi/N the average representation over the N samples and compute the

covariance as follows:

C :=
1

N

N∑
i=1

(zi − z̄)(zi − z̄)>. (6)

To plot the spectrum of the covariance matrix, we take the singularalue decomposition of the matrix
(C = USV >) with S the diagonal of the singular values, which we plot in sorted order and logarithm
scale in Figure 8.

This experiment demonstrates that the softmax normalization counters the dimensionality collapse
that was discussed in Jing et al. (2022). Interestingly, the drop observed with SEM with L ≥ 500
occurs at the index 2048 which is the dimensionality output of the ResNet-50 encoder.
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Figure 8: Spectrum of the covariance matrix of the represention for BYOL and BYOL + SEM
obtained with a ResNet-50 encoder.

D.4 SCALING THE RESNET ENCODER FOR CIFAR-100

We perform a scaling experiment on CIFAR-100 where we compare the scaling behaviour of BYOL
and BYOL + SEM. We evaluate the computational cost of the methods and the resulting downstream
accuracy for a range of four resnets: ResNet-18, ResNet-50, ResNet-50 x2 and ResNet-50 x4.
In Figure 9, we observe that SEM has a better scaling behaviour than the baseline, especially as
we increase the width of the ResNet-50. For BYOL, we observe that the performance decays for
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Figure 9: Scaling the ResNet encoder for CIFAR-100.

Table 20: Downstream accuracy of training a classifier with SEM normalization of the representation
while using unormalized representation during pretraining. Experiments performed with a ResNet-50
encoder.

Pre-train model Probe location SEM(τ = 0.1) Accuracy
BYOL + Embed Embedder No 69.8
BYOL + Embed Embedder Yes 72.3
BYOL + SEM Embedder Yes 77.3

ResNet-50 with width x2 and x4. This is not unprecendented, as prior works as demonstrated
other methods where scaling up the capacity of a model led to decrease in performance. When
comparing the discrepancy with Figure 1, we attribute that to the fact that CIFAR-100 is a small
dataset. In fact, we observe that the training accuracy stays constant to about 79% for all the
ResNet-50 scales demonstrating overfitting for the baseline BYOL. Nevertheless, SEM prevents the
decrease in performance and even lead to further improved performance as we increase the scale of
the ResNet-50.

D.5 THE ROLE OF PRE-TRAINING WITH SEM

We probe the downstream accuracy obtained of a model pre-trained without SEM and add SEM
normalization only for the downstream classification. For this experiment, we take a pre-trained
model with embedder (i.e. BYOL + embed) with L = 5000 and V = 13 and add the softmax
normalization only for the downstream classification. We do not use SEM during pre-training. We
observe that using SEM for downstream classification leads to an improvement even when the
model is not pre-trained with SEM, demonstrating the utility of SEM downstream classification.
However, we note that the performance of the model pre-trained without SEM is much weaker and
thus demonstrates the imprtance of also pre-training using SEM.

E CIFAR-10 RESULTS

We confirm that our method also yield improvement on simpler datasets such as CIFAR-10. Here, we
compare BYOL and BYOL + SEM on a ResNet-50 and observe and improvement of 1.6%.

Table 21: Downstream accuracy of training a classifier with SEM normalization of the representation
while using unormalized representation during pretraining. Experiments performed with a ResNet-50
encoder.

Pre-train model TOP-1 Accuracy
BYOL 94.2
BYOL + SEM 95.8
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F CIFAR100 SUPERCLASS

The 100 classes of CIFAR-100 (Krizhevsky, 2009) are grouped into 20 superclasses. The list of
superclass for each class in Table 22

Table 22: Set of classes for each superclass on CIFAR-100.

Superclass Classes
aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
household electrical devices clock, computer keyboard, lamp, telephone, television
household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor
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G ADDITIONAL CIFAR-100 COHERENCE GRAPHS
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Figure 10: Comparison of the full semantic coherence graphW5 between BYOL and BYOL + SEM.
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