
Published at the VerifAI Workshop @ ICLR’25

CRANE: REASONING WITH CONSTRAINED LLM GEN-
ERATION

Debangshu Banerjee∗, Tarun Suresh∗, Shubham Ugare, Sasa Misailovic, Gagandeep Singh
Department of Computer Science
University of Illinois Urbana-Champaign
Champaign, IL 61820, USA
db21@illinois.edu
∗ marks equal contribution

ABSTRACT

Code generation, symbolic math reasoning, and other tasks require LLMs to pro-
duce outputs that are both syntactically and semantically correct. Constrained
LLM generation is a promising direction to enforce adherence to formal gram-
mar, but prior works have empirically observed that strict enforcement of formal
constraints often diminishes the reasoning capabilities of LLMs. In this work, we
first provide a theoretical explanation for why constraining LLM outputs to very
restrictive grammars that only allow syntactically valid final answers reduces the
reasoning capabilities of the model. Second, we demonstrate that by augmenting
the output grammar with carefully designed additional rules, it is always possible
to preserve the reasoning capabilities of the LLM while ensuring syntactic and
semantic correctness in its outputs. Building on these theoretical insights, we
propose a reasoning-augmented constrained decoding algorithm, CRANE, which
effectively balances the correctness of constrained generation with the flexibility
of unconstrained generation. Experiments on multiple open-source LLMs and
benchmarks show that CRANE significantly outperforms both state-of-the-art con-
strained decoding strategies and standard unconstrained decoding, showing up to a
10% improvement over baselines on challenging symbolic reasoning benchmarks.

1 INTRODUCTION

Transformer-based large language models (LLMs) are widely used in AI systems that interact with
traditional software tools like Python interpreters (OpenAI, 2024; Chen et al., 2023), logical solvers
(Pan et al., 2023; Olausson et al., 2023), and theorem provers (Wu et al., 2022; Yang et al., 2023).
These tools impose specific syntactic and semantic constraints on their inputs, requiring LLMs to
produce outputs in the correct format. For instance, if an LLM provides output to a specific logical
solver (Han et al., 2024), the output must be parsable by that solver. However, as highlighted in
recent studies (Ugare et al., 2024b; Lundberg et al., 2023; Poesia et al., 2022), pre-trained LLM
outputs do not always comply with downstream tools’ input requirements. Constrained decoding
algorithms (Ugare et al., 2024b; Poesia et al., 2022) address this issue by projecting the LLM output
onto user-specified formal constraints (e.g., syntactic rules defined by a context-free grammar G),
thereby ensuring that the input requirements of downstream tasks are satisfied.

As illustrated in Fig. 1, constrained decoding improves the syntactic correctness of LLM outputs
(e.g., generating a well-formed mathematical expression). However, it does not guarantee functional
correctness (e.g., ensuring the expression correctly answers the user’s query). Recent works such as
Tam et al. (2024) have empirically observed that imposing constraints on LLM outputs can, in some
cases, reduce functional correctness for specific tasks. Tam et al. (2024) attributes this reduction in
functional accuracy to a decline in the LLM’s reasoning capabilities under constrained decoding.
This observation raises the following open questions:

• RQ1: Do LLMs truly lose reasoning capabilities under constrained decoding?
• RQ2: How can we leverage the benefits of constrained decoding in reducing syntax errors while

preserving the unconstrained reasoning capabilities of LLMs?

1

Published at the VerifAI Workshop @ ICLR’25

Figure 1: An example from the GSM-symbolic dataset (variables in blue) where unconstrained gener-
ation produces syntactically incorrect output, while constrained generation provides a syntactically
valid but incorrect answer. CRANE, however, generates a correct answer.

Key Challenges: First, we need to formally identify the root cause of the reduction in functional
accuracy of end-to-end systems when a pre-trained LLM operates under constrained generation.
Unlike the empirical observations in Tam et al. (2024), we seek a formal justification for this reduction
that is not limited to specific LLMs used in experiments but extends to any LLM, including more
powerful ones developed in the future. Second, we must design cost-efficient decoding strategies
that address the shortcomings of existing constrained decoding methods while improving functional
accuracy. In this work, we do not consider task-specific fine-tuning of LLMs, as fine-tuning for each
task is compute-intensive. Unlike constrained decoding, fine-tuning does not guarantee that the LLM
output adheres to formal constraints.

Contributions: We make the following contributions to improve the functional accuracy of the
end-to-end system:

• We theoretically show that LLMs with a constant number of layers, which are known to be capable
of simulating n steps of any given Turing machine M with O(n) reasoning steps (Merrill and
Sabharwal, 2024), can only solve problems within a relatively restrictive circuit complexity class
when constrained to generate outputs that always conform to a restrictive grammar G defining only
the valid output strings. This demonstrates that constrained decoding reduces LLMs’ problem-
solving capabilities for very restrictive grammar.

• We theoretically show that the loss of expressivity of LLMs under constrained decoding arises
because the output grammar G is too restrictive to accommodate the intermediate reasoning steps
required to compute the answer. We further demonstrate that augmenting the grammar G with
specific additional production rules enables the LLM to generate the intermediate reasoning steps
while ensuring that the final output always adheres to the intended output structure. With the
augmented grammar Ga, the LLM retains its expressivity under constrained decoding.

• We propose a simple and cost-efficient decoding strategy, CRANE (Constrained Reasoning
Augmented Generation). CRANE effectively alternates between unconstrained generation for
reasoning and constrained generation for producing structurally correct outputs. This allows the
model to produce syntactically valid outputs while enabling the LLM to reason. Our detailed exper-
iments on multiple open-source LLMs and benchmarks demonstrate that CRANE significantly
outperforms both SOTA constrained decoding strategies and standard unconstrained decoding,
showing up to a 10% improvement over baselines on challenging symbolic reasoning benchmarks
GSM-symbolic (Mirzadeh et al., 2024) and FOLIO (Han et al., 2024).

2 PRELIMINARIES

Notations: In the rest of the paper, we use small case letters (x) for constants, bold small case letters
(xxx) for strings, capital letters X for functions, · for string concatenation, |xxx| to dentone the length of
the string xxx. We use LLM to refer to transformer-based LLMs with a fixed number of layers.

Constrained LLM Decoding: Autoregressive language models L decode output iteratively by
generating tokens from a probability distribution over the vocabulary V . The distribution is derived
by applying the softmax function to the model’s scores S . Common decoding methods include greedy

2

Published at the VerifAI Workshop @ ICLR’25

decoding, temperature sampling, and beam search. Constrained LLM decoding extends this process
by excluding specific tokens at certain positions, such as avoiding harmful words or adhering to
a user-defined output grammar for languages like JSON or SQL (Poesia et al., 2022; Ugare et al.,
2024c). At each decoding step, a binary mask m ∈ {0, 1}|V |, generated by a function fm, specifies
valid tokens (mi = 1) and excluded tokens (mi = 0). Decoding is then performed on the masked
probability distribution m⊙ softmax(S), where ⊙ denotes element-wise multiplication.

Deterministic LLM Decoding: CRANE is compatible with various decoding strategies, both
constrained and unconstrained, allowing the output of L to be stochastic. However, following existing
works (Hahn, 2020; Merrill and Sabharwal, 2023; Li et al., 2024) and for simplicity in the theoretical
setup in Section 3, we assume that the output of L on any input string xxx is deterministic in both
constrained and unconstrained settings.

Similar to prior works Merrill and Sabharwal (2023; 2024), we model a single autoregressive step as
a deterministic function Lf that predicts the next token given a specific input. Formally,

Definition 2.1 (Deterministic LLM Step). A single autoregressive step of an LLM is modeled as a
deterministic function Lf : V ∗ → V , where V is the finite vocabulary and V ∗ represents the set of
all finite strings over V . For an input string xxx ∈ V ∗, the LLM predicts the next token Lf (xxx).

Definition 2.2 (Deterministic Unconstrained Decoding). For an input string xxx, the deterministic
output string yyy selected from the output distribution of a LLM using a decoding algorithm (e.g.,
greedy decoding) is denoted as yyy = L(xxx) where L : V ∗ → V ∗. L(xxx) is the most likely output
sequence according to learned distribution on xxx.

The output yyy = L(xxx) is computed iteratively with |yyy| autoregressive steps defined by Lf . For each
1 ≤ i ≤ |yyy|, and the recurrence relation L(i)

f (xxx) = L(i−1)
f (xxx) · Lf (L(i−1)

f (xxx)) where L(0)
f (xxx) = xxx

and · denotes string concatenation. Here, xxx ·yyy = L|yyy|
f (xxx). Similarly, under constrained decoding with

a grammar G we define:

Definition 2.3 (Deterministic Constrained Decoding under Grammar). Under constrained decoding
with a formal grammar G, the output string yyyG is selected from the constrained output distribution
and is denoted as yyyG = LG(xxx). The output of i-th constrained autoregressive step with G is
xxx · yyy(i)G = L(i)

G (xxx) and xxx · yyyG = L(|yyy|)
G (xxx).

The constrained output yyyG is always in the grammar yyyG ∈ L(G) where L(G) is the language defined
by G. For sound-constrained decoding algorithms, if the unconstrained output yyy = L(xxx) in the
grammar yyy ∈ L(G), the constrained output remains unchanged, i.e., L(xxx) = LG(xxx).

LLM Expressivity: We discuss the notations and background related to Turing machines, and
relevant uniform circuit complexity classes in Appendix A.

3 EXPRESSIVITY OF CONSTRAINED DECODING

First, we show that any constant-layer LLM L under constrained decoding loses expressivity. We
identify the class of problems and the corresponding output grammars G such that when imposed on
the outputs of any constant-layer LLM, the problems cannot be solved unless there is a collapse in
fundamental complexity classes that are widely believed to be unequal (e.g., TC0 ̸= NL)1.

3.1 LIMITATION OF CONSTRAINED DECODING

Next, we present the high-level idea behind Proposition 3.1 that shows the limitation of constrained
LLM decoding when the output grammar is too restrictive. We consider problems where the number
of possible outputs is finite, and thus the set of all possible outputs O can be expressed as a simple
regular language. Consequently, Gc that encodes the output set O, i.e., O = L(Gc), where L(Gc)
denotes the language defined by the grammar Gc. For instance, any decision problem (yes/no answer)
such as st-connectivity that asks for vertices s and t in a directed graph, if t is reachable from s can be
answered within a single-bit output i.e. L(Gc) = {0, 1}. This implies that constrained decoding with
the output grammar Gc allows only a single autoregressive step for any L on all inputs.

1NL refers to nondeterministic log-space

3

Published at the VerifAI Workshop @ ICLR’25

A series of existing works (Hahn, 2020; Hao et al., 2022; Merrill et al., 2022; Merrill and Sabharwal,
2023) establish that, under suitable assumptions, a single autoregressive step on an input with length
n for any constant-depth LLM can be represented as a constant-depth circuit. Since, for decision
problems, the constrained decoding step permits only a single autoregressive step, any LLM can
only solve problems within the corresponding circuit complexity class. We build on the most recent
result from Merrill and Sabharwal (2023), which shows that a single autoregressive step of any LLM
with a constant number of layers on an input of length n can be simulated by a logspace-uniform
constant-depth threshold circuit family. This result allows the LLM to use floating-point numbers
with log(n) precision on inputs of size n, ensuring that the precision scales with n and preventing
floating-point representation issues for large n. We denote such LLMs as log-precision LLMs.

Let xxx · yyy(i) denote the output after the i-th autoregressive step of an LLM L under constrained
decoding with an output grammar G on input xxx. Then, we have xxx · yyy(i) = L(i)

G (xxx), and for any i, yyy(i)

is always a valid prefix of a string in L(G), i.e., there exists a (possibly empty) string ααα(i) such that
yyy(i) ·ααα(i) ∈ L(G). Now, for any output grammar Gc where the output set O = L(Gc) is finite, we
show that the output LGc

(xxx) for any input xxx of size |xxx| = n can be computed using constant-depth
threshold circuits.
Proposition 3.1. For any log-precision LLM L with constant layers there exists a logspace-uniform
thershold circuit Thn such that LGc

(xxx) = Thn(xxx) holds for all inputs xxx with size |xxx| = n and
n ∈ N.

Proof: The formal proof is in Appendix B.

From Proposition 3.1, it follows that for any decision problem under constrained decoding, an
LLM can only solve problems within the logspace-uniform TC0 class (constant-depth threshold
circuits). Consequently, any decision problem believed to lie outside this class cannot be solved
under constrained decoding. The previously mentioned st-connectivity problem is known to be NL-
complete Arora and Barak (2009). This implies that unless TC0 = NL, no LLM under constrained
decoding can solve st-connectivity. Additionally, Li et al. (2024); Merrill and Sabharwal (2024)
show that given any Turing machine M there exists a log-precision LLM with a constant number of
layers that can simulate O(t(n)) steps of M using O(t(n)) autoregressive steps, where t(n) denotes
a polynomial in the input size n.
Lemma 3.2. For any Turing machine M with tape alphabet Γ, there exists a constant depth LLM
LM with finite vocabulary Γ ⊆ VM and log-precision that can simulate t(n) steps of M with t(n)
autoregressive steps.

Proof: The proof follows from Theorem 2 in Merrill and Sabharwal (2024) further details in
Appendix B.

Proposition 3.1 and Lemma 3.2 together imply that there exist problems, such as st-connectivity, an
LLM can solve that in an unconstrained setting but cannot be solved under constrained decoding
(unless logspace-uniform TC0 = NL).

3.2 REASONING WITH AUGMENTED GRAMMAR

The reduction in LLM expressivity under constrained decoding, as established in Proposition 3.1,
arises primarily because the language of all valid output strings, L(Gc), is too restrictive and does
not permit large (non-constant) reasoning chains. This naturally leads to the question of whether
it is possible to augment any output grammar G with additional production rules to construct an
augmented grammar Ga that can accommodate reasoning steps while preserving the expressivity of L
even under constrained decoding. At the same time, Ga should remain nontrivial—meaning it should
not accept all possible strings, as in the unconstrained setting—so that it aligns with the practical
objective of constrained decoding: guiding the LLM to generate syntactically and semantically valid
outputs.

To achieve this, we enforce that the augmented grammar Ga always follows the structure Ga → RG,
where the nonterminal symbol R captures the reasoning steps, and G represents the final output. This
guarantees that for any string sss ∈ L(Ga), the final answer aaa extracted from sss = rrr · aaa always belongs
to the original output grammar G, i.e., aaa ∈ L(G), with rrr serving as the reasoning sequence leading
up to the final output.

4

Published at the VerifAI Workshop @ ICLR’25

Formally, we show that for any Turing machine M and a grammar G containing all valid outputs
of M , there exists an LLM LM with a constant number of layers and log-precision, along with an
augmented grammar Ga in the specified format, such that LM can simulate t(n) steps of M using
t(n) autoregressive steps under constrained decoding with Ga. Here n ∈ N and t(n) is a polynomial
over n. The augmented grammar Ga may not be unique, and we provide one such construction.

At a high level, LM simulates the Turing machine M by computing the encoded representations γi
of the machine’s configurations γi at each step i and storing them within the reasoning component
(i.e., the string rrr) of the output. During each autoregressive step, LM generates the next configuration
based on the transition function of M and appends its encoding to the reasoning sequence. This
process continues until M reaches a halting state, at which point LM produces the final output aaa,
which belongs to L(G). For any given M , we define the rules RM that can parse the encodings γ
of all possible configurations γ. This ensures that the output LGa

(xxx) represents the full reasoning-
augmented sequence, i.e., γ1 · · · γt(n) ·M(xxx), where M(xxx) is the final output of M on input xxx of
size n after t(n) computational steps. The encodings γ1, . . . , γt(n) correspond to the configurations
γ1, . . . , γt(n), as described below.

We begin by defining the vocabulary VM for LM , which contains all tape symbols Γ of M along
with a finite set of auxiliary symbols γ that encode the corresponding configurations γ. Similar to
prior works Merrill and Sabharwal (2024), each configuration encoding γ represents the current
state q, the symbols at the current head position of k + 2 tapes (input, output and k work tapes),
and the head movement directions {0,+1,−1} for each tape. Directions {0,+1,−1} denote either
staying in place (0), moving left (−1), or moving right (+1) by a single position. Since the set
of states Q, the tape alphabet Γ, and the number of tapes k are all constants, the total number of
possible encodings γ is also constant. Let Γ denote the set of all possible configuration encodings,
i.e., Γ = {γ(1), . . . , γ(l)}, where l = |Γ|. Given Γ is finite and enumerable, we can define the rules of
the augmented grammar Ga accordingly as follows.

Ga → RMG; RM → SRM ; S → γ(1) | · · · |γ(l)

The set of reasoning strings in L(RM) essentially define a regular language over the configuration
encodings Γ. Let, for any input xxx with size n = |xxx| a given Turing machine M halts and compute the
output M(xxx) in t(n) steps that are polynomial in n. Then there exist LM compute M(xxx) with t(n)
autoregressive steps under constrined decoding with the augmented grammar Ga → RMG. Suppose,
LM,Ga

(xxx) denotes the output of the LLM LM on input xxx under constrained decoding with grammar
Ga then
Proposition 3.3. For any Turing machine M with tape alphabet Γ, there exists a constant depth
LLM LM with finite vocabulary Γ ⊆ VM and log precision such that for any input xxx with |xxx| = n,
LM,Ga

(xxx) = rrr ·M(xxx) with r ∈ V ∗
M assuming M halts on xxx in t(n) steps.

Proof: The proof is in Appendix B.

4 CRANE ALGORITHM

Given any Turing machine M , Proposition 3.3 establishes that constrained decoding with the aug-
mented grammar Ga on a specific LLM LM can simulate the computation of M . However, this
result does not directly translate into a practical constrained decoding algorithm that preserves the
expressivity of general LLMs. The construction assumes a specific LLM LM with the vocabulary
VM and knowledge of the particular Turing machine M for defining the rules RM . In practice, we
require an efficient approach that can be applied to diverse open-source LLMs, various grammars, and
different constrained decoding algorithms. Importantly, we know that enforcing the output grammar
G from the beginning can limit expressivity. Instead, we impose grammar constraints judiciously to
avoid restricting the LLM’s reasoning capabilities. For example, in the case of a reasoning-augmented
output of the form γ1 · · · γt(n) · M(xxx), we apply constrained decoding only from the t(n) + 1-th
autoregressive step onward, ensuring that the reasoning process remains unrestricted while the final
answer adheres to the desired grammar.

The primary challenge here is deciding when to transition between an unconstrained generation for
reasoning and a constrained generation. For instance, grammar for general-purpose programming

5

Published at the VerifAI Workshop @ ICLR’25

Algorithm 1 CRANE Algorithm

1: Input: LLM, tokens, CSD (constrained decoder),
G (output grammar), S1 (start delimiter), S2 (end
delimiter)

2: Output: Output string
3: G′ ← S1GS2

4: CSD.INITIALIZE(G′)
5: pointer← len(tokens)
6: isConstrained← False
7: while True do
8: currGen← detokenize(tokens[pointer :])
9: if S1 ∈ currGen then

10: isConstrained← True
11: else
12: isConstrained← False

13: if isConstrained then
14: constrained← extractConstrained(currGen)
15: ti ∼ LLM(tokens)⊙ CSD(constrained)
16: else
17: ti ∼ LLM(tokens)
18: tokens← tokens + ti
19: if ti = EOS then
20: break
21: if isConstrained then
22: constrained ← constrained +

detokenize(ti)
23: if constrained.endswith(S2) then
24: pointer← len(tokens)
25: return detokenize(tokens)

languages such as Python can allow any text string at the start (e.g. program starting variable names)
making it hard to detect the end of reasoning string. To avoid this, we augment the output grammar
with specific delimiter symbols S1 and S2 that mark the start and end of the constrained generation.
We incentivize the LLM to generate these delimiters via explicit instructions in the prompt and few-
shot examples. This aligns with common general-purpose LLMs that already use specific delimiters
such as backticks (‘‘‘) for programs like python, SQL, and (<<, >>) to enclose math-expression
blocks. This approach allows a simple and cost-efficient approach for detecting the transitions to
and from constrained decoding. For the construction in the previous section, in this setup, we will
generate the string rrr · S1 ·M(xxx) · S2 where the reasoning rrr is generated unconstrained and the LLM
moves to constrained mode after seeing the symbol S1. However, in practical cases, the delimiters
may be generated multiple times (ie. for intermediate operations), even during the reasoning step.
Therefore, upon encountering the end symbol S2, we switch back to unconstrained generation to
avoid unnecessarily restricting the output.

Figure 2: CRANE adaptively switches between
constrained LLM generation and unconstrained
LLM generation based on start and end delimiters
(in this example << and >>). Using these delim-
iters, CRANE dynamically tracks which windows
(highlighted in the figure) of the LLM generation
constraints should be applied to.

We implement our approach into the CRANE
algorithm (Algo 1), which extends standard au-
toregressive LLM generation. CRANE takes
an arbitrary LLM, constrained decoding algo-
rithm (denoted as CSD), output grammar G, and
symbols S1 and S2 as input. It first initializes
CSD with G′, the output grammar augmented
with S1 and S2. CRANE starts in unconstrained
generation and maintains a pointer that marks
the start of the current window of LLM gen-
eration following the last constrained genera-
tion. In each iteration, the algorithm checks if
S1 is present in the current generation window
currGen, which is the portion of the sequence
from the current pointer position onwards. If
S1 is detected, CRANE switches to constrained
generation mode. In this mode, the current con-
strained window (the portion of currGen that is in G′) is extracted, and the next token is sampled
based on the constraints defined by the CSD. If S1 is not present, the next token is sampled directly
without any constraints applied. Additionally, if the current constrained window ends with S2,
the pointer is updated to the length of the current token sequence, effectively switching back to
unconstrained generation until S1 is generated again. Figure 2 further illustrates LLM generation
with CRANE. The underlined portion of the LLM generation represents currGen, and the current
constrained window is highlighted in yellow.

6

Published at the VerifAI Workshop @ ICLR’25

5 EVALUATION

Table 1: Comparison of CRANE and baselines with different
models on GSM-Symbolic.

Model Method Acc. (%) Parse (%) Tokens

Unconstrained w/o CoT 21 97 23.34
Constrained 22 97 25.29

Qwen2.5-1.5B-Instruct Unconstrained CoT 26 90 128.97
CRANE 31 100 131.3

Unconstrained w/o CoT 36 94 17.92
Constrained 35 99 25.28

Qwen2.5-Coder-7B-Instruct Unconstrained CoT 37 88 138.38
CRANE 39 94 155.32

Unconstrained w/o CoT 27 89 25.7
Constrained 29 99 26.81

Qwen2.5-Math-7B-Instruct Unconstrained CoT 29 82 155.26
CRANE 38 94 158.86

Unconstrained w/o CoT 21 73 128.38
Constrained 26 98 35.97

Llama-3.1-8B-Instruct Unconstrained CoT 30 95 163.55
CRANE 33 95 170.22

Unconstrained w/o CoT 18 89 21.64
Constrained 20 99 17.21

DeepSeek-R1-Distill-Qwen-7B Unconstrained CoT 24 89 212.24
CRANE 29 92 235.78

Unconstrained w/o CoT 12 77 29.2
Constrained 13 96 16.89

DeepSeek-R1-Distill-Llama-8B Unconstrained CoT 21 87 250.83
CRANE 31 92 268.82

In this section, we evaluate CRANE
on a math reasoning task (GSM-
Symbolic Mirzadeh et al. (2024)) and
a logical reasoning task (FOLIO Han
et al. (2024)) and demonstrate signif-
icant improvement over both uncon-
strained and SOTA constrained gener-
ation baselines.

Experimental Setup. We run exper-
iments on a 48-core Intel Xeon Sil-
ver 4214R CPU with 2 NVidia RTX
A5000 GPUs. CRANE is imple-
mented using PyTorch (Paszke et al.,
2019) and the HuggingFace transform-
ers library (Wolf et al., 2020). Our
primary baseline for unconstrained
generation is Chain-of-Thought (CoT)
Prompting (Wei et al., 2022), which
enables LLMs to decompose and rea-
son about a problem through a se-
ries of intermediate steps before out-
putting the final answer. Furthermore,
we run constrained semantic gener-
ation for GSM-Symbolic (Mirzadeh
et al., 2024) with the ITERGEN library (Ugare et al., 2024a) and use the SYNCODE framework
for FOLIO (Han et al., 2024) evaluation. In all experiments, CRANE is initialized with the same
constrained decoders and uses the same constraints as the constrained generation baselines.

GSM-Symbolic: We first evaluate CRANE on GSM-Symbolic Mirzadeh et al. (2024), a dataset
consisting of math word problems designed to assess LLMs’ mathematical reasoning skills. In the
word problems, names and numerical values are replaced with symbolic variables, and the LLMs are
tasked with generating correct symbolic expression solutions (see Appendix C.2 for examples). To
evaluate correctness, we extract the final expressions from the LLM generations and verify if they are
functionally equivalent to the ground truth expressions with the Z3 solver.

We compare CRANE against three baselines: (1) unconstrained generation without chain-of-thought
prompting, (2) unconstrained generation with CoT, and (3) constrained generation. We use ITERGEN
for the constrained generation baseline and also initialize CRANE with ITERGEN. For ITERGEN
and CRANE, we enforce syntactic constraints via the context-free grammar provided in Appendix
C.6.1 and apply the semantic constraint ensuring that generated expressions contain only valid
problem-defined variables. Since ITERGEN uses selective rejection sampling to enforce semantic
constraints, we also include comparisong against unconstrained generation with sampling in Table 4
in the Appendix. For CRANE, we use << and >> for the delimeters S1 and S2, respectively. We
evaluate Qwen2.5-1.5B-Instruct (Qwen, 2024), Qwen2.5-Math-7B-Instruct (Qwen, 2024), Qwen2.5-
Coder-7B-Instruct (Qwen, 2024),Llama-3.1-8B-Instruct (Llama, 2024), DeepSeek-R1-Distill-Qwen-
7B (DeepSeek-AI et al., 2025), and DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI et al., 2025). We
use greedy decoding with a maximum new token limit of 600 and prompt the LLMs with the 8-shot
examples from GSM-Symbolic (Mirzadeh et al., 2024) (the prompts can be found in Appendix C.2).

Table 1 compares the performance of CRANE with the baseline methods. The Accuracy (%) column
reports the percentage of functionally correct LLM-generated expressions, Parse (%) indicates the
percentage of syntactically valid expressions (i.e., expressions without invalid operations), and Tokens
provides the average number of tokens generated.

As shown in the table, CRANE consistently improves functional correctness across all evaluated
models. For example, with the Qwen2.5-Math-7B-Instruct model, CRANE achieves 38% accu-
racy, outperforming both constrained generation and unconstrained generation with CoT, which
achieves 29% accuracy. Similarly, with the Qwen2.5-1.5B-Instruct model, CRANE achieves 31%

7

Published at the VerifAI Workshop @ ICLR’25

accuracy—5 percentage points higher than an unconstrained generation with CoT and 9 percentage
points higher than a constrained generation. Moreover, CRANE significantly enhances the syntactic
correctness of generated expressions compared to unconstrained generation. Notably, none of the
expressions generated using CRANE contain syntax errors, whereas 10% of the expressions from
unconstrained generation with CoT do. Although, for several instances, CRANE produces slightly
more syntax errors than a purely constrained generation, it offers a substantial improvement in
functional correctness over this baseline.

Figure 3: Accuracy (%) of Qwen2.5-Math-7B-
Instruct By Method and Number of Shots on GSM-
Symbolic

Ablation Study on Few-shot examples: We
evaluate CRANE and baselines on varying num-
bers of few-shot examples in the prompt. We dis-
play the results for Qwen2.5-Math-7B-Instruct
in Figure 3 and for several models in Table 3 in
the Appendix. CRANE consistently achieves
higher accuracy on GSM-Symbolic than the
baselines for all evaluated numbers of few-shot
examples.

FOLIO: We further evaluate CRANE on the
validation split of FOLIO dataset, which com-
prises 203 expert-written natural language rea-
soning instances and corresponding first-order
logic (FOL) annotations. We evaluate the ability
of LLMs to correctly translate the natural lan-
guage reasoning instances into FOL formulas
and leverage Prover9 (McCune, 2005–2010) a
FOL solver to verify the correctness of the LLM-generated FOL formulas.

We compare CRANE against grammar-constrained generation with SYNCODE using the Prover9
grammar (Appendix C.6.2). The Prover9 grammar divides FOL formulas into Predicates, Premises,
and Conclusions and allows intermediate reasoning in comments (an example can be found in
Appendix C.3). We also compare CRANE against unconstrained generation with CoT. For all
approaches and models, we run greedy decoding with a maximum new tokens limit of 800 and use
2 few-shot examples in the prompt. We also compare CRANE against unconstrained CoT with
temperature sampling in Table 5 in the Appendix.

Table 2 presents the results of our experiment. The Accuracy (%) column in the table reports the
percentage of functionally correct FOL translations while the Compiles (%) column reports the
percentage of FOL formulas extracted from LLM output that are syntactically valid and compile into
a Prover9 program. CRANE outperforms the unconstrained and constrained generation baselines for
all models evaluated.

6 CONCLUSION

Table 2: Comparison of CRANE and baselines with various
models on FOLIO.

Model Method Acc. (%) Compiles (%) Tokens

Unconstrained CoT 18.72 54.19 629.59
Qwen2.5-Math-7B-Instruct Constrained 28.08 76.85 679.44

CRANE 31.03 75.86 690.17

Unconstrained CoT 36.95 70.94 350.64
Qwen2.5-7B-Instruct Constrained 37.44 87.68 775.62

CRANE 42.36 87.68 726.88

Unconstrained CoT 32.02 57.14 371.52
Llama-3.1-8B-Instruct Constrained 39.41 86.21 549.75

CRANE 46.31 85.71 449.77

In conclusion, tasks requiring both
syntactic and semantic correctness,
such as code generation and symbolic
math reasoning, benefit significantly
from constrained decoding strategies.
However, strict enforcement of con-
straints can hinder LLM reasoning ca-
pabilities. Theoretically, we demon-
strate why restrictive grammars dimin-
ish reasoning and show that augment-
ing grammars with carefully designed
rules preserves reasoning while main-
taining correctness. Building on these
insights, our proposed reasoning-augmented constrained decoding algorithm, CRANE, achieves
state-of-the-art performance, with up to 10% improvement on symbolic reasoning benchmarks such
as GSM-symbolic and FOLIO, effectively balancing the strengths of constrained and unconstrained
generation.

8

Published at the VerifAI Workshop @ ICLR’25

7 IMPACT AND ETHICS

This paper introduces research aimed at advancing the field of Machine Learning. We do not identify
any specific societal consequences of our work that need to be explicitly emphasized here.

REFERENCES

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, USA, 1st edition, 2009. ISBN 0521424267.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding llms the right way: Fast, non-invasive
constrained generation, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
id=YfZ4ZPt8zd.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020. doi: 10.1162/tacl a 00306. URL
https://aclanthology.org/2020.tacl-1.11/.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alex Wardle-Solano, Hannah Szabo,
Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor, Ansong
Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. Fabbri, Wojciech Kryscinski,
Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Rex Ying,
Arman Cohan, and Dragomir Radev. Folio: Natural language reasoning with first-order logic,
2024. URL https://arxiv.org/abs/2209.00840.

9

https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2020.tacl-1.11/
https://arxiv.org/abs/2209.00840

Published at the VerifAI Workshop @ ICLR’25

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention
transformers: Perspectives from circuit complexity. Transactions of the Association for Compu-
tational Linguistics, 10:800–810, 07 2022. ISSN 2307-387X. doi: 10.1162/tacl a 00490. URL
https://doi.org/10.1162/tacl_a_00490.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., USA,
2006. ISBN 0321455363.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

Llama. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Scott Lundberg, Marco Tulio ArXiv preprinteia Ribeiro, and et. al. Guidance-ai/guidance: A
guidance language for controlling large language models., 2023. URL https://github.
com/guidance-ai/guidance.

W. McCune. Prover9 and mace4. http://www.cs.unm.edu/˜mccune/prover9/, 2005–
2010.

Daniel Melcer, Nathan Fulton, Sanjay Krishna Gouda, and Haifeng Qian. Constrained decoding for
fill-in-the-middle code language models via efficient left and right quotienting of context-sensitive
grammars, 2024a. URL https://arxiv.org/abs/2402.17988.

Daniel Melcer, Sujan Gonugondla, Pramuditha Perera, Haifeng Qian, Wen-Hao Chiang, Yanjun
Wang, Nihal Jain, Pranav Garg, Xiaofei Ma, and Anoop Deoras. Approximately aligned decoding,
2024b. URL https://arxiv.org/abs/2410.01103.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.
doi: 10.1162/tacl a 00562. URL https://aclanthology.org/2023.tacl-1.31/.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=NjNGlPh8Wh.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022. doi: 10.1162/tacl a 00493. URL https://aclanthology.org/2022.tacl-1.
49/.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models, 2024. URL https://arxiv.org/abs/2410.05229.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua Tenen-
baum, and Roger Levy. Linc: A neurosymbolic approach for logical reasoning by combining
language models with first-order logic provers. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational Linguistics,
2023. doi: 10.18653/v1/2023.emnlp-main.313. URL http://dx.doi.org/10.18653/
v1/2023.emnlp-main.313.

OpenAI. Opneai tools, 2024. URL https://platform.openai.com/docs/
assistants/tools.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empowering
large language models with symbolic solvers for faithful logical reasoning, 2023. URL https:
//arxiv.org/abs/2305.12295.

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, and Loris D’Antoni.
Grammar-aligned decoding, 2024. URL https://arxiv.org/abs/2405.21047.

10

https://doi.org/10.1162/tacl_a_00490
https://openreview.net/forum?id=3EWTEy9MTM
https://arxiv.org/abs/2407.21783
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://arxiv.org/abs/2402.17988
https://arxiv.org/abs/2410.01103
https://aclanthology.org/2023.tacl-1.31/
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://aclanthology.org/2022.tacl-1.49/
https://aclanthology.org/2022.tacl-1.49/
https://arxiv.org/abs/2410.05229
http://dx.doi.org/10.18653/v1/2023.emnlp-main.313
http://dx.doi.org/10.18653/v1/2023.emnlp-main.313
https://platform.openai.com/docs/assistants/tools
https://platform.openai.com/docs/assistants/tools
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2405.21047

Published at the VerifAI Workshop @ ICLR’25

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=KmtVD97J43e.

Qwen. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
can transformers express? a survey. Trans. Assoc. Comput. Linguistics, 12:543–561, 2024. URL
https://doi.org/10.1162/tacl_a_00663.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-Yen Lin, Hung-yi Lee, and Yun-Nung
Chen. Let me speak freely? a study on the impact of format restrictions on large language
model performance. In Franck Dernoncourt, Daniel Preoţiuc-Pietro, and Anastasia Shimo-
rina, editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
guage Processing: Industry Track, pages 1218–1236, Miami, Florida, US, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.91. URL
https://aclanthology.org/2024.emnlp-industry.91/.

Shubham Ugare, Rohan Gumaste, Tarun Suresh, Gagandeep Singh, and Sasa Misailovic. Itergen:
Iterative structured llm generation, 2024a. URL https://arxiv.org/abs/2410.07295.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syncode:
Llm generation with grammar augmentation, 2024b.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syncode:
Llm generation with grammar augmentation, 2024c. URL https://arxiv.org/abs/2403.
01632.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Brandon T. Willard and Rémi Louf. Efficient guided generation for large language models, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language
processing. In Qun Liu and David Schlangen, editors, Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online,
October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6.
URL https://aclanthology.org/2020.emnlp-demos.6.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Norman Rabe, Charles E Staats, Mateja
Jamnik, and Christian Szegedy. Autoformalization with large language models. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=IUikebJ1Bf0.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models, 2023. URL https://arxiv.org/abs/2306.15626.

11

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.1162/tacl_a_00663
https://aclanthology.org/2024.emnlp-industry.91/
https://arxiv.org/abs/2410.07295
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=IUikebJ1Bf0
https://arxiv.org/abs/2306.15626

Published at the VerifAI Workshop @ ICLR’25

A LLM EXPRESSIVITY BACKGROUND

Formally, a Turing machine M with k work tapes and an output tape is defined as 7-tuple M =
⟨Σ,Γ, k, b,Q, q0, δ, F ⟩ where Σ is the finite input alphabet, Σ ⊆ Γ is the finite tape alphabet, b ∈ Γ\Σ
is the special blank symbol, Q is a finite set of states with q0 as the start state, δ is the transition
function, and F is the set of halting states Hopcroft et al. (2006). Formally, a Turing machine is
defined as:
Definition A.1 (Turing Machine). A Turing machine M with k work tapes and an output tape is a
8-tuple

M = ⟨Σ,Γ, k, b,Q, q0, δ, F ⟩,
where Σ is the finite input alphabet, Γ is the finite tape alphabet with Σ ⊆ Γ, b ∈ Γ \ Σ is a
special blank symbol, Q is a finite set of states, q0 ∈ Q is the initial state, δ : (Q \ F) × Γk+2 →
Q × Γk+1 × {0,+1,−1}k+2 is the transition function (where −1, 1, 0 represent moving the tape
head left, right, or staying in place, respectively), and F ⊆ Q is the set of halting states.

Let Σ∗ denote the set of all finite strings over the input alphabet Σ. Given an input string sss ∈ Σ∗, the
computation of Mon s is a sequence of configurations starting from the initial configuration. Each
configuration γ is a tuple containing the current state q ∈ Q, the contents of the input tape, the k
work tapes, the output tape, and the current head positions of all k + 2 tapes. For each configuration,
γi (i ∈ N), the transition function δ computes the next configuration γi+1 based on the current state q
and the values on the k+2 tapes at the current head positions. It updates the head positions, writes to
the output tape (possibly leaving it unchanged if no new symbol is written), and advances to the next
configuration. For each i, computation of γi+1 from γi defines a single step of the Turing machine.

The computation of M on input sss halts if M reaches a halting state q ∈ F . If M halts, the output
corresponding to sss is written on the output tape. Additional details about the computation of the
Turing machine are in Appendix A.1.

Before discussing existing expressivity results for constant-layer LLMs, we briefly introduce relevant
uniform constant-depth circuit complexity classes, e.g. logspace uniform-TC0, which provide an
upper bound on the computational power of LLMs that do not employ reasoning steps, as seen in
methods like Chain-of-Thought Wei et al. (2022).
Definition A.2 (Boolean Circuit). A Boolean circuit is a computational model for evaluating Boolean
functions over fixed-length binary strings. It is represented as a directed acyclic graph (DAG), where
the leaf nodes correspond to input binary variables or their negations, and the internal nodes perform
operations from a predefined set of operations B (e.g., AND (∧), OR (∨), etc.). One or more marked
nodes in the graph represent the circuit’s output.

The structure of the DAG specifies the computation of the Boolean function by propagating input
values through the graph. The complexity of a circuit is determined by its size (the number of nodes)
and depth (the longest path in the graph). Since a single circuit only defines a boolean function for
fixed-length inputs, a family of circuits is required—one for each input length—to characterize a
computational problem where input lengths vary. Unlike Turing machines, whose computation does
not depend on input length, circuit families have a separate circuit for each input length, which can
differ entirely. This non-uniformity can lead to degenerate cases where non-uniform circuit families
solve undecidable problems Arora and Barak (2009). To address this issue, complexity theorists
enforce uniformity conditions, requiring circuits for different input sizes to be related, resulting in
uniform circuit families. For further details and formal definitions of circuit classes, refer to Arora and
Barak (2009). In this work, we focus on constant-depth, polynomial-sized logspace-uniform threshold
circuits (TC0), where B contains only threshold gates (a formal definition is in Appendix A.2).

A.1 TURING MACHINE COMPUTATION

A Turing machine processes an input string xxx ∈ Σ∗. Its configuration consists of a finite state set Q,
an input tape c0, k work tapes c1, . . . , ck, and an output tape ck+1. Additionally, each tape τ has an
associated head position hτ .

Initially, the machine starts in the initial state q0 ∈ Q with the input tape c00 containing xxx, positioned
at index 0, and surrounded by infinite blank symbols (b). The head on the input tape is set to h0

0 = 0,
while all other tapes contain only blank symbols bs and have their heads positioned at 0.

12

Published at the VerifAI Workshop @ ICLR’25

At each time step i, if qi /∈ F (F is a set of halting states), the configuration updates recursively by
computing:

⟨qi+1, γ
i
1, . . . , γ

i
k+1, d

i
0, . . . , d

i
k+1⟩ = δ(qi, c

i
0[h

i
0], . . . , c

i
k+1[h

i
k+1])

where δ is the transition function. The machine updates each tape τ by setting ci+1
τ [hi

τ] = γi
τ , leaving

all other tape cells unchanged. The head position for each tape is updated as hi+1
τ = hi

τ + diτ . If
qi ∈ F , the Turing machine halts and outputs the sequence of tokens on the output tape, starting from
the current head position and continuing up to (but not including) the first blank symbol (b). A Turing
machine can also function as a language recognizer by setting the input alphabet Σ = {0, 1} and
interpreting the first output token as either 0 or 1.

A.2 THERSHOLD CIRCUIT CLASS

TC0 is a class of computational problems that can be recognized by constant-depth, polynomial-size
circuits composed of threshold gates. A threshold gate, such as θ≤k, outputs 1 if the sum of its
input bits is at most k, while θ≥k outputs 1 if the sum is at least k. These circuits also include
standard logic gates like ∧, ∨, and ¬ as special cases of threshold functions. Since TC0 circuits
can simulate AC0 circuits (a polysize, constant-depth {∧,∨,¬}-circuit family), they are at least as
powerful as AC0 in the computational hierarchy. The circuit families we have defined above are
non-uniform, meaning that there is no requirement for the circuits processing different input sizes
to be related in any way. In degenerate cases, non-uniform circuit families can solve undecidable
problems making them an unrealizable model of computation Arora and Barak (2009). Intuitively, a
uniform circuit family requires that the circuits for different input sizes must be ”somewhat similar”
to each other. This concept is formalized by stating that there exists a resource-constrained Turing
machine that, given the input 1n, can generate a serialization of the corresponding circuit Cn for that
input size. Specifically, a logspace uniform TC0 family can be constructed by a logspace-bounded
Turing machine from the string 1n.

B PROOFS

Lemma B.1 (Constant depth circuit for Lf). For any log-precision constant layer transformer-based
LLM L with finite vocabulary V , a single deterministic auto-regressive step Lf (x) operating on any
input of size n ∈ N with xxx ∈ V n can be simulated by a logspace-uniform threshold circuit family of
depth C where C is constant.

Proof. The construction is from Theorem 2 in Merrill and Sabharwal (2023).

Proposition 3.1. For any log-precision LLM L with constant layers there exists a logspace-uniform
thershold circuit Thn such that LGc

(xxx) = Thn(xxx) holds for all inputs xxx with size |xxx| = n and
n ∈ N.

Proof. The language L(Gc) is finite; therefore, for any string sss ∈ L(Gc), the length satisfies |sss| ≤ N ,
where N is a constant. Consequently, for any input xxx, the output yyyG = LG(xxx) has a constant length,
i.e., |yyyG| ≤ N . The number of autoregressive steps is also bounded by N .

From Lemma B.1, each unconstrained autoregressive computation Lf (xxx) can be simulated by
a constant-depth threshold circuit C. This implies that Lf (xxx,Gc) can also be simulated by a
constant-depth threshold circuit since it only involves an additional multiplication by a constant-sized
precomputed Boolean mask {0, 1}|V | (see Section 2).

Given that the number of autoregressive steps is a constant N , and each step can be simulated by a
constant-depth circuit C, we can simulate all N steps using a depth N × C circuit by stacking the
circuits for each step sequentially. For uniformity, we are just stacking together a constant number of
constant depth circuits we can do it in a log-space bounded Turning machine M .

Note that this proof holds only because L(Gc) allows only constant-size strings in the output.

Lemma 3.2. For any Turing machine M with tape alphabet Γ, there exists a constant depth LLM
LM with finite vocabulary Γ ⊆ VM and log-precision that can simulate t(n) steps of M with t(n)
autoregressive steps.

13

Published at the VerifAI Workshop @ ICLR’25

Proof. The construction follows from Theorem 2 Merrill and Sabharwal (2024).

In this construction, the deterministic Turing machine run captured by a sequence of γ1, . . . , γt(n)
capturing the state entered, tokens written, and directions moved after each token before generating
the output M(xxx). Then on any input the xxx the output LM (xxx) = γ1, · · · , γt(n) ·M(xxx) (assuming M
halts within on xxx within t(n) steps where n = |xxx| and t(n) is a polynomial over n).
Proposition 3.3. For any Turing machine M with tape alphabet Γ, there exists a constant depth
LLM LM with finite vocabulary Γ ⊆ VM and log precision such that for any input xxx with |xxx| = n,
LM,Ga

(xxx) = rrr ·M(xxx) with r ∈ V ∗
M assuming M halts on xxx in t(n) steps.

Proof. LM (xxx)) = γ1 · · · γt(n) ·M(xxx). We show that LM (xxx) ∈ L(Ga). Ga → RMG. Since, G is
output grammar of M then M(xxx) ∈ L(G). For all 1 ≤ i ≤ t(n) γi ∈ Γ. Then, γ1 · · · γt(n) ∈ Γ

∗ ⊆
L(RM).

Then LM (xxx) ∈ L(Ga) then under constrained decoding the output LM (xxx) remains unchanged and
LM (xxx) = LM,Ga(xxx) = rrr ·M(xxx) where rrr = γ1 · · · γt(n).

C LIMITATION AND RELATED WORKS

Limitation: Our work has the following limitations. First, Proposition 3.1 only demonstrates a
reduction in expressivity when the language L(Gc) is finite. This leaves open the question of whether
Proposition 3.1 can be extended to grammars G where L(G) is infinite. Second, CRANE for
constrained decoding relies on existing tools Ugare et al. (2024b) that require access to output logits,
rendering CRANE inapplicable to models that do not expose logits.

C.1 RELATED WORKS

Constrained LLM Decoding: Recent works have introduced techniques to enforce LLM generations
to adhere to a context-free grammar using constrained decoding Ugare et al. (2024c); Willard and
Louf (2023); Beurer-Kellner et al. (2024); Melcer et al. (2024a). Additionally, Poesia et al. (2022);
Ugare et al. (2024a) have extended grammar-guided generation to incorporate task-specific semantic
constraints. These approaches demonstrate that constrained decoding can improve the syntactic and
semantic quality of LLM outputs for various structured generation tasks.

More recently, Tam et al. (2024) demonstrated that constrained structured generation can negatively
impact the quality of generated outputs. Similarly, Park et al. (2024) showed that greedily masking out
tokens that do not lead to a valid string during next-token prediction can distort the output distribution,
causing it to deviate from the true distribution of all grammatically valid outputs of L for a given
input. To mitigate the distortion introduced by the greedy masking approach, these “grammar aligned”
methods Park et al. (2024); Melcer et al. (2024b) use a trie to track previous generations, reducing
generation divergence iteratively. However, they are computationally expensive and require a large
number of resamplings per prompt to converge.

In contrast, our work focuses on the fundamental question of the theoretical expressivity of any
constant layered constrained LLM, even under an ideal constrained decoding algorithm, and uses
the insights to propose a practical solution. We propose an adaptive constrained decoding approach
that can support various constrained decoding methods, including grammar-aligned techniques while
preserving the LLM’s expressivity by reasoning chains.

LLM Expressivity: Strobl et al. (2024) provides a detailed survey of existing results from the
perspective of formal language theory and complexity classes. A series of existing works Hahn
(2020); Hao et al. (2022); Merrill et al. (2022); Merrill and Sabharwal (2023) establish that, under
suitable assumptions, a single autoregressive step on an input of any length for a constant-depth LLM
can be represented as a constant-depth Boolean circuit. Merrill and Sabharwal (2024); Li et al. (2024)
show that the expressivity of LLMs significantly improves under popular reasoning approaches like
Chain of Thought (CoT) Wei et al. (2022), where LLMs take intermediate steps before generating
the final answer. To the best of our knowledge, there is no prior work on LLM expressivity under
grammar constraints.

14

Published at the VerifAI Workshop @ ICLR’25

C.2 GSM-SYMBOLIC EXAMPLES AND PROMPT

GSM-Symbolic Problem Solution Examples:
1 Question: A fog bank rolls in from the ocean to cover a city. It takes {t} minutes

to cover every {d} miles of the city. If the city is {y} miles across from
oceanfront to the opposite inland edge, how many minutes will it take for the
fog bank to cover the whole city?

2
3 Answer: y//d*t
4
5 Question: {name} makes {drink} using teaspoons of sugar and cups of water in the

ratio of {m}:{n}. If she used a total of {x} teaspoons of sugar and cups of
water, calculate the number of teaspoonfuls of sugar she used.

6
7 Answer: ((m*x)//(m+n))

Listing 1: Problem Solution Examples for GSM-Symbolic

GSM-Symbolic Prompt:
1 You are an expert in solving grade school math tasks. You will be presented with a

grade-school math word problem with symbolic variables and be asked to solve
it.

2
3 Before answering you should reason about the problem (using the <reasoning> field

in the response described below). Intermediate symbolic expressions generated
during reasoning should be wrapped in << >>.

4
5 Then, output the symbolic expression wrapped in << >> that answers the question.

The expressions must use numbers as well as the variables defined in the
question. You are only allowed to use the following operations: +, -, /, //,
%, (), and int().

6
7 You will always respond in the format described below:
8 Let's think step by step. <reasoning> The final answer is <<symbolic expression>>
9

10 There are {t} trees in the {g}. {g} workers will plant trees in the {g} today.
After they are done, there will be {tf} trees. How many trees did the {g}
workers plant today?

11
12 Let's think step by step. Initially, there are {t} trees. After planting, there

are {tf} trees. The number of trees planted is <<tf - t>>. The final answer is
<<tf - t>>.

13
14 If there are {c} cars in the parking lot and {nc} more cars arrive, how many cars

are in the parking lot?
15
16 Let's think step by step. Initially, there are {c} cars. {nc} more cars arrive, so

the total becomes <<c + nc>>. The final answer is <<c + nc>>.
17
18 {p1} had {ch1} {o1} and {p2} had {ch2} {o1}. If they ate {a} {o1}, how many pieces

do they have left in total?
19
20 Let's think step by step. Initially, {p1} had {ch1} {o1}, and {p2} had {ch2} {o1},

making a total of <<ch1 + ch2>>. After eating {a} {o1}, the remaining total
is <<ch1 + ch2 - a>>. The final answer is <<ch1 + ch2 - a>>.

21
22 {p1} had {l1} {o1}. {p1} gave {g} {o1} to {p2}. How many {o1} does {p1} have left?
23
24 Let's think step by step. {p1} started with {l1} {o1}. After giving {g} {o1} to {

p2}, {p1} has <<l1 - g>> {o1} left. The final answer is <<l1 - g>>.
25
26 {p1} has {t} {o1}. For Christmas, {p1} got {tm} {o1} from {p2} and {td} {o1} from

{p3}. How many {o1} does {p1} have now?
27
28 Let's think step by step. {p1} started with {t} {o1}. {p1} received {tm} {o1} from

{p2} and {td} {o1} from {p3}. The total is <<t + tm + td>>. The final answer
is <<t + tm + td>>.

29
30 There were {c} {o1} in the server room. {nc} more {o1} were installed each day,

from {d1} to {d2}. How many {o1} are now in the server room?
31
32 Let's think step by step. Initially, there were {c} {o1}. {nc} {o1} were added

each day for <<d2 - d1 + 1>> days, which is <<nc * (d2 - d1 + 1)>>. The total
is <<c + nc * (d2 - d1 + 1)>>. The final answer is <<c + nc * (d2 - d1 + 1)>>.

33
34 {p1} had {gb1} {o1}. On {day1}, {p1} lost {l1} {o1}. On {day2}, {p1} lost {l2}

more. How many {o1} does {p1} have at the end of {day2}?

15

Published at the VerifAI Workshop @ ICLR’25

35
36 Let's think step by step. Initially, {p1} had {gb1} {o1}. After losing {l1} {o1}

on {day1}, {p1} had <<gb1 - l1>>. After losing {l2} {o1} on {day2}, the total
is <<gb1 - l1 - l2>>. The final answer is <<gb1 - l1 - l2>>.

37
38 {p1} has ${m}. {p1} bought {q} {o1} for ${p} each. How much money does {p1} have

left?
39
40 Let's think step by step. Initially, {p1} had ${m}. {p1} spent <<q * p>> on {q} {

o1}. The remaining money is <<m - q * p>>. The final answer is <<m - q * p>>.
41
42 {question}

Listing 2: CoT Prompt Template For GSM-Symbolic Evaluation

1 You are an expert in solving grade school math tasks. You will be presented with a
grade-school math word problem with symbolic variables and be asked to solve
it.

2
3 Only output the symbolic expression wrapped in << >> that answers the question.

The expression must use numbers as well as the variables defined in the
question. You are only allowed to use the following operations: +, -, /, //,
%, (), and int().

4
5 You will always respond in the format described below:
6 <<symbolic expression>>
7
8 There are {t} trees in the {g}. {g} workers will plant trees in the {g} today.

After they are done, there will be {tf} trees. How many trees did the {g}
workers plant today?

9
10 <<tf - t>>
11
12 If there are {c} cars in the parking lot and {nc} more cars arrive, how many cars

are in the parking lot?
13
14 <<c + nc>>
15
16 {p1} had {ch1} {o1} and {p2} had {ch2} {o1}. If they ate {a} {o1}, how many pieces

do they have left in total?
17
18 <<ch1 + ch2 - a>>
19
20 {p1} had {l1} {o1}. {p1} gave {g} {o1} to {p2}. How many {o1} does {p1} have left?
21
22 <<l1 - g>>
23
24 {p1} has {t} {o1}. For Christmas, {p1} got {tm} {o1} from {p2} and {td} {o1} from

{p3}. How many {o1} does {p1} have now?
25
26 <<t + tm + td>>
27
28 There were {c} {o1} in the {loc}. {nc} more {o1} were installed each day, from {d1

} to {d2}. How many {o1} are now in the {loc}?
29
30 <<c + nc * (d2 - d1 + 1)>>
31
32 {p1} had {gb1} {o1}. On {day1}, {p1} lost {l1} {o1}. On {day2}, {p1} lost {l2}

more. How many {o1} does {p1} have at the end of {day2}?
33
34 <<gb1 - l1 - l2>>
35
36 {p1} has ${m}. {p1} bought {q} {o1} for ${p} each. How much money does {p1} have

left?
37
38 <<m - q * p>>
39
40 {question}

Listing 3: Prompt Template For GSM-Symbolic Evaluation Without CoT

C.3 FOLIO EXAMPLES AND PROMPT

FOLIO Problem Solution Examples:
1 Question:

16

Published at the VerifAI Workshop @ ICLR’25

2 People in this club who perform in school talent shows often attend and are very
engaged with school events.

3 People in this club either perform in school talent shows often or are inactive
and disinterested community members.

4 People in this club who chaperone high school dances are not students who attend
the school.

5 All people in this club who are inactive and disinterested members of their
community chaperone high school dances.

6 All young children and teenagers in this club who wish to further their academic
careers and educational opportunities are students who attend the school.

7 Bonnie is in this club and she either both attends and is very engaged with school
events and is a student who attends the school or is not someone who both
attends and is very engaged with school events and is not a student who
attends the school.

8 Based on the above information, is the following statement true, false, or
uncertain? Bonnie performs in school talent shows often.

9 ###
10
11 FOL Solution:
12 Predicates:
13 InClub(x) ::: x is a member of the club.
14 Perform(x) ::: x performs in school talent shows.
15 Attend(x) ::: x attends school events.
16 Engaged(x) ::: x is very engaged with school events.
17 Inactive(x) ::: x is an inactive and disinterested community member.
18 Chaperone(x) ::: x chaperones high school dances.
19 Student(x) ::: x is a student who attends the school.
20 Wish(x) ::: x wishes to further their academic careers and educational

opportunities.
21 Premises:
22 {forall} x (InClub(x) {and} Attend(x) {and} Engaged(x) {implies} Attend(x)) :::

People in this club who perform in school talent shows often attend and are
very engaged with school events.

23 {forall} x (InClub(x) {implies} (Perform(x) {xor} Inactive(x))) ::: People in this
club either perform in school talent shows often or are inactive and
disinterested community members.

24 {forall} x (InClub(x) {and} Chaperone(x) {implies} {not}Student(x)) ::: People in
this club who chaperone high school dances are not students who attend the
school.

25 {forall} x (InClub(x) {and} Inactive(x) {implies} Chaperone(x)) ::: All people in
this club who are inactive and disinterested members of their community
chaperone high school dances.

26 {forall} x (InClub(x) {and} (Young(x) {or} Teenager(x)) {and} Wish(x) {implies}
Student(x)) ::: All young children and teenagers in this club who wish to
further their academic careers and educational opportunities are students who
attend the school.

27 {forall} x (InClub(x) {implies} (Attend(x) {and} Engaged(x)) {xor} {not}(Attend(x)
{and} Engaged(x)) {and} {not}Student(x) {xor} Student(x)) ::: Bonnie is in
this club and she either both attends and is very engaged with school events
and is a student who attends the school or is not someone who both attends and
is very engaged with school events and is not a student who attends the
school.

28 Conclusion:
29 InClub(bonnie) {and} Perform(bonnie) ::: Bonnie performs in school talent shows

often.
30
31 Answer: Uncertain

Listing 4: Problem Solution Examples for FOLIO

FOLIO Prompt:
1 Given a problem description and a question. The task is to parse the problem and

the question into first-order logic formulas.
2 The grammar of the first-order logic formula is defined as follows:
3 1) logical conjunction of expr1 and expr2: expr1 {and} expr2
4 2) logical disjunction of expr1 and expr2: expr1 {or} expr2
5 3) logical exclusive disjunction of expr1 and expr2: expr1 {xor} expr2
6 4) logical negation of expr1: {not}expr1
7 5) expr1 implies expr2: expr1 {implies} expr2
8 6) expr1 if and only if expr2: expr1 {iff} expr2
9 7) logical universal quantification: {forall} x

10 8) logical existential quantification: {exists} x. These are the ONLY operations
in the grammar.

11 ------
12
13 Answer the question EXACTLY like the examples.
14
15 Problem:

17

Published at the VerifAI Workshop @ ICLR’25

16 All people who regularly drink coffee are dependent on caffeine. People either
regularly drink coffee or joke about being addicted to caffeine. No one who
jokes about being addicted to caffeine is unaware that caffeine is a drug.
Rina is either a student and unaware that caffeine is a drug, or neither a
student nor unaware that caffeine is a drug. If Rina is not a person dependent
on caffeine and a student, then Rina is either a person dependent on caffeine
and a student, or neither a person dependent on caffeine nor a student.

17 Question:
18 Based on the above information, is the following statement true, false, or

uncertain? Rina is either a person who jokes about being addicted to caffeine
or is unaware that caffeine is a drug.

19 ###
20
21 We take three steps: first, we define the necessary predicates and premises, and

finally, we encode the question `Rina is either a person who jokes about being
addicted to caffeine or is unaware that caffeine is a drug.` in the
conclusion. Now, we will write only the logic program, nothing else.

22 Predicates:
23 Dependent(x) ::: x is a person dependent on caffeine.
24 Drinks(x) ::: x regularly drinks coffee.
25 Jokes(x) ::: x jokes about being addicted to caffeine.
26 Unaware(x) ::: x is unaware that caffeine is a drug.
27 Student(x) ::: x is a student.
28 Premises:
29 {forall} x (Drinks(x) {implies} Dependent(x)) ::: All people who regularly drink

coffee are dependent on caffeine.
30 {forall} x (Drinks(x) {xor} Jokes(x)) ::: People either regularly drink coffee or

joke about being addicted to caffeine.
31 {forall} x (Jokes(x) {implies} {not}Unaware(x)) ::: No one who jokes about being

addicted to caffeine is unaware that caffeine is a drug.
32 (Student(rina) {and} Unaware(rina)) {xor} {not}(Student(rina) {or} Unaware(rina))

::: Rina is either a student and unaware that caffeine is a drug, or neither a
student nor unaware that caffeine is a drug.

33 Conclusion:
34 Jokes(rina) {xor} Unaware(rina) ::: Rina is either a person who jokes about being

addicted to caffeine or is unaware that caffeine is a drug.
35 ------
36
37 Problem:
38 Miroslav Venhoda was a Czech choral conductor who specialized in the performance

of Renaissance and Baroque music. Any choral conductor is a musician. Some
musicians love music. Miroslav Venhoda published a book in 1946 called Method
of Studying Gregorian Chant.

39 Question:
40 Based on the above information, is the following statement true, false, or

uncertain? Miroslav Venhoda loved music.
41 ###
42
43 We take three steps: first, we define the necessary predicates and premises, and

finally, we encode the question `Miroslav Venhoda loved music.` in the
conclusion. Now, we will write only the logic program, nothing else.

44 Predicates:
45 Czech(x) ::: x is a Czech person.
46 ChoralConductor(x) ::: x is a choral conductor.
47 Musician(x) ::: x is a musician.
48 Love(x, y) ::: x loves y.
49 Author(x, y) ::: x is the author of y.
50 Book(x) ::: x is a book.
51 Publish(x, y) ::: x is published in year y.
52 Specialize(x, y) ::: x specializes in y.
53 Premises:
54 Czech(miroslav) {and} ChoralConductor(miroslav) {and} Specialize(miroslav,

renaissance) {and} Specialize(miroslav, baroque) ::: Miroslav Venhoda was a
Czech choral conductor who specialized in the performance of Renaissance and
Baroque music.

55 {forall} x (ChoralConductor(x) {implies} Musician(x)) ::: Any choral conductor is
a musician.

56 {exists} x (Musician(x) {and} Love(x, music)) ::: Some musicians love music.
57 Book(methodOfStudyingGregorianChant) {and} Author(miroslav,

methodOfStudyingGregorianChant) {and} Publish(methodOfStudyingGregorianChant,
year1946) ::: Miroslav Venhoda published a book in 1946 called Method of
Studying Gregorian Chant.

58 Conclusion:
59 Love(miroslav, music) ::: Miroslav Venhoda loved music.
60 ------
61
62 {question}

Listing 5: Prompt Template Used For FOLIO Evaluation

18

Published at the VerifAI Workshop @ ICLR’25

C.4 CASE STUDY FOR GSM-SYMBOLIC

1 Question: {name} hires a {vehicle} from {start_hour} to {end_hour}. He gets {
free_hours} hours free. The first paid hour is ${first_hour_cost} and each
hour after that is {multiplier} the cost. How much did he pay?

2
3 Constrained: <<(int(end_hour - start_hour) - free_hours) * first_hour_cost +

free_hours * first_hour_cost + (int(end_hour - start_hour) - free_hours - 1) *
multiplier * first_hour_cost>>

4
5 Unconstrained With CoT: Let's think step by step. The total time hired is from {

start_hour} to {end_hour}, which is <<int((end_hour - start_hour).
total_seconds() / 3600)>> hours. Subtracting the {free_hours} free hours, the
paid hours are <<int((end_hour - start_hour).total_seconds() / 3600) -
free_hours>>. The final answer is <<first_hour_cost + (int((end_hour -
start_hour).total_seconds() / 3600) - free_hours - 1) * multiplier *
first_hour_cost>>.

6
7 CRANE: Let's think step by step. The total time hired is from {start_hour} to {

end_hour}, totaling <<int(end_hour - start_hour)>> hours. Subtracting {
free_hours} free hours, the paid hours are <<int(end_hour - start_hour) -
free_hours>>. The first hour costs {first_hour_cost}, and each additional hour
costs {multiplier} times that. The final answer is <<first_hour_cost + (int(
end_hour - start_hour) - free_hours - 1) * multiplier * first_hour_cost>>.

Listing 6: Case Study for GSM-Symbolic

CRANE effectively alternates between constrained and unconstrained generation to produce interme-
diate expressions, the final answer, and to maintain the reasoning capabilities of the LLM. In contrast,
unconstrained generation with CoT results in a syntactically incorrect expression, while constrained
generation produces a syntactically valid but incorrect expression.

C.5 SAMPLING ABLATION FOR GSM-SYMBOLIC

In our GSM-Symbolic case study, we use IterGen as the constrained generation baseline and initialize
CRANE with IterGen. Both IterGen and CRANE employ selective rejection sampling to filter
tokens that do not satisfy semantic constraints. For comparison, we also run unconstrained generation
using temperature sampling and evaluate its performance against CRANE. Specifically, for Qwen2.5-
1.5B-Instruct and Llama-3.1-8B-Instruct, we generate three samples with unconstrained generation at
a temperature of t = 0.7 and compute pass@1/2/3 metrics.

As shown in Table 4, CRANE with greedy decoding achieves higher accuracy than pass@1/2/3 for
unconstrained generation with Chain-of-Thought (CoT) and temperature sampling on Qwen2.5-1.5B-
Instruct. Although, for Llama-3.1-8B-Instruct, unconstrained generation with CoT and temperature
sampling achieves a pass@3 accuracy of 35%—2% higher than CRANE—it generates approximately
4x times as many tokens as CRANE.

C.6 GRAMMARS

C.6.1 GSM-SYMBOLIC GRAMMAR

1 start: space? "<" "<" space? expr space? ">" ">" space?
2
3 expr: expr space? "+" space? term
4 | expr space? "-" space? term
5 | term
6
7 term: term space? "*" space? factor
8 | term space? "/" space? factor
9 | term space? "//" space? factor

10 | term space? "%" space? factor
11 | factor space?
12
13 factor: "-" space? factor
14 | TYPE "(" space? expr space? ")"
15 | primary space?
16
17 primary: NUMBER
18 | VARIABLE
19 | "(" space? expr space? ")"
20

19

Published at the VerifAI Workshop @ ICLR’25

21 TYPE.4: "int"
22
23 space: " "
24
25 %import common.CNAME -> VARIABLE
26 %import common.NUMBER

Listing 7: GSM-Symbolic Grammar

C.6.2 PROVER9 GRAMMAR

1 start: predicate_section premise_section conclusion_section
2
3 predicate_section: "Predicates:" predicate_definition+
4 premise_section: "Premises:" premise+
5 conclusion_section: "Conclusion:" conclusion+
6
7 predicate_definition: PREDICATE "(" VAR ("," VAR)* ")" COMMENT ->

define_predicate
8 premise: quantified_expr COMMENT -> define_premise
9 conclusion: quantified_expr COMMENT -> define_conclusion

10
11 quantified_expr: quantifier VAR "(" expression ")" | expression
12 quantifier: "{forall}" -> forall | "{exists}" -> exists
13
14 expression: bimplication_expr
15
16 ?bimplication_expr: implication_expr ("{iff}" bimplication_expr)? -> iff
17 ?implication_expr: xor_expr ("{implies}" implication_expr)? -> imply
18 ?xor_expr: or_expr ("{xor}" xor_expr)? -> xor
19 ?or_expr: and_expr ("{or}" or_expr)? -> or
20 ?and_expr: neg_expr ("{and}" and_expr)? -> and
21 ?neg_expr: "{not}" quantified_expr -> neg
22 | atom
23
24 ?atom: PREDICATE "(" VAR ("," VAR)* ")" -> predicate
25 | "(" quantified_expr ")"
26
27 // Variable names begin with a lowercase letter
28 VAR.-1: /[a-z][a-zA-Z0-9_]*/ | /[0-9]+/
29
30 // Predicate names begin with a capital letter
31 PREDICATE.-1: /[A-Z][a-zA-Z0-9]*/
32
33 COMMENT: /:::.*\n/
34
35 %import common.WS
36 %ignore WS

Listing 8: Prover9 Grammar

20

Published at the VerifAI Workshop @ ICLR’25

Table 3: Comparison of CRANE and baselines with various models on GSM-Symbolic based on
accuracy, number of tokens, and average time.

Model k Method Acc. (%) Parse (%) Tokens
Unconstrained w/o CoT 20 98 18.23

Constrained 21 95 34.28
Qwen2.5-1.5B-Instruct 2 Unconstrained CoT 22 90 130.74

CRANE 28 96 140.52

Unconstrained w/o CoT 18 95 18.23
Constrained 18 96 34.28

Qwen2.5-1.5B-Instruct 4 Unconstrained CoT 24 94 130.74
CRANE 30 98 140.52

Unconstrained w/o CoT 21 97 23.34
Constrained 22 97 25.29

Qwen2.5-1.5B-Instruct 8 Unconstrained CoT 26 90 128.97
CRANE 31 100 131.3

Unconstrained w/o CoT 37 96 17.22
Constrained 36 99 18.61

Qwen2.5-Coder-7B-Instruct 2 Unconstrained CoT 32 84 148.87
CRANE 37 96 155.65

Unconstrained w/o CoT 36 96 16.89
Constrained 36 100 18.81

Qwen2.5-Coder-7B-Instruct 4 Unconstrained CoT 35 89 151.29
CRANE 37 97 163.21

Unconstrained w/o CoT 36 94 17.92
Constrained 35 99 25.28

Qwen2.5-Coder-7B-Instruct 8 Unconstrained CoT 37 88 138.38
CRANE 39 94 155.32

Unconstrained w/o CoT 20 66 115.22
Constrained 26 95 26.99

Qwen2.5-Math-7B-Instruct 2 Unconstrained CoT 28 72 190.51
CRANE 32 89 195.65

Unconstrained w/o CoT 22 83 47
Constrained 29 98 27.08

Qwen2.5-Math-7B-Instruct 4 Unconstrained CoT 28 76 184.35
CRANE 37 88 194.77

Unconstrained w/o CoT 27 89 25.7
Constrained 29 99 26.81

Qwen2.5-Math-7B-Instruct 8 Unconstrained CoT 29 82 155.26
CRANE 38 94 158.86

Unconstrained w/o CoT 19 61 157.36
Constrained 23 95 45.58

Llama-3.1-8B-Instruct 2 Unconstrained CoT 29 84 198.64
CRANE 35 94 206.85

Unconstrained w/o CoT 18 68 131.5
Constrained 24 96 37.38

Llama-3.1-8B-Instruct 4 Unconstrained CoT 26 92 172.21
CRANE 30 97 179.95

Unconstrained w/o CoT 21 73 128.38
Constrained 26 98 35.97

Llama-3.1-8B-Instruct 8 Unconstrained CoT 30 95 163.55
CRANE 33 95 170.22

21

Published at the VerifAI Workshop @ ICLR’25

Table 4: Comparison of CRANE and greedy and sampling baselines with different models on
GSM-Symbolic.

Model Method pass@1/2/3 (%) Parse (%) Tokens

Unconstrained w/o CoT (Greedy) 21 97 23.34
Unconstrained w/o CoT (t = 0.7) 15/19/22 88/96/98 20.19/39.76/60.57
Constrained (Greedy) 22 97 25.29

Qwen2.5-1.5B-Instruct Unconstrained CoT (Greedy) 26 90 128.97
Unconstrained CoT (t = 0.7) 21/25/30 78/91/96 146.22/292.96/444.61
CRANE 31 100 131.3

Unconstrained w/o CoT (Greedy) 21 73 128.38
Unconstrained w/o CoT (t = 0.7) 15/21/25 51/74/84 106.88/232.75/369.86
Constrained (Greedy) 26 98 35.97

Llama-3.1-8B-Instruct Unconstrained CoT (Greedy) 30 95 163.55
Unconstrained CoT (t = 0.7) 24/29/35 89/98/98 196.01/403.68/607.7
CRANE (Greedy) 33 95 170.22

Table 5: Comparison of CRANE and greedy and sampling baselines with different models on
FOLIO.

Model Method pass@1/2/3 (%) Compile (%) Tokens

Unconstrained CoT (Greedy) 36.95 70.94 350.64
Unconstrained CoT (t = 0.7) 16.75/28.57/34.98 35.96/55.67/68.47 401.5/800.19/1219.33

Qwen2.5-7B-Instruct Constrained (Greedy) 37.44 87.68 775.62
CRANE (Greedy) 42.36 87.68 726.88

Unconstrained CoT (Greedy) 32.02 57.14 371.52
Unconstrained CoT (t = 0.7) 14.29/22.66/29.06 33.99/46.8/57.64 435.35/877.33/1307.45

Llama-3.1-8B-Instruct Constrained (Greedy) 39.41 86.21 549.75
CRANE (Greedy) 46.31 85.71 449.77

22

	Introduction
	Preliminaries
	Expressivity of Constrained Decoding
	Limitation of Constrained Decoding
	Reasoning with Augmented Grammar

	CRANE Algorithm
	Evaluation
	Conclusion
	Impact and Ethics
	LLM Expressivity Background
	Turing Machine Computation
	Thershold Circuit Class

	Proofs
	Limitation and Related Works
	Related Works
	GSM-Symbolic Examples and Prompt
	FOLIO Examples and Prompt
	Case Study For GSM-Symbolic
	Sampling Ablation for GSM-Symbolic
	Grammars
	GSM-Symbolic Grammar
	Prover9 Grammar

