
Existing Gaps In Reinforcement Learning For

Drone Warfare

Arthur Louette1*†, Pascal Leroy1†, Yanis Geurts1, Damien Ernst1

1Montefiore Institute, ULiège, Liège, Belgium.

*Corresponding author(s). E-mail(s): arthur.louette@uliege.be;
†These authors contributed equally to this work.

Abstract

Drones have changed warfare and are deployed daily on the battlefield for surveil-
lance or as offensive and defensive weapons. While humans continue to control
drones and weapon systems, the transition to autonomous control, which removes
the human decision, is imminent. Indeed, advances in artificial intelligence (AI)
are extremely rapid and AI-driven drones seem to represent the future of war-
fare. This motivates the need to improve systems to face autonomous drones and
build better ones. Reinforcement learning (RL) is a paradigm of AI focusing on
the resolution of sequential decision-making problems. Its deployment in robotics
shows its potential to address complex real-world challenges. After presenting
RL foundations with a practical battlefield example, we propose a framework
to deploy RL in robotics. We identify five axes of complexity to deploy RL on
robots for any real-world problem. These axes allow us to analyze the state-of-
the-art and identify gaps required by the future of drone warfare. We conclude
the paper with a roadmap to bridge these gaps and ethical considerations.

Keywords: reinforcement learning, drones

1 Introduction

Unmanned aerial systems (UAS) have long played an important role in modern war-
fare. It started with large drones designed for precision strikes and reconnaissance
missions [1]. The conflict in Ukraine showcases a groundbreaking shift toward smaller
drones, most of the time by weaponizing commercial drones. Such drones provide
strategic advantages, disrupt enemy operations, and gather critical data, marking a
significant advancement in drone warfare [2–4]. They allow the control of contested

1



battlefield areas, offering a cost-effective way to conduct strikes and gather intelligence
without risking human lives. Nowadays, military personnel analyze data and control
drones. For example, identifying a target by analyzing data from a reconnaissance
drone, and then controlling a weaponized drone to strike it [5].

AI has already been identified as the perfect candidate to perform some of the drone
tasks on the battlefield. This is the case for vision-related tasks, such as identifying
potential targets [6]. This enables the analysis of vast amounts of data faster than
human operators, improving the speed of decisions on the battlefield. Such integration
of AI increases the efficiency and effectiveness of drone operations. However, even if
AI facilitates pilots’ work, drone control remains mostly handled by humans.

In the Ukrainian conflict, we especially observe that first-person view (FPV) pilots
have become a precious resource for the war [1, 3, 5, 7]. The FPV drones suffer from
several challenges, such as their deployment efficiency, the number of pilots available
to pilot them, the exposure of the latest, and the communication channel between the
drone and its operator that can be jammed. Although drones have become an essen-
tial weapon on the modern battlefield, countering them has emerged as an additional
challenge, particularly with small, agile drones weighing less than 10 kg. These high-
light the need to improve AI systems to control UAS and counter UAS (CUAS). This
is why we focus in this paper on AI for control, especially in the context of small
drones and the associated countermeasures.

A well-established framework of AI for control is called reinforcement learning
(RL). In RL, an agent learns to make decisions by trial and error. Over the last years,
it has shown great capabilities for sequential decision-making problems, and achieved
superhuman performance in complex games such as StarCraft II [8] or Stratego [9].
Recently, RL has demonstrated the capacity to control FPV drones better than the
best pilots in FPV races [10] and has more generally made big advancements in many
domains, such as autonomous navigation [11]. There is no doubt that it has the poten-
tial to improve control algorithms on battlefields. However, there is still a gap in
deploying autonomous controllers in warfare. These previous examples typically make
strong hypotheses on the drone conditions that should be relaxed to be closer to bat-
tlefields. This paper analyses and classifies these gaps before suggesting a roadmap for
remaining efforts to control small UAS drones and defend against them.

The paper is organized as follows. Section 2 details the current battlefield land-
scape, oriented towards small drones and associated countermeasures. We then
formally describe reinforcement learning in Section 3 and illustrate the framework
with a practical example. We propose a framework for the deployment of RL to solve
such problems in Section 4. Afterward, we propose in Section 5 five axes of complex-
ity to deploy RL. For each of these axes, we identify the state-of-the-art performance
algorithms applied to robotics, especially drones. In Section 6, five scenarios are pre-
sented, each representing an innovation milestone that progressively advances drone
warfare toward autonomous UAS and CUAS.

2 Drone Warfare

Currently, commercial drones are the most common type on the battlefield [3]. Brands
like DJI and Autel dominate the market with low-cost drones with advanced features.

2



Affordable drones can also be built by connecting a flight controller to a 3D-printed
drone frame. These commercial drones have several advantages. Anyone can buy one.
They do not require large infrastructure to launch and are difficult to track [7]. Small
FPV drones equipped with explosive warheads cost several hundred dollars. This
allows anyone to produce them in large quantities [5]. For example, due to this afford-
able price, Ukraine and Russia produced millions in 2024 [12]. These FPV drones
mainly carry out two missions: surveillance and combat. During surveillance missions,
drones determine or monitor targets [12, 13]. In combat missions, drones can act like
bombers, kamikazes, and even be equipped with guns. The drones can be equipped
with various munitions, such as armor-piercing, cluster, or thermobaric ones. Drones
are known to be more precise than artillery, especially for moving targets [5]. Based on
the success of drones on the Ukrainian battlefield, countries like the USA, Canada, and
China have already started developing their own FPV drone systems and counters [13].

There exist countermeasures to these drones, distinguished between physical and
electronic systems. On one side, physical defenses include air defense systems, lasers,
net guns, or even drones [14]. Multiple options have been investigated, such as com-
bining anti-aircraft guns with radar and laser systems [3], or drones tracking other
drones [15]. One of the main issues is that drones are agile and can dodge defense
ammunition. Another is their cost. Indeed, most air defense missiles are more expen-
sive than their target [16]. On the other side, electronic defense, called electronic
warfare (EW), consists of radio jammers or spoofers but also eavesdropping, denial-of-
service, and information injection [17]. The EW systems can be mounted on vehicles,
drones, or even as backpacks. Radio jamming and spoofing systems aim to find the
right communication frequency of the targeted drone and block or replace the sig-
nal. Some electronic reconnaissance systems even try to trace the drone’s signals back
to the enemy pilots’ location [5]. EW countermeasures also have some vulnerabili-
ties. Firstly, pilots can deploy signal repeaters on the ground or other drones to avoid
being detected. Secondly, once they detect interference, some drone pilots quickly
switch to another operational channel or trigger a specific reaction, like coming back
home or switching the communication frequency [17–19]. Thirdly, and arguably the
most promising, AI-controlled drones don’t need to be connected to an operator and,
therefore, cannot be jammed [6]. A common vulnerability for both physical and elec-
tronic countermeasures is saturation attacks. These attacks are composed of multiple
drones to saturate the CUAS and challenge the system to target efficiently to avoid
saturation. Finally, if drone control strategies improve using AI, the efficiency of such
anti-drone weapons would probably decrease and, therefore, also require AI integra-
tion. For instance, one might design an AI system to control an anti-aircraft gun with
superhuman precision or pilot a drone capable of neutralizing enemy drones. This
highlights the need to include AI in countermeasure systems, which could lead to an
ensemble of AI-driven systems.

In parallel with the emergence of FPV drones, AI has been increasingly integrated
into drone operations. AI-enhanced systems currently improve target detection [20].
Machine learning algorithms, particularly computer vision techniques, allow drones
to autonomously track and identify targets with high precision from the real-time

3



image stream captured by drones’ cameras [6]. Even if AI has started to be stan-
dardized for some vision tasks, the use of AI for autonomous drone control is still
in its early stages. This limitation emphasizes the value of FPV pilots. Since their
mission requires high skill, the FPV pilots controlling these agile drones become a
priority target [5]. Additionally, due to the short-range nature of FPV drone oper-
ations, pilots are often exposed to enemy forces. As the demand for drones grows,
production is scaling up to meet this need. Following this, the increasing demand
for drone operations may outpace the availability of skilled pilots. This again high-
lights the need for AI-controlled drones, that could soon outperform human pilots.
Indeed, it has already been demonstrated that AI could beat some of the best aircraft
pilots in combat aircraft simulations [21]. Automating control would also enable the
deployment of coordinated drone swarms, amplifying their combat effectiveness and
operational reach. This transformation could redefine modern warfare, where machines
continuously adapt and learn.

3 Reinforcement Learning

Reinforcement learning has emerged as a promising method for autonomous control.
In RL, the autonomous control is handled by an agent. An agent is defined as anything
that can act based on the information it perceives from its environment [22]. Different
classes of agents exist, but in RL, agents learn to act rationally to achieve a predefined
goal. This goal is defined by numerical rewards the agent obtains after making any
decision, allowing it to learn. Specifically, as illustrated in Figure 1, an agent learns to
maximize its expected sum of rewards by sequentially interacting with its environment,
taking an action based on its observation, and receiving a reward. Designing the reward
function is thus one of the crucial aspects leading to defining the task of the agent.

Fig. 1: Interaction of an agent with its environment in RL.

4



RL problems are commonly formulated as Markov decision processes (MDPs),
which offer a rigorous mathematical framework for modeling the interaction
between an agent and its environment. An MDP is formally defined by a tuple
(S,A,P, R, γ,H, p0). The state of the environment is s ∈ S, where S is the set of
all possible states. In a fully observable MDP, the agent maps a state to an action
a ∈ A based on its policy π(a|s) : S → ∆(A). Based on a state-action pair, the
environment transitions to a new state s′ with a probability defined by the transition
probability distribution P(s′|s, a). It also receives a reward r = R(s, a, s′) where R is
the reward function R : S × A× S −→ R. The quality of an agent is quantified by the
expected sum of discounted rewards it receives during an episode called the return
G(π) = E[

∑H−1
t=0 γtrt|s0 ∼ p0, π] which depends on its policy π and where p0 is the

initial state distribution, H is the horizon and γ is the discount factor. The horizon
can be finite or infinite. The discount factor allows for prioritizing short-term rewards.
With RL, the objective is to find an optimal policy π∗ ∈ argmaxπG(π).

In real life, especially when dealing with robots, the agent cannot fully perceive the
state of its environment. It has only access to an observation o ∈ O typically defined
by its sensors, e.g., an image for an FPV drone, O being the set of observations. The
probability of receiving a particular observation o is defined by the observation model
O(o|s) : S → ∆(O). In this case, the problem is formalized as a partially observable
MDP, or POMDP in short [23]. In such a framework, the action is generally selected
based on the history of past actions and observations to act optimally.

The MDP and POMDP are single-agent problem formulations that allow one to
simulate the battlefield to learn to control a drone with respectively full and partial
observability. However, the (PO)MDP settings are often used by implicitly considering
that other agents of the battlefield are not changing strategies over time. Their policies
are stationary. When multiple agents with non-stationary policies are considered, one
common approach is to use multi-agent reinforcement learning (MARL), a mix of RL
and game theory. The general framework is the partially observable stochastic game
(POSG) [24]. Formally, a POSG is defined by a tuple (n,S,A,P,O, O,R, γ,H, p0)
where n agents interact in the same environment. After all agents take their action
a ∈ A, the state transitions in the new state s′ with a probability given by P : S×A →
∆(S) and A = {A1 × .. × An} is the set of n action spaces. The probability of all
agent observations (o1, .., on) is defined by the observation function O(o1, .., on|s) :
S → ∆(O) where O = {O1 × ... × On} is the set of n observation spaces. Based
on all actions, each agent receives a reward ri = Ri(s,a, s′) : S × A × S → R and
R = {R1, .., Rn} is thus the set of reward functions. The time horizon H and initial
state distribution p0 serve the same purposes as the previous definitions. The return
of agent i is Gi(π) = E[

∑H−1
t=0 γtrit|s0 ∼ p0,π], where π = (π1, .., πn) is the joint

policy. Its objective is to find its policy πi(ai|oi) : Oi → ∆(Ai) that maximizes its
return maxπiGi(π). POSG can be designed for cooperation, e.g., agents receive the
same reward to achieve a common objective, or for competition, e.g., with zero-sum
rewards, i.e., any benefit to one agent results in an equivalent loss for the other.
The general case is when there is no clear relation between the rewards of agents. In
a battlefield, the environment is a mixed cooperative-competitive POSG since some
agents cooperate to achieve a goal at the detriment of other agents.

5



Since the return maximized by each agent is a function of all agents’ policies, chang-
ing one agent’s reward function also changes the POSG’s solution. Specifically, at a
given time, a battlefield is a POSG with a given set of agents {{Ai,Oi, Ri}i∈{1,n}},
each defined by a 3-tuple defining their capabilities and tasks. We consider the simplifi-
cation that the definitions of S, P and O depend on the set of agents. When considering
a battlefield over its total duration, the number of agents, their capabilities, and their
tasks change over time. A battlefield can thus be defined as a non-stationary POSG
with a dynamic set of agents. However, a non-stationary POSG can always be defined
as stationary with additional information, such as the time. Therefore, this paper does
not make the distinction.

To illustrate the formulations with a drone warfare example, we hereafter define
each component in a scenario where a drone has to identify and neutralize enemy tar-
gets in a combat zone protected by an anti-drone system, pointing out the complexity
associated with each element of a POSG.

• For a given set of agents, the state space S represents all possible battlefield con-
figurations, including, among others, the drone’s current location, altitude, speed,
battery level, but also other agents’ locations, weather conditions, and obstacles such
as buildings. There is an infinite number of possible values only for the drone-related
states, already reflecting the complexity induced by the state space of a battlefield.

• The sensors shipped with the drone define its observation space, the same for the
anti-drone system. For example, the drone might only detect enemies within a cer-
tain range or receive noisy signals about enemy positions. The number of available
sensors for a drone illustrates the number of available observation spaces when
considering a single agent with non-stationary observation spaces.

• A drone can be controlled with high-level actions, such as moving to a new location,
adjusting its altitude, engaging a target, or returning to base for recharge. But it
can also be controlled by deciding on thrust, yaw, pitch, and roll, or even directly
by controlling the volts in each motor. This generalizes to any controllable system.
Defining the action space Ai inherently affects the complexity of learning a policy.

• The transition probability P(s′|s,a) models the uncertainty in how the environment
changes after an action is taken. For instance, if a drone fires a missile, the target
will be destroyed, damaged, or missed, each with a probability depending on factors
like distance, wind, and enemy defense systems. Having a good model of reality is
still a complex task nowadays.

• The reward function of an agent, Ri, defines its behavior once trained and thus its
task on the battlefield. For example, the drone neutralizing the anti-drone system
will provide the drone with a positive reward while a negative one for the anti-drone
system. The rewards in such situations are most likely built with different factors,
encompassing task success while minimizing risks and collateral damage.

The last component, the reward function, defines the task solved by the agent. Since
the success of a policy is evaluated by the reward function, it is thus crucial to design it
accordingly. For example, sparse rewards, such as +1 if the task is solved and 0 other-
wise, often lead to inefficient learning. This is because agents receive minimal feedback,
requiring extensive exploration before they can learn useful behaviors [25, 26]. Indeed,

6



dense rewards guiding the agents smoothly toward successful policies are preferred
but often necessitate advanced knowledge to be designed [27]. In practice, multiple
objectives compose the reward, e.g., navigating with a drone as fast as possible while
minimizing battery usage. The reward encodes the trade-off between these objectives,
balancing factors such as increased energy consumption for faster navigation versus
reduced energy consumption at the cost of slower progress. Finding a policy for any
trade-off has been addressed in the literature on multi-objective reinforcement learning
(MORL) [28]. Moreover, large language models (LLMs) outperform human experts at
designing reward functions, allowing training some RL agents for robotic tasks for the
first time [29–32]. These LLMs allow humans to define tasks or objectives for agents
through language or speech instead of designing a numerical reward function. The
reward function defines a single task. However, the multi-task setting exists, where
a policy must be successful in several tasks. Commonly in this setting, the reward
function and the policy are conditioned on the task, such that there is still a single
optimal policy. This implies that the policy dynamically adapts its behavior based on
the conditioning of the task.

RL algorithms are one efficient way to obtain policies for problems formulated
in these frameworks. For MDP, popular methods include PPO [33], SAC [34], or
DQN [35], depending on the applications and the types of action and state spaces.
For POMDP, the same methods are often applied with models whose architecture
can deal with a history of observations and actions [36–38]. In these two single-agent
frameworks, aside from the complexity of finding them, selecting the best policy among
others is straightforward when knowing their expected returns. However, an agent
maximizing its return will be to the detriment of the return of some others in a mixed
cooperative-competitive POSG, making the choice of an optimal joint policy non-
trivial. If you fix the policies of all agents except i, denoted π−i, you can find the best
response policy in the set of argmaxπiGi(πi,π−i) with single-agent methods. It is then
possible to iteratively find the best response to the best response of others. However,
agents can all adapt to others’ strategies, leading to an infinite cycle of adaptation.
Another type of solution is a Nash equilibrium, achieved when no agents benefit from
changing its policy: ∀i, any πi′ is such that Gi(πi′ ,π−i) ≤ Gi(π) [39]. Several Nash
equilibria may exist in a POSG and may not provide the highest return. Approaches
to solving POSG are described in [40] and can be summarized grossly as training a
population of agents and thus learning against various strategies. Since agents of the
population will have different strategies, there is a need for a selection strategy to
deploy one in the real world. The Elo score [41] is an example of a metric to rank
agents from a population. The Elo system assigns each individual a rating computed
to evaluate one individual’s probability of winning against another. Examples of such
population-based training include Quake III Arena in Capture the Flag mode [42],
StarCraft [8] or the competitive StarCraft multi-agent challenge [43]. A popular but
complex method is policy space response oracles (PSRO) [44, 45].

RL is not the single existing approach to solve sequential decision-making problems.
We can, for example, also mention model predictive control techniques (MPC), origi-
nating from the control community [46]. These techniques use a model of the problem,

7



both of its transitions and reward functions, to compute a policy using mathemati-
cal programming approaches. Contrary to RL techniques, they are often constrained
to optimal sequential decision-making problems whose dynamics and reward function
exhibit specific strong properties, such as linearity or convexity. This is necessary for
the mathematical programming techniques to extract a successful policy from the
models, which can be given a priori or learned. One drawback of these techniques is
the higher computational cost since the algorithm solves an optimization problem at
the execution phase. In contrast, in RL, this computation is moved to the learning
phase. However, these mathematical programming techniques provide better actions
for a short-term horizon if the models are accurate, while RL usually performs better
in a long-term horizon [47]. Finally, it is possible to combine MPC and RL in different
ways [46, 47].

Another approach for solving sequential decision-making problems revolves around
imitation learning, where a dataset of states and actions is provided to learn a policy.
A modern example is foundation models that learn to solve several tasks from internet-
scale datasets [48]. When applied to decision-making, they are often called action
foundation models. These models are made of large networks trained to reproduce
actions taken in large datasets of demonstrations. These models are usually trained
to perform multiple tasks and are conditioned on the task. Hence, when conditioned
on the task targeted by an RL problem, they can be used to play the role of an RL
policy [49].

4 Reinforcement Learning In Practice

The training process for RL agents involves several phases to deploy successful poli-
cies in real-world applications. In these applications, RL agents are most commonly
employed as individual robot controllers. In this paper, higher-level agents that coor-
dinate or assign missions to others are not considered, i.e., hierarchical agents. A
critical challenge in the training process is ensuring that policies, whether pre-trained
in simulation or with synthetic or real data, can perform well when deployed in the
real world. This section highlights the steps in the training process and addresses the
challenges posed by such deployment.

Pre-Training

Directly learning in the real world from scratch is possible, but challenging. Today,
it is accomplished for tasks with a low probability of damaging the hardware and
involving low human interaction during the learning phase, e.g., learning to walk for
a quadruped [50]. In addition, it has to be data-efficient to be trained in a reason-
able time. For many tasks, speeding up training and avoiding catastrophic states and
actions that could break the hardware, usually explored when training from scratch,
are mandatory. Therefore, policies are usually trained in a simulator or with a dataset
before being deployed in reality. This is called pre-training [51–53]. Pre-training the
agents aims to provide successful policies for the desired tasks in confined conditions.
We distinguish three possible approaches for this phase:

8



1. Training in a simulator : The first training approach relies on a simulator to repli-
cate the robot’s real environment. RL agents are thus trained directly by interacting
with the simulator. A simulator enables gathering experience in a controlled envi-
ronment at scale [54–56] and without the risk of damaging hardware [53]. In real
conditions, it is difficult to accumulate the large amounts of training data that we
can with simulated environments executed in parallel. Moreover, evaluating the
reward is sometimes impossible in real life, but it is always possible in the simu-
lator because of the perfect information. The main challenge is bridging the gap
between the optimal policy obtained in simulation and reality. Indeed, the goal is
not necessarily to simulate reality perfectly but to ensure that if we train the agent
to act optimally in the simulator, then it will also act optimally in reality.

2. Training with a dataset : This second approach involves building a dataset of real
transitions. These transitions are typically tuples of state-action pairs, sometimes
with additional information such as a reward signal and the next state achieved.
These transitions are often collected from expert demonstrations, from synthetic
or real data. Gigantic datasets of robotic demonstrations already exist to train
any models [57]. This approach can avoid running a simulator, which also requires
significant effort to build. We distinguish two approaches for training with such
datasets. The first is to train a model to reproduce the behavior from the data
is referred to as imitation learning or behavior cloning. However, the quality of
the pre-trained model will depend on the quality and quantity of the training
demonstrations and cannot achieve better performance than these expert demon-
strations [58]. The second approach uses the dataset with rewards and next state
for reinforcement learning, and it is referred to as offline RL. Such methods can
achieve better performance than the expert ones [59].

3. Robotic foundation model : Another possibility is to take a model off the shelf
already trained for general purposes, such as foundation models [60, 61]. These are
large pre-trained models with an architecture designed to generalize across a wide
range of robotic tasks. They are typically trained on massive and diverse datasets of
real-world transitions, which provide the ability to perform well in various environ-
ments. However, the performance of a foundation model is limited by the quality
and diversity of the training data to the desired task.

A mix of these approaches is the most promising for agile drones. This mixed
pre-training could include starting from a policy pretrained with expert demonstra-
tions and improved by training with RL in simulation. This pre-training can reduce
the risk of breaking the drone when deployed because it has hopefully learned how
to avoid catastrophic failure and can explore the environment safely. Indeed, drones
require challenging pre-training or adding a safety layer to avoid breaking too many
of them [62].

Evaluation

Evaluating agents is a mandatory step before deploying policies in the real world
and validating them in real conditions. In contrast, the evaluation after deployment
validates the performance in the desired task, identifies performance gaps, and guides
fine-tuning to address these shortcomings. Usually, the evaluations at the pre-training

9



and the deployment phase differ. Indeed, the pre-training evaluation can leverage
perfect information knowledge in a simulator to compute the reward function and task-
specific metrics, in contrast to the evaluation after deployment, where the information
is imperfect. In addition, when evaluating multiple agents, computing an Elo score,
defined in Section 3, typically requires comparing one agent’s policy with many others,
which is not always possible at the deployment phase. In addition, all the information
needed to evaluate a reward function or task-specific metrics in the real world is
not always known. After deployment, a first evaluation without any fine-tuning of
the model is often necessary to evaluate the performance. This is called zero-shot
evaluation. All components of the reward may not be observable in the real world,
and only those available can be considered to evaluate the agent.

Deployment

Once a high-quality pre-trained policy is obtained, it will be deployed in reality. The
performance of the pre-trained policy often degrades when applied outside the confined
conditions of the simulator or dataset. Indeed, when a policy is deployed, it suffers
from distribution shifts. These shifts can happen in all components around the policy,
such as the observation space, the action space, the transition, and reward functions.
This justifies again the zero-shot evaluation. Usually, these shifts degrade the policy’s
performance, and a fine-tuning process is thus required.

Fine-tuning

Fine-tuning follows evaluation and involves refining the policy based on identified gaps.
This evaluation and fine-tuning process is often repeated multiple times. This itera-
tive process may include adapting the simulator, incorporating new real-world data,
or modifying the reward and transition functions to better align with deployment
scenarios. Through this cycle of evaluation and fine-tuning, RL agents progressively
improve their real-world performance. Kaufmann et al. [10], for instance, achieves
state-of-the-art performance in FPV drone racing by training an RL agent in simula-
tion and fine-tuning the simulator iteratively from real-world performance evaluation,
ultimately surpassing human expert FPV pilots.

To conclude, while pre-training provides an important starting point, the deploy-
ment phase introduces significant challenges, requiring careful iterative evaluation and
fine-tuning to achieve successful real-world performance. The next section covers these
challenges and the state-of-the-art methods to address them.

5 Challenges to deploy Reinforcement Learning for
Robots for any POSG

As described in Section 3, the complexity of solving a POSG is inherently related to
the definition of its components (n,S,A,P,O, O,R, γ,H, p0). Successful autonomous
robots in any POSG, meaning in any environment, for any task, interacting cooper-
atively or competitively with any number of agents, for any observation space, and
any action space, are still a utopia. Based on this, we consider five axes of complex-
ity when defining any real-world RL problem. These five axes are the diversity of the

10



Fig. 2: Axes of complexity for any POSG. The axes have three or four levels described
in the corresponding legends. The simplest setting is a POMDP, represented by level
1 for each axis.

deployed conditions of the agent, the number of tasks where the agent needs to be
successful, its degree of multi-agent interaction, the modalities of its action space, and
the modalities of its observation space. Each axis intrinsically affects the definition of
the POSG tuple and, therefore, the complexity of finding a successful policy. To iden-
tify the gaps and the roadmap toward learning a successful policy for any POSG, we
identified different levels in each axis.

The origin of all axes, the first level, is the standard RL setting, a POMDP.
Indeed, it comprises a stationary transition function, a stationary reward function, a
single agent, and stationary observation and action spaces. Recent works successfully
deployed robots in such settings [63, 64]. Others study the deployment by increasing
the level of one or two axes, but not all five [49, 60, 65]. Dealing with higher levels of
complexity in all five axes is required to train a single successful policy for any POSG.

In the following, we discuss each axis independently and then their correlation.
These axes are represented by a radar chart in Figure 2, where reaching the edge of
all axes represents the case where the environment can be any POSG. Each axis, its
state-of-the-art, and its levels are presented hereafter in dedicated sections.

5.1 Descriptions of the axes

Diversity of the deployed conditions.

The first axis represents the diversity of the deployed conditions for one task. The
components involved are P,O and O. Simulators allow RL agents to train in safe,
controlled, and scalable environments. This is also the case when pre-training from
data. However, as described in Section 4, deploying the learned policies to the real
world often results in significant performance degradation due to shifts in dynamics,
sensory inputs, and unmodeled noises.

Moreover, adversarial attacks, i.e., techniques to deceive machine learning mod-
els by introducing subtle perturbations to inputs, could become a standard method
to counter autonomous drone swarms, exploiting these vulnerabilities by targeting

11



sensory inputs. For example, adversarial perturbations in visual data might lead an
AI-driven drone to misidentify objects or targets, compromising its mission. Counter-
measures for autonomous drones must include defensive AI systems that are resilient
to adversarial attacks, while also developing offensive techniques to exploit these
vulnerabilities.

Different techniques exist to bridge the deployment gap and ensure resilience
against adversarial attacks:

1. Domain randomization [66] exposes agents to a wide range of simulated conditions
by varying environmental parameters (e.g., lighting, textures, or dynamics). By
training policies on diverse simulated experiences, agents learn to generalize better
in real-world scenarios.

2. Simulation fidelity improvements increase the fidelity of simulators by incorporating
better models of real-world dynamics. This can involve using advanced physics
engines or integrating real-world measurements to refine simulation parameters.

3. Robust policy learning, or robust RL algorithms, focus on learning policies that
can handle uncertainty and variability. Methods such as adversarial training have
shown promise in mitigating deployment discrepancies [67]. Adversarial training
also allows for mitigating adversarial attacks, enhancing the robustness under
adversarial conditions [68, 69].

These techniques improve the transferability of RL agents from confined simulated
conditions to real and more diverse ones. Successful robot controllers have bridged the
deployment gap in various challenging real environments [70]. This axis is composed
of four levels. The first level is when the policy is not deployed in the real world.
The second level consists of policies deployed in conditions strictly confined to those
encountered during pretraining, e.g., replicating the simulated environment in a lab.
The third level is achieved when the policy generalizes to unseen real-world environ-
ments close to the training conditions. Finally, a policy achieves the fourth level when
it succeeds in any real-world conditions.

To deploy AI-controlled drones on the battlefield, the 4th level needs to be reached.
Indeed, the drone control policy should generalize to the diversity encountered in
the combat zone. Nowadays, state-of-the-art FPV drone controllers are reaching level
3 [10], i.e., they are limited to a confined distribution of real-world environments close
to the training conditions. The next step for reinforcement learning applied to robots
is to train agents in environments with more diverse conditions, such as uncertain or
hostile airspace domains.

Number of tasks.

The second axis represents the number of tasks learned by a single policy. The com-
ponent concerned is mostly R, which can be conditioned on the task to be learned by
simply adding to the state a description of the task. As introduced in Section 3, the
task learned by the agent is defined by the reward function. To obtain a successful
policy for any POSG, it is thus necessary to be successful in any task. Advances in RL
have unlocked new capabilities for robots to solve many complex tasks [10, 29, 71–73].

12



Recent works show a shift from using a set of small agents, each solving a partic-
ular task, toward foundation models able to handle a set of tasks [48, 49, 60, 74].
This paradigm is inspired by the success of LLMs, which can generalize across multi-
ple tasks and adapt to new ones through fine-tuning or prompting. Similarly, robotic
foundation models can be fine-tuned to a particular set of tasks to improve perfor-
mance [61, 75]. Further research is needed to deploy robots that are successful at
zero-shot evaluation. This means they can directly execute any behavior, i.e., define
their reward function and execute the policy that will maximize it to solve any task
specified by the user using speech, image, or language. The main challenge in this axis
remains the availability of the data. Despite the progress made in the architecture of
these models, the biggest breakthrough comes from the internet-scaled high-quality
labeled datasets training them. In this direction, labeling with machine learning mod-
els unlabeled internet data seems to be a promising approach [49, 76]. Reinforcement
learning has also been used to generate data to train such models [58]. It remains to
be seen whether robotic foundation models can scale to solve any task and achieve the
level of performance observed for LLMs.

This axis has three levels. The first level represents policies that can only solve
one task. In the second level, the policies are successful in a set of tasks encountered
during training. The third and final level is when the agent can solve any task.

Degree of multi-agent interaction.

The third axis represents the degree of multi-agent interaction. The components
concerned are n,R and thus {{Ai,Oi, Ri}i∈{1,n}}. In the real world, several robots
interact together. In most of the works presented in this paper, deployed agents are
trained without considering the potential adaptations of other agents to their policy.
Considering that a single agent is learning in a multi-agent environment is equiva-
lent to considering that other agents have a stationary policy. This hypothesis is too
restrictive and illustrates the need for MARL, the extension of single-agent reinforce-
ment learning when several agents learn in the environment and therefore also adapt
to others. When looking at today’s works, such as in recent surveys [77, 78], multi-
agent approaches are common in robotics, especially for cooperative scenarios [79, 80].
However, it seems that the community is only at the premise of considering adap-
tations of other agents, particularly in environments with opposing goals. Especially,
deployed agents rarely consider the adaptations of others.

An additional parameter in multi-agent systems is the number of agents, and how
this number changes over time. In MARL, some environments are composed of a
fixed number of agents [8, 81], and others with a number of agents that can change
over time [82, 83]. The number of agents is a critical parameter for MARL, and, as
mentioned by Albrecht et al. [40], only between 2 and 10 agents are often considered,
and one MARL goal is to scale this number.

This third axis is made up of four levels. The first level is when there is no multi-
agent adaptation, meaning agents are trained agnostically of others. This is therefore
the single-agent paradigm. The second level consists of environments with a fixed
number of agents and a single fixed type of multi-agent interaction, meaning it is
either cooperation or competition. The third level is a mix. Either it is a cooperation

13



or competition, but with a variable number of agents, or it is a general interaction,
typically a mixed cooperative-competitive interaction, but with a fixed number of
agents. The fourth and last level is any interaction with any variable number of agents.

Modality of the observation space.

The fourth axis represents the modalities of the observation space. The components
concerned are O and O. The future robot controllers will process inputs of different
modalities, meaning texts, vocals, and images, etc. Indeed, robots acquire data through
their sensors, and their controller should account for all data sources to act. Nowa-
days, RL algorithms fuse many sensors to act [10, 73]. Recent research has focused on
the flexibility of the observation space to switch from one set of modes to another [60].
However, the research has not reached the performance level to operate robots with
any set of observation modes without retraining. For instance, future robots should
adapt to scenarios where sensors are unavailable or broken, or when new modalities
are introduced. Developing adaptive controllers capable of processing any combination
of modalities on the fly will be crucial for deploying robots in dynamic environments.
Foundations models trained with various data, from any sensors embedded in a com-
mon feature space, and fine-tuned with RL, show a promising avenue to bridge the
remaining gap. More research remains to be done to determine whether these models
can generalize and produce successful actions for unseen regions of these large spaces.

For this fourth axis, we also define three levels. The first level is when the obser-
vation space contains only one modality. The second level considers policies with an
observation space of multiple modalities. Finally, the final level is when the observation
space can switch from one set of modes to another.

Modality of the action space.

The fifth axis represents the modalities of the action space. The components con-
cerned areA. Finally, robot policies must handle diverse action spaces to accommodate
multiple robots with different capabilities, e.g., when a CUAS can be equipped with
different effectors. Traditional methods often train models for one robot, which lim-
its their applicability to others. Cross-embodiment learning focuses on the ability of
a single policy to perform across different robots. Nowadays, it is usually done by
determining a high-level action space common to all robots and using an abstrac-
tion layer. Afterwards, it might be, for example, a control-theory-based controller that
converts this high-level action to low-level commands for the actuators. Recent work
has demonstrated that foundation models can benefit from data collected in various
embodiments [84]. However, using high-level actions can limit the robot’s capabili-
ties because it does not directly control the robot’s actuators [65]. Extending learning
frameworks to handle heterogeneous action spaces and directly control actuators
without such abstractions presents an exciting avenue for future research [85].

Based on this observation, we distinguish three levels for this last axis. The first
level is when the agent has only one modality, i.e. it can only control one specific robot.
The second represents agents that operate different robots with a unique action space.
The third is composed of policies that can switch the action space for any low-level
robot controller.

14



Kaufmann et al. [10] Hirose et al. [49] Wang et al. [86]
Octo Model Team
et al. [60] Song et al. [65]

Kumar et al. [70] Xu et al. [58] Patiño et al. [80] Vogel et al. [73] Yang et al. [84]

Hoeller et al. [72] Shah et al. [48] Tan et al. [79] Black et al. [76] Pertsch et al. [85]

Fig. 3: An overview of the levels in each axis of multiple state-of-the-art articles in
robotics. The axes are arranged as follows: number of tasks at the top, modality of the
observation space at the top-left, diversity of deployed conditions at the bottom-left,
degree of multi-agent interaction at the bottom-right, modality of the action space at
the top-right.

5.2 Relations between axes

While significant progress has been made in advancing individual axes of complexity,
achieving high levels across all five simultaneously remains challenging. Figure 3 rep-
resents recent papers to which we referred earlier in this section on radar charts to
visualize the correlation between the different axes.

This highlights global trends in the robotics field. Robots capable of handling
multiple tasks, diverse observation modalities, and heterogeneous action spaces have
gained attention. These developments represent simultaneous advancements in three
out of the five axes, facilitated primarily by the emergence of foundation models.
Foundation models demonstrate promising results in zero-shot and fine-tuning evalu-
ations, though their performance is highly dependent on the quantity and quality of

15



the training data. In fact, the agents replicate expert demonstrations since these mod-
els are trained primarily with imitation learning. A key future direction is to improve
their capabilities by supplying more diverse data, and RL offers significant potential in
this regard. Indeed, RL can improve the performance of expert demonstrations using
a reward function. RL has already been employed to enhance foundation models in
language processing, addressing the challenges posed by the lack of data [87]. In addi-
tion, it remains to be seen whether foundation models could be applied in multi-agent
environments. The computational and memory constraints of embedded devices likely
require the optimization of these big models to ensure real-time operation without
compromising performance.

An additional observation is that when the levels of the diversity of the deployed
conditions increase, it reduces the advancement in the other axes. Successful deployed
policies in many conditions often struggle on the other axes but are still gradually
emerging. For instance, Black et al. [76] has deployed robots that handle a set of tasks
using multiple modes as inputs for different robots.

While single-agent tasks have seen advancements simultaneously across multi-
ple axes, extending these models to environments with multiple interacting agents,
whether cooperative, competitive, or mixed, is largely unexplored.

6 Roadmap toward the future of drone warfare

This section presents several scenarios of increasing complexity that define a roadmap
for the future of drone warfare. These scenarios are analyzed through the previously
introduced radar charts, allowing us to identify their respective level of complexity
for each axis. This represents our vision to lead the innovation towards augmenting
intelligence in warfare.

Scenario 1: Autonomous UAS and CUAS.

In the future, drones will be autonomous and might be controlled by RL con-
trollers [65]. In this case, since drones will not communicate with a pilot, jamming and
spoofing could become obsolete. Hence, EW countermeasures that disrupt such com-
munications may become less relevant in future CUAS developments. On the physical
countermeasures side, AI-driven drones take full advantage of the drone’s capabilities
and, therefore, decrease the performance and cost-efficiency of laser, defense drones,
or anti-aircraft guns, which already struggle to handle drones piloted by humans.
One solution is to also develop RL controllers to achieve superhuman performance in
controlling these CUAS.

In this first scenario, the agents have to succeed in a particular task with a fixed
observation and action space. Therefore, it involves solving a POMDP and deploying
the policy in any conditions, such as night or windy conditions, which means reaching
the edge of the first axis. We believe that if the axis related to the diversity of deployed
conditions is not mastered, a drone could be useless on the battlefield. This axis is
mandatory to ensure the robustness and reliability of autonomous systems, either UAS
or CUAS, and is crucial for real-world deployment. The levels of complexity of this
scenario are represented in Figure 4.

16



Fig. 4: Levels of Scenario 1.

Scenario 2: Autonomous competitive or cooperative UAS and CUAS
swarms.

As drone autonomy increases, human pilots will transition from controlling individ-
ual FPV drones to managing swarms of autonomous systems. In such a setting,
both UAS and CUAS systems must operate in environments where the presence of
other autonomous intelligent agents cannot be ignored. Traditional CUAS training
approaches often assume a stationary opponent and do not account for the evolv-
ing strategies of adversaries. To address this non-stationarity, it becomes necessary
to train effectors in a multi-agent setting, where competition drives adaptation and
robustness.

Furthermore, these autonomous systems might need to collaborate in real time
to defend against coordinated drone swarms. This requires not only effective policy
learning for cooperation and competition, but also mechanisms for decentralized coor-
dination. While current defense systems rely heavily on hierarchical command and
control to assign tasks to effectors, such centralized processes can introduce compu-
tational delays. In future scenarios, decentralized cooperation may become essential,
not just for scalability but also for real-time effectiveness against swarms. Deploy-
ing agents that can cooperate or compete effectively is already a big challenge and
deserves a specific step on the roadmap. The levels of complexity of this scenario are
represented in Figure 5.

Scenario 3: Autonomous mixed competitive-cooperative UAS and CUAS
swarms.

Building on the multi-agent interactions introduced in Scenario 2, this scenario gener-
alizes the problem to environments where agents must simultaneously cooperate with
allies and compete against adversaries. A key challenge lies in the variable composition
of these teams. The emergence and stability of cooperative or adversarial strategies
can be significantly affected by fluctuations in the number of agents, allies, or enemies.
Algorithms must therefore be robust not only to adversarial adaptation but also to

17



Fig. 5: Levels of Scenario 2.

Fig. 6: Levels of Scenario 3.

changes in team scales. Compared to Scenario 2, the deployment of effective policies
in this setting is more complex. It requires learning across a broader strategy space.
The increasing level of complexity of this scenario is illustrated in Figure 6.

Scenario 4: Multi-sensors multi-effectors autonomous UAS and CUAS
swarms.

UAS and CUAS can be equipped with different sensors to collect different types of
information or improve their capabilities, e.g., a drone with an infrared camera to
navigate at night instead of an RGB camera during daylight. On the effector side,
drones are increasingly weaponized to tackle more missions, and must therefore adapt
their strategy based on the effector equipped. It is indeed possible to train a single
policy for each pair of sensors/effectors, but future controllers must be able to adapt
to the available sensors and make decisions depending on the system’s capabilities.

18



Fig. 7: Levels of Scenario 4.

Consequently, the selection of the effector could be learned to handle the threat because
the agents have learned which agent should act with which effector in a particular
scenario. The levels of complexity of this scenario are represented in Figure 7.

Scenario 5: Multi-tasks multi-sensors multi-effectors autonomous UAS
and CUAS swarms.

In practice, it would be convenient to change the task of UAS and CUAS without
retraining agents. Indeed, previous scenarios involve training agents for a specific task.
In the future, a drone swarm commander will decide the task, and this task will con-
dition the drone controllers. The difficulties lie in handling any task given by the
commander. Additionally, this task can be defined in natural language or voice com-
mand, which facilitates the interaction of the commander with their swarm, facilitating
the human-machine interface. This scenario would be practical for future warfare.
Future CUAS and UAS could reach the last level for each axis of complexity of the
radar chart by leveraging a multi-agent configuration that can act effectively in any
condition for any threat using any sensor and any end-effector. The levels of complexity
of this scenario are represented in Figure 8.

7 Conclusion

In conclusion, this article presents an overview of drone warfare and reinforcement
learning in robotics. It enumerates the gaps between the state-of-the-art in RL and
desired solutions for future drone warfare. It finally proposes a roadmap, through
different scenarios, for transforming drone warfare through AI innovation, ensuring
these systems are prepared to meet the evolving demands of modern combat.

8 Ethical considerations

Although the transition from helping humans make decisions to fully autonomous
control of UAS promises to reduce human risk and accelerate decision-making on the

19



Fig. 8: Levels of Scenario 5.

battlefield, it simultaneously poses several ethical challenges. Automating the control
of weaponized systems prone to being misled by adversarial perturbations in sensor
inputs or jamming strategies can lead to unintended outcomes and raise questions of
accountability. When an AI-driven drone makes a mistake, it is unclear whether the
manufacturer, programmer, or commanding officer bears responsibility. To safeguard
against these dangers, deploying such algorithms requires rigorous explainability stud-
ies, human in the loop mechanisms, and harmonized legal frameworks that embed laws
directly into verifiable code. In their absence, the technologies designed to protect may
instead exacerbate instability and undermine the moral foundations of armed conflict.

References

[1] Kunertova, D.: Drones have boots: Learning from russia’s war in ukraine.
Contemporary Security Policy (2023)

[2] Konaev, M.: Tomorrow’s technology in today’s war: The use of AI and
autonomous technologies in the war in ukraine and implications for strategic
stability. Technical report, CNA, Arlington, VA (2023)

[3] Kunertova, D.: The war in ukraine shows the game-changing effect of drones
depends on the game. Bulletin of the Atomic Scientists (2023)

[4] Koukoudakis, G.: Drones’ contribution to the transformation of contemporary
warfare. Journal of Military Studies (2024)

[5] Mariano Zafra, A.R. Max Hunder, Kiyada, S.: How drone combat in ukraine is
changing warfare. Reuters (2024)

[6] Petrovski, A., Radovanović, M., Behlić, A.: Application of drones with artificial
intelligence for military purposes. In: 10th International Scientific Conference on

20



Defensive Technologies (OTEH) (2022)

[7] Bender, H., Kanderske, M.: Consumer drone warfare: Practices, aesthetics and
discourses of consumer drones in the Russo-Ukrainian War. Springer, Cham
(2024)

[8] Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A., Chung,
J., Choi, D.H., Powell, R., Ewalds, T., Georgiev, P., et al.: Grandmaster level in
starcraft ii using multi-agent reinforcement learning. nature (2019)

[9] Perolat, J., De Vylder, B., Hennes, D., Tarassov, E., Strub, F., Boer, V., Muller,
P., Connor, J.T., Burch, N., Anthony, T., et al.: Mastering the game of stratego
with model-free multiagent reinforcement learning. Science (2022)

[10] Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller, M., Koltun, V., Scaramuzza,
D.: Champion-level drone racing using deep reinforcement learning. Nature
(2023)

[11] Jang, K., Lichtlé, N., Vinitsky, E., Shah, A., Bunting, M., Nice, M., Piccoli, B.,
Seibold, B., Work, D.B., Monache, M.L.D., et al.: Reinforcement learning based
oscillation dampening: Scaling up single-agent rl algorithms to a 100 av highway
field operational test. arXiv:2402.17050 (2024)

[12] Ben, A.: Long read: Ukraine is losing the drone war. Intellinews (2024)

[13] Strategic Studies, T.E.C., Research: First person view drones. ECSSR (2024)

[14] Oliver Parken, T.R.: Chinese soldiers train to fend off fpv drones. The Warzone
(2024)

[15] Karadeniz, G., Özcan, A., Bayram, M., İnce, G.: Drone wars 3d: A game-based
simulation platform for testing aerial defence strategies against drone swarms.
Journal of Aeronautics and Space Technologies (2024)

[16] Silva, D.L.D., Machado, R., Coutinho, O.L., Antreich, F.: A soft-kill reinforce-
ment learning counter unmanned aerial system (c-uas) with accelerated training.
IEEE Access (2023)

[17] He, D., Chan, S., Guizani, M.: Communication security of unmanned aerial
vehicles. IEEE Wireless Communications (2017)

[18] Dhomane, P., Mathew, R.: Counter-measures to spoofing and jamming of drone
signals. Available at SSRN 3774955 (2020)

[19] Holding, R.C.: Red cat successfully passes field testing with doodle labs against
electronic warfare technology in ukraine. Indicate Media (2024)

[20] Kumari, N., Lee, K., Barca, J.C., Ranaweera, C.: Towards reliable identification

21



and tracking of drones within a swarm. Journal of Intelligent & Robotic Systems
(2024)

[21] Pope, A.P., Ide, J.S., Micovic, D., Diaz, H., Rosenbluth, D., Ritholtz, L., Twedt,
J.C., Walker, T.T., Alcedo, K., Javorsek, D.: Hierarchical Reinforcement Learning
for Air-to-Air Combat (2021)

[22] Russell, S.J., Norvig, P.: Artificial Intelligence: a Modern Approach. Pearson,
London, England (2016)

[23] Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial Intelligence (1998)

[24] Shapley, L.S.: Stochastic games. Proceedings of the national academy of sciences
(1953)

[25] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,
Cambridge (2018)

[26] Rengarajan, D., Vaidya, G., Sarvesh, A., Kalathil, D., Shakkottai, S.: Reinforce-
ment learning with sparse rewards using guidance from offline demonstration.
arXiv:2202.04628 (2022)

[27] Trott, A., Zheng, S., Xiong, C., Socher, R.: Keeping your distance: Solving sparse
reward tasks using self-balancing shaped rewards. Advances in Neural Information
Processing Systems (2019)

[28] Felten, F., Alegre, L.N., Nowe, A., Bazzan, A., Talbi, E.G., Danoy, G., Silva, B.:
A toolkit for reliable benchmarking and research in multi-objective reinforcement
learning. Advances in Neural Information Processing Systems (2023)

[29] Ma, Y.J., Liang, W., Wang, G., Huang, D.-A., Bastani, O., Jayaraman, D., Zhu,
Y., Fan, L., Anandkumar, A.: Eureka: Human-level reward design via coding
large language models. In: The Twelfth International Conference on Learning
Representations (2024)

[30] Yu, W., Gileadi, N., Fu, C., Kirmani, S., Lee, K.-H., Gonzalez Arenas, M.,
Lewis Chiang, H.-T., Erez, T., Hasenclever, L., Humplik, J., Ichter, B., Xiao, T.,
Xu, P., Zeng, A., Zhang, T., Heess, N., Sadigh, D., Tan, J., Tassa, Y., Xia, F.:
Language to rewards for robotic skill synthesis. Conference of Robot Learning
2023 (2023)

[31] Kwon, M., Xie, S.M., Bullard, K., Sadigh, D.: Reward design with language
models. In: The Eleventh International Conference on Learning Representations
(2023)

[32] Yu, C., Tan, Q., Lu, H., Gao, J., Yang, X., Wang, Y., Wu, Y., Vinitsky, E.: Icpl:

22



Few-shot in-context preference learning via llms. arXiv:2410.17233 (2025)

[33] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv:1707.06347 (2017)

[34] Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In:
International Conference on Machine Learning, pp. 1861–1870 (2018)

[35] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S.,
Hassabis, D.: Human-level control through deep reinforcement learning. Nature
(2015)

[36] Wierstra, D., Förster, A., Peters, J., Schmidhuber, J.: Recurrent policy gradients.
Logic Journal of IGPL (2010)

[37] Zhu, P., Li, X., Poupart, P., Miao, G.: On improving deep reinforcement learning
for pomdps. arXiv:1704.07978 (2017)

[38] Zhang, M., McCarthy, Z., Finn, C., Levine, S., Abbeel, P.: Learning deep neu-
ral network policies with continuous memory states. In: IEEE International
Conference on Robotics and Automation (ICRA) (2016)

[39] Nash, J.F.: Non-cooperative games. In: The Foundations of Price Theory Vol 4,
pp. 329–340. Routledge, London, England (2024)

[40] Albrecht, S.V., Christianos, F., Schäfer, L.: Multi-Agent Reinforcement Learning:
Foundations and Modern Approaches. MIT Press, Cambridge (2024)

[41] Elo, A.E.: The Rating of Chessplayers, Past and Present. Ishi press international,
New York (1978)

[42] Jaderberg, M., Czarnecki, W.M., Dunning, I., Marris, L., Lever, G., Castaneda,
A.G., Beattie, C., Rabinowitz, N.C., Morcos, A.S., Ruderman, A., et al.: Human-
level performance in 3d multiplayer games with population-based reinforcement
learning. Science (2019)

[43] Leroy, P., Pisane, J., Ernst, D.: Value-based CTDE methods in symmet-
ric two-team markov game: from cooperation to team competition. In: Deep
Reinforcement Learning Workshop NeurIPS (2022)

[44] Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Perolat, J.,
Silver, D., Graepel, T.: A unified game-theoretic approach to multiagent rein-
forcement learning. In: Advances in Neural Information Processing Systems
(2017)

23



[45] Muller, P., Omidshafiei, S., Rowland, M., Tuyls, K., Perolat, J., Liu, S., Hennes,
D., Marris, L., Lanctot, M., Hughes, E., Wang, Z., Lever, G., Heess, N., Grae-
pel, T., Munos, R.: A generalized training approach for multiagent learning. In:
International Conference on Learning Representations (2020)

[46] Reiter, R., Hoffmann, J., Reinhardt, D., Messerer, F., BaumgÃĪrtner, K., Sawant,
S., Boedecker, J., Diehl, M., Gros, S.: Synthesis of model predictive control and
reinforcement learning: Survey and classification. arXiv:2502.02133 (2025)

[47] Romero, A., Aljalbout, E., Song, Y., Scaramuzza, D.: Actor-critic model
predictive control: Differentiable optimization meets reinforcement learning.
arXiv:2306.09852 (2025)

[48] Shah, D., Sridhar, A., Dashora, N., Stachowicz, K., Black, K., Hirose, N., Levine,
S.: ViNT: A foundation model for visual navigation. In: 7th Annual Conference
on Robot Learning (2023)

[49] Hirose, N., Glossop, C., Sridhar, A., Shah, D., Mees, O., Levine, S.: Lelan:
Learning a language-conditioned navigation policy from in-the-wild video. In:
Conference on Robot Learning (2024)

[50] Smith, L., Kostrikov, I., Levine, S.: A walk in the park: Learning to walk in 20
minutes with model-free reinforcement learning. arXiv:2208.07860 (2022)

[51] Walke, H.R., Yang, J.H., Yu, A., Kumar, A., Orbik, J., Singh, A., Levine, S.:
Don’t start from scratch: Leveraging prior data to automate robotic reinforce-
ment learning. In: Liu, K., Kulic, D., Ichnowski, J. (eds.) Proceedings of The
6th Conference on Robot Learning. Proceedings of Machine Learning Research.
PMLR, New York (2023)

[52] Chebotar, Y., Vuong, Q., Hausman, K., Xia, F., Lu, Y., Irpan, A., Kumar, A.,
Yu, T., Herzog, A., Pertsch, K., Gopalakrishnan, K., Ibarz, J., Nachum, O., Son-
takke, S.A., Salazar, G., Tran, H.T., Peralta, J., Tan, C., Manjunath, D., Singh,
J., Zitkovich, B., Jackson, T., Rao, K., Finn, C., Levine, S.: Q-transformer: Scal-
able offline reinforcement learning via autoregressive q-functions. In: Tan, J.,
Toussaint, M., Darvish, K. (eds.) Proceedings of The 7th Conference on Robot
Learning. Proceedings of Machine Learning Research. PMLR, New York (2023)

[53] Sadeghi, F., Levine, S.: Cad2rl: Real single-image flight without a single real
image. In: Proceedings of Robotics: Science and Systems, Cambridge, Mas-
sachusetts (2017)

[54] Mittal, M., Yu, C., Yu, Q., Liu, J., Rudin, N., Hoeller, D., Yuan, J.L., Singh,
R., Guo, Y., Mazhar, H., Mandlekar, A., Babich, B., State, G., Hutter, M.,
Garg, A.: Orbit: A unified simulation framework for interactive robot learning
environments. IEEE Robotics and Automation Letters (2023)

24



[55] Coumans, E., Bai, Y.: PyBullet, a Python module for physics simulation for
games, robotics and machine learning. http://pybullet.org (2016–2021)

[56] Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based con-
trol. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(2012). IEEE

[57] Collaboration, E., O’Neill, A., Rehman, A., Gupta, A., Maddukuri, A., Gupta, A.,
Padalkar, A., Lee, A., Pooley, A., Gupta, A., Mandlekar, A., Jain, A., Tung, A.,
Bewley, A., Herzog, A., Irpan, A., Khazatsky, A., Rai, A., Gupta, A., Wang, A.,
Kolobov, A., Singh, A., Garg, A., Kembhavi, A., Xie, A., Brohan, A., Raffin, A.,
Sharma, A., Yavary, A., Jain, A., Balakrishna, A., Wahid, A., Burgess-Limerick,
B., Kim, B., Schölkopf, B., Wulfe, B., Ichter, B., Lu, C., Xu, C., Le, C., Finn, C.,
Wang, C., Xu, C., Chi, C., Huang, C., Chan, C., Agia, C., Pan, C., Fu, C., Devin,
C., Xu, D., Morton, D., Driess, D., Chen, D., Pathak, D., Shah, D., Büchler, D.,
Jayaraman, D., Kalashnikov, D., Sadigh, D., Johns, E., Foster, E., Liu, F., Ceola,
F., Xia, F., Zhao, F., Frujeri, F.V., Stulp, F., Zhou, G., Sukhatme, G.S., Salhotra,
G., Yan, G., Feng, G., Schiavi, G., Berseth, G., Kahn, G., Yang, G., Wang, G.,
Su, H., Fang, H.-S., Shi, H., Bao, H., Amor, H.B., Christensen, H.I., Furuta,
H., Bharadhwaj, H., Walke, H., Fang, H., Ha, H., Mordatch, I., Radosavovic, I.,
Leal, I., Liang, J., Abou-Chakra, J., Kim, J., Drake, J., Peters, J., Schneider, J.,
Hsu, J., Vakil, J., Bohg, J., Bingham, J., Wu, J., Gao, J., Hu, J., Wu, J., Wu,
J., Sun, J., Luo, J., Gu, J., Tan, J., Oh, J., Wu, J., Lu, J., Yang, J., Malik, J.,
Silvério, J., Hejna, J., Booher, J., Tompson, J., Yang, J., Salvador, J., Lim, J.J.,
Han, J., Wang, K., Rao, K., Pertsch, K., Hausman, K., Go, K., Gopalakrishnan,
K., Goldberg, K., Byrne, K., Oslund, K., Kawaharazuka, K., Black, K., Lin, K.,
Zhang, K., Ehsani, K., Lekkala, K., Ellis, K., Rana, K., Srinivasan, K., Fang,
K., Singh, K.P., Zeng, K.-H., Hatch, K., Hsu, K., Itti, L., Chen, L.Y., Pinto, L.,
Fei-Fei, L., Tan, L., Fan, L.J., Ott, L., Lee, L., Weihs, L., Chen, M., Lepert, M.,
Memmel, M., Tomizuka, M., Itkina, M., Castro, M.G., Spero, M., Du, M., Ahn,
M., Yip, M.C., Zhang, M., Ding, M., Heo, M., Srirama, M.K., Sharma, M., Kim,
M.J., Kanazawa, N., Hansen, N., Heess, N., Joshi, N.J., Suenderhauf, N., Liu, N.,
Palo, N.D., Shafiullah, N.M.M., Mees, O., Kroemer, O., Bastani, O., Sanketi, P.R.,
Miller, P.T., Yin, P., Wohlhart, P., Xu, P., Fagan, P.D., Mitrano, P., Sermanet, P.,
Abbeel, P., Sundaresan, P., Chen, Q., Vuong, Q., Rafailov, R., Tian, R., Doshi, R.,
Mart’in-Mart’in, R., Baijal, R., Scalise, R., Hendrix, R., Lin, R., Qian, R., Zhang,
R., Mendonca, R., Shah, R., Hoque, R., Julian, R., Bustamante, S., Kirmani, S.,
Levine, S., Lin, S., Moore, S., Bahl, S., Dass, S., Sonawani, S., Tulsiani, S., Song,
S., Xu, S., Haldar, S., Karamcheti, S., Adebola, S., Guist, S., Nasiriany, S., Schaal,
S., Welker, S., Tian, S., Ramamoorthy, S., Dasari, S., Belkhale, S., Park, S., Nair,
S., Mirchandani, S., Osa, T., Gupta, T., Harada, T., Matsushima, T., Xiao, T.,
Kollar, T., Yu, T., Ding, T., Davchev, T., Zhao, T.Z., Armstrong, T., Darrell, T.,
Chung, T., Jain, V., Kumar, V., Vanhoucke, V., Zhan, W., Zhou, W., Burgard,
W., Chen, X., Chen, X., Wang, X., Zhu, X., Geng, X., Liu, X., Liangwei, X., Li,
X., Pang, Y., Lu, Y., Ma, Y.J., Kim, Y., Chebotar, Y., Zhou, Y., Zhu, Y., Wu, Y.,

25

http://pybullet.org


Xu, Y., Wang, Y., Bisk, Y., Dou, Y., Cho, Y., Lee, Y., Cui, Y., Cao, Y., Wu, Y.-
H., Tang, Y., Zhu, Y., Zhang, Y., Jiang, Y., Li, Y., Li, Y., Iwasawa, Y., Matsuo,
Y., Ma, Z., Xu, Z., Cui, Z.J., Zhang, Z., Fu, Z., Lin, Z.: Open x-embodiment:
Robotic learning datasets and rt-x models. arXiv:2310.08864 (2024)

[58] Xu, C., Li, Q., Luo, J., Levine, S.: Rldg: Robotic generalist policy distillation via
reinforcement learning. arXiv:2412.09858 (2024)

[59] Levine, S., Kumar, A., Tucker, G., Fu, J.: Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv:2005.01643 (2020)

[60] Octo Model Team, Ghosh, D., Walke, H., Pertsch, K., Black, K., Mees, O., Dasari,
S., Hejna, J., Xu, C., Luo, J., Kreiman, T., Tan, Y., Sanketi, P., Vuong, Q., Xiao,
T., Sadigh, D., Finn, C., Levine, S.: Octo: An open-source generalist robot policy.
In: Proceedings of Robotics: Science and Systems, Delft, Netherlands (2024)

[61] Yang, S., Nachum, O., Du, Y., Wei, J., Abbeel, P., Schuurmans, D.: Foun-
dation models for decision making: Problems, methods, and opportunities.
arXiv:2303.04129 (2023)

[62] Tang, C., Abbatematteo, B., Hu, J., Chandra, R., Mart́ın-Mart́ın, R., Stone, P.:
Deep reinforcement learning for robotics: A survey of real-world successes. In:
Proceedings of the AAAI Conference on Artificial Intelligence (2025)

[63] Johannink, T., Bahl, S., Nair, A., Luo, J., Kumar, A., Loskyll, M., Ojea, J.A.,
Solowjow, E., Levine, S.: Residual reinforcement learning for robot control. In:
2019 International Conference on Robotics and Automation (ICRA) (2019)

[64] Wang, D., Gao, N., Liu, D., Li, J., Lewis, F.L.: Recent progress in reinforcement
learning and adaptive dynamic programming for advanced control applications.
IEEE/CAA Journal of Automatica Sinica (2024)

[65] Song, Y., Romero, A., Müller, M., Koltun, V., Scaramuzza, D.: Reaching the limit
in autonomous racing: Optimal control versus reinforcement learning. Science
Robotics (2023)

[66] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain
randomization for transferring deep neural networks from simulation to the real
world. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2017)

[67] Schott, L., Delas, J., Hajri, H., Gherbi, E., Yaich, R., Boulahia-Cuppens, N., Cup-
pens, F., Lamprier, S.: Robust deep reinforcement learning through adversarial
attacks and training: A survey. arXiv:2403.00420 (2024)

[68] Gleave, A., Dennis, M., Wild, C., Kant, N., Levine, S., Russell, S.: Adversarial
policies: Attacking deep reinforcement learning. arXiv:1905.10615 (2019)

26



[69] Abouelyazid, M.: Adversarial deep reinforcement learning to mitigate sensor
and communication attacks for secure swarm robotics. Journal of Intelligent
Connectivity and Emerging Technologies (2023)

[70] Kumar, A., Fu, Z., Pathak, D., Malik, J.: Rma: Rapid motor adaptation for legged
robots. arXiv:2107.04034 (2021)

[71] Han, D., Mulyana, B., Stankovic, V., Cheng, S.: A survey on deep reinforcement
learning algorithms for robotic manipulation. Sensors (2023)

[72] Hoeller, D., Rudin, N., Sako, D., Hutter, M.: Anymal parkour: Learning agile
navigation for quadrupedal robots. Science Robotics (2024)

[73] Vogel, D., Baines, R., Church, J., Lotzer, J., Werner, K., Hutter, M.: Robust
ladder climbing with a quadrupedal robot. arXiv:2409.17731 (2024)

[74] Quartey, B., Rosen, E., Tellex, S., Konidaris, G.: Verifiably following complex
robot instructions with foundation models. arXiv:2402.11498 (2024)

[75] Firoozi, R., Tucker, J., Tian, S., Majumdar, A., Sun, J., Liu, W., Zhu, Y., Song,
S., Kapoor, A., Hausman, K., Ichter, B., Driess, D., Wu, J., Lu, C., Schwa-
ger, M.: Foundation models in robotics: Applications, challenges, and the future.
arXiv:2312.07843 (2023)

[76] Black, K., Brown, N., Driess, D., Esmail, A., Equi, M., Finn, C., Fusai, N., Groom,
L., Hausman, K., Ichter, B., et al.: π0: A vision-language-action flow model for
general robot control. arXiv:2410.24164 (2024)

[77] Orr, J., Dutta, A.: Multi-agent deep reinforcement learning for multi-robot
applications: A survey. Sensors (2023)

[78] Wang, Y., Damani, M., Wang, P., Cao, Y., Sartoretti, G.: Distributed reinforce-
ment learning for robot teams: A review. Current Robotics Reports (2022)

[79] Tan, A.H., Bejarano, F.P., Zhu, Y., Ren, R., Nejat, G.: Deep reinforcement learn-
ing for decentralized multi-robot exploration with macro actions. IEEE Robotics
and Automation Letters (2022)

[80] Patiño, D., Mayya, S., Calderon, J., Daniilidis, K., Saldaña, D.: Learning
to navigate in turbulent flows with aerial robot swarms: A cooperative deep
reinforcement learning approach. IEEE Robotics and Automation Letters (2023)

[81] Samvelyan, M., Rashid, T., Witt, C., Farquhar, G., Nardelli, N., Rudner, T.G.J.,
Hung, C.-M., Torr, P.H.S., Foerster, J., Whiteson, S.: The starcraft multi-agent
challenge. In: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems (2019)

27



[82] Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., Mor-
datch, I.: Emergent tool use from multi-agent autocurricula. In: International
Conference on Learning Representations (2019)

[83] Rahman, A., Carlucho, I., Höpner, N., Albrecht, S.V.: A general learning frame-
work for open ad hoc teamwork using graph-based policy learning. Journal of
Machine Learning Research (2023)

[84] Yang, J., Glossop, C., Bhorkar, A., Shah, D., Vuong, Q., Finn, C., Sadigh, D.,
Levine, S.: Pushing the limits of cross-embodiment learning for manipulation and
navigation. arXiv:2402.19432 (2024)

[85] Pertsch, K., Stachowicz, K., Ichter, B., Driess, D., Nair, S., Vuong, Q., Mees, O.,
Finn, C., Levine, S.: Fast: Efficient action tokenization for vision-language-action
models. arXiv:2501.09747 (2025)

[86] Wang, R., Lyu, M., Zhang, J.: A multi-robot collaborative exploration method
based on deep reinforcement learning and knowledge distillation. Mathematics
(2025)

[87] OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L.,
Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin,
I., Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M., Belgum, J., Bello,
I., Berdine, J., Bernadett-Shapiro, G., Berner, C., Bogdonoff, L., Boiko, O., Boyd,
M., Brakman, A.-L., Brockman, G., Brooks, T., Brundage, M., Button, K., Cai,
T., Campbell, R., Cann, A., Carey, B., Carlson, C., Carmichael, R., Chan, B.,
Chang, C., Chantzis, F., Chen, D., Chen, S., Chen, R., Chen, J., Chen, M.,
Chess, B., Cho, C., Chu, C., Chung, H.W., Cummings, D., Currier, J., Dai, Y.,
Decareaux, C., Degry, T., Deutsch, N., Deville, D., Dhar, A., Dohan, D., Dowling,
S., Dunning, S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus, L., Felix,
N., Fishman, S.P., Forte, J., Fulford, I., Gao, L., Georges, E., Gibson, C., Goel,
V., Gogineni, T., Goh, G., Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray,
S., Greene, R., Gross, J., Gu, S.S., Guo, Y., Hallacy, C., Han, J., Harris, J., He,
Y., Heaton, M., Heidecke, J., Hesse, C., Hickey, A., Hickey, W., Hoeschele, P.,
Houghton, B., Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S., Jang,
J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S., Jonn, B., Jun, H., Kaftan,
T., Kaiser, Kamali, A., Kanitscheider, I., Keskar, N.S., Khan, T., Kilpatrick, L.,
Kim, J.W., Kim, C., Kim, Y., Kirchner, J.H., Kiros, J., Knight, M., Kokotajlo,
D., Kondraciuk, Kondrich, A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo,
V., Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D., Li, C.M., Lim,
R., Lin, M., Lin, S., Litwin, M., Lopez, T., Lowe, R., Lue, P., Makanju, A.,
Malfacini, K., Manning, S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S.M., McLeavey, C., McMillan, P., McNeil,
J., Medina, D., Mehta, A., Menick, J., Metz, L., Mishchenko, A., Mishkin, P.,
Monaco, V., Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O., Mély, D.,
Nair, A., Nakano, R., Nayak, R., Neelakantan, A., Ngo, R., Noh, H., Ouyang, L.,

28



O’Keefe, C., Pachocki, J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng, A., Perelman, A., Avila
Belbute Peres, F., Petrov, M., Oliveira Pinto, H.P., Michael, Pokorny, Pokrass,
M., Pong, V.H., Powell, T., Power, A., Power, B., Proehl, E., Puri, R., Radford,
A., Rae, J., Ramesh, A., Raymond, C., Real, F., Rimbach, K., Ross, C., Rotsted,
B., Roussez, H., Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry, G.,
Schmidt, H., Schnurr, D., Schulman, J., Selsam, D., Sheppard, K., Sherbakov, T.,
Shieh, J., Shoker, S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama,
K., Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such, F.P., Summers, N.,
Sutskever, I., Tang, J., Tezak, N., Thompson, M.B., Tillet, P., Tootoonchian,
A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J.F.C., Vallone, A.,
Vijayvergiya, A., Voss, C., Wainwright, C., Wang, J.J., Wang, A., Wang, B.,
Ward, J., Wei, J., Weinmann, C., Welihinda, A., Welinder, P., Weng, J., Weng,
L., Wiethoff, M., Willner, D., Winter, C., Wolrich, S., Wong, H., Workman, L.,
Wu, S., Wu, J., Wu, M., Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba,
W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J., Zhuk, W.,
Zoph, B.: Gpt-4 technical report. arXiv:2303.08774 (2024)

29


	Introduction
	Drone Warfare
	Reinforcement Learning
	Reinforcement Learning In Practice
	Challenges to deploy Reinforcement Learning for Robots for any POSG
	Descriptions of the axes
	Relations between axes

	Roadmap toward the future of drone warfare
	Conclusion
	Ethical considerations

