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ABSTRACT

Multi-layer networks are widely utilized in various applications, including so-
cial networks, biological networks, and Internet typologies. In these networks,
link prediction is a longstanding issue that predicts missing links based on the
observed structures across all layers, thereby assisting in tasks such as network re-
covery and drug-target prediction. However, existing link prediction methods tend
to learn nontransferable intra-layer representations that cannot generalize well to
other layers, which results in inefficient utilization of the structural correlations
between layers in multi-layer networks. To address this, we propose a novel graph
embedding method called Adversarial Enhanced Representation (AER) for link
prediction in multi-layer networks. AER comprises three modules: a represen-
tation generator, a layer discriminator, and a link predictor. The representation
generator is designed to learn and fuse the links’ inter-layer and intra-layer rep-
resentations. Also, the layer discriminator aims to identify the layer sources of
learned inter-layer representations. During a minimax two-player game, the rep-
resentation generator attempts to learn inter-layer transferable representations to
deceive the layer discriminator. In order not to be deceived, the layer discrim-
inator attempts to accurately distinguish the layer sources of learned inter-layer
representations. Finally, the link predictor works in collaboration with the repre-
sentation generator to predict whether a link is a missing link based on the adaptive
fusion between inter-layer transferable and intra-layer representations. To validate
the effectiveness of our proposed method, we conduct extensive experiments on
real-world datasets. The experimental results demonstrate that AER outperforms
state-of-the-art methods in link prediction performance for multi-layer networks.

1 INTRODUCTION

In recent years, the analysis of complex networks has seen a surge in interest, leading to the pop-
ularity of the research line of multi-layer networks Poledna et al. (2015); Belyi et al. (2017); Lei
et al. (2020). The structures in multi-layer networks that consist of different layers provide a more
comprehensive representation of interactions and information exchanges across different sources
Zhang et al. (2005). For example, people engage in various correlated forms of communication
and interaction, such as friendships, virtual social relationships, and telephone communications. In
multi-layer networks, the main task of link prediction is to predict missing links based on the ob-
served structures across all layers Kumar et al. (2020). However, unlike traditional link prediction
in single-layer networks, link prediction in multi-layer networks poses the challenge of effectively
leveraging inter-layer and intra-layer structural informaiton to achieve accurate predictions.

Existing link prediction methods, including both topological calculation methods Samei & Jalili
(2019); Nasiri et al. (2022) and deep learning methods Jalili et al. (2017); De Bacco et al. (2017),
have shown impressive results. Topological calculation methods exploit the topological structures
to predict the existing possibility of unobserved links between two known nodes Yao et al. (2017).
On the other hand, deep learning methods have achieved impressive performance improvements by
leveraging their superior feature extraction capabilities Shan et al. (2020). However, these existing
methods often focus on the topology structures within individual layers and tend to learn nontrans-
ferable intra-layer representations that cannot generalize well to other layers. They cannot efficiently
utilize the structural correlations between layers in multi-layer networks. They primarily learn intra-
layer representations for link prediction on each layer, neglecting the potential benefits of inter-layer
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representations from other layers. This limitation significantly restricts the link prediction perfor-
mance in multi-layer networks. Although the interactions between nodes may vary across layers,
nodes that are the same in different layers often exhibit similar preferences or patterns in link gener-
ation Bai et al. (2021). For instance, if two people are friends in one layer, there is a high likelihood
that they will engage in conversations in another layer. Although the intra-layer representations in
different layers have some specific ones that cannot be transferable to other layers, they have the
possibilities to provide the transferable ones as the inter-layer representations for other layers to
improve the link prediction performance. Hence, in this research, we aim to simultaneously utilize
both inter-layer and intra-layer representations for link prediction in multi-layer networks.

To achieve this, the first challenge is to identify transferable ones in the intra-layer representations
from different layers. Although these representations are difficult to track because of their dynamic
and high-dimensional characteristics, they have the possibility to be detected and measured by re-
ducing the differences of the representations of links corresponding to different layers. We attempt
to introduce adversarial training to confuse the representations’ layer sources to obtain the transfer-
able ones. The second challenge is how to fuse the inter-layer and intra-layer representations for link
prediction on a given layer. Since the structural correlations between different layers are changeable,
it is difficult to solve this change in an unified manner. We try to reconstruct the gated unit to achieve
the adaptive fusion between inter-layer and intra-layer representations during link prediction.

To address these challenges, we propose an end-to-end framework called Adversarial Enhanced Rep-
resentation (AER) for link prediction in multi-layer networks. Our proposed framework consists
of three main components: a representation generator, a layer discriminator, and a link predictor.
The representation generator is proposed to learn the inter-layer and intra-layer representations of
links, respectively. A gated unit in it is further reconstructed to achieve a adaptive fusion between
inter-layer and intra-layer representations. This allows us to extract both inter-layer and intra-layer
information from the network for graph embedding. The layer discriminator is designed to identify
the layer to which a link belongs. It collaborates with the representation generator in an adversarial
training process, aiming to better learn inter-layer transferable representations. Durng the minimax
two-player game between the representation generator and layer discriminator, the representation
generator attempts to learn inter-layer transferable representations to deceive the layer discrimina-
tor. In order not to be deceived, the layer discriminator attempts to accurately distinguish the layer
sources of the learned inter-layer representations. Finally, the link predictor works in collaboration
with the representation generator to predict whether a link is a missing link. By simultaneously
utilizing inter-layer and intra-layer representations, the AER exploits the multi-layer correlation to
enhance the link prediction performance in multi-layer networks.

Our main contributions are as follows:

• To efficiently utilize the multi-layer correlation for link prediction, we propose a novel
method that combines the inter-layer transferable representations with the intra-layer rep-
resentations to improve the link prediction performances in multi-layer networks.

• To acquire inter-layer transferable representations, a minimax two-player game between the
representation generator and layer discriminator is subtly designed via adversarial training.

• To enhance the links’ representations for link prediction in multi-layer networks, we pro-
pose an efficient mechanism to achieve the adaptive fusion between inter-layer and intra-
layer representations on a given layer.

• Extensive experiments on public datasets demonstrate that our method outperforms several
state-of-the-art ones in link prediction in multi-layer networks. A simplified version of the
codes have been published.

2 RELATED WORK

Link prediction in the graph-based networks is used to predict the possibility of a link between two
nodes that have not yet been linked through known nodes, topology, and other information Liben-
Nowell & Kleinberg (2007). With the depth of research, more and more scholars begin to focus on
multi-layer networks Szell et al. (2010); Lee et al. (2015); Pujari & Kanawati (2015). Currently, ex-
isting link prediction methods for multi-layer networks are mainly divided into topology calculation
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methods Najari et al. (2019); Abdolhosseini-Qomi et al. (2020); Luo et al. (2021) and deep learning
methods Jalili et al. (2017); Mandal et al. (2018); Shan et al. (2020).

Topology calculation methods usually tend to calculate similarity scores between unlinked node
pairs using network topology information. Najari et al. (2019) developed a link prediction frame-
work that comprehensively considered the inter-layer similarity and features extracted from the pre-
diction layer. In addition, Abdolhosseini-Qomi et al. (2020) proposed a layer reconstruction method,
which utilizes the structural features of other layers for the optimal reconstruction of the target layer
structure. Further, Luo et al. (2021) proposed a new multi-attribute decision making method which
defines a layer similarity measure based on cosine similarity to achieve the weighting of each layer.

Deep learning methods formalize link prediction as a supervised binary classification problem, in
which prediction models are trained according to the features of node pairs extracted or learned
from the observed network structures. Specifically, Jalili et al. (2017) reported that, compared with
naive Bayes and k-nearest neighbors, support vector machines provide better prediction perfor-
mance. Mandal et al. (2018) reported that the quality of the feature group selection significantly
influences the model’s prediction effect. Shan et al. (2020) used a set of elaborate structural features
of node pairs to feed a classification model and extracted complex structural features of node pairs
from all layers for link prediction in multi-layer networks.

However, the methods above cannot achieve satisfactory link prediction performances in multi-
layer networks because of their inefficient utilization of the multi-layer correlation. They have no
ability to fuse the inter-layer representations and the intra-layer representations to improve the link
prediction performance. The links among sharing nodes may belong to different layers, with each
layer having intra-layer representations that are not sharable with other layers. Deep learning models
tend to learn these intra-layer representations from links and may provide contradictory prediction
results for links in different layers. Therefore, our research aims to learn inter-layer transferable
representations to enrich intra-layer representations for link prediction in multi-layer networks.

3 PROBLEM DEFINITION

In this study, we aim to solve the the task of link prediction in multi-layer networks. To facilitate
formulation, a multi-layer network with K layers is denoted by G = (g1, g2, . . . , gk, . . . , gK),
where K ≥ 2 and gk represents the k-th layer network. In addition, to design a universal method,
we define gk = (V k, Ek) as an unweighted and undirected graph, where V k and Ek represent the
existing node set and edge set in the k-th layer, respectively. In the k-th layer, some existent links are
observed in Ek, whereas others are unobserved in Ek

u . We treat the different types of interactions in
a complex reality network as different layers of the network. Each layer has the same set of nodes
and a different set of edges, i.e., E = {E1, E2, . . . , EK}, Eu = {E1

u, E
2
u, . . . , E

K
u }. Formally, we

define the link prediction problem in multi-layer networks as follows. Given G = (g1, g2, . . . , gK),
we design a matching set Ms = {⟨e, δ⟩ |e ∈ Eu ∩ δ ∈ [0, 1]}, where each unobserved link e in Eu

is assigned a reasonable value δ to quantify its existent likelihood. The link prediction can be a
binary classification problem, which classifies unobserved links in Eu into the missing links set Em

and nonexistent links set En. The perfect solution to this problem is that δ = 1 for unobserved
existent links and δ = 0 for nonexistent links.

4 METHODOLOGY

Our method aims to exploit the multi-layer correlation to improve the link prediction performance in
multi-layer networks. To achieve this goal, the proposed AER integrates a representation generator,
a layer discriminator and a link predictor, as shown in Figure 1. First, the representation generator
learns inter-layer transferable representations and intra-layer representations and fuses them together
using a gated unit. Then, in order to avoid being fooled by the representation generator, the layer
discriminator aims to correctly identify the layer source of learned inter-layer representations, which
assists the representation generator to generate more realistic and effective inter-layer transferable
representations. Finally, the link predictor is built on top of the representation generator and uses
the fused enhanced representations of links to perform the primary link prediction task. The detailed
descriptions of each component will be introduced in the following.
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Figure 1: The overview of Adversarial Enhanced Representation (AER).

4.1 REPRESENTATION GENERATOR

Graph structured data can be processed and learned using different methods, including graph convo-
lutional methods such as Wei et al. (2019) and node embedding methods such as Grover & Leskovec
(2016). Among them, GCN is based on the linear combination of adjacency matrix and feature ma-
trix to propagate the information, and the core idea is to use the edges to aggregate node information
to generate new node representations. In this work, we use the GCNs to get the initial representation
of nodes and edges. Limited by the attributes of multi-layer networks, there is not a simple and ba-
sic method to directly extract the representations from multi-layer graphs. Hence, we use multiple
GCNs to separately extract the network structure information of each layer in multi-layer networks
(i.e., there are K GCNs attributed to a K-layer network graph).

Specifically, for each layer, we convert the network topology to the adjacency matrix Ak and set the
node ID to the initial matrix X. Then the pre-processing in the k-layer network can be denoted:

Hk(l+1) = σ(D̃k
− 1

2
ÃkD̃k

− 1
2
Hk(l)W k(l)), (1)

where Ãk = Ak+I , I denotes the identity matrix, D̃k denotes the degree matrix of Ãk, W k denotes
the weight, Hk(0) = Xk, and σ(·) denotes the activation function. Each convolutional layer handles
only first-order neighborhood information, and multi-order neighborhood information can be trans-
ferred by stacking several convolutional layers. In this work, we denote the number of convolutional
layers l as 2, in other words, Hk(1) ∈ R|V |×d′

is the node representations Nk processed by GCNs
in the k-th network layer, where d′ denotes the dimension of the node representations. Then, the
initial representation of a link e in the k-th network layer can be denoted as:

IRk
e = Nk

nl
⊕Nk

nr
, (2)

where nl and nr denote the left and right nodes of the link e respectively, ⊕ denotes the concatena-
tion operation, and the dimension of the edge representations can be denoted as d = 2d′. Therefore,
IR = {IR0, IR1, . . . , IRK} denotes the initial representations of edges in the multi-layer network.

Next, in order to learn fine-grained representations, we apply CNNs to further learn inter-layer
transferable representations TR and intra-layer representations SR. The filtering operation of con-
secutive h edges starting from the i-th edge can be expressed as:

TR = σ(Wt · IRi:i+h−1), (3)

where σ(·) denotes the activation function and Wt denotes the weight of the convolution filter.
Similarly, the intra-layer representations SR is obtained:

SR = σ(Ws · IRi:i+h−1), (4)

where Ws denotes the weight of the corresponding convolution filter.

4



Under review as a conference paper at ICLR 2024

In this research, we aim to aggregate multi-layer information to improve link prediction perfor-
mances. To achieve this goal, we introduce a gated unit from Arevalo et al. (2017) to fuse the
inter-layer and intra-layer representations of links. The data flow diagram of this gated unit is shown
in Figure 1. Formulally, the weight of the fusion operation is calculated by:

z = σ(Wz · [SR⊕ TR]), (5)

where ⊕ denotes the concatenation operation and Wz denotes the associated learnable parameter
matrix. Then, the final enhanced representations of links that are ultimately used to predict missing
links in multi-layer networks are defined as ER:

ER = z ∗ tanh(Wzs · SR) + (1− z) ∗ tanh(Wzt · TR), (6)

where Wzs and Wzt denotes the associated parameter, and tanh(·) denotes the activation function.

We denote the representation generator as Mr(G; θr), where G denotes the original multi-layer
network and θr denotes all parameters in the representation generator. The generator passes TR
to the discriminator for cooperative learning to generate better and realistic inter-layer transferable
representations, and the corresponding learning parameter involved is defined as θr− . Meanwhile,
the link predictor uses the final enhanced representations ER from the generator to predict missing
links in multi-layer networks, and they learn better parameters θr together.

4.2 LAYER DISCRIMINATOR

To learn inter-layer transferable representations of links in the multi-layer network, the first step is to
identify the differences between representations at different layers. To measure this difference, we
design the layer identifier, which is mainly composed of two fully connected layers and correspond-
ing activation functions. We use Md(TR; θd) to denote the layer discriminator, where θd denotes all
parameter that the layer discriminator needs to learn.

Specifically, for a given link sample e, the purpose of this module is to identify which layer of the
multi-layer network the link e originates from based on the representation TRe passed in by the
generator. The process is formulated as:

De = Softmax[W (1)T ·ReLU(W (0)T · TRe + b(0)) + b(1)], (7)

where W (0) ∈ Rd×h, b(0) ∈ Rh×1 and ReLU(·) denote the weight matrix, the bias vector and
the activation function of the first fully connected layer respectively, h denotes the dimension of the
hidden layer, and W (0)T denotes the transpose of W (0). Similarly, W (1) ∈ Rh×K , b(1) ∈ RK×1

and Softmax(·) denote the weight matrix, the bias vector, and the activation function of the second
fully connected layer, respectively. Then, we define the identification loss of the layer discriminator
using cross entropy as follows:

Lossd(θr− , θd) = − 1

|M |
Σe∈M [Y ′

e · log(De)], (8)

where M denotes the set of all link samples and |M | denotes the number. Y ′
e denotes the ground

layer label of the link sample e in one-hot format which is a K-dimensional vector like De. For
example, [0, 1, 0] indicates that it originates from the 2-th layer in a 3-layer network.

To achieve the purpose of correctly identifying the layer sources of the learned inter-layer repre-
sentations, the layer discriminator will adapt to reduce the loss Lossd(θr− , θd). When this loss is
smaller, it indicates that the effect of the layer discriminator is better, that is, the fed TR can help the
discriminator better distinguish different layers. Conversely, the greater the loss, the more it reflects
that the TR given by the generator is non-identifiable and inter-layer transferable.

4.3 LINK PREDICTOR

The link predictor is built on top of the representation generator to accomplish our main task of link
prediction. It is fed with the enhanced representations ER given by the generator that incorporates
the inter-layer and intra-layer representation, and passes through a fully connected layer to give
the predicted result. We denote the link predictor as Mp(ER; θp), where θp denotes all learned
parameters. For a given link sample e, the prediction process can be expressed as follows:

Pe = Softmax(WT
p · ERe + bp), (9)
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where Softmax(·) is used to normalize the predicted result, Wp ∈ Rd×2 and bp ∈ R2×1 denote
the weight matrix and the bias vector, respectively. Then, the predicted loss is defined as follows:

Lossp(θr, θp) = − 1

|M |
Σe∈M [Ye · log(Pe)], (10)

where Ye denotes the ground label of the link sample e in one-hot format which is a 2-dimensional
vector like Pe. Specifically, [1, 0] indicates that the link is missing, and [0, 1] indicates that the link
exists. To better realize the prediction of missing links, the model seeks to minimize the prediction
loss. The process of determining the optimal parameters can be expressed as follows:

(θ̂r, θ̂p) = arg min
θr,θp

Lossp(θr, θp). (11)

4.4 MODEL INTEGRATION

In this section, we detail how the representation generator, the layer discriminator, and the link pre-
dictor work together for link prediction in multi-layer networks. On the one hand, the generator con-
tinuously generates inter-layer transferable representations so that the discriminator cannot correctly
distinguish the layer sources of the inputted representations and strives to maximize Lossd(θr− , θd).
On the other hand, in order not to be fooled by the generator, the discriminator strives to minimize
Lossd(θr− , θd). A minimax game is formed between the representation generator and the layer dis-
criminator as in Goodfellow et al. (2014), and the cooperation makes the model finally capture more
realistic inter-layer transferable representations TR. Then, the representation generator cooperates
with the link predictor to achieve the prediction task. The overall loss function is defined as follows:

Lossfinal(θr, θd, θp) = Lossp(θr, θp)− Lossd(θr− , θd). (12)

Then, the parameter set selected by the model is the saddle point of the overall loss:

(θ̂r, θ̂p) = arg min
θr,θp

Lossfinal(θr, θ̂d, θp), (13)

θ̂d = argmax
θd

Lossfinal(θ̂r− , θd). (14)

To achieve this goal, we add a gradient reversal layer which is introduced in Ganin & Lempitsky
(2015) in the middle of the two modules. In the backpropagation process, the loss is automatically
reversed before propagating to the representation generator. We use a stochastic gradient descent
algorithm to optimize the model, and the parameter update process is as follows:

θr = θr − η(
∂Lossp
∂θr

− ∂Lossd
∂θr

), (15)

where η denotes the learning rate, which decays with iteration during the training stage:

η =
η0

(1 + α× p)β
(16)

where p denotes the ratio of the current iteration and the total iteration, η0 = 0.01 denotes the initial
learning rate. α = 10 and β = 0.75 are hyperparameters, which are the same as Ganin & Lempitsky
(2015). The detailed steps of the proposed method are summarized in Algorithm1.

5 EXPERIMENT

In this section, we will compare the performance of our proposed model with the state-of-the-art
methods on five real-world datasets, where the specific statistics are shown in Table1.

5.1 DATASETS

To fairly evaluate the performance of the proposed AER, we consider the following five real multi-
layer networks from the real world:
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Algorithm 1: AER

Input: A multi-layer network graph G and the initial learning rate η0.
Output: The matching set of prediction results Ms.

1 Ms = ∅;
2 Obtain the tag set of the links Y and the tag set of the layer sources Y ′;
3 for each iteration do
4 Obtain the initial representations of nodes and links by Eq.1 and Eq.2 respectively;
5 Obtain the representations TR, SR and ER by Eq.3, Eq.4 and Eq.6 respectively;
6 Calculate Lossd, Lossp and Lossfinal by Eq.8, Eq.10 and Eq.12 respectively;
7 Update the learning rate η by Eq.16;
8 Update the parameters θp, θr and θd by Eq.15;
9 end

10 for each unobserved link e in Eu do
11 Calculate Pe by Eq.9;
12 Ms = Ms+ (e, Pe);
13 end

Table 1: Statistics of multi-layer datasets.
Dataset #Layers #Nodes #Edges of different layers
Aarhus 5 61 193 124 21 88 194
Enron 2 151 133 128 - - -
Kapferer 4 39 158 223 76 95 -
Raion 3 369 312 83 46 - -
TF 2 1564 14108 18471 - - -

• Aarhus Magnani et al. (2013) comprises five relationships (Facebook, leisure, work, co-
writing, and lunch) among the employees of the Aarhus computer science department.

• Enron Tang et al. (2012) identifies the interaction information between employees. The
two layers denote their superiors and colleagues relationship, respectively.

• Kapferer De Domenico et al. (2014) is the interaction network of a tailor shop over a
ten-month period, with four layers of the network representing the interaction of work,
assistance, friendship and emotional, respectively.

• Raion De Domenico et al. (2014) is a multi-layer network which denotes the railway sta-
tions in London, and the three layers of the network denote the stations connected by un-
derground, above ground and DLR, respectively.

• TF Jalili et al. (2017) is a multi-layer network formed by the collaboration of Twitter and
Foursquare. The first layer identifies follow relationships on Twitter, and the second layer
identifies friendship relationships on Foursquare.

The basic statistics of the five multi-layer network datasets are summarized in Table1. We treat
observed links in the graph as positive samples and unobserved links as negative samples. For each
dataset, we randomly split the dataset into training, validation and testing sets with 8:1:1 ratio.

5.2 COMPARISON METHODS

We include several traditional and state-of-the-art models in the comparison:

• NSILR Yao et al. (2017) proposes a novel node similarity index based on layer relevance
of multiplex network for link prediction by utilizing the intra- and inter-layer information.

• MultiSup Shan et al. (2020) extracts the complex structural features of node pairs from
all network layers to train classification models. In addition to a group of well-known
similarity indicators such as CN, RA and Jaccard, two new features, the friendship between
neighbors (FoN ) and friendship among auxiliary layers (Fal), are designed.

• MNERLP Mishra et al. (2022) calculates node relevance (local information) and edge
relevance (global information) based on the summarized graph, and then combines both
these factors to perform link prediction on unconnected pairs of nodes.
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Table 2: Performance comparison between our method and the baselines on real-world datasets in
terms of Accuracy (%). Boldface scores indicate the best results. The underlined scores denote the
second-best performance.

Aarhus Enron Kapferer Raion TF
NSILR 72.59±9.35 50.46±1.11 60.49±7.53 50.14±0.37 75.92±5.35
MultiSup 75.61±2.85 61.16±0.64 59.83±4.23 69.93±11.48 70.82±4.25
MNERLP 75.82±9.67 48.86±0.54 65.09±3.46 51.34±1.49 82.24±6.09
HOPLP 74.28±9.83 49.09±0.41 63.89±3.48 51.05±1.52 80.95±5.02
AER 76.53±2.65 77.46±6.96 71.83±7.05 79.96±2.04 82.52±4.03
Improv. 0.94% 26.65% 10.35% 14.34% 0.34%

Table 3: Performance comparison between our method and the baselines on real-world datasets in
terms of AUC (%). Boldface scores indicate the best results. The underlined scores denote the
second-best performance.

Aarhus Enron Kapferer Raion TF
NSILR 78.40±11.63 50.48±1.11 63.99±9.59 50.14±0.37 80.54±7.10
MultiSup 75.65±2.86 53.98±0.85 59.65±4.40 69.35±11.19 75.73±2.82
MNERLP 77.98±11.05 48.86±0.54 68.06±5.22 51.33±1.49 85.32±7.93
HOPLP 76.64±11.25 49.06±0.42 67.43±4.96 51.04±1.51 85.46±7.59
AER 82.78±2.82 88.96±2.76 77.17±4.33 86.67±1.60 88.60±0.45
Improv. 5.59% 64.80% 13.39% 24.97% 3.67%

• HOPLP Mishra et al. (2023) combines information from many layers into a single
weighted static network while accounting for the relative density of the layers, and then
calculates link likelihoods taking longer paths between nodes into account.

• AER is our proposed model, which includes a representation generator, a layer discrimi-
nator and a link predictor. Further ablation study is provided in Section 5.6.

5.3 PARAMETER SETTINGS

In the representation generator, the dimension of hidden layer is set to 64 for all GCNs, d′ is 16,
and d is 32. Then, the dimensions of TR, SR and ER are consistent with IR as 32. In the layer
discriminator, the dimension of the hidden layer h is 20, and the output size is the same as the number
of layers K in the network. In the link predictor, the output size is 2, such that the prediction results
can be normalized. In addition, the number of iterations is set to 50, the batch size is 256, and the
Adam algorithm is used for model optimization in this work. Furthermore, we use python 3.7 and
pytorch 1.13 in implementation. For other baselines, we implement them with the published codes
and tune their models based on the preferred parameter settings in the papers.

5.4 EVALUATION METRIC

We employ the following metrics to evaluate performance results: Accuracy denotes the percentage
of the number of samples predicted correctly in the total. AUC (Area Under Curve) denotes the area
under the ROC (Receiver Operating Characteristic) curve. In general, the larger the above metrics
are, the better the models perform.

5.5 PREDICTION RESULTS AND ANALYSIS

To investigate the performance of the proposed AER, we compare it with seven state-of-the-art
methods on the five multi-layer network datasets. Table 2 and Table 3 respectively show the per-
formance comparison of several models for link prediction in multi-layer networks in terms of
Accuracy and AUC. From the tables, we have the following observations: AER substantially
outperforms all the other baselines in terms of all metrics, verifying the effectiveness of our method.
We attribute such significant improvements to the learning of fusing the inter-layer transferable rep-
resentations and intra-layer representations, so as to learn the comprehensive representations of links
in multi-layer networks effectively. Generally speaking, MultiSup and MNERLP achieve better
performance than other baselines in most cases. It is reasonable since MultiSup and MNERLP
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Figure 2: Ablation study for the effectiveness of our method.

also consider more comprehensive information in comparison. What is unexpected is the perfor-
mance of HOPLP on these real-world datasets. The reason for this may be that some information
is lost when combining information from multiple layers into a single weighted static network.

5.6 ABLATION STUDY

To demonstrate the importance of adversarial training, we design a variant of AER to compare its
performance for link prediction in multi-layer networks. AER− is the variant model without the
layer discriminator that learns only the intra-layer representations of links in a multi-layer network,
but not the inter-layer transferable representations of links in a multi-layer network. As shown in
Figure 2, the performance of AER outperforms AER− in terms of all metrics. These results meet
our expectations. This fully demonstrates the importance of fusing the inter-layer transferable and
intra-layer representations, that is, the effectiveness of the minimax game between the representation
generator and the layer discriminator.

5.7 CASE STUDY

We conduct an experiment to demonstrate the significance of fusing the inter-layer transferable and
intra-layer representations of links for link prediction in multi-layer networks. To be specific, we
choose the first layer network of the Aarhus dataset as the given layer for performance comparisons
with respect to whether or not to add the inter-layer transferable representations. When relying only
on the topology information of this single network layer, the model performance is able to reach
0.66 and 0.78 in terms of Accuracy and AUC, respectively. When adding other network layers
as auxiliary network layers, combined with the inter-layer transferable representations, the model
performance is able to improve to 0.71 and 0.83 in terms of Accuracy and AUC, respectively. This
case study once again demonstrates the effectiveness of fusing the inter-layer transferable represen-
tations and intra-layer representations of links in multi-layer networks. In particular, when a network
layer is sparse and contains relatively little information, it is feasible to obtain auxiliary information
from other network layers to enhance the representations of links on the given layer.

6 CONCLUSIONS AND FUTURE WORK

In this research, we exploit the multi-layer correlation to improve the link prediction performance,
which accelerates the understanding of the link prediction issue in multi-layer networks. Our pro-
posed method can effectively acquire the inter-layer transferable representations during a minimax
two-player game, further using these representations to enrich the intra-layer representations to
achieve an adaptive representation fusion. Extensive experiments on real-world datasets show that
our proposed method outperforms state-of-the-art methods. Based on our existing study, many ad-
ditional methods can be explored. One possibility is to extend our study into a directed or weighted
network. To propose a universal method for generalized networks, we simply represented a network
as an unweighted and undirected graph in this study. Another possibility is to exploit the attribute
information of nodes and links, such as additional textual description. Our proposed method is a
general framework for link prediction. The acquirement of inter-layer transferable representations
and intra-layer representations can be easily designed for multi-modal situations.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Amir Mahdi Abdolhosseini-Qomi, Seyed Hossein Jafari, Amirheckmat Taghizadeh, Naser Yazdani,
Masoud Asadpour, and Maseud Rahgozar. Link prediction in real-world multiplex networks via
layer reconstruction method. Royal Society open science, 7(7):191928, 2020.

John Arevalo, Thamar Solorio, Manuel Montes-y Gómez, and Fabio A González. Gated multimodal
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