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ABSTRACT

Wearable accelerometers are used for a wide range of applications, such as ges-
ture recognition, gait analysis, and sports monitoring. Yet most existing founda-
tion models focus primarily on classifying common daily activities such as lo-
comotion and exercise, limiting their applicability to the broader range of tasks
that rely on other signal characteristics. We present SlotFM, an accelerometer
foundation model that generalizes across diverse downstream tasks. SlotFM uses
Time-Frequency Slot Attention, an extension of Slot Attention that processes both
time and frequency representations of the raw signals. It generates multiple small
embeddings (slots), each capturing different signal components, enabling task-
specific heads to focus on the most relevant parts of the data. We also introduce
two loss regularizers that capture local structure and frequency patterns, which
improve reconstruction of fine-grained details and helps the embeddings preserve
task-relevant information. We evaluate SlotFM on 16 classification and regres-
sion downstream tasks that extend beyond standard human activity recognition. It
outperforms existing self-supervised approaches on 13 of these tasks and achieves
comparable results to the best performing approaches on the remaining tasks. On
average, our method yields a 4.5% performance gain, demonstrating strong gen-
eralization for sensing foundation models.

1 INTRODUCTION

Advances in self-supervised learning (SSL) and large-scale datasets have enabled foundation models
that support multiple tasks through shared representations (Yang et al., |2024; |Oquab et al., [2023).
This is particularly valuable for wearable devices, where maintaining separate models dedicated
for each task is often impractical due to memory and compute constraints. Accelerometers are
widely used sensors in wearables for diverse motion-related tasks. Recent studies show that SSL
approaches can train foundation models effective in Human Activity Recognition (HAR) tasks such
as exercise and locomotion classification (Logacjov, 2024). However, their applicability to broader
accelerometer tasks, such as gait analysis and gesture recognition, remains largely unexplored. This
contrasts with domains such as audio, where foundation models have been applied beyond a single
task, spanning speech-to-text, speaker identification, and emotion recognition.

While certain SSL methods may work well for specific domains of accelerometer tasks, they may
not generalize to a broader range of tasks. Augmentation-based methods like SimCLR (Tang et al.,
2020) train models to be invariant or sensitive to specific signal features. For example, rotation aug-
mentations improve robustness to device placement, benefiting activity recognition (Xu et al.,[2025).
Yet the same invariance can hinder tasks like gait analysis, where orientation carries meaningful in-
formation. Thus, training a foundation model to be biased toward a particular signal characteristic
may restrict its generalization.

To address the challenge of building a foundation model that generalizes across diverse accelerome-
ter tasks, we propose Time-Frequency Slot Attention, a novel SSL approach that extends Slot Atten-
tion (Locatello et al., [2020) to operate over both the time and frequency domains. Time-Frequency
Slot Attention encodes each signal into multiple vectors, or “slots”, which are then decoded to jointly
reconstruct the original input. This encourages the slots to collectively preserve the full signal con-
tent while individually capturing distinct learned components. Using these slots as the embedding
for downstream tasks then enables task-specific heads to attend more effectively to relevant features,
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Figure 1: Overview of SlotFM. Accelerometer signals are decomposed into multiple frequency
bands. Time-Frequency Slot Attention produces multiple slot vectors that capture distinct compo-
nents of the signal. Task-specific heads attend to these slot for diverse downstream tasks.

improving generalization across tasks. Additionally, we introduce two loss regularizers: the Struc-
tural Similarity Index Measure (SSIM), inspired by the image domain, to encourage the embeddings
to capture structural patterns of the signal, and the Multi-Scale Short-Term Fourier Transform (MS-
STFT), inspired by the audio domain, to emphasize high-frequency details.

We evaluate our model, SlotFM, on 11 diverse downstream tasks, beyond those typically consid-
ered in foundation model studies, spanning both classification and regression across daily activities,
sports, gestures, and transportation. We also test on five tasks of an existing Human Activity Recog-
nition (HAR) benchmark. SlotFM outperforms state-of-the-art SSL. methods on 13 out of 16 down-
stream tasks and achieves comparable results to the best performing approaches on the remaining
tasks. Overall, SlotFM achieves an average improvement of 4.5% and in some cases even surpasses
fully supervised models. Moreover, while baseline methods fluctuate in performance across tasks,
SlotFM performs consistently well. Finally, analysis of head weights shows that certain slots are
emphasized more than others depending on the task, demonstrating the adaptability of slot-based
embeddings. These results demonstrate the strength of our approach in creating a single foundation
model that produces embeddings generalizable to distinctively different target tasks.

Our key contributions are as follows:

1. We propose Time-Frequency Slot Attention, a new self-supervised learning approach that
decomposes raw accelerometer signals into distinct slot-based embeddings, along with two loss
regularizers that improve signal reconstruction of finer details.

2. We train SlotFM, an accelerometer foundation model using our approach, and evaluate it on 16
diverse downstream tasks, collected exclusively from publicly available datasets.

3. We release the code for our model training and downstream benchmark setup to support
reproducibility and future research.

2 RELATED WORK

Foundation models for accelerometer data: Several works have proposed foundation models us-
ing accelerometer data over the past few years, using various SSL approaches to train large backbone
models on unlabeled accelerometer datasets. One common approach is to design pretext tasks using
augmentations (Saeed et al., 2019} [Yuan et al.l 2024)), and train the model to predict which aug-
mentations were applied. Contrastive learning has also been widely used, typically by applying
augmentations that are assumed not to change the meaning of the signal, and treating them as posi-
tive pairs while using all other signals as negatives (Tang et al.,|2020). REBAR improves on this by
learning a distance model that measures the similarity between sequences based on reconstruction
error when one is reconstructed using information from the other (Xu et al.| |2024). RelCon builds
on this idea with a contrastive learning method that models relative differences using soft positive
and negative pairs (Xu et al.,|2025). Another class of methods trains the model to reconstruct the
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input signal, such as autoencoders (Haresamudram et al.|[2019) or masked reconstruction (Logacjov
& Bachl 2024). These methods are useful because they require the model to preserve all signal
information in the embedding to reconstruct the full input.

Foundation models for other wearable sensor data: Beyond accelerometers, many foundation
models have been proposed using other wearable sensors, including gyroscopes, magnetometers, al-
timeters (Narayanswamy et al.| 2025 Xu et al.|[2021)), physiological signals like PPG and ECG (Ab-
baspourazad et al. 2024azb; |Luo et al., [2024; [Pillai et al., 2025), and higher-level behavioral sig-
nals (Erturk et al., [2025). These typically follow similar SSL strategies such as masked reconstruc-
tion. Multi-modal approaches can leverage natural pairings between modalities to define positive
pairs for contrastive learning (Liu et al., [2023; Deldari et al., |2024) or to distill knowledge from
one modality to another (Abbaspourazad et al.| 2024b)). Mixtures of such training schemes are
also common, as in the work of Das et al.| (2025)), which combines self-supervision, multimodal
supervision with parallel text and video data, and nearest-neighbor supervision. Some works also
propose signal-specific methods, such as PaPaGei, which incorporates PPG-derived metrics like the
stress-induced Vascular Response Index into training (Pillai et al.| [2025).

Accelerometer FM task diversity: Most accelerometer foundation models have focused on human
activity recognition tasks, such as exercises or daily routines (Koskiméki et al.,|2017;Blunck & Dey,
2015). Some datasets cover more specialized tasks like shorter actions or freeze of gait (Scholl et al.}
2015 Bachlin et al.,[2009), and RelCon extended evaluation to regression tasks for gait metrics such
as double support time and stride velocity (Xu et al) [2025)). Yet in practice, accelerometers and
IMUs have been used for a far broader range of tasks, including pose estimation (Mollyn et al.,
2023)), sports action classification (Park et al.[2024), hand gesture recognition (Zhang et al.,|2021),
jump height estimation (Villa et al.| [2024), and user identification through gait (Liberman* et al.
2024])). This indicates a wider space where accelerometer foundation models could be applied and
evaluated. Recent work on foundation models for wearable data has been shifting toward more
general-purpose models. [Erturk et al.| (2025)) utilized higher-level behavioral data from wearables
to build a foundation model effective on 57 diverse health-related tasks. In the PPG domain, [Pillai
et al.|(2025) proposed a foundation model tested on 20 diverse classification and regression tasks.

3 METHODOLOGY

3.1 TIME-FREQUENCY SLOT ATTENTION

Slot Attention is an attention mechanism that encodes input data into a fixed number of vectors
called “slots” (Locatello et al.,|2020). When trained with a self-supervised reconstruction objective,
similar to an autoencoder, these slots compete to capture different parts of the input. For example,
when Slot Attention is applied to images, each slot captures a distinct object in the image. The
core mechanism is the cross-attention between input embeddings and slot vectors. At each forward
pass, S initial slot vectors are first sampled from a learned normal distribution. Then, the cross-
attention matrix between these slots and the input embeddings are used to compute updates for the
slot vectors, which is repeated for U iterations to produce the final slot vectors. Thus, the initial slot
vectors determine which parts of the input to focus on, acting as “queries” that attend over it.
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Figure 2: Slot reconstructions when bandpassed signals are used as input. The eight slots distribute
across both time and frequency dimensions, capturing distinct components of the input signal.
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We adapt Slot Attention to raw accelerometer time series so that each slot captures a different seg-
ment of a signal window. In the original algorithm, however, the initial slots are resampled at every
forward pass, and since they determine which part of the input each slot attends to, the assignment
of information across slots changes from one pass to the next. For example, a region of the signal
captured by the first slot in one pass may instead be captured by the second slot in the next, even for
the same input. This variability makes it difficult to use the slots directly as embeddings for down-
stream tasks, as the ordering of information is inconsistent. To address this, we replace resampling
with fixed learnable vectors: we initialize S slot vectors once as trainable parameters and reuse them
as the initial slots at every forward pass. This ensures that the slots maintain a consistent semantic
order and can be more reliably used by task-specific heads.

Since motion signals contain information across varying frequencies, spectrograms or frequency-
filtered signals have often been used to decompose the signal along this dimension. (Yang & Hsu,
2010). To encourage slots to capture frequency-specific aspects of the input, we use a 4th order
Butterworth bandpass filter to decompose the original signal into three non-overlapping bands: 0-1
Hz, 1-4 Hz, and above 4 Hz, following prior work on human movement frequency (Fridolfsson et al.,
2019). While finer decompositions or full spectrograms could provide more granular information,
our experiments show that three bands offer a good balance between computational cost and signal
detail. Figure 2] visualizes the signal reconstructions of 8 slots when bandpassed signals are used as
input. The slots attend to different regions in both the temporal and frequency dimensions, whereas
when the original signal is used as a single band, they capture only different temporal segments.
Further analysis of the impact of the number of bands is provided in the Appendix [A.4]

3.2 MODEL ARCHITECTURE

Figure [3] illustrates the SlotFM architecture. The input signal Xj, is first decomposed into three
frequency bands (Xjow, Xmid, and Xpign). Each band is processed by a separate ResNet-style encoder
that preserves the full temporal length. Encoder weights are not shared, since each band captures
distinct characteristics. To provide positional context, we add soft positional embeddings using
learned 2D coordinate features. This results in the concatenated sequence of encoded frames £ =
[Erow; Emid; Ehigh]. Slot Attention is applied between the encoded frames F and the .S slot vectors to
produce an attention matrix, which is normalized and used to compute slot updates as the weighted
mean of the encoded frames. Each update is passed through a GRU cell and a multi-layer perceptron,
as in the original method, to generate new slot vectors. This cross-attention and update process is
repeated U times to form the final slot vectors.
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Figure 3: Architecture of SlotFM. The input accelerometer signal is split into three frequency bands,
encoded with convolutional encoders, and combined via cross-attention into slot vectors. For pre-
training, the slots are decoded back into each band to reconstruct the original signal. For downstream
tasks, the slots are processed with a self-attention layer and an MLP head for prediction.
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During pre-training, each slot is decoded back into the three bands using band-specific ResNet
decoders. Each decoder outputs a reconstructed signal R and a temporal mask M. Masks are
normalized across slots with softmax and combined to form the final reconstruction X for each
band. For downstream tasks, the decoders are removed and the final slot vectors are used directly as
embeddings. A single multi-head self-attention layer captures inter-slot relationships, after which
the slots are flattened, concatenated, and passed to an MLP head for prediction.

3.3 RECONSTRUCTION LOSS

Most existing reconstruction-based self-supervised learning methods for IMU signals use Mean
Squared Error (MSE) to compute the loss between the original and reconstructed signals. However,
this can be problematic for signals like accelerometers that contain high-frequency motion, as even
a slight shift in prediction of a peak can lead to a large loss (Cuturi & Blondel, |2017; Mathieu
et al.,[2015). As a result, models tend to make conservative, smoothed predictions that capture only
low-frequency trends, losing the fine-grained motion details crucial for some downstream tasks.

To address this, we introduce two regularization losses to use alongside MSE. The first is the Struc-
tural Similarity Index Measure (SSIM), originally used in the image domain to compare local struc-
ture by measuring luminance and contrast instead of individual pixel values (Zhao et al., [2016).
We adapt it to raw signals by computing the mean and variance over short segments with a sliding
window to capture structural patterns across the input. The SSIM loss function is defined as follows:

L"SSIM =1- SSIM(Ia y)v
(2papty + C1)(200y + Ca)
(13 + 15 + C1)(0F + 05 + C2)’

SSIM(z,y) =

where z and y are the original and reconstructed signals, fi., i, are their local means, o2, 05 are
their local variances, o, is the local covariance, and C, Cy are small constants to stabilize division.

To further encourage the embedding to retain high-frequency variations, we incorporate the multi-
scale short-term Fourier transform (MS-STFT) loss from audio signal processing work (Défossez
et al.,2023). Unlike a single-resolution STFT loss, the MS-STFT computes magnitude spectra at
multiple window sizes, allowing the model to capture both fine-grained high-frequency details and
longer-term low-frequency structures. At each scale, we compute a combination of L1 and MSE
losses between the magnitude spectra of the original and reconstructed signals, and average them
across all scales. The MS-STFT loss is defined as follows:

1
Lys-ster(z,y) = 7 > (MAEUSTFTW(JJ)L [STFT . (y)1)
niEF

+ MSE(|STFT, ()], [STFT,, ()]) ),
F ={16,32,64,128}.
where 2 and y are the original and reconstructed signals, | - | denotes the magnitude spectrum,

STFT,,, is the short-time Fourier transform, F is the set of FFT sizes, and MAE/MSE are the mean
absolute and mean squared errors. We use a Hann window of length ng and hop length ny /4.

Because each band captures different patterns, we use different loss combinations for each one. The
low-frequency band uses only Lysg, the mid-frequency band uses all three losses (Lvsg, Lssiv»
Lwms-strr), and the high-frequency band uses only Lsspv and Lys.strr- We define the total loss as a
weighted combination of all three terms:

Lo = a - Lnse (2, y) + B - Lssm(@,y) + 7 - Lvs-ster (T, Y),

where the weights «, 5 and ~y are hyperparameters.
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Table 1: Downstream tasks and datasets used for this benchmark. For classification tasks, the num-
ber of classes is indicated. Details on dataset parsing and task design are provided in Appendix [A.T]

Task name Task description # Subjects # Samples Dataset

Basketball Basketball actions (e.g., layup, shoot). [C=5] 24 9781 Hoelzemann et al.|(2023)
£ Cooking Cooking actions (e.g., turn stove on, wipe pan). [C=14] 17 237 Arakawa et al.|(2023)
% Locomotion Exercise and locomotion (e.g., walking, jogging). [C=8] 15 11527 Sztyler & Stuckenschmidt| (2016)
;:: TennisShot Tennis shot measured from the non-dominant arm. [C=6] 20 6000 Park et al.|{(2024)
E Transportation ~ Transportation mode that participant is in. [C=6] 3 40059 Gjoreski et al.|(2018)
©  Workouts Outdoor workouts (e.g., burpees, lunges). [C=18] 24 8008 Bock et al.{(2024)

Writing Letters/characters written on a device. [C=39] 10 11685 Roggen| (2022)
g JumpPower Power of vertical jump 73 1128 White et al.[(2022)
'% NumSteps Number of steps taken during the given window 25 492 Santos et al.|(2022)
E;, ThrowSpeed Speed of handball throw 4 105 Gencoglu & Giimiig|(2020)
& WalkDistance Distance walked during the given window 25 492 Santos et al.|(2022)

4 EXPERIMENTS

4.1 PRE-TRAINING

We trained models on CAPTURE-24 (Chan et all [2024), the largest open-source IMU dataset,
containing real-world wrist-worn activity tracker data. The pre-training set includes approximately
2,500 hours of data from 151 participants, with 120 used for training and the remaining 31 for vali-
dation. Following|Yuan et al.| (2024), we apply weighted sampling during training, where windows
are sampled in proportion to their standard deviation. This gives higher priority to high-movement
windows, which is especially important since in-the-wild motion data often includes long periods of
low activity that are less informative for model training.

The model takes 5-second windows of raw 3-axis accelerometer data sampled at S0Hz as input. We
train the model for 500 epochs using four V100 GPUs, with early stopping on validation triggered
after 40 epochs. The encoder and decoder networks follow a ResNet-style architecture, each con-
sisting of four residual blocks built with 1D convolutions (kernel size 3) for each band. We use eight
slot vectors of dimension 32, resulting in a combined embedding of size 256. The total model size of
the encoder is 4.8 million parameters. Further implementation details are provided in Appendix[A.2]

4.2 DOWNSTREAM EVALUATION

To evaluate how well our foundation model’s learned embedding generalizes across diverse down-
stream tasks, we conduct two sets of evaluations. In the Task Diversity Evaluation, we compare
our SSL approach to existing methods on 11 curated downstream tasks. These tasks span various
domains, including gesture and exercise classification, as well as ball throw speed estimation. In the
HAR Benchmark Evaluation, we compare our model to an existing benchmark on human activity
recognition, showing how well it performs against standardized models and tasks.

4.2.1 TASK DIVERSITY EVALUATION

We compiled a set of 11 downstream tasks from open-source datasets. These tasks span diverse
applications where accelerometers have been used in prior work but remain largely unexplored in
the context of foundation models. Tableﬂ]provides an overview of each downstream task, with more
details on preprocessing found in Appendix [A.T]

We compare our training approach against five competitive self-supervised learning methods. All
models are trained on the same dataset with identical configurations. The encoder is a ResNet-style
network with 12 residual blocks, matching the model size and embedding dimension of SlotFM.
Baselines include Autoencoder (Haresamudram et al., 2019)), Masked Autoencoder (Haresamudram
et al.,2020), and SimCLR (Tang et al., 2020)), commonly used in accelerometer foundation mod-
els, as well as Augmentation Prediction (Yuan et al., [2024) and RelCon (Xu et al., [2025), recent
approaches that outperform prior baselines. We also include a supervised model where the full
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encoder architecture is trained from scratch for each individual downstream task. Implementation
details are provided in Appendix

All self-supervised models are first pre-trained on the CAPTURE-24 dataset using their respective
methods. The backbone is then frozen, and a lightweight MLP head is trained for each downstream
task. For the supervised model, the full model is trained end-to-end for each task, using two ad-
ditional lower learning rates to reflect the model size differences. The hidden dimensions of the
baseline heads are set so that the total number of parameters is similar to that of SlotFM.

All tasks are evaluated using five folds, with 20% of participants held out for testing in each fold
and the remaining 80% split 80/20 into training and validation. Participant assignments per fold
are kept consistent across all baselines to ensure fair comparison. We use Cross Entropy Loss for
classification tasks, applying class weights in cases of high imbalance, and Mean Squared Error for
regression tasks. All downstream training is run for 200 epochs with early stopping after 10 epochs.

4.2.2 HAR BENCHMARK EVALUATION

Haresamudram et al.| (2022) provides a benchmark for evaluating self-supervised learning meth-
ods on human activity recognition using accelerometer data. They train various SSL methods on
the CAPTURE-24 dataset and evaluate them on multiple HAR datasets collected from different
body locations. Among the benchmark’s evaluation protocols, we follow their MLP classifier setup,
where the SSL backbones are frozen and three linear layers with batch normalization, dropout, and
ReLU are trained for each downstream task. We match their configuration, including the 2-second
window length, 50 Hz sampling rate, 128-dimensional embedding size, and the same split ratios
over five folds. To account for the smaller window size, we use four slot vectors, each of dimension
32. We compare our results directly with the published benchmark results on 5 different commonly
used HAR datasets: HHAR (Stisen et al, 2015), USC-HAD (Zhang & Sawchukl [2012), Motion-
sense (Malekzadeh et al., 2019), PAMAP2 (Reiss, 2012), and FoG (Bachlin et al., 2009), covering
various target sensor locations that differ from the wrist location used in pre-training.

5 RESULTS

5.1 TASK DIVERSITY EVALUATION RESULTS

Table [2] shows the performance of each SSL method on the 11 diverse downstream tasks. Clas-
sification performance is measured using macro F1 score and regression performance is measured
using RMSE. SlotFM outperforms all SSL baselines across all tasks except the Transportation and

Table 2: Downstream task results for SlotFM compared to supervised baselines and existing self-
supervised methods. Classification performance is reported with F1 score (higher is better) and
regression performance with RMSE (lower is better). Best performing models are indicated in bold.

Masked Augmentation

Tasks Supervised  Autoencoder Autoencoder Prediction SimCLR RelCon SlotFM
Classification - F1 (1)

Basketball 59.9 +15.3 57.14+13.2 54.1 +12.6 47.8 £8.1 53.3 £ 8.7 54.3 +£ 9.2 64.7 £ 12.2
Cooking 51.2+11.7 50.1£14.7 4554+11.9 2854+10.0 482+ 10.1 48.1+11.0 50.9+12.2
Locomotion 72.5£83 66.4+£10.2 74.2£9.0 72.1£6.9 70.0£7.6 70.7 £8.3 74.6 £9.2
TennisShot 78.2+15.0 75.8+12.4 68.4+13.7 60.6+12.2 64.3+14.1 63.4+16.6 81.5+11.5
Transportation | 56.2 + 7.4 55.84+3.4 57.6+47 63.6+7.7 569+6.4 56.4 £+ 3.0 63.4 + 4.8
Workouts 71.7+12.4 66.5+13.0 68.4+13.6 69.3+9.7 63.84+9.6 64.8+11.2 69.9+11.3
Writing 52.2+14.9 46.3+13.1 34.6£11.5 1244+ 1.7 249+ 7.9 31.0+9.9 48.1 +11.6

Regression - RMSE ()

JumpPower 3.61+1.66 9.61+4.78 7.32+3.24 9.58+2.78 9.63+299 7.84+3.66 6.32+2.69
NumSteps 0.61 £0.29 0.67+£0.28 0.59+0.18 0.68+0.28 0.59+0.28 0.65+0.29 0.57+0.26
ThrowSpeed 2.78+0.69 3.72+0.46 3.67+£0.60 4.31+0.54 2.95+0.32 3.13+0.50 2.92+0.41
WalkDistance | 0.23 £0.12 0.30+0.15 0.27+0.11 0.28£0.13 0.26+0.14 0.25+0.13 0.27 +£0.11
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Figure 4: Average weights per slot of the first linear layer trained on each downstream task. For
most tasks, the head assigns more weight to certain slots than others.

WalkDistance tasks, where it trails Augmentation Prediction and RelCon, respectively, by only a
small margin. In five tasks, SlotFM even surpasses the Supervised model, highlighting the benefit
of pre-training on large datasets, as the model can learn fundamental knowledge of the data domain
that helps extract meaningful embeddings. Note that performance standard deviations are relatively
high, mainly due to imbalanced data sizes and missing classes across participants.

For some tasks, certain SSL baselines achieve results close to SlotFM and outperform the other
baselines. The strongest baseline, however, is different depending on the task. For example, Aug-
mentation Prediction performs similarly to SlotFM on the Workouts task, Autoencoder on the Writ-
ing task, and SimCLR and RelCon on the ThrowSpeed and WalkDistance tasks. But on other tasks,
these same baselines show a large drop. This suggests that the embeddings that these baselines pro-
duce do not generalize well across tasks with diverse characteristics. In contrast, SlotFM maintains
consistently strong performance across all tasks, showing the generalizability of its embeddings.

Figure [4] shows the average weights for each slot from the first linear layer of the task head across
downstream tasks. The weight distribution among slots differs between tasks, with some tasks
emphasizing particular slots while others assigning similar weights to all slots. For example, in the
Writing task, the gestures are brief and concentrated near the start of the window, so the 4th and 5th
slots that attend to the beginning of the signal receive higher weights.

5.2 HAR BENCHMARK EVALUATION RESULTS

Table 3| compares SlotFM with SSL methods benchmarked in[Haresamudram et al|(2022). SlotFM
shows strong generalization, performing well even when the target task’s sensor location differs
from the pre-training location (wrist). It outperforms self-supervised and fully-supervised models
on four of the five tasks. On Motionsense, SimCLR performs better by only a small margin.

Table 3: Performance of SlotFM on the Accel Benchmarking Study. Best models are shown in bold.

HHAR USC-HAD  Motionsense PAMAP2 FoG

(Wrist) (Waist) (Waist) (Leg) (Leg)
° SlotFM (Ours) ‘ 67.4+26 60.1+23 855+28 65.6+33 57.7+22

=]

§ . Multi-task self. sup 57.5+19 56.64+1.3 83.2+13 585+3.0 54.2+1.1
n% EJQE) Masked Recons. 1| 55.0+2.6 45.1+09 75.7+19 551+1.0 525+1.0
2 é CPC § 58.1+1.1 51.44+24 84.7+1.1 522420 51.2+1.0
":) : Autoencoder 54.3+2.0 51.34+22 80.7+£1.7 56.9+20 53.1+0.9
§ g SimCLR =l| 58.6+£2.3 53.7+41 856+£25 602£23 525+14
£ + SimSiam g 54.7+1.3 53.64+22 834+16 59.6+4.1 504+1.7
BYOL § 51.7+23 51.04+24 822+1.2 558+1.3 51.1+1.7
2 DeepConvLSTM § 54.4+23 53.64+05 84.6+09 512419 53.7+26
é GRU classifier =2 46.0£2.1 55.24+1.1 87.1+0.9 54.2+1.2 54.0+1.1
= 8 Conv. classifier 55.4+12 579+06 89.3+05 59.8+1.5 53.4+09
£ 2 MLP. classifier 53.1+0.8 55.64+1.1 84.5+04 50.04+04 49.5+1.2
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Table 4: The impact of dropping key components of SlotFM on the average performance.

‘ Classification tasks Regression tasks

w/o Bandpassed input -7.4% -6.0%
w/o Loss regularizers -13.2% -37.1%
w/o Slot Attention -10.0% -10.0%
wi/o Self-attention head -8.0% -11.1%
wi/o Fixed slot initialization -15.9% -25.0%

5.3 ABLATION STUDY ON MODEL COMPONENTS

Table ] shows the mean performance drop when different components of SlotFM are removed,
highlighting the importance of each. Additional ablation results on hyperparameters such as the
number of bands and the number of slots are included in Appendix [A.4]

Removing the bandpass filter and using the original signal directly leads to a performance drop of
about 6%. This is because without frequency decomposition, slots capture only different temporal
segments rather than distinct frequency ranges. The loss regularizers are also critical, as removing
it causes a drop of over 15%, particularly on regression tasks. This indicates that preserving richer
information in the slot vectors is essential for strong performance. A visualization of reconstructions
with and without our loss regularizers are shown in Appendix [A.4]

When Slot Attention is removed and a standard autoencoder is trained using our loss regularizers on
bandpassed signals, performance drops by about 10%, highlighting the importance of Slot Attention.
On the other hand, it still outperforms a default autoencoder trained on the raw signal with MSE loss,
showing that bandpass filtering and improved reconstruction losses enhance overall performance.

The self-attention head is a small module added before the MLP head used for downstream tasks.
Though it holds less than 10% of the head’s total parameter count, it brings about a 9% performance
boost on average. Increasing other baselines’ head sizes by the same amount does not yield similar
improvements, suggesting that this structure can effectively leverage the slot representations.

When slot initializations are sampled from a learned normal distribution, as in the original Slot At-
tention, each slot captures different information on each pass even for the same input. This prevents
the head from focusing on specific slots, reducing downstream performance by over 15%.

6 DISCUSSION & CONCLUSION

We introduce SlotFM, an accelerometer foundation model trained with Time-Frequency Slot Atten-
tion and an improved reconstruction loss, enabling embeddings that capture distinct aspects of the
signal while preserving both low- and high-frequency information. Our evaluations on 16 down-
stream tasks, spanning classification and regression across domains such as gestures, sports, cook-
ing, and transportation, demonstrate that SlotFM generalizes well beyond the scope of most prior
foundation models. These results highlight the potential of a single foundation model supporting
multi-task inference, offering a practical solution for wearable devices with limited resources. With
our open-source code release of both the model implementation and the downstream task setup, we
encourage further research toward developing a general foundation model for wearable sensor data.

In this work, we focus on accelerometer data because it is a low-cost sensor widely integrated into
wearable devices and provides rich information for diverse applications. Given that other time-series
sensors, such as gyroscopes, magnetometers, and photoplethysmography, also contain information
across temporal and frequency dimensions, future work could investigate extending our approach
to these modalities. Furthermore, while we concatenate slot vectors into an embedding to be used
for downstream tasks, future work could explore alternative ways of processing slots. For example,
slots could be used as tokens for a larger model, allowing more dynamic interactions between them.
Another possibility is to sample slots differently, such as learning an initial slot vector specific to
each task that acts as a query for that task alone. These directions could unlock new uses of slot-
based embeddings for time-series data.
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A APPENDIX

A.1 TASK DIVERSITY EVALUATION DATASETS

For the Task Diversity Evaluation, all downstream task datasets are resampled to 50 Hz and seg-
mented into non-overlapping 5-second windows to match the data used for pre-training unless indi-
cated otherwise. Units are converted to m/s?, and no additional normalization is applied other than
whatever the datasets are published with. The code for dataset parsing will be released.

To account for differences in dataset characteristics and sizes across downstream tasks, we evaluate
each task with six configurations: three learning rates (1 x 1072, 5 x 1074, 1 x 10~%) and two MLP
depths (2 or 3 layers). The best-performing configuration is reported for each task and baseline.

Basketball is parsed from the Hang-Time HAR dataset (Hoelzemann et al., [2023). We use the five
basketball related actions: dribbling, shot, layup, pass, and rebound.

Cooking is parsed from the PrISM dataset (Arakawa et al.,2023). Since only the starting timestamp
of each action is indicated, we cut a single 5-second window from the start of each action. We use
all 17 actions in the dataset.

Locomotion is parsed from the RealWorld dataset (Sztyler & Stuckenschmidt, 2016). We use all
eight locomotion related activities in the dataset.

TennisShot is parsed from the Silent Impact dataset (Park et al.,[2024)). Since each shot is segmented
into 1.5-second windows sampled at 120Hz, we use the data as is without downsampling to SOHz,
and fill the remaining 70 frames by repeating the last value. We use the data of the passive arm and
use all six shot classes.

Transportation is parsed from the Sussex-Huawei Locomotion and Transportation (SHL) Dataset
(Gjoreski et al., 2018). We used the IMU data collected by a phone in the front pocket of the
participants. Since there are only 3 participants in the dataset, we evenly distribute consecutive
segments of the same label class into 5 folds. We use six classes: still, bike, car, bus, train, and
subway.

Workouts is parsed from the WEAR dataset (Bock et al.||2024). We use all 18 workout activities in
the dataset.

Writing is parsed from the HCI Tabletop Gestures dataset (Roggen, [2022). Since each character is
written quickly, typically in under 2 seconds, we take 2.5-second segments sampled at 100Hz, filling
the remaining frames by repeating the last value. We only use the ‘Table’ mode data, as the ‘Mouse’
and ‘Slate’ modes show insufficient wrist movement to distinguish between classes. We use all 39
character classes in the dataset.

JumpPower is parsed from the dataset by White et al.|(2022). We use all jumps from all 73 partici-
pants, with the peak power value used as the regression label.

NumSteps is parsed from the dataset by [Santos et al.| (2022)). We use the motion capture 3D coordi-
nates of both ankles to count the number of steps taken within each window.

ThrowSpeed is parsed from the dataset by|Geng¢oglu & Giimiig|(2020). As the dataset includes only
four participants and does not specify participant IDs, we split all trials into five non-overlapping
folds for 5-fold cross-validation.

WalkDistance is parsed from the dataset by Santos et al.|(2022). We use the motion capture coordi-
nates of the clavicles to track the participant’s 2D position and calculate the distance walked within
each window.

A.2 SLOTFM IMPLEMENTATION DETAILS

A.2.1 TRAINING HYPER-PARAMETERS

We train using the Adam optimizer with a learning rate of 0.0001. The hidden dimension is set
to 256, and the number of slot update iterations is fixed at three. At each batch, data from four
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Table 5: Loss weights and configurations for each frequency band.

Band Losses Used a (MSE) [ (SSIM) ~ (MS-STFT) Window Size
Low MSE only 1 0 0 -
Mid MSE, SSIM, MS-STFT 1 100 0.1 25
High SSIM, MS-STFT 0 50 0.1 10

participants are loaded, where for each participant, 128 windows are sampled with probabilities
proportional to the standard deviation of their signals. This results in a batch size of 512.

A.2.2 POSITIONAL EMBEDDING

As in the original Slot Attention work (Locatello et al., [2020), we augment the encoded features
with 2D positional embeddings right before passing them into Slot Attention, since Slot Attention
is invariant to the order of the input elements. A W x H X 4 tensor is created, where W is the
number of frequency bands and H is the number of frames per band, with each of the four channels
representing a linear gradient in one of the cardinal directions (z,y,1 — x,1 — y). directions.

A.2.3 Lo0SS REGULARIZERS

We combine three loss functions, MSE, SSIM and MS-STFT, each weighted by coefficients a, 3,
and -, respectively. Because the three frequency bands differ substantially in their signal character-
istics, we assign distinct weights to each band. Note that SSIM is given a much larger weight since
its loss value is bounded between 0 and 1, whereas MSE and MS-STFT are unbounded and naturally
operate on a larger scale.

For the low-frequency band, which captures slow, large-magnitude movements, we apply only MSE
to preserve absolute shifts from the zero axis. For the mid-frequency band, which contains more
nuanced variations, we use all three losses with weights « = 1, § = 100, and v = 0.1, and a
window size of 25 frames. For the high-frequency band, which captures short-period fluctuations,
we use only SSIM and STFT with weights 8 = 50, v = 0.1, and a smaller window size of 10
frames. Table 5| summarizes the final configuration.

A.3 SSL BASELINE IMPLEMENTATION DETAILS

We outline the implementation details for the five baseline SSL methods compared in the Task Di-
versity Evaluation: Autoencoder, Masked Autoencoder, SimCLR, Augmentation Prediction, and
RelCon. Each method was adapted from prior implementations but modified to ensure a fair com-
parison. The data, dataloading mechanism, batch size, and training epochs were kept identical
to SlotFM. The encoder architecture was also standardized, using a ResNet with 12 blocks that
preserves the temporal dimension, followed by Global Average Pooling and a linear layer to pro-
duce a 256-dimensional embedding. This results in an encoder with 4.8M parameters, matching
SlotFM. Additional network components specific to each SSL approach were added consistent with
the original work. Where necessary, design choices were explored to identify the best-performing
configurations.

Autoencoder follows the convolutional autoencoder from |Haresamudram et al.|(2019). The ResNet
backbone generates embeddings that are decoded into the reconstructed signal using a mirrored
ResNet decoder. The model is trained with the Adam optimizer and MSE loss between the original
and reconstructed signal.

Masked Autoencoder extends the autoencoder by randomly masking parts of the raw input before
encoding. After experimenting with different masking ratios (20%, 50%, 80%) and segment sizes
(10, 25, 50 frames per segment), we finalized on masking 50% of the input by dividing each window
into 10 segments and randomly selecting 5 to mask per epoch. The model is trained with the Adam
optimizer and MSE loss over the full signal.

SimCLR follows the official contrastive learning implementation of [Tang et al.| (2020). Two aug-
mented views of each input window are encoded by the ResNet backbone and projected through
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Figure 5: Signal reconstruction with and without our loss regularizers. Using the regularizers better
preserves higher-frequency details. Only one channel is displayed.

a two-layer MLP head into a 64-dimensional embedding. The model is trained with the NT-Xent
loss with a temperature of 0.1, with positive and negative pairs drawn from within the batch. After
experimenting with different augmentation combinations from the available eight, we finalized on
random scaling and time warping, each applied with a probability of 0.3. The model is optimized
with SGD (momentum 0.9, weight decay 1 x 10~°) and a cosine annealing learning rate scheduler.

Augmentation Prediction follows the official implementation of |Yuan et al.| (2024), where the en-
coder is trained to classify which augmentation was applied to the input. The same ResNet backbone
is used, with a separate linear classifier for each augmentation, making it a binary prediction task
per augmentation. Following |Yuan et al.|(2024), random shuffle and rotation are applied for invari-
ance, while the tasks used for prediction are timeflip, permute, and timewarp. Each augmentation
is applied with 50% probability. The model is trained with the Adam optimizer and cross-entropy
loss.

RelCon follows the official implementation of |Xu et al.| (2025). The Learnable Distance Measure
uses the same architecture as in the original work and is trained with MSE loss between the input and
reconstructed signal. In each batch, two of the eight available augmentations are chosen at random
and applied to the input. The encoder of the main backbone is replaced with our ResNet-12, and the
embeddings projected into a 64-dimensional space. The model is trained using the original Relative
Contrastive Loss and the Adam optimizer.

A.4 FURTHER ABLATION STUDIES

A.4.1 LOSS REGULARIZER

Figure [5] compares the reconstructions of SlotFM with and without the proposed loss regularizers,
Lssiv and Lys.strr- When trained with only MSE, the model captures the overall trend of the
signal but fails to reproduce higher-frequency fluctuations. In cases with sharp peaks, as shown in
the second example, the reconstruction completely misses these features. In contrast, when the loss
regularizers are applied, although the reconstructions still do not detect sharp peaks to the exact
same magnitude, the general patterns of these sharp transitions remain are preserved.

A.4.2 NUMBER OF BANDS

Figure [6] shows the effect of the number of bands used as input for the model. The solid black line
shows the average across tasks, while the dotted colored lines show individual task performances.
In calculating the average, the RMSE values for the JumpPower and ThrowSpeed tasks are divided
by 10 to match the scale of the other regression tasks.

For each configuration, the input signal is processed through a bandpass filter to decompose it into
a given number of bands. Table [6] shows the cutoff boundaries for each configuration. Since most
of the motion in the signals lies in the lower frequencies, typically under 10 Hz, we allocated finer
granularity to the lower frequency ranges. Following our model design, where each band has a
separate encoder to account for differences in patterns and shapes across frequency ranges, we ad-
justed the number of encoder layers so that the total model size remained constant. This means
that the single-band configuration uses the largest encoder with 12 ResBlocks, while the 12-band
configuration uses only one ResBlock per band.
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Figure 6: Average performance on classification and regression tasks when the input signal is band-
passed into different numbers of bands. The solid black line shows the overall average, and the
dotted colored lines show the performance of each individual task.

Table 6: Cutoff frequency boundaries for each band configuration.
# Bands Cutoff Boundaries (Hz)

1 0-25

2 0-1, 1-25

3 0-1, 1-4, 4-20

4 0-1, 1-4, 4-10, 10-25

6 0-1, 1-2, 2-4, 4-6, 6-10, 10-25

12 0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-8, 8-10, 10-12, 12-14, 14-16, 16-25

The results show that while decomposing the signal into multiple bands improves performance,
more bands do not necessarily lead to better performance. For both classification and regression
tasks, performance begins to degrade from 6 bands onward. This is likely because splitting into too
many bands makes each band narrower and less informative, and the smaller encoders assigned to
each band may not have enough capacity to capture meaningful features. Using 12 bands leads to
a significant drop in performance, since higher frequencies contain less information, and dedicating
individual bands to these ranges does not contribute anything meaningful.

A.4.3 NUMBER OF SLOTS

Figure [/| shows the effect of the number of slots on classification and regression performance. The
size of each slot embedding is adjusted so that the total embedding size remains constant. For
example, with 2 slots the slot dimension is 128, while with 32 slots the slot dimension is 8. Overall,
the performance is relatively stable across different slot numbers. For classification, 8 slots give

Avg. Classification Performance Avg. Regression Performance
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Figure 7: Average performance on classification and regression tasks with different numbers of slots.
The solid black line shows the overall average, and the dotted colored lines show the performance
of each individual task.
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the best performance, while larger slot numbers lead to a drop, especially at 32. For regression,
performance is mostly stable across slot numbers, but 32 shows a clear degradation.

A.5 LLM USAGE DISCLOSURE
In preparing this manuscript, we used LLMs solely as a writing aid to improve grammar, phrasing,

and formatting (e.g., LaTeX macros, table layout). LLMs were not used for experiments, analyses,
or substantive research content. The authors take full responsibility for the final manuscript.
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