
SOK: A FIRST LOOK INTO REPRODUCIBILITY OF BLUETOOTH ATTACKS

Anonymous authors
Paper under double-blind review

Abstract
We investigate the reproducibility of Bluetooth Impersonation
AttackS (BIAS) and Bluetooth Forward and Future Secrecy
(BLUFFS) attacks in our dissertation. Using a Raspberry Pi
3 Model B and a CYW920819M2EVB-01 evaluation board,
we are able to reproduce BIAS and successfully attack target
devices with it. We analyse the packets captured with various
BIAS attacks, and compare them to a regular Bluetooth con-
nection. We show the difficulties in implementing BLUFFS,
but confirm that it is likely reproducible if we had significant
computation resource on the evaluation board.

1 Introduction

Phones, computers, and smartwatches are a few examples
of devices with Bluetooth capabilities that we use everyday.
They often record sensitive data such as who we call, where
we go to for work, or what our heart rate currently is, all to
improve their services and our quality of life. With 5 billion
Bluetooth devices shipped in 2023, of which 1.22 billion
are categorised as data transfer devices and 563 million as
location services devices, it is vital to question the security
and privacy of modern Bluetooth devices [1].

Despite the widespread popularity of Bluetooth in our daily
lives, there is a worrying lack of research into the safety of
Bluetooth and the potential implications of it. The Bluetooth
Special Interest Group (SIG) allows people to report security
vulnerabilities they find with the Bluetooth protocol to them,
yet only 1 official security notice was made in 2023, and 2 in
2022 [37]. While one may consider this to be the result of the
Bluetooth protocol being secure, the more probable reason is
that not enough security and privacy research is being done
into it. 28,961 CVEs were published in 2023, making the
2023 Bluetooth security notice the only CVE to be officially
recognised by the Bluetooth SIG in that year [2].

While the discovery of new vulnerabilities is important, it
would have a limited long-term impact if it cannot be repro-
duced by others. The lack of reproducibility hinders others
to test software patches against the attack, updated standard
or existing and new products [36]. This work examines two
representative, recent Bluetooth vulnerabilities, Bluetooth
Impersonation AttackS (BIAS), discovered in 2020, and Blue-
tooth Forward and Future Secrecy (BLUFFS), discovered in
2023, that have been acknowledged by the Bluetooth SIG to

replicate [3,4]. We chose these two because of the availability
of artifact to assist others in reproducing the attacks [5, 18]
and some other vulnerabilities are based on what BIAS and
BLUFFS do.

However, even when the artifact is provided, we found a
number of difficulties to reproduce those attacks. For exam-
ple, the CYW920819EVB-02 evaluation board that was used
for the original BIAS proof of concept implementation has
been discontinued and is no longer available to purchase [14].
There exists a demand for the original code to be ported to
a newer version of the EVB-02 board, which was a primary
motivator for us to aim to implement BIAS and BLUFFS.

There is also a lack of guidance on how to implement BIAS
in its entirety. The BIAS paper and code provide simple in-
structions on how to perform the attack with the files provided
in the repository, but it fails to explain how one can patch
the attack device to impersonate a device that the repository
does not include. The BLUFFS code repository does not
contain step-by-step instructions, but it does say what files
to run depending on what the user wishes to do. While the
papers give a methodology on how they setup and ran their
experiments, we cannot assume that people will read through
and fully understand them. It is important that people that
wish to recreate these attacks can understand why they are
following these steps, and so they can potentially extend on
the attack.

To the best of our knowledge, there has only been 1 other
successful attempt at implementing BIAS on an evaluation
board other than the CYW920819EVB-02 [33]. It uses the
CYW920735Q60EVB-01 evaluation board, which is still
available for purchase. However, it does not explain the steps
they took to get the attack to work, but they do say how
to get the information necessary to create an impersonation
file. We improve on this work by explaining how we got the
CYW920819M2EVB-01 evaluation board to work with all of
the tooling needed. We also explore the differences between a
regular Bluetooth connection and a BIAS connection. Black-
tooth [15] implements BIAS using the EVB-02 as part of its
chain of attack to achieve remote command execution on the
victim device, showing that BIAS was reproducible when
the EVB-02 was available to purchase. We did not find any
papers that used a device other than the EVB-02 to implement
BIAS during our research.

This paper makes four contributions. First, we adapt
the BIAS and BLUFFS code to implement it on an eval-



Submitted to the Journal of Systems Research (JSys) 2024

Figure 1: Possible configurations of a piconet [23].

uation board that is available to the general public as
of early 2024, reimplementing the BIAS attack for the
CYW920819M2EVB-01 evaluation board. Second, we cre-
ate an extensive guide on how to implement the BIAS attack
based on the case study with Raspberry Pi 3 Model B and that
evaluation board. Third, we create new impersonation files
for BIAS and fixed the original code to work with Python 3.
Finally, we analyze the difficulty of reproducing the BLUFFS
attack in our setup. We plan to incorporate our work into
an open-source framework that tests devices for Bluetooth
vulnerabilities.

The rest of this paper is organized as follows. Section 2
reviews the Bluetooth protocol, Secure Simple Pairing, and
the Link Manager Protocol. Section 3 describes how the BIAS
and BLUFFS work. Section 4 explains how we implemented
the BIAS attack on the EVB-01 board and successfully used
it against an IdeaPad 5. Section 5 goes into detail about the
types of difficulties we encountered when getting BIAS to
work. Section 6 discusses the implications of our work. The
paper concludes with Section 7.

2 Background

This section covers concepts behind the Bluetooth protocol
that are necessary to understand BIAS and BLUFFS.

2.1 Piconets

Bluetooth networks take the form of piconets, which are de-
fined as at least two devices that are connected by the same
physical channel. One device in the piconet is classed as a
central, and up to seven other devices are called peripher-
als [24]. Figure 1 shows three examples of piconets, though
we note that example c is classed as a scatternet due to two of
the centrals being connected. Devices are allowed to switch
roles in a piconet, for example when a peripheral needs to
connect to a different peripheral. Centrals and peripherals
complete different tasks when performing some protocols,
but for our dissertation we only concern ourselves with their
roles in establishing sessions [23].

Figure 2: The steps of secure simple pairing [26].

Initiator
Display
Only

Display
Yes/No

Keybrd
Only

No I/O
Keybrd
Dsply

R
es

po
nd

er
Display
Only

Just
Works

Just
Works

Passkey
Entry

Just
Works

Passkey
Entry

Display
Yes/No

Just
Works

Numeric
Com-
parison

Passkey
Entry

Just
Works

Numeric
Com-
parison

Keybrd
Only

Passkey
Entry

Passkey
Entry

Passkey
Entry

Just
Works

Passkey
Entry

No I/O
Just
Works

Just
Works

Just
Works

Just
Works

Just
Works

Keybrd
Dsply

Passkey
Entry

Numeric
Com-
parison

Passkey
Entry

Just
Works

Numeric
Com-
parison

Table 1: Authentication protocols based on IOCaps [40].

2.2 Secure Simple Pairing
Secure Simple Pairing is the stage that two Bluetooth devices
that are unauthenticated to one another must complete so
that they can encrypt all future sessions between themselves.
Figure 2 shows a simplified diagram with the 5 phases: Public
key exchange, authentication stage 1, authentication stage 2,
Link Key calculation, and encryption. We explain the separate
phases in more detail:
Phase 1: Initiating device A sends its public key PKA to
device B. Once B receives PKA, it then responds back to A
with its public key PKB.
Phase 2: The process diverges depending on what type of
authentication protocol the devices must complete. The au-
thentication protocols are decided on by the input and output
capabilities (IOCaps) of the devices. Table 1 shows what
authentication protocol will be selected based on what IO-
Caps the devices have. We do not need to understand the
specifics of the separate authentication methods for BIAS and
BLUFFS, so we have left them out of this explanation.

2



Submitted to the Journal of Systems Research (JSys) 2024

Figure 3: LMP connection establishment steps. Either the
central or peripheral can start a connection [25].

Phase 3: All processes converge back to following the same
steps again, and each device computes a new value E. Device
A sends B its computed EA, which B then checks to see if
it can compute the same value as EA. If successful, then B
sends A its computed EB, which A then checks in a similar
fashion.
Phase 4: At this point the devices compute the Link Key.
The part we stress here is that there is no possibility for a user
that is eavesdropping can know the Link Key from passively
sniffing the connection between A and B.
Phase 5: The final phase has the two devices compute the en-
cryption key with which to encrypt all future communications
between themselves.

2.3 Link Manager Protocol
The Link Manager dictates how Bluetooth devices connect
to and disconnect from one another. It contains the Link
Manager Protocol (LMP), which sends Packet Data Units
(PDU) [29]. All LMP PDUs have an opcode at the start of its
message to inform the receiving device what the body of the
packet contains. Each LMP PDU is one of either structure
depending on what type of opcode it has:

• 1 bit transaction ID, a 7 bit opcode, followed by up to 17
bytes of payload.

• 1 bit transaction ID, a 15 bit extended opcode, followed by
up to 16 bytes of payload.

When a device wishes to connect to another device, it fol-
lows the LMP procedures to establish a connection. Figure 3
shows what LMP packets are sent between the devices when
establishing a connection [25].

2.4 Toolkits
Our methodology relies on two tools.

BlueZ is an open source implementation of the Bluetooth
protocol for Linux devices. It also installs commands that

we use when gathering information about the target device to
impersonate. bluetoothctl provides command-line access
to BlueZ, allowing us to perform actions such as making our
Bluetooth device pairable, or to scan the nearby environment
for any discoverable devices [39]. Other commands we use
from BlueZ include: hcitool, btmon, and btattach.

InternalBlue was created as part of Dennis Mantz’s Mas-
ters thesis, designed to be a low-level Bluetooth experimenta-
tion framework for security research purposes [35]. It features
powerful commands such as sending hand-crafted LMP pack-
ets over a specified connection, or overwriting parts of the
memory of our Bluetooth chip.

The code developed for BIAS and BLUFFS use Internal-
Blue for its low-level capabilities, though the attacks were
created when InternalBlue was written in Python 2. Internal-
Blue has since been rewritten in Python 3, and we encounter
issues that we discuss in Section 5.

3 BIAS and BLUFFS

We review the Bluetooth vulnerabilities, BIAS and BLUFFS,
that we focus our work on. More details on the attacks in this
section come from Antonioli et. al. [19, 21].

3.1 BIAS
BIAS is a security vulnerability in the Bluetooth Protocol that
allows an attacker to ’impersonate’ a device and then connect
to a victim without knowing the Link Key between the victim
and the impersonated device. Figure 4 depicts how BIAS can
allow Charlie, the attacker, to communicate with Alice or Bob,
the victims, of which have paired together before the attack.
If communicating with Bob, then Charlie impersonates Alice,
and vice versa.

Before Charlie can perform BIAS, they must patch their
Bluetooth chip with the same Bluetooth address, name, LMP
feature profiles, LMP version and subversion, company ID,
and device class as the victim they want to impersonate. We
explain this process more in Section 4 as the information
gathering is a valid part of the Bluetooth protocol, and not a
vulnerability caused by BIAS.

3.2 Legacy Secure Connections BIAS
BIAS exploits the lack of mutual authentication during the
Simple Pairing process with Legacy Secure Connections.
Charlie can be either a central or a peripheral device at the
start of the pairing process, as BIAS follows the same simpli-
fied steps:

1. Begin a connection with the victim
2. (Peripheral only) Switch roles to become the central device
3. Send the victim a challenge to solve as part of the authen-

tication process

3



Submitted to the Journal of Systems Research (JSys) 2024

4. Complete pairing

Charlie never solves a challenge from the victim, because
the victim does not ever check if Charlie solves it. If Charlie
starts off as a peripheral device, they must perform a role
switch to become the central device because then they do not
need to solve the challenge they send to the victim.

3.3 Secure Connections BIAS
There are two types of BIAS attacks for Secure Connections,
those being the downgrade and the reflection attacks. The
downgrade attacks exploit the ability to change from Secure
Connections to Legacy Secure Connections if one user does
not support Secure Connections. The simplified steps for
BIAS downgrade attacks are as follows:

1. Begin a connection with the victim.
2. Declare that Secure Connections are not supported.
3. Downgrade to Legacy Secure Connections.
4. Follow the steps for Legacy Secure Connections BIAS.

The BIAS reflection attacks exploits the ability to switch
roles once the challenges for the authentication procedure
have been sent. The simplified steps for these attacks are as
follows:

1. Begin a connection with the victim.
2. (Peripheral only) Switch roles to become the central de-

vice.
3. Exchange challenges with the victim to begin the authenti-

cation process.
4. While waiting for the victim to solve the first challenge,

switch roles to become the peripheral device.
5. Receive the response from the victim, and then send it

back.

At the point when Charlie and the victim exchange chal-
lenges, this begins phase 3 of the Secure Simple Pairing pro-
cedure as explained in Section 2.2. The victim sends Charlie
EV as the response to the challenge. At this point the victim
would expect to receive EC from Charlie, but because Charlie
changed roles the victim must change as well. This makes
the victim want EV in response instead, and so Charlie sends
it back and the pairing procedure successfully completes.

To better understand our test of our BIAS implementation
with the Secure Connections downgrade peripheral attack in
Section 4, Figure 5 details the attach sequence.

3.4 BLUFFS
BLUFFS was discovered in November 2023, and builds off of
BIAS and a previous attack by Antonioli et. al called KNOB.

The KNOB attack can be succinctly explained as forcing
the encryption key K used by the victims to have an entropy
of 1 byte, meaning that Charlie can quickly brute force K

Figure 4: The end results of BIAS (Fig. 1 from citation) [21].

by checking it against 512 pre-computed values [20]. This
exploit trivialises Bluetooth encryption, but companies swiftly
patched devices against the exploit [6]. This attack is not
essential to implement BLUFFS, which is why we chose to
not implement KNOB.

BLUFFS manages to break both the forward and future
secrecy guarantees made by the Bluetooth protocol, enabling
Charlie to decrypt any messages sent between the victims
Alice and Bob no matter whether they are from the past or
being actively sniffed. It does this by manipulating the values
used in the variables when deriving a Session Key for the new
connection between Alice and Bob.

Figure 6 shows which variables are used to establish the
Session Key SK. PK is the long-term Pairing Key BA is the
Bluetooth Address, CA is a challenge, CR is the response to
the challenge, SE is the entropy of SK, and SD is the the SK
diversifier. The purpose of SK is to protect both past and
future connections if SK is discovered, as a new Session Key
is for every connection.

Charlie would perform the following actions if they were
targeting Bob:

1. Start a connection with Bob, where Charlie impersonates
Alice using the same techniques as in BIAS.

2. During the Session Key establishment phase, Charlie sends
a constant ACC to Bob and ignores CRB.

3. SE is set as the lowest possible entropy, which is 1 if Bob
is vulnerable to KNOB, or 7 if not.

4. SD is also constant, which makes Bob negotiate an SK
that can be brute-forced.

5. Charlie brute forces SK, which can be done offline.
6. Once brute forced, Charlie can now decrypt all future and

past messages between Bob and Alice.

Unfortunately, the time it would take for Charlie to brute-
force SK using commercial equipment would take several
weeks [19]. We discuss this issue more in Section 5.

4 Implementing BIAS

This section explains the implementation of the BIAS attack
by using a CYW920819M2-EVB-01 evaluation board and
a Raspberry Pi 3 Model B, and discusses the differences
between the original implementation and this one.

4



Submitted to the Journal of Systems Research (JSys) 2024

Figure 5: The BIAS peripheral attack. It
exploits downgrading from Secure Con-
nections to Legacy Secure Connections
(adopted from Fig. 5 in [21]).

Figure 6: Session Key derivation during
Simple Pairing (adopted from Fig. 1 in
[19]).

Figure 7: Session Key derivation, but
Charlie manipulates the values used for
deriving SK (adopted from Fig. 2 in
[19]).

4.1 Setup
To install InternalBlue with all of its functionalities, we need
pwntools, a Python 3 library for exploitation development
and Capture The Flag competitions [13]. However, since
pwntools is not available for the Raspbian OS, we installed
Ubuntu Server 22.04.4 LTS on our Raspberry Pi 3 to easily
install pwntools and hence InternalBlue.

To run the attack, we need to recon essential information
from the device we impersonate. As explained in Section 3.1,
we must gather the device’s Bluetooth address, name, LMP
version and subversion, company ID, LMP features, and de-
vice class. These can all be obtained by querying the device
and reading the responses given, but we are unable to read
all of the response packets with the basic Linux kernel on a
Raspberry Pi, because the packets begin with the 0x07 prefix,
which the kernel marks as a Broadcom diagnostic packet. The
packet then is sent down to a management pipe instead of the
HCI pipe that the other packets go down which InternalBlue,
Wireshark1, and btmon watch, meaning we miss essential
packets [27].

To capture the diagnostic Bluetooth packets, we patch
Linux kernel 4.14. Using the kernel patching files by
Antonioli, we remove all of the code that allows di-
agnostic parsing and add a new file, h4_recv.h [16].
This new file comes from the Android kernel’s Bluetooth
files that acts as a generic Bluetooth driver helper [31].

1With a plugin to allow Wireshark to read capture LMP packets, made by
Classen et. al. [28].

This lets the kernel accept Bluetooth packets with a
0x07 prefix. When we attach the CYW board later in
the process, we can then execute echo 1 | sudo tee
/sys/kernel/debug/bluetooth/hci1/vendor_diag=.

This makes the Broadcom chip send out diagnostic mes-
sages, which includes LMP packets that we can now read
with the patched kernel [27].

4.2 Differences from the Original Implementa-
tion

We use the Linux kernel 4.14.111 to minimise divergence
from the original implementation. However, there were
issues when compiling the kernel that are unrelated to
the patches made, meaning it was necessary to change
other files in the kernel for it to compile successfully. The
files changed are: scripts/dtc/dtc-lexer-lex.c,
scripts/dtc/dtc-lexer-lex.c_shipped [7],
include/linux/bitfield.h [32], and the kernel con-
figuration file, .config [22]. This should not affect the
implementation of BIAS, as none of the changes affect the
Bluetooth modules.

One of the major challenges we encountered with the
original paper was that an essential piece of equipment, the
CYW920819EVB-02 from Infineon, was discontinued [14].
We found that the CYW920819M2EVB-01 is a suitable re-
placement because it can still be purchased and it has the
same memory addresses as the original board. We go into

5



Submitted to the Journal of Systems Research (JSys) 2024

more detail about this challenge in Section 5.
InternalBlue does not have a firmware file dedicated to

the EVB-01, but does for the EVB-02. This is because the
EVB-02 has the chip identifier 0x220c, whereas the EVB-01
has the chip identifier 0x2305. InternalBlue uses the chip
identifier to either load the specialised firmware files with
addresses for the memory, or to load the generic one. Some
functions require addresses to be defined to let them be called
by InternalBlue, which means the generic firmware file can-
not use those functions. To enable InternalBlue to change the
firmware and send HCI commands to the EVB-01, we copied
the fw_0x220c.py file to a new fw_0x2305.py file. Now,
when we start up InternalBlue, it will match the chip iden-
tifier 0x2305 to the new file and we can use the specialised
functions.

The original BIAS files were written in Python 2 since
InternalBlue was written in Python 2 when the first proof of
concept was made, but InternalBlue has since changed over
to using Python 3 and strongly recommends people to use
the new version. Every change to the original BIAS files
made can be found in the materials provided. These are also
discussed more in Section 5.

4.3 Implementation

We show an example of the BIAS attack where we imperson-
ate a WH-CH510 headset to have an IdeaPad 5 connect to the
attack device instead of the actual WH-CH510 device.

4.4 Setting Up the CYW Board

We can mount the CYW evaluation board with diagnostics
mode enabled by running:
btattach -B /dev/[ATTACHED CYW FILE]\\
-S 115200 -P bcm
This command changes the attack device’s Bluetooth con-

troller to the CYW board, sets the baud rate to 115200 Bd,
and sets the protocol that talks to the board to a Broadcom
protocol [8]. While btattach usually detects what protocol
to use to talk to the Bluetooth chip, the CYW board appears
like a Cypress chip to it, so it will not use the Broadcom
protocol we require for the diagnostic messages. The chip
is fully compatible with the Broadcom protocol, so we can
explicitly define it when mounting the board. We now can
run the command in Section 4.1 for the diagnostic messages
to be sent.

4.5 Device Impersonation

We never need to connect to the WH-CH510 to gather the
necessary information about it. However, we do need it to be
discoverable for our attack device to find it and query it the
necessary packets.

Figure 8: hcitool inq results with necessary data high-
lighted.

Figure 9: hcitool info results with necessary data high-
lighted.

First, we need to have btmon running on the side to show
the packets being captured. Next, we can run hcitool inq
to have our device search for nearby devices. Once completed,
we get the Bluetooth address and class of the devices it finds.
In btmon we can see similar information as well as the name
of the device, as visible in Figure 8

To get the rest of the data values we need, we can run
hcitool info (address). This will show the LMP feature
pages, LMP version and subversion, and the manufacturer, as
seen in Figure 9.

We can now create an impersonation file for the BIAS code
to use when changing the CYW firmware. It is important to
write the device class value in little endian order in the file
instead of the big endian order that is visible from btmon and
hcitool, otherwise the CYW board will not appear like the
impersonated device’s class. We have made 2 impersonation
files available, one for the WH-CH510 and another for the
Pixel 3a.

We keep the lmin and lmax values as 07 as we did not
implement the KNOB attack, so we cannot know whether the
impersonated device can create a 1 byte session key or not.
However, it may be possible to test the KNOB attack during
BIAS by setting the lmin value to 01 and seeing if it will pair
to the victim, since if the victim is patched against KNOB
then it should reject the connection request.

Before we move onto the next steps, we decided to reat-
tach the CYW board as mentioned in section 4.4 but without
the -P bcm flag as we found that some victim devices have

6



Submitted to the Journal of Systems Research (JSys) 2024

Figure 10: InternalBlue patching the CYW board to match
the WH-CH510.

Figure 11: InternalBlue cannot be started again after the CYW
board is patched.

difficulty connecting to the attack device with this flag set.
We also need to start up bluetoothctl and set the Bluetooth
controller to be discoverable before we patch it, as if we set
it after we patch our device then bluetoothctl will change
the class back to its actual value, destroying the integrity of
the impersonation of the attack device.

From this point we follow the steps as outlined by the
original BIAS Github repository. We start up InternalBlue
and initiate Wireshark from it, then we run make generate
to create the BIAS python file and shell make bias inside
InternalBlue to patch the device.

As seen by btmon in Figure 10, InternalBlue is accessing
parts of the memory of the CYW board and rewriting the
original Bluetooth values with the ones we specified in the
impersonation file. When it is done, the board is virtually
identical to the impersonated device to the point where if we
exit InternalBlue and try to start it up again, it will trip an error
warning as the impersonated device does not use a Broadcom
or Cypress chip, making the tool exit early and forcing us to
start from the beginning of the BIAS attack.

4.6 Running the Attack

The attack device is now ready to connect to the IdeaPad 5.
Before we do so, we pair the WH-CH510 to the IdeaPad 5
to ensure that they trust each other, and then we turn off the
WH-CH510 to prevent any interference from it during the
connection process.

Figure 12: Annotated shortened Wireshark logs of a regular
Bluetooth pairing protocol between a Pixel 3a and the EVB-
01 board. Refer to Section 4.7 for a guide on the colours.

The IdeaPad 5 attempts to connect to the WH-CH510. At
this point, it will find our attack device and see that it has the
same information values as the ones stored in the IdeaPad
5’s trusted devices list. This tricks the victim into believing
that the attack device is actually the original WH-CH510, and
connects to it without the attack device ever authenticating
itself to it. This is the BIAS peripheral impersonation attack
working.

4.7 Comparing Wireshark Logs
To show that this is the BIAS attack working, we compare the
Wireshark PCAP files between a normal Bluetooth connec-
tion, a failed BIAS attempt, and a successful BIAS attempt.
The full Wireshark logs can be found in the materials. The
normal Bluetooth connection is between a Pixel 3a and the
EVB-01 board, where the EVB-01 is unaltered. The BIAS
attempts are between a victim IdeaPad 5 and the EVB-01
board, of which is impersonating the same Pixel 3a from the
normal Bluetooth connection logs.

To keep the figures shorter and simpler to read, we filter
out all captured LMP packets and only show the packets in
the time frame that is relevant to the discussion. All of the
Wireshark logs can be found in their entirety in the materials
provided. We were not able to record Wireshark logs of a
regular Bluetooth connection between the EVB-01 and the
IdeaPad 5, which we explain in Section 5.1.

Figure 12, Figure 14, and Figure 16 demonstrate regular
Bluetooth paring, successful BIAS attack and unsuccessful
BIAS attack, respectively. Red represents the final Simple
Pairing protocol packet, blue represents the Link Key packets,
green shows if the target device accepted the pairing, and
yellow shows the IOCaps packets.

4.8 Regular Bluetooth Connection between the
EVB-01 and a Pixel 3a

Figure 12 presents the Wireshark logs of a Pixel 3a connecting
to the EVB-01 using the Bluetooth protocol. The Pixel 3a is

7



Submitted to the Journal of Systems Research (JSys) 2024

Figure 13: Contents of the highlighted Link Key packet in
Figure 12.

Figure 14: Annotated shortened Wireshark logs of a success-
ful BIAS peripheral attack. The CYW board impersonates a
Pixel 3a that the IdeaPad 5 victim trusts. Refer to Section 4.7
for a guide on the colours.

paired to the EVB-01 board beforehand to keep the Wireshark
logs relevant to the lifetime a Bluetooth connection only.

This connection follows the LMP procedure for establish-
ing a connection, explained in Section 2.3. One key difference
in Figure 12 from Figure 14 and Figure 16 is that the Link
Key packet is only received after the Simple Pairing protocol
is completed. Figure 13 shows the contents of the packet. We
stress that this packet contains the Link Key to encrypt all
future messages.

4.9 Successful BIAS attack between an Imper-
sonated Pixel 3a and an IdeaPad 5

Figure 14 shows a successful BIAS peripheral attack from
our experiments. The EVB-01 impersonates a Pixel 3a that
is trusted by the victim IdeaPad 5. We note that the Link
Key is negotiated immediately after the connection was ac-
cepted, and there is no packet containing the Link Key after
the Simple Pairing protocol is completed. The connection is
sustained until we terminate the connection from the EVB-01.

We follow the LMP procedure like before. As the EVB-01
is patched to have the same information as the Pixel 3a that the
IdeaPad 5 requests, the IOCaps match the details the IdeaPad
5 has stored for its profile on the Pixel 3a. This leads into
the authentication phase of the procedure, which the EVB-
01 responds that it correctly verified the PIN it obtained in
Figure 15, though it never actually checks the PIN.

The IdeaPad 5 believes that the EVB-01 is actually the
Pixel 3a as it claimed to have calculated the same number as
the PIN. The Simple Pairing procedure is then completed as
both parties are satisfied with the calculated number, and the
BIAS peripheral attack is successfully performed. At no point

Figure 15: Contents of the first User Confirmation Request
packet in Figure 14. 0x33 means the sender has authenticated
the other user.

Figure 16: Annotated shortened Wireshark logs of a failed
BIAS peripheral attack. The CYW board impersonates a
Pixel 3a that the IdeaPad 5 victim trusts, but the attack does
not work. Refer to Section 4.7 for a guide on the colours.

during this connection do we receive a Link Key value like
that of Figure 13. Because of this, the connection between
the IdeaPad 5 and the EVB-01 never gets encrypted, despite
how the final packet in Figure 14 says that the encryption is
turned off once the EVB-01 is disconnected.

4.10 Failed BIAS attacks between an Imper-
sonated Pixel 3a and an IdeaPad 5

We present two examples of a failed BIAS attempt in this
section, and we explain why they failed.

In this example, we patched the EVB-01 in the same way
as before, but we did not set the EVB-01 to be pairable. Fig-
ure 16 shows the Wireshark logs of the failed connection.
Because of this mistake, when the IdeaPad 5 requests for the
EVB-01’s IOCaps, the EVB-01 refuses to provide them and
returns the packet shown in Figure 17. As a result, the LMP
protocol dictates that the connection establishment attempt
should be stopped, and the Simple Pairing packet contains the
code 0x05, meaning that the PIN or Link Key was incorrect.

In another unsuccessful BIAS attempt, we correctly set the

Figure 17: Contents of the sent IOCaps packet in Figure 16.

8



Submitted to the Journal of Systems Research (JSys) 2024

Figure 18: Annotated shortened Wireshark logs of a failed
BIAS peripheral attack, but with the EVB-01 correctly
patched and pairable.

Figure 19: A closer look at the time frame in Figure 18 with
LMP packets included.

EVB-01 to be pairable; Figure 18 shows the console logs.
The EVB-01 sends the correct IOCaps, but fails to send the
correct User Confirmation reply. Taking a closer look at the
LMP packets sent during this time in Figure 19, we see in
packet 371 that the Numeric Comparison failed.

Investigating the body of the User Confirmation negative re-
sponse in Figure 20, we find that the error code is 0x2d. This
error code means the Quality of Service parameters were re-
jected by the EVB-01, of which we cannot control ourselves.

We followed the steps we listed out in Section 4 that re-
sulted in successful BIAS attacks. The Quality of Service
parameters that resulted in this error are decided on in the
Baseband protocol, which is out of scope for this work. We
assume that this may be to do with the baud rate we set the
EVB-01 to when we first attach it in Section 4.4, but we did
not look into this any further.

4.11 Validity of the Implementation

We discovered that the Wireshark logs of Antonioli’s BLUFFS
attack contained the initial step where the attack device exe-
cuted BIAS on the victim to connect to them. To determine if
our implementation of BIAS was valid or not, we can com-

Figure 20: Contents of the User Confirmation Request Nega-
tive Reply packet in Figure 19.

Figure 21: Annotated shortened Wireshark logs of the BIAS
portion of the BLUFFS attack from Antonioli [18].

pare our Wireshark logs to the BLUFFS logs to see if we
obtain similar results. Figure 21 shows the relevant portions
of the BLUFFS BIAS attack.

The key difference here is that the attack device receives the
Link Key after Simple Pairing is finished in Antonioli’s logs,
whereas in our logs in Figure 14 there is no packet containing
the Link Key. In our comparisons of the two Wireshark logs,
we could not find a difference in the captured packets between
them that may have caused this discrepancy. The logs pro-
vided by Kozlowski also show a Link Key notification packet
after the Simple Pairing procedure, but there is no explanation
of why this might be [33].

As we got the IdeaPad 5 to mistakenly pair to the EVB-
01 when it was attempting to connect to its trusted Pixel 3a
without the EVB-01 knowing the Link Key between them,
we believe we managed to implement BIAS successfully. It
may prove prudent to investigate why our implementation did
not get the Link Key in future work.

4.12 Test Results
Following the steps listed out in Section 4.3, we tested BIAS
against the IdeaPad 5 and Pixel 3a. We obtained imperson-
ation files for these devices as well as the WH-CH10 headset.
Table 2 shows which victims incorrectly connected to the
EVB-01 that impersonated a trusted device of the victim.

We could not test BIAS against many victim devices since
we only had access to our personal Bluetooth devices. Given
more time and resources, we would have experimented if our
implementation could perform the BIAS central attack, and
we would test more everyday Bluetooth devices if they were
vulnerable against BIAS.

4.13 Limitations
CVE-2020-10135 lists BIAS as having a base score of 5.4. No
privileges or user interactions are required to perform BIAS,
but it has a low impact on the confidentiality and integrity
of the victim [9]. NVD also lists BIAS as having low attack
complexity, which we argue against. Section 5 explains the

9



Submitted to the Journal of Systems Research (JSys) 2024

Impersonated IdeaPad 5 Pixel 3a WH-CH510
IdeaPad 5 - (not tested) -
Pixel 3a ✓ - -

WH-CH510 ✓ ✓ -

Table 2: Test results of the BIAS peripheral attack against
various devices. The left-hand column shows the devices the
EVB-01 impersonated. The Pixel 3a was not tested against
an impersonated IdeaPad 5 due to the EVB-01 breaking, ex-
plained in Section 5.1.

difficulties we encountered while implementing BIAS, which
drastically increases the attack complexity.

BIAS is not a realistic attack yet. After the attacker has
the tooling set up, assuming they are using unmodified com-
mercially available attack devices, they must be within a
35m range to the victim in a typical home or office environ-
ment [10]. If they do modify the device, for example by
increasing the transmitting power or by attaching antennae
to it to increase the range, then the device becomes more
conspicuous.

The next challenge is capturing the Bluetooth packets of
the device to impersonate. The minimum information the
attacker must get is the device’s Bluetooth address and name,
as that is unique to each device. The rest of the informa-
tion can be obtained beforehand if the attacker knows what
device to impersonate. Without assuming that the device is
discoverable, the attacker must sniff out Bluetooth packets
over-the-air. The Ubertooth One hardware is specially de-
signed for over-the-air packet sniffing [34], but it has been
discontinued [38].

Finally, BIAS is not reliable. Out of all of our attempts
with our experiments, only 3 were successful. This means
that the success rate for BIAS is very low. This was in a
controlled setting where the attack device and the victim were
next to each other, and the impersonated device was turned
off. A realistic setting will have the victim and attacker be
further apart, resulting in greater path loss because of the
distance and obstacles between the devices. Plus, the real
device the victim wishes to connect to is likely closer to the
victim and is actively turned on, causing interference between
the impersonated device and the attacker. We ran into this
issue where the interference of the impersonated device and
the attacker confused the victim and made the victim stop
responding, hence failing the BIAS attack attempt.

5 Challenges

We list the challenges we encountered over the course of this
work when implementing BIAS and BLUFFS, and we explore
how these challenges may have impacted others’ ability to
reproduce the attacks. We also go into why BLUFFS was
unachievable for this work with the resources we had.

5.1 Inaccessible Hardware

Antonioli et. al listed out the equipment they used in their pa-
pers on BIAS and BLUFFS, which was a CYW920819EVB-
02 evaluation board and a Linux laptop. As explained in
Section 4.2, the original board was discontinued and impossi-
ble to purchase from third-party sellers, meaning we needed
to find a new evaluation board to replace the EVB-02.

We learnt that the CYW920819M2-EVB-01 board had the
same memory addresses as the EVB-02 from an answer to an
open issue in the BIAS code repository [5]. Considering that
the original BIAS paper located the specific EVB-02 memory
addresses via dumping the ROM and RAM contents of the
board, and then reverse engineering it in a disassembling and
decompiler program called Ghidra [21].

We did not want to go through this process ourselves if
we used a different evaluation board, so we purchased the
CYW920819M2-EVB-01. Any future work that looks to
implement BIAS on a different evaluation board may need to
go through the original process.

Unfortunately, through the process of implementing BIAS,
our EVB-01’s Bluetooth capabilities stopped functioning as
expected. Over the course of our experimentation, we dis-
covered that the EVB-01 could no longer sustain a Bluetooth
connection once established as a peripheral. If the EVB-01
established the connection as a central, then the connection
would be sustained. We could not successfully complete
BIAS peripheral attacks anymore, and were unable to fig-
ure out why the EVB-01 Bluetooth’s functionality stopped
working. It is also due to the EVB-01 breaking that we could
not implement BLUFFS, as BLUFFS requires patching the
Bluetooth controller’s memory using InternalBlue as well.

5.2 Incompatible Code

As mentioned in Section 2.4, the code for BIAS was made
when InternalBlue was first created in Python 2, but Internal-
Blue is now written in Python 3. Since the BIAS code was
released, there have been no updates to the code from June
2020 onwards, making it incompatible with the latest version
of InternalBlue [17]. The BLUFFS main bluffs.py is also
written in Python 2, resulting in it having the same issue.

To fix this compatibility issue, we ran bias-template.py
and generate.py through Python’s 2to3 command, which
automatically converts Python 2 files into Python 3. We
edited the output files as 2to3 did not catch the bytestrings
and strings, which were incompatible with InternalBlue. All
of these changes did not affect how the BIAS code worked,
and so did not impact the reliability of the attack.

If we implemented BLUFFS as well, we would also change
bluffs.py as it is written in Python 2. We would follow the
same steps we did for BIAS, however 2to3 will be removed
in Python version 3.13, so this method of porting the files
may no longer be available in the future [11].

10



Submitted to the Journal of Systems Research (JSys) 2024

5.3 Incompatible Libraries

We aimed to use the Raspberry Pi 3 as the computer for BIAS
since it represents what most people that wish to reproduce
BIAS have access to, and it can be purchased from online
retailers for £33 at the time of writing [12]. If a user did
not have a Raspberry Pi 3, but did have a newer version or a
Linux computer of similar or better capabilities, they likely
can implement BIAS following our explanation in Section 4
from Section 4.3 onwards.

As mentioned in Section 4.1, we installed Ubuntu OS on
the Raspberry Pi 3 so we could install the pwntools library
for InternalBlue. pwntools uses binutils, which in turn is
not available for Raspbian OS.

5.4 Computing Power

Computing power was not an issue for BIAS as the attack
does not require resource-intensive procedures. On the other
hand, BLUFFS requires brute forcing an encryption key as a
mandatory step in its attack.

The original BLUFFS paper relies on keeping the entropy
SE of the Session Key (SK) as low as possible. In practice,
SE = 1 if the victim device is also vulnerable to KNOB,
or SE = 7 if the victim device is patched against KNOB.
(Un)fortunately, Android pushed a patch against KNOB at
the same time that the KNOB paper was published, resulting
in our test victim devices being patched against the KNOB
attack [6].

This security patch forces our attack device to negotiate
SK to have an entropy of SE = 7. With our setup of a single
Raspberry Pi 3 Model B, brute forcing SK would take several
weeks based on the estimations from Antonioli [19], though
it is more likely to take at least a month considering that the
Raspberry Pi 3 has far less computing power than the average
modern computer today.

As part of our goals was to recreate the BIAS and BLUFFS
attacks on a reasonably obtainable setup, we chose to not
offload the calculations needed to crack SK to a distributed
setup or a more powerful computer. The time it would take to
find SK on the Raspberry Pi 3 makes it an unrealistic attack
on our setup, and so we decided it was unreasonable for us to
spend the time brute forcing SK.

6 Lessons Learned

We discuss the implications of our work and the importance
of reproducible attacks. We consider the factors that made it
harder or easier to reproduce BIAS and BLUFFS, and we take
a step back to argue the reasons for and against increasing the
reproducibility of Bluetooth security vulnerabilities.

6.1 Reproducibility of BIAS

As shown by our implementation in Section 4, we were able
to reproduce BIAS multiple times. Once we finished porting
the original code to Python 3, made the impersonation files,
and prepared the Raspberry Pi 3 and EVB-01, it took under 5
minutes to run each attempt of BIAS. We are confident that if
we followed the steps in our implementation again, we would
successfully run BIAS.

Before our work, we argue that BIAS was extremely dif-
ficult to reproduce, especially so after the original EVB-02
board was discontinued. There exist multiple Github issues
in the BIAS code repository with questions about obtaining
the necessary information to make impersonation files, diffi-
culties with errors, and not knowing which evaluation boards
could be used. This is due to the lack of details or implicit
assumption imposed on those attempting to run BIAS.

This paper provides accessible setup and thorough expla-
nation on every step we took to get BIAS to work for us, and
provide plausible explanations why we achieved the results
we got during our tests. The reproducibility of BIAS has
increased because of our work.

When implementing BIAS for other Bluetooth chips, the
main challenge is finding the correct patches of memory in
the RAM to overwrite in InternalBlue, as this will require
low-level reverse engineering of proprietary firmware. It is
plausible that there are other Cypress chips that have the same
memory addresses as our attack device. Creating a list of
evaluation boards that can run BIAS will be helpful in the
future when the CYW920819M2EVB-01 is discontinued.

We only had access to 3 Bluetooth devices, of which 2
could initiate Bluetooth connections. Testing devices that
were released in the past couple years would prove to be
a good investigation as to whether commercial devices are
truly safe against BIAS or not. While the Bluetooth SIG
provides patches against these Bluetooth attacks, they may
not be mandatory because all versions of Bluetooth must be
backwards compatible.

Availability of more BIAS-capable devices would also help
making BIAS code more matured. While we uncovered the
reason some of our BIAS attempts failed, we did not know
how to resolve them. This could be done alongside testing
more devices against BIAS, since giving BIAS a higher suc-
cess rate would make it easier to test.

6.2 Reproducibility of BLUFFS

Unfortunately, we cannot say we achieved the same with
BLUFFS. While we have completed the first key step to the
BLUFFS attack, there is no reasonable way to brute force a
7-byte encryption key with an accessible setup.

Our work does show that BLUFFS is likely reproducible
on the EVB-01 if we ignore the computing constraint, as we
can follow the same steps the original paper took. We would

11



Submitted to the Journal of Systems Research (JSys) 2024

adapt the BLUFFS code repository to Python 3 to make it
compatible with the latest version of InternalBlue, but the
original paper used the same setup as from the BIAS attack.

However, running BLUFFS is unlikely possible on the
budget-friendly setup due to the requirement of a large com-
putational resource ; as of early 2024, there exist no other
BLUFFS implementations than the original one.

6.3 Factors of Reproducibility
Our main focus during the course of creating our BIAS im-
plementation was reproducibility and accessibility. Over the
course of our work and creating our guide, we found the points
we factored in most were:

• Cost: The cost of purchasing the necessary equipment and
the time spent following our steps must be reasonable.

• Knowledge: People should understand the reasoning be-
hind each step we took, and should feel confident in search-
ing for answers if they get stuck.

• Execution: The end result of our guide is to run BIAS,
whether that be successfully or not.

While initially each of these factors were difficult to obtain
as we struggled to get BIAS to work, as we refactored our
steps we strove to lower the cost and knowledge needed to
follow along our explanation.

6.4 Implications
With the severe impact that BIAS and BLUFFS can have on
the security and privacy of Bluetooth, it was important that
we considered the potential risks and benefits our work could
have on others.

Making BIAS more reproducible brings up the clear risk
that malicious people could use our work to harm others.
While the likelihood of this happening does partially increase
because of our work, we believe that the same can be said
for developers that wish to patch Bluetooth devices against
BIAS. As malicious people attempt to exploit BIAS against
victims, the developers can test their devices to check if they
can defend against the attack.

Our work also helps to educate people that may want to
understand what parts of the Bluetooth protocol may be more
vulnerable to exploits, or to understand the process behind
reproducing security attacks. This could be to help them
figure out how to stay safe from attacks by not letting their
devices be discoverable unless necessary, or to ensure that
future proof of concepts of security vulnerabilities are as easy
to reproduce as possible.

7 Conclusion

This paper reported our experience of implementing and ex-
perimenting BIAS for the CYW920819M2EVB-01 evalua-

tion board and Raspberry Pi 3 Model B. It is the first docu-
mented implementation of BIAS for an evaluation board other
than the CYW920819EVB-02, which is no longer available
as of early 2024, and the CYW920735Q60EVB-01, whose
instruction to run BIAS is not provided. We provided the first
analysis of the packets captured for a BIAS attack, explaining
why the attack works.

We believe our work made a significant first step towards
enabling an ecosystem of reproducible Bluetooth attacks. It
is important, because, due to the nature of Bluetooth devices,
many existing devices would remain unpatched for a long time
after the attack is developed and the update against it has been
released. In addition to releasing all the artifact described
in this paper upon acceptance of the paper, we plan to con-
tribute our work to existing attempts of creating open-source
framework that tests devices for Bluetooth vulnerabilities.

As future work, we plan to implement other Bluetooth
vulnerabilities discovered in recent years, including Method
Confusion attack [40], Blacktooth [15], BRAKTOOTH [30]
and BLESA [41].

Acknowledgement

Use this section to acknowledge collaborators, funding agen-
cies, or anyone that contributed to make this research happen.
Yes, this includes open source program contributors.

Artifacts

The paper is about our artifact and the main body described it.
All the materials and instructions to reproduce all the results
in this paper are in https://anonymous.4open.science/
r/8DF3/README.md.

References

[1] URL: https://www.bluetooth.com/
2024-market-update/.

[2] URL: https://www.cve.org/About/Metrics.

[3] URL: https://www.bluetooth.com/
learn-about-bluetooth/key-attributes/
bluetooth-security/bias-vulnerability/.

[4] URL: https://www.bluetooth.com/
learn-about-bluetooth/key-attributes/
bluetooth-security/bluffs-vulnerability/.

[5] URL: https://github.com/francozappa/bias.

[6] URL: https://source.android.com/docs/
security/bulletin/2019-08-01.

[7] URL: https://github.com/BPI-SINOVOIP/
BPI-M4-bsp/issues/4.

12

https://anonymous.4open.science/r/8DF3/README.md
https://anonymous.4open.science/r/8DF3/README.md
https://www.bluetooth.com/2024-market-update/
https://www.bluetooth.com/2024-market-update/
https://www.cve.org/About/Metrics
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/bias-vulnerability/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/bias-vulnerability/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/bias-vulnerability/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/bluffs-vulnerability/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/bluffs-vulnerability/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/bluffs-vulnerability/
https://github.com/francozappa/bias
https://source.android.com/docs/security/bulletin/2019-08-01
https://source.android.com/docs/security/bulletin/2019-08-01
https://github.com/BPI-SINOVOIP/BPI-M4-bsp/issues/4
https://github.com/BPI-SINOVOIP/BPI-M4-bsp/issues/4


Submitted to the Journal of Systems Research (JSys) 2024

[8] URL: https://man.archlinux.org/man/
btattach.1.en.

[9] URL: https://nvd.nist.gov/vuln/detail/
CVE-2020-10135.

[10] URL: https://www.bluetooth.com/
learn-about-bluetooth/key-attributes/
range/.

[11] URL: https://docs.python.org/3/library/
2to3.html.

[12] URL: https://www.rapidonline.com/
raspberry-pi-3-model-b-1-quad-core-1-4ghz-1gb-ram-wifi-bluetooth-75-1005.

[13] April 2024. URL: https://github.com/
Gallopsled/pwntools.

[14] Infineon Technologies AG. Cyw920819evb-
02 - infineon technologies. URL: https:
//www.infineon.com/cms/en/product/
evaluation-boards/cyw920819evb-02/.

[15] Mingrui Ai, Kaiping Xue, Bo Luo, Lutong Chen,
Nenghai Yu, Qibin Sun, and Feng Wu. Black-
tooth: Breaking through the defense of bluetooth in
silence. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, page 55–68, Los Angeles CA USA, November
2022. ACM. URL: https://dl.acm.org/doi/
10.1145/3548606.3560668, https://doi.org/10.
1145/3548606.3560668.

[16] Daniele Antonioli. bias/linux-4.14.111 at
master · francozappa/bias. URL: https:
//github.com/francozappa/bias/tree/master/
linux-4.14.111.

[17] Daniele Antonioli. Commits francozappa/bias.
URL: https://github.com/francozappa/bias/
commits/master/.

[18] Daniele Antonioli. francozappa/bluffs. URL:
https://github.com/francozappa/bluffs/tree/
main/device.

[19] Daniele Antonioli. Bluffs: Bluetooth forward
and future secrecy attacks and defenses. In
Proceedings of the 2023 ACM SIGSAC Confer-
ence on Computer and Communications Security,
page 636–650, Copenhagen Denmark, November
2023. ACM. URL: https://dl.acm.org/doi/
10.1145/3576915.3623066, https://doi.org/10.
1145/3576915.3623066.

[20] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper
Rasmussen. The knob is broken: Exploiting low entropy
in the encryption key negotiation of bluetooth br/edr.

[21] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper
Rasmussen. Bias: Bluetooth impersonation at-
tacks. In 2020 IEEE Symposium on Security and Pri-
vacy (SP), page 549–562, San Francisco, CA, USA,
May 2020. IEEE. URL: https://ieeexplore.
ieee.org/document/9152758/, https://doi.org/
10.1109/SP40000.2020.00093.

[22] BitManipulator. Answer to “attempting to compile
kernel yields a certification error”, April 2021. URL:
https://unix.stackexchange.com/a/646758.

[23] SIG Bluetooth. Part a architecture. URL:
https://www.bluetooth.com/wp-content/
uploads/Files/Specification/HTML/
Core-54/out/en/architecture,-mixing,
-and-conventions/architecture.html#
UUID-18c95f05-5e3b-74ff-5ee8-66505f1f53e6.

[24] SIG Bluetooth. Part b baseband specifica-
tion. URL: https://www.bluetooth.com/
wp-content/uploads/Files/Specification/
HTML/Core-54/out/en/br-edr-controller/
baseband-specification.html.

[25] SIG Bluetooth. Part c link manager protocol spec-
ification. URL: https://www.bluetooth.com/
wp-content/uploads/Files/Specification/
HTML/Core-54/out/en/br-edr-controller/
link-manager-protocol-specification.html.

[26] SIG Bluetooth. Part h security specifica-
tion. URL: https://www.bluetooth.com/
wp-content/uploads/Files/Specification/
HTML/Core-54/out/en/br-edr-controller/
security-specification.html.

[27] Jiska Classen. Bluez: Linux bluetooth stack overview.
URL: https://naehrdine.blogspot.com/2021/
03/bluez-linux-bluetooth-stack-overview.
html.

[28] Jiska Classen. seemoo-lab/h4bcm_wireshark_dissector,
September 2023. URL: https://github.com/
seemoo-lab/h4bcm_wireshark_dissector.

[29] Peter Dziwior. Bluetooth - lmp. URL: http://www.
dziwior.org/Bluetooth/LMP.html.

[30] Matheus E Garbelini, Vaibhav Bedi, Sudipta Chattopad-
hyay, Sumei Sun, and Ernest Kurniawan. Braktooth:
Causing havoc on bluetooth link manager via directed
fuzzing.

[31] Marcel Holtmann. Android common ker-
nel h4_recv.h first commit. URL: https:
//android.googlesource.com/kernel/common/+/
07eb96a5a7b083c988a2c7b0663e958e392f18c7.

13

https://man.archlinux.org/man/btattach.1.en
https://man.archlinux.org/man/btattach.1.en
https://nvd.nist.gov/vuln/detail/CVE-2020-10135
https://nvd.nist.gov/vuln/detail/CVE-2020-10135
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range/
https://docs.python.org/3/library/2to3.html
https://docs.python.org/3/library/2to3.html
https://www.rapidonline.com/raspberry-pi-3-model-b-1-quad-core-1-4ghz-1gb-ram-wifi-bluetooth-75-1005
https://www.rapidonline.com/raspberry-pi-3-model-b-1-quad-core-1-4ghz-1gb-ram-wifi-bluetooth-75-1005
https://github.com/Gallopsled/pwntools
https://github.com/Gallopsled/pwntools
https://www.infineon.com/cms/en/product/evaluation-boards/cyw920819evb-02/
https://www.infineon.com/cms/en/product/evaluation-boards/cyw920819evb-02/
https://www.infineon.com/cms/en/product/evaluation-boards/cyw920819evb-02/
https://dl.acm.org/doi/10.1145/3548606.3560668
https://dl.acm.org/doi/10.1145/3548606.3560668
https://doi.org/10.1145/3548606.3560668
https://doi.org/10.1145/3548606.3560668
https://github.com/francozappa/bias/tree/master/linux-4.14.111
https://github.com/francozappa/bias/tree/master/linux-4.14.111
https://github.com/francozappa/bias/tree/master/linux-4.14.111
https://github.com/francozappa/bias/commits/master/
https://github.com/francozappa/bias/commits/master/
https://github.com/francozappa/bluffs/tree/main/device
https://github.com/francozappa/bluffs/tree/main/device
https://dl.acm.org/doi/10.1145/3576915.3623066
https://dl.acm.org/doi/10.1145/3576915.3623066
https://doi.org/10.1145/3576915.3623066
https://doi.org/10.1145/3576915.3623066
https://ieeexplore.ieee.org/document/9152758/
https://ieeexplore.ieee.org/document/9152758/
https://doi.org/10.1109/SP40000.2020.00093
https://doi.org/10.1109/SP40000.2020.00093
https://unix.stackexchange.com/a/646758
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/architecture,-mixing,-and-conventions/architecture.html#UUID-18c95f05-5e3b-74ff-5ee8-66505f1f53e6
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/architecture,-mixing,-and-conventions/architecture.html#UUID-18c95f05-5e3b-74ff-5ee8-66505f1f53e6
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/architecture,-mixing,-and-conventions/architecture.html#UUID-18c95f05-5e3b-74ff-5ee8-66505f1f53e6
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/architecture,-mixing,-and-conventions/architecture.html#UUID-18c95f05-5e3b-74ff-5ee8-66505f1f53e6
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/architecture,-mixing,-and-conventions/architecture.html#UUID-18c95f05-5e3b-74ff-5ee8-66505f1f53e6
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/baseband-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/baseband-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/baseband-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/baseband-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/link-manager-protocol-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/link-manager-protocol-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/link-manager-protocol-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/link-manager-protocol-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/security-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/security-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/security-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/security-specification.html
https://naehrdine.blogspot.com/2021/03/bluez-linux-bluetooth-stack-overview.html
https://naehrdine.blogspot.com/2021/03/bluez-linux-bluetooth-stack-overview.html
https://naehrdine.blogspot.com/2021/03/bluez-linux-bluetooth-stack-overview.html
https://github.com/seemoo-lab/h4bcm_wireshark_dissector
https://github.com/seemoo-lab/h4bcm_wireshark_dissector
http://www.dziwior.org/Bluetooth/LMP.html
http://www.dziwior.org/Bluetooth/LMP.html
https://android.googlesource.com/kernel/common/+/07eb96a5a7b083c988a2c7b0663e958e392f18c7
https://android.googlesource.com/kernel/common/+/07eb96a5a7b083c988a2c7b0663e958e392f18c7
https://android.googlesource.com/kernel/common/+/07eb96a5a7b083c988a2c7b0663e958e392f18c7


Submitted to the Journal of Systems Research (JSys) 2024

[32] Jakub Kicinski. Re: [patch 00/22] add support for
clang lto - jakub kicinski. URL: https://lore.
kernel.org/kernel-hardening/20200707095651.
422f0b22@kicinski-fedora-pc1c0hjn.dhcp.
thefacebook.com/.

[33] Marcin Kozlowski. marcinguy/cve-2020-10135-bias,
September 2023. URL: https://github.com/
marcinguy/CVE-2020-10135-BIAS.

[34] lisaparty. Ubertooth one — ubertooth documenta-
tion. URL: https://ubertooth.readthedocs.io/
en/latest/ubertooth_one.html.

[35] Dennis Mantz. Internalblue–a bluetooth experimenta-
tion framework based on mobile device reverse engi-
neering. 2018.

[36] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang
Hu, Xinyu Xing, Bing Mao, and Gang Wang. Under-
standing the reproducibility of crowd-reported security
vulnerabilities.

[37] Bluetooth SIG. Reporting security vulnerabil-
ities. URL: https://www.bluetooth.com/
learn-about-bluetooth/key-attributes/
bluetooth-security/reporting-security/.

[38] Straithe and Elizabeth. Ubertooth retirement
- great scott gadgets, December 2022. URL:
https://greatscottgadgets.com/2022/
12-22-ubertooth-retirement/.

[39] Ubuntu. Bluez commands. URL: https://ubuntu.
com/core/docs/bluez/reference/commands.

[40] Maximilian Von Tschirschnitz, Ludwig Peuckert,
Fabian Franzen, and Jens Grossklags. Method
confusion attack on bluetooth pairing. In 2021
IEEE Symposium on Security and Privacy (SP),
page 1332–1347, San Francisco, CA, USA, May
2021. IEEE. URL: https://ieeexplore.
ieee.org/document/9519477/, https://doi.org/
10.1109/SP40001.2021.00013.

[41] Jianliang Wu, Yuhong Nan, and Vireshwar Kumar.
Blesa: Spoofing attacks against reconnections in blue-
tooth low energy.

14

https://lore.kernel.org/kernel-hardening/20200707095651.422f0b22@kicinski-fedora-pc1c0hjn.dhcp.thefacebook.com/
https://lore.kernel.org/kernel-hardening/20200707095651.422f0b22@kicinski-fedora-pc1c0hjn.dhcp.thefacebook.com/
https://lore.kernel.org/kernel-hardening/20200707095651.422f0b22@kicinski-fedora-pc1c0hjn.dhcp.thefacebook.com/
https://lore.kernel.org/kernel-hardening/20200707095651.422f0b22@kicinski-fedora-pc1c0hjn.dhcp.thefacebook.com/
https://github.com/marcinguy/CVE-2020-10135-BIAS
https://github.com/marcinguy/CVE-2020-10135-BIAS
https://ubertooth.readthedocs.io/en/latest/ubertooth_one.html
https://ubertooth.readthedocs.io/en/latest/ubertooth_one.html
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/reporting-security/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/reporting-security/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/reporting-security/
https://greatscottgadgets.com/2022/12-22-ubertooth-retirement/
https://greatscottgadgets.com/2022/12-22-ubertooth-retirement/
https://ubuntu.com/core/docs/bluez/reference/commands
https://ubuntu.com/core/docs/bluez/reference/commands
https://ieeexplore.ieee.org/document/9519477/
https://ieeexplore.ieee.org/document/9519477/
https://doi.org/10.1109/SP40001.2021.00013
https://doi.org/10.1109/SP40001.2021.00013

	Introduction
	Background
	Piconets
	Secure Simple Pairing
	Link Manager Protocol
	Toolkits

	BIAS and BLUFFS
	BIAS
	Legacy Secure Connections BIAS
	Secure Connections BIAS
	BLUFFS

	Implementing BIAS
	Setup
	Differences from the Original Implementation
	Implementation
	Setting Up the CYW Board
	Device Impersonation
	Running the Attack
	Comparing Wireshark Logs
	Regular Bluetooth Connection between the EVB-01 and a Pixel 3a
	Successful BIAS attack between an Impersonated Pixel 3a and an IdeaPad 5
	Failed BIAS attacks between an Impersonated Pixel 3a and an IdeaPad 5
	Validity of the Implementation
	Test Results
	Limitations

	Challenges
	Inaccessible Hardware
	Incompatible Code
	Incompatible Libraries
	Computing Power

	Lessons Learned
	Reproducibility of BIAS
	Reproducibility of BLUFFS
	Factors of Reproducibility
	Implications

	Conclusion

