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ABSTRACT

This paper proposes AEPG-SPIDER, an Adaptive Extrapolated Proximal Gradi-
ent (AEPG) method with variance reduction for minimizing composite noncon-
vex finite-sum functions. It integrates three acceleration techniques: adaptive
stepsizes, Nesterov’s extrapolation, and the recursive stochastic path-integrated
estimator SPIDER. Unlike existing methods that adjust the stepsize factor using
historical gradients, AEPG-SPIDER relies on past iterate differences for its up-
date. While targeting stochastic finite-sum problems, AEPG-SPIDER simplifies
to AEPG in the full-batch, non-stochastic setting, which is also of independent
interest. To our knowledge, AEPG-SPIDER and AEPG are the first Lipschitz-
free methods to achieve optimal iteration complexity for this class of composite
minimization problems. Specifically, AEPG achieves the optimal iteration com-
plexity of O(Ne~2), while AEPG-SPIDER achieves O(N 4+/Ne~?) for finding
e-approximate stationary points, where N is the number of component functions.
Under the Kurdyka-Lojasiewicz (KL) assumption, we establish non-ergodic con-
vergence rates for both methods. Preliminary experiments on sparse phase re-
trieval and linear eigenvalue problems demonstrate the superior performance of
AEPG-SPIDER and AEPG compared to existing methods.

1 INTRODUCTION
We consider the following composite nonconvex finite-sum minimization problem (where ‘2’ de-

notes definition):

N
min F(x) 2 f(x) + h(x), where f(x) 2 %Z (). 0

xER™

The function f(-) is assumed to be differentiable, possibly nonconvex. The function h(x) is assumed
to be proper and lower semi-continuous, and may be nonconvex, nonsmooth, and non-Lipschitz.
Furthermore, we assume the generalized proximal operator of h(x) is easy to compute.

Problem has diverse applications in machine learning. The function f(x) captures empirical
loss, including neural network activations, while nonsmooth regularization h(x) prevents overfitting
and improves generalization. It incorporates prior information, such as structured sparsity, low-rank
properties, discreteness, orthogonality, and non-negativity, enhancing model accuracy. These capa-
bilities extend to various applications, including sparse phase retrieval |Cai et al.[(2024)); Shechtman
et al|(2014)), eigenvalue problems [Wen & Yin| (2013), ¢5-weight decay in neural networks [Zhang
et al. (2019), and network quantization Bai et al.[(2019).

Stochastic Gradient Descent and Variance Reduction Methods. In many applications, both n and
N in Problem () are large, making first-order methods the standard choice due to their efficiency.
Vanilla gradient descent (GD) requires O(Ne~?2) gradient evaluations, while Stochastic Gradient
Descent (SGD) demands O (N 674) gradient computations in total Ghadimi & Lan|(2013); Ghadimi
et al.| (2016)); | Ghadimi & Lan|(2016). To harness the advantages of both GD and SGD, the variance
reduction (VR) framework Johnson & Zhang| (2013); [Schmidt et al.| (2013)) was introduced. This
framework combines the faster convergence of GD with the lower per-iteration complexity of SGD
by decomposing the finite-sum structure into manageable components. VR methods generate low-
variance gradient estimates by balancing periodic full-gradient computations with stochastic mini-
batch gradients. Notable approaches, including SAGA [Defazio et al.| (2014); |J. Redd:i et al.|(2016)),
SVRG Johnson & Zhang (2013);|Li & Li/(2018), SARAH Nguyen et al.[(2017), SPIDER [Fang et al.
(2018), SNVRG |Zhou et al.[(2020), and PAGE |Li et al.| (2021), have been developed. While earlier



Under review as a conference paper at ICLR 2026

work achieved an iteration complexity of O(N + N2/3¢~2) with a suboptimal dependence on N,
recent methods [Fang et al.| (2018)); Pham et al.| (2020) have improved this to the optimal iteration
complexity of O(N + N/2¢2),

Proximal Gradient Methods and Their Accelerated Variants. Proximal Gradient Methods
(PGMs) |Nesterov| (2003)) are widely used for solving composite optimization problems of the form
in Problem . Each iteration of PGM consists of a gradient descent step on f(-), followed by a
proximal mapping with respect to h(:). Accelerated variants of PGMs Beck & Teboulle| (2009);
Ochs et al.|(2014); [Pock & Sabach| (2016) enhance convergence by incorporating extrapolation or
inertial steps inspired by Nesterov’s acceleration techniques. These methods exploit momentum
from previous iterates to achieve faster convergence—specifically, the optimal rate of O(1/k?) for
smooth convex functions, compared to the standard O(1/k) rate of PGMs. Extensions of PGMs
to nonconvex and stochastic settings have also been developed |Ghadimi & Lan|(2016); L1 & Lin
(2015); J. Reddi et al.|(2016); [Li & Li| (2018)); [Wen et al.| (2017, making them powerful tools for
large-scale optimization problems. In particular, they have been successfully applied to training
deep neural networks [Sutskever et al.[(2013)), where they improve convergence efficiency with little
to no increase in computational cost.

Adaptive Stepsizes and Coordinate-Wise Scaling. The choice of stepsize is critical in optimiza-
tion, influencing both convergence speed and stability. Traditional fixed or manually tuned step-
sizes often struggle with complex non-convex problems, leading to suboptimal performance. Al-
though line-search or backtracking methods can improve robustness, they typically incur high com-
putational costs, particularly in the finite-sum setting considered here. Adaptive stepsize methods
McMahan & Streeter| (2010); Duchi et al.|(2011)), such as Adam [Kingma & Bal (2015)); |Chen et al.
(2022), and AdaGrad |Duchi et al.[(2011), mitigate these issues by dynamically adjusting the learn-
ing rate based on gradient information. Recent advancements, including Polyak stepsize |Polyak:
(1987); [Wang et al.| (2023); Jiang & Stich| (2023), Barzilai-Borwein stepsize Barzilai & Borwein
(1988)); |Zhou et al.| (2024), scaled stepsize (Oikonomidis et al.| (2024)), and D-adaptation |Defazio &
Mishchenko| (2023)), have primarily focused on convex optimization. This work extends adaptive
stepsize techniques |Duchi et al.| (2011) to address composite non-convex finite-sum problems. To
improve adaptivity across different coordinates, we adopt coordinate-wise stepsizes, a strategy also
employed in popular methods like Adam. Unlike global stepsizes that use a single scalar learn-
ing rate as in AdaGrad-Norm, coordinate-wise approaches rely on diagonal preconditioners that
scale updates individually across coordinates based on accumulated gradient statistics. This mecha-
nism assigns larger stepsizes to coordinates with smaller accumulated gradient magnitudes, enabling
faster learning in infrequently updated or sparse dimensions. Such adaptivity is particularly bene-
ficial in large-scale settings involving sparse or structured models |Duchi et al.| (2011); Yun et al.
(2021); Bai et al.| (2019).

Theory on Nonconvex Optimization. (i) Iteration complexity. We aim to establish the iteration
complexity of nonconvex optimization algorithms, i.e., the number of iterations required to find an e-
approximate first-order stationary point x satisfying dist(0, 9(f+g)(X)) < e. However, the iteration
complexity of adaptive stepsize methods for solving Problem (T) remains unknown. Existing related
work, such as AdaGrad-Norm Ward et al.| (2020), AGD [Kavis et al.[(2022a), STORM Cutkosky
& Orabona| (2019)); Jiang et al.| (2024), and ADA-SPIDER |Kavis et al.| (2022b), only addresses the
special case h(-) = 0, while methods such as APG |Li & Lin|(2015), ProxSVRG J. Reddi et al.
(2016), Spider [Fang et al.|(2018)), SpiderBoost Wang et al.|(2019), and ProxSARAH [Pham et al.
(2020) rely on non-adaptive stepsizes. Our proposed methods, AEPG-SPIDER and AEPG, with
and without variance reduction, respectively, address the general case where h(x) is nonconvex,
using an adaptive stepsize strategy. Additionally, our methods incorporate Nesterov’s extrapolation
and leverage coordinate-wise stepsize techniques. (if) Last-iterate convergence rate. The work of
Attouch & Bolte| (2009) establishes a unified framework to prove the convergence rates of descent
methods under the Kurdyka-Lojasiewicz (KL) assumption for problem (I)). Recent works [Qian &
Pan|(2023); |Yang| (2023)) extend this to nonmonotone descent methods. Inspired by these works, we
establish the optimal iteration complexity and derive non-ergodic convergence rates for our methods.

Existing Challenges. We study the composite nonconvex finite-sum minimization problem in Prob-
lem (I, which presents three key challenges. (i) Adaptive stepsize for composite minimization.
Given that h(-) can be nonsmooth and non-Lipschitz, the subdifferential Oh(x) becomes a set, and
there is no principled criterion for selecting a representative subgradient. As a result, subgradient
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Table 1: Comparison among existing methods for composite nonconvex funite-sum minimization. The notation @() hides polyloga-
rithmic factors, while O(-) hides constants.

Adaptive Nonconvex Nesterov — Coordinate Iteration Last-Iterate

Stepsize h(x) Extrapol. -Wise Complexity Conv. Rate
APGILi & Lin|2015} X v v X O(N/e) v
SVRG-APG]Li et al.|(2017) x v v X unknown® v
ProxSVRG. Reddi et al.|(2016) x X v X O(N + N?/3¢72) unknown
SPIDER [Fang et al.|(2018) x X x v O(N +VNe?) unknown
SpiderBoostWang et al.[(2019) x v v x O(N +V/Ne2) unknown
ProxSARAH Pham et al.|(2020) x? x x x O(N + V/Ne2) unknown
AdaGrad-Norm Ward et al.|(2020) v x x x O(Ne?) unknown
AGD [Kavis et al.|(2022a) v X v X O(Ne™2) unknown
ADA-SPIDER [Kavis et al.|(2022b) v x X X O(N +VNe?) unknown
AEPG [ours] v 4 v v O(Ne™2) v [Theorem[4.8}
AEPG-SPIDER [ours] v v v v O(N ++/Ne2) ¢ [Theoremf4.13

4 This work only demonstrates that any cluster point is a critical point but fail to establish the iteration complexity.
® This algorithm relies on the Lipschitz constant and does not qualify as using adaptive stepsizes in our strict sense.

norms, as used in methods like AdaGrad-Norm, are not well-defined in this context, making them
unsuitable for stepsize adaptation. To address this, AEPG adaptively updates the stepsize factor
based on the differences between past iterates, and integrates both global and local learning rates for
improved robustness. (ii) Nesterov’s extrapolation. To achieve possible acceleration, we introduce
a novel recursive update rule for the extrapolation coefficient: 0! = 6(1 — o*~!) min(v? + vi*1)
with o¢ € (0, 00). To our knowledge, AEPG is the first adaptive gradient method that incorporates
extrapolation for this class of nonconvex problems. Its convergence is established via a newly de-
veloped sufficient descent condition. (iii) Finite-sum structure. To efficiently handle the finite-sum
setting, we incorporate the SPIDER estimator for variance reduction, which yields optimal iteration
complexity.

Contributions. We provide a detailed comparison of existing methods for composite nonconvex
finite-sum minimization in Tablem Our main contributions are summarized as follows. (i) We pro-
poses AEPG-SPIDER, an Adaptive Extrapolated Proximal Gradient method with variance reduc-
tion for composite nonconvex finite-sum optimization. It integrates adaptive stepsizes, Nesterov’s
extrapolation, and the SPIDER estimator for fast convergence. In the full-batch setting, it simplifies
to AEPG, which is of independently significant (see Section 2. (if) We prove that AEPG attains
the iteration complexity of O(Ne~?2), while AEPG-SPIDER achieves O(N + /Ne~2) for finding
an e-stationary point, thereby establishing them as the first Lipschitz-free methods (i.e., methods
that do not rely on any Lipschitz constant) with optimal complexity for composite minimization
(see Section[3). (iii) Under the Kurdyka-Lojasiewicz (KL) assumption, we prove that our algorithm
terminates in finitely many iterations when 6 = 0, converges linearly for & € (0, %], and sublin-
early for o € (%, 1), with convergence measured by the iterate gap (see Section . (iv) We validate
our approaches through experiments on sparse phase retrieval and the linear eigenvalue problem,
showcasing its effectiveness (see Section [3).

Notations. Vector operations are performed element-wise. Specifically, for any x,y € R", the
operations (x +y), (x —y), (x ®y), and (x <+ y) represent element-wise addition, subtraction,
multiplication, and division, respectively. We use ||x||y to denote the generalized vector norm,
defined as ||x|lv = \/>_;_; X7v;. The notations, technical preliminaries, and relevant lemmas are
provided in Appendix Section [A]

2 THE PROPOSED ALGORITHMS

This section provides the proposed AEPG-SPIDER algorithm, an Adaptive Extrapolated Proxi-
mal Gradient method with variance reduction for solving Problem (I). Notably, AEPG-SPIDER
reduces to AEPG in the full-batch, non-stochastic setting.

First of all, our algorithms are based on the following assumptions imposed on Problem ().

Assumption 2.1. The generalized proximal operator: Proxy(a; v) £ arg ming h(x) + 3||x — a2
can be exactly and efficiently for all a,v € R™.

Remark 2.2. (i) Assumption is commonly employed in nonconvex proximal gradient methods.
(ii) When v = 1, the diagonal preconditioner reduces to the identity preconditioner. Assumption
holds for certain functions of h(x). Common examples include capped-t1 penalty Zhang|(2010b)),
log-sum penalty|Candes et al.|(2008), minimax concave penalty|Zhang|(2010a), Geman penalty|Ge-

man & Yang|(1995), £, regularization with p € {0, %, %, 1}, and indicator functions for cardinality
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Algorithm 1 Proposed AEPG and AEPG-SPIDER
0

1: Initialize x°. Let x 1 = x°.

2: Letv >0, >0,38>0,and 6 € [0,1).

3: Setvl =v1,y? =x0, 071 =40.

4: fort =0to T do

5: Option AEPG: Compute g' = V f(y?).

6: Option AEPG-SPIDER: Compute g* using (2).

7: Let x'*! € Prox; (y! — gt = vi;vt), dt & xH1 — xt,
8  Lets' 2 alrt|2- 1+ prf ©rf, where v £ vt © dt.
9:  Setvitl = \/v0 OO+ 3t s

10:  Leto! 2 6(1 —ot~1) - min(v? + vi*+1).

11 Sety't! = xt1 4 otdt,

12: end for

constraints, orthogonality constraints in matrices, and rank constraints in matrices. (iii) When v
is a general vector, the variable metric operator can still be evaluated for certain coordinate-wise
separable functions of h(x). Examples includes the {,, norm with p € {0, 3, 2,1} (with or without
bound constraints) |Yun et al.|(2021), and W-shaped regularizer|Bai et al.|(2019).

Given any solution y*, we use the SPIDER estimator, introduced by [Fang et al.| (2018}, to approxi-
mate its stochastic gradient:

. ViGYY, mod(t, q) = 0; )
BT g+ Vs T - VI'THTY, else

Here, ¢ is an integer frequency parameter that determines how often the full gradient is computed,
and V f(y; Z*) denotes the average gradient computed over the examples in Z* at the point y. The
mini-batch Z is sampled uniformly at random (with replacement) from the index set {1,2,..., N}
with |Zt| = b for all ¢, where b is the mini-batch size parameter.

The proposed algorithm, AEPG, and its variant, AEPG-SPIDER, form an adaptive proximal gra-
dient optimization framework designed for composite optimization problems. This framework ini-
tializes parameters and iteratively updates the solution by computing gradients (either directly or
via a variance-reduced SPIDER estimator) and applying a proximal operator. Unlike existing meth-
ods that adjust the stepsize factor using historical gradients, AEPG and AEPG-SPIDER update
the stepsize factor v¢ dynamically using differences between successive iterates. Additionally, the
algorithm incorporates momentum-like updates through the extrapolation parameter ¢! to improve
convergence speed. These algorithms are designed for efficient and adaptive optimization in both
deterministic and stochastic settings. We present AEPG and AEPG-SPIDER in Algorithm 1]

We compare the proposed AEPG with AdaGrad-Norm Ward et al.| (2020) by examining a spe-

cial case for AEPG where h(-) = 0 and § = 6 = 0. The first-order optimality condition for

x!*1 becomes: 0 € Oh(x'Tt) + vt © (x!*! — al), where a' = y* — gt + vl and y! = x'.

This leads to vt ® (x!™1 — x!) = —gt. Consequently, the update rule for v! reduces to

vitl = \/ (v0)2 4+ Y>'_, |lg?[13, which resembles “lazy” version of the update used in AdaGrad-

Norm that vi*! = \/(VO)2 +a X"} ||g?|13. There are three key differences between AEPG and
AdaGrad-Norm. (i) Update Strategy. AdaGrad-Norm adapts the stepsize based on accumulated
gradient norms, while AEPG uses differences between past iterates to update v, resulting in a
lazy update scheme. The difference between v and vi*! plays a central role in our complexity
analysis. (if) Extrapolation. Unlike AdaGrad-Norm, AEPG is the first adaptive (proximal) gradi-
ent method with extrapolation for this class of nonconvex problem. A novel recursive update rule
for the extrapolation coefficient o* is proposed: o = (1 —o*~1) min(v! = v**1). (iii) Coordinate-
wise stepsizes. While AdaGrad-Norm employs a global learning rate, AEPG combines both global
and coordinate-wise learning rates. The global scaling factor & > 0 ensures that v¢ remains well-

t
max(v) < . for some constant & > 1.
min(v?)

conditioned, satisfying



Under review as a conference paper at ICLR 2026

Finally, we have the following additional remarks on Algorithm[I} (i) The cumulative update rule for
vi*! can be equivalently be written as the recursive formula vi™! = /vt © vt + st. (if) We address
the non-smoothness of i (x) using its (generalized) proximal operator, the basis of proximal gradient
methods, which update the parameter via the gradient of f(x) followed by a (generalized) proximal
mapping of h(x). (i) The proximal mapping step incorporates an extrapolated point, combining
the current and previous points, following the Nesterov’s extrapolation method. (iv) The parameter
o > 0 is required for theoretical convergence guarantees. In practice, setting « to a very small
value (e.g., & = 10™%) essentially reduces the update to coordinate-wise stepsizes. (v) Algorithm
involves four parameters: the initial value v°, the global and local learning rate multipliers o > 0
and 3 > 0, and the extrapolation parameter . By default, we typically set v" and o to small positive
values, 3 € {0, 1}, and choose 6 to be a value close to but strictly less than 1.

3 ITERATION COMPLEXITY

This section details the iteration complexity of AEPG and AEPG-SPIDER. AEPG-SPIDER gen-
erates a random output x* with ¢ = {0,1,...}, based on the observed realizations of the ran-
dom variable ¢!=! £ {79 7' ... T'~'}. The expectation of a random variable is denoted by
E :-1[-] = E[-], where the subscript is omitted for simplicity.

In the sequel of the paper, we make the following assumptions.

Assumption 3.1. There exists a universal positive constant X such that ||x|| < X for all x €
dom(F'). Furthermore, we assume miny F'(x) > —ooc.

Assumption 3.2. Each f;(-) is L-smooth, meaning that |V f;(x) — V f;(X)|| < L||x — X|| for all
j € [N]. This property extends to f(x), which is also L-smooth.

Remark 3.3. (i) Assumption[3.1 holds by setting h(x) = 1o (x), where vq(-) is the indicator func-
tion of a compact set Q). For example, it can be enforced by adding simple bound constraints, as in
our application. Since any x € dom(F) £ {x : F(x) < +oo} is feasible, it follows that ||x|| < X
for some X > 0. This bounded-domain assumption is standard and mild, widely used in convex com-
posite minimization |Liu et al.|(2022); Jaggi| (2013)), non-convex composite minimization \Yun et al.
(2021), fractional minimization \Yuan, (2025)), and minimax optimization Xu et al.|(2023). Without
it, meaningful theoretical guarantees are generally intractable. (iii) Assumption is a standard
requirement in the convergence analysis of nonconvex algorithms.

For notational convenience, we define 2; £ E[F(x") — F(X) + g[x" —x"""[Z 1 oy

% € argmin, F(x). We define Vi1 2 \/v2 + (a + )Ry, where R; £ S°!_ ||r]|3.
3.1 ANALYSIS FOR AEPG
This subsection provides the convergence analysis of AEPG.

)}, where

We begin with a high-level overview of the proof strategy for AEPG. First, leveraging the optimality
of xt*t1, the L-smoothness of f(x), and the recursive update rule of ot, we derive the following

t)2
sufficient decrease condition: Z;y1 — Z; < ¢S4 — ¢1St, where ¢1,co > 0, St £ mHifl(Hf,,) ,and St &
et 113

in(v)Z Second, based on the update rule for v?, we establish the bounds ZtT:O Stl < O(Vr41)
and 3] S, < O(y/Vry1). Finally, by analyzing both the telescoping sum Y, (Z;11 — Z;) and
the weighted sum ZtT:O min(v?) (2,1 — Z;), we establish the boundedness of both Z; and V;.

We obtain the following lemma which is crucial to our analysis.

Lemma 3.4. (Proof in Section Boundedness of Z; and V;) For all ¢ > 0, we obtain: (a) It
holds Z; < Z for some positive constant Z. (b) It holds V; < ¥ for some positive constant v.

Finally, we present the following results on iteration complexity.

Theorem 3.5. (Proof in Section Iteration Complexity). Let the sequence {x'}_, be gener-
ated by AEPG.

(@) Wehave 2, [l = x'[|f <X £ 1((7/v)? - 1).
(b) Wehave = S IV +0R(xH 1) || = O(1/+/T). In other words, there exists € [T]
such that |V f(x?) + 9h(x!)|| < e, provided T > O(%).

Remark 3.6. Theorem|[3.3|establishes the first optimal iteration complexity result for Lipschitz-free
methods in deterministically minimizing composite functions.

5
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3.2 ANALYSIS FOR AEPG-SPIDER
This subsection provides the convergence analysis of AEPG-SPIDER.

We provide a high-level overview of the proof strategy for AEPG-SPIDER. First, we derive a

. ™ + t t—1
sufficient decrease condltlg)n of the form §t+1 — 2, SE[e3S) —exST+ 2 -3, 1), Yi], where
t t . .
c1,ch,c3 > 0,8, = nllifl(l“ft), St £ m‘ilrf(“,l?)z) ,and Y; £ E[|ly*™! — y?||3]. Second, using the update

rule for v, we derive the following upper bounds: °/_ V;¥; < O(E[Vryq]) and Y, V; <
O(E[\/Vr+1]), where V; = min(v7). Lastly, by analyzing both the telescoping sum ZtT:o(ZtH -
Z;) and the weighted variant EtT:O min(v?) (2,1 — Z;), we establish the boundedness of both Z;
and V;.

We derive the following critical lemma, which is analogous to Lemma@

Lemma 3.7. (Proof in Appendix Boundedness of Z; and V') For all ¢ > 0, we have: (a) It
holds E[Z;] < Z for some positive constant Z. (b) It holds E[Vt] < ¥ for some positive constant V.

Finally, we provide the following results on iteration complexity.

Theorem 3.8. (Proof in Section Iteration Complexity). Let the sequence {x’}_, be gener-
ated by Algorithm T}

(@) We have B[, [|Ix"*! —x'[15] < X £ 2((7/v)* — 1).

(b) We have E[+1¢ S IV + 8h(x*1)|] < O(1/V/T). In other words, there exists
t € [T] such that E[||V f(x") + 0h(x")|]] < ¢, provided T > 5.

(¢) Assume b =g = /N. The total iteration complexity required to find an e-approximate critical
point, satisfying E[||V f(x?) + 0h(x")||] < e, is given by O(N + v/ Ne2).

Remark 3.9. (i) The work of Kavis et al.|(2022b) introduces the first Lipschitz-free variance-reduced

method, ADA-SPIDER, for solving Problem with h(-) = 0. However, its iteration complexity,

O(N ++/Ne?), is sub-optimal. In contrast, the proposed AEPG-SPIDER successfully eliminates

the logarithmic factor in ADA-SPIDER, achieving optimal iteration complexity. The core novelty

of our approach is a recursive bounding inequality of the form Zr < a + i)\ / InaXtT:_O1 Z,, where

a,b > 0 (see Inequalities @) in the Appendix). (ii) Theorem |3.8| establishes the first optimal

iteration complexity result for Lipschitz-free methods in minimizing composite finite-sum functions.

4 CONVERGENCE RATE

This section presents the convergence rates of AEPG and AEPG-SPIDER, leveraging the non-
convex analysis tool known as the Kurdyka-Lojasiewicz (KL) assumption |Attouch et al.| (2010);
Bolte et al.| (2014); |L1 & Lin!| (2015); L1 et al.[(2023)); |Qian & Pan| (2023).

We make the following additional assumption.

Assumption 4.1. The function Z(x,x',0,v) £ F(x) — F(X) + 3||x — X’||§(V+L) is a KL function

with respect to W £ {x,x’, 0, v}.

We present the following useful lemma, due to |Attouch et al. (2010); Bolte et al.[(2014).

Lemma 4.2. (Kurdyka-ELojasiewicz Inequality). For a KL function Z(W) with W € dom(Z),
there exists 7 € (0, +00), & € [0, 1), a neighborhood T of W, and a continuous concave desin-
gularization function ((s) £ &s'~% with & > 0 and s € [0, 7)) such that, for all W € T satisfying
Z(W) — Z(W>) € (0,7), it holds that: ¢ (Z(W) — Z(W>=)) - dist(0, dZ(W)) > 1.

Remark 4.3. All semi-algebraic and subanalytic functions satisfy the KL assumption. Examples of
semi-algebraic functions include real polynomial functions, ||x||, for p > 0, the rank function, the
indicator function of Stiefel manifolds, and the positive-semidefinite cone.

We provide the following lemma on subgradient bounds at each iteration.

Lemma 4.4. (Proof in Appendix|C.1| Subgradient Lower Bound for the Iterates Gap) We define
Wt = {xt,x!71 o'~1 vt} We have || 0Z(WiH) || < 9(||x Tt — x|+ ||x* —x'71||), where 9 > 0
is a constant.
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4.1 ANALYSIS FOR AEPG
This subsection presents the convergence rate for AEPG. We define X; = ||x* — x*~!||, and S; =
Z;’it Xj+1. The following assumption is used in the analysis.

Assumption 4.5. There exists a sufficiently large index t, such that ¢ = c; min(v*) — ¢y > 0,
where c; = 3(12=0)2 ¢y £ 3L and k £ 1+ \/B/a.

K

Remark 4.6. Assumption 4.5\ holds if min(v':) > & = (53’1729%2, which requires min(v'+) to be
over a multiple of L and is relatively mild.

We establish a finite-length property of AEPG, which is significantly stronger than the result in
Theorem[3.3]

Theorem 4.7. (Proof in Appendix Finite-Length Property). We define ¢, £ o(Z(W?') —
Z(W=°)). We define ¥ in Lemma We define £ in Assumption For all t > t,, we have:
(a) It holds that XtQ_‘_l < g(Xt + thl)(@t — QDtJrl).

(b) Itholds thatVi > ¢, S; < w(X;+ X,;_1)+wep;, where w > 0 is some constant. The sequence
{X; };";t has the finite length property that .S; is always upper-bounded by a certain constant,

ie., Z;’;z X1 < +oo forall 7.

Finally, we establish the last-iterate convergence rate for AEPG.
Theorem 4.8. (Proof in Appendix|C.3] Convergence Rate). There exists ¢’ such that for all ¢ > ¢/,
we have:

(a) If & = 0, then the sequence x* converges in a finite number of steps.
(b) If 6 € (0, ], then there exist ¢ € (0, 1) such that [|x — x| = O(<").
1-5

(c) If 6 € (1,1), then it follows that ||x* — x*°|| < O(t~¢), where ¢ £ > 0.

26—1

Remark 4.9. (i) Under Assumption with the desingularizing function o(t) = é'=% for some
¢>0andc €[0,1), Theoremestablishes that AEPG converges in a finite number of iterations
when 6 = 0, achieves linear convergence for ¢ € (0, %} and exhibits sublinear convergence for
s (%, 1) in terms of the gap ||x! — x*°||. These findings are consistent with the results reported in
Attouch et al.|(2010). (ii)Unlike |Qian & Pan|(2025)); |Yang| (2023), which employ a fixed extrapola-
tion parameter o', our approach introduces a novel recursive update rule, leading to fundamentally
different strategies and analysis.

4.2 ANALYSIS FOR AEPG-SPIDER
This subsection presents the convergence rate for AEPG-SPIDER. We define X; =

\ /Z;q:_t;fq |d7||3, and S; £ = X The following assumption is introduced.

Assumption 4.10. There exists a sufficiently large index t, such that ¢ = c; min(v'+)—ch—2¢" > 0,

_ L
where & £ 5cs, ¢ = 3(1=2)2, ¢ £ % and c3 & ﬁ%.

Remark 4.11. Assume q = band ¢ = 1, we have c3 = % and ¢y = 2L. Assumptionis satisfied

. ! 2 . . . . . . .
if min(vt) > 1002% = (114f9)l§, requiring min(v*+) to exceed a multiple of L, which is relatively

mild.

We now establish the finite-length property of AEPG-SPIDER.

Theorem 4.12. (Proof in Appendix|C.4| Finite-Length Property). Assume ¢ > 2. We define ¢ in
Lemma We define {£, £’} in Assumption We let p; 2 o(Z(W?) — Z(W)). We have:

(a) It holds that X2 + %/(Xft -X2 )< %(w(”*”q — ") (X, — Xi 1)

(b) It holds that Vi > 1, S; = Z;’; Xy < wXi 1+ @P(i—1)q Where w > 0 is some constant.
The sequence {X;}?2, has the finite length property that S; is always upper-bounded by a
certain constant, i.e., Z;’il X; < 400 for all 4.

Finally, we establish the last-iterate convergence rate for AEPG-SPIDER.
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Theorem 4.13. (Proof in Appendix|C.5] Convergence Rate). Assume g > 2. There exists ¢’ such
that for all ¢ > ¢/, we have:

(a) If & = 0, then the sequence x* converges in a finite number of steps in expectation.
() If & € (0, ], then there exist 7 € [0, 1) such that E[||x'? — x>°[]] < O(+).

(¢) If 6 € (1,1), then it follows that E[||x" — x>||] < O(t~7), where 7 £ J=% > 0.

Remark 4.14. (i) While derived through different analyses, Theorem closely mirrors Theorem
4.8l indicating that AEPG-SPIDER attains a comparable convergence rate to AEPG. (i) Unlike
AEPG, which is assessed at every iteration X', the convergence rate of AEPG-SPIDER is evaluated
only at specific checkpoints x'4, where ¢ > 2. (iii) No existing work examines the last-iterate con-
vergence rate of VR methods, except for the SVRG-APG method|Li et al.|(12017), a double-looped
approach. However, its reliance on objective-based line search limits its practicality for stochastic
optimization, and its (Q-linear) convergence rate is established only for the specific case where the
KL exponent is 1/2. Importantly, their results do not extend to our AEPG-SPIDER method. (iv)
TheoremH{.15|establishes the first general convergence rate for variance-reduced methods under the
KL framework.

5 EXPERIMENTS

This section presents numerical comparisons of AEPG-SPIDER for solving the sparse phase re-
trieval problem and AEPG for addressing the linear eigenvalue problem, benchmarked against state-
of-the-art methods on both real-world and synthetic datasets.

All methods are implemented in MATLAB and tested on an Intel 2.6 GHz CPU with 64 GB of
RAM. The experiments are conducted on a set of 8 datasets, including both randomly generated
data and publicly available real-world datasets. Details on the data generation process can be found
in Appendix Section|[D] We compare the objective values of all methods after running for 7" seconds,
where 7' is chosen to be sufficiently large to ensure the convergence of the compared methods. The
code is provided in the supplemental material.

5.1 AEPG-SPIDER ON SPARSE PHASE RETRIEVAL

Sparse phase retrieval seeks to recover a signal x € R" from magnitude-only measurements
yi = [{(x,A.;)|?, where A,; € R"™ are known measurement vectors and y; € R are their
squared magnitudes. To address this problem, we incorporate sparsity regularization, resulting in
the following optimization model: miny h(x) + f(x), where f(x) £ 4 Zil«x, AN —yi)?,
h(x) £ 1q(x) + M| max(|x|,7) |1, @ = {x| x|l <7}, 7 A > 0. The regularization term h(x)
enforces sparsity using the capped-¢; penalty Zhang|(2010b) while incorporating bound constraints.
Since x is bounded, the spectral norm of V2 f(x) = 14ATdiag(3(Ax) ® (Ax) — y)A is also
bounded, which implies that f(x) L-smooth.

» Compared Methods. We compare AEPG-SPIDER with three state-of-the-art general-purpose
algorithms designed to solve Problem . (i) ProxXSARAH|Pham et al.|(2020), (ii) SpiderBoost and
its Nesterov’s extrapolation version SpiderBoost-M [Wang et al.|(2019), and (iii) SGP-SPIDER a
sub-gradient projection method |Yang et al.| (2020) using the SPIDER estimator.

» Experimental Settings. We set the parameters for the optimization problem as (7, §) = (10, 0.1)
and vary A € {0.01,0.001}. For ProxSARAH, and SpiderBoost, and SpiderBoost-M, SGP-
SPIDER, we report results using a fixed step size of 0.1. For AEPG-SPIDER, we use the parameter
configuration (v, o, 8) = (0.05,0.01, 1), and evaluate its performance for different values of § &
{0,0.1,0.5,0.9}.

» Experimental Results. The experimental results depicted in Figure[I| offer the following insights.
(i) The proposed method, AEPG-SPIDER, converges more quickly than the other methods. (i)
AEPG-SPIDER-(6) consistently outperforms AEPG-SPIDER-(0), particularly when 6 is close to,
but less than, 1. This underscores the importance of Nesterov’s extrapolation strategy in addressing
composite minimization problems.

5.2 AEPG ON LINEAR EIGENVALUE PROBLEM . )

Given a symmetric matrix C € R%*? and an arbitrary orthogonal matrix V € R4*" with 7+ < d, the
trace of VT CV is minimized when the columns of V forms an orthogonal basis for the eigenspace
corresponding to the 7 smallest eigenvalues of C. Let A; < ... < A; < 0 be the eigenvalues of C.
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Figure 1: The convergence curve for sparse phase retrieval with A =0.01.
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Figure 2: The convergence curve for linear eigenvalue problems with 7 = 20.

The problem of finding the 7* smallest eigenvalues can be formulated as: miny, g tr(VICV) +
|tr(C)|, s.t. VTV =1,.

» Compared Methods. We compare AEPG with three state-of-the-art methods: APG|Li & Lin
(2015), FOForth |Gao et al.| (2018)), and OptM Wen & Yin| (2013). For FOForth, different retrac-
tion strategies are employed to handle the orthogonality constraint, resulting in several variants:
FOForth-GR, FOForth-P, and FOForth-QR. Similarly, for OptM, both QR and Cayley retraction
strategies are utilized, giving rise to two variants: OptM-QR and OptM-Cayley. It is worth noting
that both FOForth and OptM incorporate the Barzilai-Borwein non-monotonic line search in their
implementations.

» Experimental Settings. For both OptM and FOForth, we utilize the implementations provided
by their respective authors, using the default solver settings. For AEPG, we configure the parameters
as (v,a,8) = (0.001,0.001,0). The performance of all methods is evaluated with varying 7 €
{20, 50}.

» Experimental Results. Figure[2]shows the comparisons of objective values for different methods
with varying 7 € {20, 50}. Several conclusions can be drawn. ({) The methods OptM, FOForth, and
APG generally deliver comparable performance, with none consistently achieving better results than
the others. (i) The proposed AEPG method typically demonstrates superior performance compared
to all other methods. (iii) AEPG-(6) consistently achieves better results than AEPG-(0), particularly
when 6 is close to, but less than, 1.

6 CONCLUSIONS

This paper introduces AEPG-SPIDER, an Adaptive Extrapolated Proximal Gradient method that
leverages variance reduction to address the composite nonconvex finite-sum minimization prob-
lem. AEPG-SPIDER combines adaptive stepsizes, Nesterov’s extrapolation, and the SPIDER es-
timator to achieve enhanced performance. In the full-batch, non-stochastic setting, it reduces to
AEPG. We show that AEPG attains an optimal iteration complexity of O(N/€?), while AEPG-
SPIDER achieves O(N + /N /€?) for finding e-approximate stationary points, making them the
first Lipschitz-free methods to achieve optimal iteration complexity for this class of composite min-
imization problems. Under the Kurdyka-Lojasiewicz (KL) assumption, we establish non-ergodic
convergence rates for both methods. Preliminary experiments on sparse phase retrieval and linear
eigenvalue problems demonstrate the superior performance of AEPG-SPIDER and AEPG over
existing methods.

7 LLM USAGE
A large language model (LLM) was employed to assist in refining the writing of this paper.
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Appendix

The organization of the appendix is as follows:

Appendix [A] provides notations, technical preliminaries, and relevant lemmas.
Appendix [B| offers proofs related to Section 3]

Appendix [C] contains proofs related to Section 4}

Appendix [D]includes additional experiments details and results.

A NOTATIONS, TECHNICAL PRELIMINARIES, AND RELEVANT LEMMAS

A.1 NOTATIONS

In this paper, bold lowercase letters represent vectors, and uppercase letters denote real-valued ma-
trices. The following notations are used throughout this paper.

* [n]: The set {1,2,...,n}.

Ix||: Euclidean norm, defined as ||x|| = ||x||2 = /(x, X).

(a, b) : Euclidean inner product, given by (a,b) = 3" a;b;.

* (a,b)y : Generalized inner product, defined as (a,b), = >, a;b;v;.

* ||x||v: Generalized vector norm, defined as || x|y = v/>_,_; X?v;, where v > 0.

e a<a:Foraec R"and a € R, this means a; < « forall 7 € n.

* 1o(x) : Indicator function of a set {2 with 1 (x) = 0 if x € {2 and otherwise +oc.

 E[v]: Expected value of the random variable v.

{41520, {Bi}2,: sequences indexed by the integers ¢ = 0,1,2,3, .. ..

dist(€2, Q') : distance between two sets with dist(2, ') £ infweo wear [|[W — W

|[Oh(x)||: distance from the origin to Oh(x) with [[Oh(x)|| = infycon(x) |y]| = dist(0, Ih(x)).
AT : the transpose of the matrix A.

* b: The mini-batch size parameter of AEPG-SPIDER.

* ¢: The frequency parameter of AEPG-SPIDER (that determines when the full gradient is com-
puted).

A.2 TECHNICAL PRELIMINARIES

We introduce key concepts from nonsmooth analysis, focusing on the Fréchet subdifferential and
the limiting (Fréchet) subdifferential Mordukhovich| (2006); Rockafellar & Wets.|(2009); [Bertsekas
(2013). Let F' : R™ — (—o00, +00] be an extended real-valued, not necessarily convex function. The

domain of F(-) is defined as dom(F) = {x € R" : |F(x)| < +oc}. The Fréchet subdifferential of
F at x € dom(F), denoted as OF(x), is given by

IF(x) 2 {v € R": lim inf F(z) — F(x) = {v,z ~x)

Z—X Z#X ||Z*XH

> 0}

The limiting subdifferential of F'(-) at x € dom(F'), denoted OF(x), is defined as:
OF(x) 2 {v e R": Ix" - x, F(x*) = F(x),v" € 0F(x*) — v,Vk}.

It is important to note that OF (x) C OF (x). If F(-) is differentiable at x, then dF'(x) = OF (x) =
{VF(x)}, where V F(x) represents the gradient of F'(-) at x. For convex function F'(-), both OF (x

and F (x) reduce to the classical subdifferential for convex functions: dF(x) = OF (x) = {v €
R™: F(z) — F(x) — (v,z—x) > 0,Vz € R"}.
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A.3 RELEVANT LEMMAS

We provide a set of useful lemmas, each independent of context and specific methodologies.
Lemma A.1. (Pythagoras Relation) For any vectors a, v, x,x" € R™ with v > 0, we have:
+ ”2 < + t

sllx—ally = 3lx" —al = 3llx —x a—x", X" —x)y.

Lemma A.2. Forall a,b > 0 and c,d > 0, we have: “*b < max(2,2).

9

Proof. We consider two cases: (i) ¢ > ;. We derive: b < ad =, leading to % - d < a:‘_; =2 fiz =
a giyae b . be ath < B4b _ b erd _ b
- (i) c < g We have: a< resultlngm | < YT =4 d=— 4

O

Lemma A.3. Assume ax? < bx+c, where b, c,x > 0 and a > 0. Then, we have: © < Ve/a+b/a.

Proof. Given the quadratic equality az? < bz + ¢, we have b=yt +dac Vgi*‘l‘w < g < bevbiidac Vgi““c. Since
x>0, we have 0 < z < ¥V b2+4“° < btbi2vac _ b/a + +/c/a, where the last inequality uses

2a
va+d <\f—|—\[f0ralla d>0

O

Lemma A.4. Assume that {A;}7_, and { B;}1} are two non-negative sequences with Ag < A; <
. < A,,. Then, we have:

>t At(Br — Biy1) < [maxi_ A;] - [maxf_ Bj].

Proof. We have:
o Ar(By — Biya) Dor (Ay— Ay_1)Bi] + AgBy — ApBpya
Dot (As — Ay 1) Bi] + Ao By

D1 (Ar — Ay1)] - [max?_ By + Ag[max}_, By
A, [maxg"zo By,

IN® |IAN©

where step @ uses A,,, Bp+1 > 0; step @ uses { A;}}_, is non-decreasing.
O

Lemma A.5. Let {A:}{2, be a sequence of nonnegative real numbers, and let ¢ > 0. Then, for

everyt > 0,
Sy A <2 fer YL A )
! C+E}=o Aj ‘

Proof. This lemma extends the result of Lemma 5 in McMahan & Streeter| (2010).

We define S; £ ¢ + ZE:O A;.

Initially, we define h(z) £ 75 2y — 3 —2y/y, where y > 2 > 0. We have h/(z) = y~ 12—
(y — z)~/? < 0. Therefore, h(x) is non-increasing for all z > 0. Given h(0) = 0, it holds that

h(z) & HH2/y—r -2y <0 4)

We complete the proof of the lemma using mathematical induction.

Part (a). The lemma holds ¢t = 0, since \/% 2v/c+ Ag.
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Part (b). Now, fix some ¢ and assume that the lemma holds for ¢ — 1. We proceed as follows:

Sico Ai/V/S: A VS + 3 A/ VS

)

< A/VSi+2V/Si
2 At/@+2\/st_At
< /5,

where step @ uses the inductive hypothesis that the conclusion of this lemma holds for ¢ — 1; step
@uses S; £ ¢+ Zf:o Aj;; step @ uses Inequality (EI) withz = Ay > 0andy = S; > 0.

O

Lemma A.6. Ler { A;}5°, be a sequence of nonnegative real numbers, and let ¢ > 0 and p € (0, 1].
Then, for everyt > 0,

t A 1 1yt AN
Zi:0m§_1+5<1+zzi:0141> :

Proof. We define S; £ ZE:O A;.

We define g(z) = 17 — %(1 +z)? 4+ 1and f(z) = 2P, where x > 0 and p € (0,1].

First, we have ¢(0) = 0 and ¢'(z) = (1 + z)~2 — 14 z)p1 = 120007 We derive:
g g

(1+z)?
g9(z) <0. &)
Second, since f(x) is concave, we have Va,y > 0, f(z) < f(y) + (x — y, f'(y)), leading to
Va,y >0, 2P <yP —p(y —z) - yP~ L. (6)

We finish the proof of the lemma using mathematical induction.

Part (a). We first consider t = 0. We have

Ao/(C+SQ) — %(1+50/C)p+1
Z Ag/(c+ Ag) — L1+ Ao /ey’ +1
- lf;{];c_%(HAO/C)PH
@
< 0

where step @ uses Ay = Sp; step @ uses Inequality with z = Agp/c. We conclude that the
conclusion of this lemma holds for ¢t = 0.

Part (b). Now, fix some ¢ and assume that the lemma holds for ¢ — 1. We derive:
SioAi/(c+ Si) Ayf(c+ 81+ Y2y Ai/(c+ Si)

S LAt S) + Lo P(et S

E 14+ A/t S) + TPt S — A

2 —1+ Ap/(c+ Sp) + 5 P{(c+ Sp)P — pAs(c+ Sp)P '}

= 14 e P(e+ 8P + Ale+ S)P - {(c+ )P — P}
2 14 e P(e+8;)P +0,

where step @ uses the inductive hypothesis that the conclusion of this lemma holds for ¢ — 1; step
@ uses S; £ ZE:O Ajy; step @ uses Inequality (EI) withe =c+ A, — Ay >0andy =c+ S; > 0;
step D uses (¢ + S;) P < ¢ Pforall p € (0,1].

O

16
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Lemma A.7. Let {Z,}7°, be a non-negative sequence satisfying

Zip1 < a+by/maxt_, Z;

forallt > 0, where a,b > 0. It follows that:

Z, <7 £ max (Zo, (%b+%\/b2+4a)2> %
forallt > 0. Furthermore, an alternative valid upper bound for Zy is given by Z., = max(Zy, 2b*+
2a).

Proof. We define M, = maxg<;<; Z; forall t > 0.
Part (a). For all ¢ > 0, we have:

@
Mt+1 g HlaX(Mt, Zt+1) S HlaX(Mt, a -+ b\/ ]\4,5)7

where step @ uses the definition of My; step @ uses We have Z;11 < a + by/ My, which is the
assumption of this lemma.

Part (b). We establish a fixed-point upper bound that the sequence M; cannot exceed such that
M, < M. For M to be a valid upper bound, it should satisfy the recurrence relation: M = a + bv/M.
This is because if M; < M, then we have: My <a+ bv/M; < a + WM < M, which would
imply by induction that M, < M for all £ > 0. Solving the quadratic equation M = a + bv'M yields
a positive root (3(b+ vb? + 4a))? £ c. Taking into account the case Mo, for all t > 0, we have
M; < max(Mjy, c) = max(Zy,c) £ Z.

Part (¢). We verify that Z, < Z for all ¢ > 0 using mathematical induction. (i) The conclusion
holds for t = 0. (ii) Assume that Z; < Z holds for some t. We now show that it also holds for ¢ + 1.
We have:

[©) @
Zt+1§a+b\/Mt§a+b\/EgCa

where step @ uses the assumption of this lemma that Z;11 < a + by/max!_, Z;; step @ uses
M; < ¢; step @ uses the fact that x = c is the positive root for the equation a + b\/z = .
Therefore, we conclude that Z; < max(Zy, ¢) £ Z forall t > 0.

Part (d). Finally, we have: ¢ 2 (b + 1V52 + 4a)” < (L(b+b+2v/a)? = (b+/a)? < 26>+ 2a.
Hence, Z, £ max(Zy, 2b® + 2a) is also a valid upper bound for Z;. O
Lemma A.8. Assume that (Xt+1)2 < (Xt +Xt,1>(Pt _Pt+1) and P; > Pt+1, where {Xt, Pt}toio
are two nonnegative sequences. Then, for all i > 0, we have: ZJO; Xjp1 <X, + X4 +4P;
Proof. We define W; £ P, — P, 1, where t > 0.

First, for any ¢ > 0, we have:

@
S We=31 (P = Pry1) =P, — Pry1 < P, (8)
where step @ uses P; > 0 for all 4.

Second, we obtain:

)
X1 < (Xe + X)Wy
)]
< 500G+ Xu0) 4+ (W0)2/0, %0 > 0
@
< (X + Xoma) + /1760 Wi, V0 > 0. ©)

Here, step @ uses (X41)? < (X¢ + X;_1)(P; — Piy1) and W; £ P, — P, 1; step @ uses the fact
that ab < gaQ + 5b? for all a > 0; step @ uses the fact that va + b < \/a + Vb forall a,b> 0.

17
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Assume 6 < 1. Telescoping Inequality (9) over ¢ from i to 7", we obtain:

\/WZtT:z Wi

(Zszz Xt+1) - @ (Zthq Xt) - g (Z?:z thl)

= (XT+1 + X7 + ZtT:_zQ Xt+1) - @ (Xz' + X7+ ZtT:_f Xt+1> - @ (Xi—l +X; + ZtT:_f Xt+1>

=X+ X7 — @(Xi +Xr+ X0+ X))+ (1 - \/6) 23:1‘2 Xyt

Y

)

>0+ Xp(1—¥2) — YU(X, + X, 1+ X)) + (1= VO X X
@ _

> —VOX; + X))+ (1 —V0) tT:i2 Xit1,

where step @ uses X1 > 0; step @ uses 1 — i > 0. This leads to:

~ VB VB(Xi + Xi) 4[5 T W)
X+ X, 1)+4Zt Wy
(Xi +Xio1) +4P;,

step @ uses the fact that (1 —v/0)~ -0 =1and (1 —v6)~'-/1/0 = 4 when 6 = 1/4; step @
uses Inequality (B). Letting 7" — oo, we conclude this lemma.

)ﬂ
&
s
s
e 1A

(1
(

e

O
Lemma A.9. Assume that X7 +~v(X? — X7 ) < (P(] 1q — Pig)(Xj — Xj_1) forall j > 1,
where vy > 0 is a constant, q 2 L is an integer; and { X, P;}52, are two nonnegative sequences

with P(;_1)q = Pjq. Then, for all i > 1, we have: Zj:lX < V' Xio1 4+ Y Pi1yg where
v & 16(y + 1).

Proof. We define P £ P;_yy,, and 7' £ 16(y + 1).

Using the recursive formulation, we derive the following results:

X; < \/ﬁXJ 1+ 15 (P-ng = Pig) (X + Xj-1)

()

< i Xia s V& Xm0 (Pyong — Pig)

@

< i Xiat ﬁ\/T(Xj +Xj-1)? + 22 (P-1)g — Pjg)?
€]

<

1+~/XJ 1+ 1+v(X +Xj-1) + \/m'(P(j—l)q*ij)v

where steps @ and @ uses va + b < y/a+ Vb for all a,b > 0; step @ uses ab < Ta? + ﬁbQ for all
a,b € R, and 7 > 0. This further leads to:

VIFYX; < AXja+ V7K + Xm1) +4/ 4 (P-ve — Pia) -

Summing the inequality above over j from ¢ to T yields:

0 < (VITA+ VAT X+ (VA+ VD) Timi Xy + /& - (Plcng — Pry)
S (VTS X+ (VSIS X+ [ P
= (VAFTH A+ 2VA Ti5 X + (VA + VDX + (V7 = VIF)Xr + /& B
2 (AR HDED X+ (A VDX + (VT - W)mfp
®
<

—iAT Lo Ko+ (VT + sAm) X + VT P

18
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where step @ uses the definition of P; step @ uses the fact that /vy + 1 — VY 2 27\/% for all
v > 0; step @ uses the choice that 7 = m, which leads to /7 — T+ < 0.

Finally, we obtain:

s X 4 +1~((\f+ﬁ)Xi_1+4 1+7~F)
(A(v+1) + 3)Xi1 +16(y + )P

"}/Xi—l +")/P

ININ A

Lemma A.10. Assume that
Sy < e(Sp—1 —S)",

where ¢ > 0, u € (0,1), and {S;}$2, is a nonnegative sequence. Then we have

Sr <0 (75),

where ¢ = 5.

Proof. Wedefiner 2 L —1>0,and g(s) =s77"1.
Using the inequality S; < ¢(S;—1 — S;)*, we obtain:

u u @ T @
M (o1 = 81) = (S = (ST E i, (10)
where step @ uses 1/u = 7 + 1; step @ uses the definition of g(+).

We let k > 1 be any constant, and examine two cases for g(S;)/g(S¢—1).

Case (1). 9(S;)/g(Si—1) < k. We define f(s) £ —1 - s77. We derive:

1 /v (Spm1 — Sp) - g(St)

kg(Si-1)
A g St Yg(s)ds
—1) —

(S f(51))
ke (87T = [Se-a) 7T

where step @ uses Inequality (10); step @ uses g(St) < Kkg(Si— 1) step @ uses the fact that g(s) is
a nonnegative and increasing fU.IlCthIl that (a — b)g(a) < ['g , 9(s)ds for all a,b € [0,00); step @
uses the fact that V f(s) = g(s); step ® uses the deﬁmtlon of f ( ). This leads to:

(ST = [Se=1] T > T (11)

Z wol/u

) -
ct/e. (St 1 t)

& INe IN® INe

A

e

Cl/u

Case (2). g(St)/g(St—1) > k. We have:

g(St) > K}g(stfl) :®> [St]_('f"i‘l) > K- [Stfl]_(T—’—l)
& (ST > T ([, ] )T
=[S > AT (5] 12

where step @ uses the definition of g(-); step @ uses the fact that if @ > b > 0, then a” > b” for any
exponent 7 = T—H € (0,1). For any ¢t > 1, we derive:

[Se)™7 = [Se—a]™T > (HTLH —1)-[S;4]77
S (T - 1) (S 13)
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where step @ uses Inequality (12)); step @ uses 7 > 0 and S;_; < Sy forall ¢ > 1.
In view of Inequalities and (I3), we have:
[Se] ™7 = [Se—1]™7 = min( 7, (k71 = 1) - [So] 7). (14)

A ..
=cC

Telescoping Inequality (I4) over ¢ from 1 to T', we have:
[ST]™7 = [So] 7T = T¢.
This leads to:
Sr=[Sz7]7VT < o([T)7).

Lemma A.11. Assume that
Sy < e(St—2 — Sp)",
where ¢ > 0, u € (0,1), and {S;}2 is a nonnegative sequence. Then we have

Sr <0 (75),

where ¢ = 1%~ > 0.

Proof. We analyze two cases under the condition S; < ¢(S;_o — St)* for all t > 0.

Qase M.te {0,"27 4,6,...}. We define the sequence {§t T as S; = Sg?' for ¢ > 0. It follows that
S; < e(Sj—1— S;)* forall j > 1. By applying Lemma , we obtain ST < O(T~°), leading to
St = 0(Sr/2) <O((5)7°) = O(T™).

Case.(Z). te {1, 3, 57,.. .}. We define the sequence {St}T: as S; = SQZ"_A,_l for i > 0. It follows
that S; < ¢(S;-1—5;)" forall j > 1. By applying Lemma , we have S < O(T~°), resulting
in St = O(S[(T,l)/g]) < O((%)_g) = O(T_g).

O

B PROOF OF SECTION[3]

We now provide an initial theoretical analysis applicable to both algorithms, followed by a detailed,
separate analysis for each.

B.1 INITIAL THEORETICAL ANALYSIS

We first establish key properties of v? and ¢ utilized in Algorithm
Lemma B.1. (Properties of v*) We define R; 2 "/_, [|[r*||3 € R. For all > 0, we have:

@ V2 +aR < v <\ + (a4 B)R: 2 Vi1
b) BECH <214 /Bo
(© % <k&21426xVa+ 5.

Proof. We define R; 2 >'_, ||Ir’||3 € R, where r* £ vl ® d?, and d* £ x**+! — x".

We define st £ aofrt[|3 + Br! o rt € R™.

Part (a). Given viT! = \/v0 ovO+ Z:ZO s, We derive:
v OV = (v0) 0 (vO) +a i, I3 -1+ BT rf O x'
—_— —_
=R <R¢-1

20



Under review as a conference paper at ICLR 2026

This results in the following lower and upper bounds for vi*! for all ¢ > 0:
V2 +aR; < vt <\ /v2 + (a + )R
Part (b). For all ¢t > 1, we derive:
max Vt Q V2 « t— V2 [e3 t— «
min((vt)) < \/* ;&L@fl L < \/max (3= ( ;ﬁz),Rl L \/max(l, %B) <1++/B/a, (15)

where step @ uses Part (a) of this lemma; step @ uses Lemmathat “*b < max(%, g) for all
a,b,c,d > 0. Clearly, Inequality is valid for t = 1 as well.

Part (c). For all ¢ > 0, we derive the following results:

min(vit!) @ min(vOv! +alrt||2-14+8rf Or)
min(v?) min(vtOvt)

g min(v'Ovh)+(a+8)[|rf]3

min(vtOvt)

g \/min(thVt)+(a+,8) max(v)?||x T —x'||3

min(vtOvt)

g \/mln(v Ov)+4(a+p) max(v?)?x?

min(vtOv?t)

®
<1 +4(a+ B)k22
§1+2/€X\/a+ﬁ=

where step @ uses the update rule for vi*! that vi*t! = /vt © vl + st; step @ uses the fact that
rt Ot < ||rt]|3; step ® uses rt £ v © d? with d £ x!T! — x?; step @ uses ||x!T! — xt| <
It + [|x¢|| < 2%; step ® uses max(v?)/ min(v?) < & for all t.

O
Lemma B.2. (Properties of ob) For all t > 0, we have the following results.
(@ 0(1—0)/(kk) <ot <0.
(b) (o1 = 1)vl + olvitl < —(1 - 0)%vh
Proof. We define ot 2 (1 — o*~1) - min(v? = vi*1), where t > 0.

Part (a). We now prove that o' € [0, 6]. We complete the proof using mathematical induction. First,
we consider ¢ = 0, we have:

o = min(vt - vit?

)-0(1— )
min(v? = vitl). (179)<9(170)<9,

where step @ uses 0! = 6; step @ uses min(v? + vi*t1) € (0, 1]; step ® uses § € [0,1). Second,
we fix some ¢ and assume that ' ~* € [0, ]. We analyze the following term for all ¢ > 1:

o' 2 0(1 — ot 1)  min(vt = viTL).

Given o'~ € [0, 6], min(v? + vi™1) € (0,1],and 6 € [0, 1), we conclude that o* € [0, ].

)

We now establish the lower bound for o. For all ¢t > 0, we have:

ot &2 91— min(vh + v
[©)
> 0(1—0)-min(v' = vt
@ min(v?)
2 0(1 0) m

min(vit? min(v?

= 9(1 9> max((:llt+1)) min(\(r\",Jr)] )
®
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where step @ uses o'~! < 0; step @ uses min(a = b) > :::;i((i)) foralla > 0and b > 0; step @

uses 2ROV 5 1 and _min(v’) > 1 for all ¢, as shown in Lemmab,c).

max(vttl) = min(vt+?l)

Part (b). For all £ > 0, we derive the following results:

)vt 4 o,tthrl

-1

o' 1) - min(v*

= Vt+1)vt+1

IN® |l®

— /q: —
|
AN
[
S~—
<
L
+
=
-

I

|
=

|
<
=

INe
~— /L —

where step @ uses the choice for o for all ¢t > 0; step @ uses min(a = v)v < aforalla,v € R"
with v > 0; step ® uses o=l <@ < 1forallt > 0.

O
We let X € arg miny F'(x), where F(x) £ f(x) + h(x). We define the following sequence:
2 2 E[F(x) = F(®) + 5llx" = x" 70 gegp))
Lemma B.3. (Properties of Z,) We define c; £ %( 1;9 )2, c0 & % We have:
Ziv1 — 2y <E[dY, VF(y") — g') + caSh — 1S, (16)
where S{ £ rrllill;t(lx‘lgt)’ S = m!lrf(t\ll"g’)Q

Proof. We let X € arg miny F(x), where F(x) £ f(x) + h(x).
We define a? £ y?* — gt + vi.
We define Q¢ = E[(d", Vf(y") — g")], where d* £ x"*! —x".

We define 2, 2 E[F(x!) — F(x) + 1[|x! — x'7!||2 i+l

ot—1

We define X* £ 1||x" — Xt_lugt—l(vt_A'_L)'

Using the optimality of x'*1 € arg miny h(x) + 1 ||x — a’||2,, we have the following inequality:
E[h(x") + 3llx"* —a'|Z.] < E[h(x") + g[x" —a[[3.]. (17
Given f(x) is L-smooth, we have:
FE) < f(x) + =L V() + ST - x3 (18)
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Adding Inequalities (T7) and (I8) together yields:
E[F(x"") - F(x") — §|x"" — x'||3]

<E[(x! —x!, VF(x')) + §lx’ —al|2, — L[x"+! —af|)2,]

L E[(x1 —xt, VF(x')) + dfxt —xH |2, + (af —xH x - xt).]
ZE[(x"1 —xt, VF(x') = VF(y",€)) + Llxt —xH2, + (y! — xF - xt))
ZQ+ (XM — x!, V(') — VF(y")] +El5]lx — yt|2 — Ly’ —x2]

@
< Qr +E[L]x" —x![[Ix! — y|| + LlIxt — yt]2 — Ly — xT2.]
2 Qy +E[o! 1 LlxH — x![]x! — x|
t—1\2
+ (o’ ) _ %th—i-l —xt— Ut—l(xt o Xt_1)||3t}

= Qi+ E[ L =l = x| = T = e+ o T = x - x T

It = xS

® —1 -1
g@+ﬂw%éw”tﬂﬂ@+i7%ﬂ—x“w%

t—1
= I = 2+

t_1||2t]

=Q¢+ E[_%”XH1 - xt”3t + %th x' 1”0t 1(vt4L) +35 ”xtJrl - Xt||(2,—t71(vt+L)L (19)

Lyt

where step @ uses the Pythagoras Relation as in Lemma that x* = x'*!, x = x', a = a’,
and v = v'; step @ uses at £ yt — Vf(y?) + v*; step ® the definition of Q;, and the Pythagoras
Relation as in Lemmathat xt =x!tl, x =x!, a=y’ and v = v’; step @ uses L-smoothness

of f(+); step ® uses y'T! — x!T1 = ot (x! T — x?); step ® uses ab < % + % forall a,b € R, and
(a,b)y < 3llal|2 + 3||b||2 forall a,b,v € R™ with v > 0.

We define 2, £ E[F(x!) — F(%) + 3][x' = x'"1[|,, ,., - Given Inequality (19), we have the
following inequalities for all £ > 0:
Zi1— 2t — @y
SB[ =3 = gl = x5+ gl = x| ey + X

@
= E[Zx = xP3 — 3l = x5+ X = X iy et g ey gi]
t—1 t

= B[EE B L x5 4 [ = Xy peyern ]

&)

SE[F[x = x5 = 5(1 - 0)?x"t = x*|[3]

6}

S E[ % ’ mln(V‘ min(vt)2 ||V © ( e Xt)”g] - [%(Te) : min( vt) ||V ®( — Xt)”%]’
écz éSé éCl éSi

where step @ uses the definition of X* £ 1|x’ —x'~1||2,_ Lytpr)s Step @ uses ot < 1forallt > 0,

and o'vit! + (o1 —1)vt < —(1 - 9)2 tforall t > 0 as shown in Lemma|[B.2|b); step ® uses
the following two mequahtles foralld € R" with d = xt+1 — xt:
I3 < s v @d”z»

t
ldlf2:k2 > [[d]2 22 > (|3 - min(v') - 220 < d))3 - 2200 > v o 3 -

v min vt)2 min(v?)? min(v?

mln(vt) .

O

We now derive the upper bounds for the summation of the terms S} and S} as in Lemma
Lemma B.4. We define V, as in Lemma|B.1} We have the following results.

(a) ZtT:o St < 81V 1, where s, 2 24.
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(b) Z:{:o St < soy/Vri1, where sy = 4—7_1/2

Proof. We define V,;1 £ \/v2 + (a + B)R;, where Ry 2 34 [Ir]3.

Part (a). We derive the following results:
[l | _ llr” |l min(v'*!
Zt=0 min(vz") - Zt=0 min(vfil) mll(’l(Vt))

IN©

X T =3
H . —
Zt:o Pty lIri 3

) N 2 T t||2
< 280/ V2Had, s,
. T
< 26/t (arHSL, Ir3,

=s
1 A
—VT+1

where step @ uses Lemma c) that min(v?*!)/min(v?') < &, and Lemma a); step @ uses
LemmalA.3l

Part (b). We have the following results:

IfE T el min(v'*1)\?

t 0 min(vt) - Zt:O min(vi+h)2 min(v?t)
Yo T (e
R 2 s Sy o
@ 2 t
< = 7 (1+ 2/a2t o llr*ll3 )

82 T

= (el )
® L2 T 1/4
< AL (BT IE)

= é\/VTJr1
where step @ uses Lemma [B.1[a) and Lemma [B.1]c); step @ uses Lemma with p = 1/4,
A = ||Ir']|3, and ¢ = v2/c; step @ uses 3 > 0.

O

B.2 ANALYSIS FOR AEPG

This subsection provides the convergence analysis of AEPG.

B.2.1 PROOF OF LEMMA [3.4]
Proof. We define V,;1 £ \/v2 + (a + B)R;, where Ry 2 34 [Ir?]3.

We define rt £ vt © dt, where dt £ xt+! — xt,

Initially, for the full-batch, deterministic setting where V f(y') = g, we obtain from Lemma
that

2 2
0<Z— Ziq + callrtll; _ eallrtll; (20)

min(v?)? min(v?)

Multiplying both sides of Inequality by min(vt) yields:
0 < —c1 ]2 + min(v!)(Z; — Zpyy) + 2l

min(v?)”

Summing this inequality over ¢ from ¢ = 0 to 7', we obtain:

T T . T rt||2
0 < —ar g I + S min(v)(Z — Ze) + 2 X1 s
@
< e X I3+ (maxTg Z:) - min(vT) + a1V
@
< -3 (V3. —v?) + (maxi_y Z;) - Vg1 + c2s1 V14, 210
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where step @ uses Lemmawith A; = min(v?) forall i € [T] with A; < Ay < ... < Ap, and
B; = Zj forall j > 0, and Lemmathat ZZ;O St < s1Vr1; step @ uses the definition of V.,

along with the facts that v < vit1 <V, and Z; > 0.

Notably, the inequality Z? omin(v?)(Z; — Z¢41) < min(v )Z? o(Z¢ — Z441) does not hold in
general, as the sequence {Z;}Z_ is not necessarily monotonic. To address this, we instead employ
the alternative 1nequa11ty which can be implied by Lemma n Zt omin(vh) (2, — Z,4q) <
min(v?) max’_, Z;.
In view of Inequality (21), we have the following quadratic inequality for all 7' > 0:

Oz-‘rﬁ (VT+1) < (0281 + maxtT,O Zt) . VT+1 + aiﬁzz'
Applying Lemmaw1th a= +B’ b=1cys1 + maxt 02t C= +ﬂv ,and x = V4 yields:

Vry1r < efa+b/a

= v+ actﬁ . (0231 + max?_, Zt)

(22)

— X+0¢2;5.C251+O‘2;[3.
—_———
3w1 in
The upper bound for V1 is established in Inequality @ but it depends on the unknown variable
(maxy_ Z;).

Part (a). We now show that (maXtTZO Z,) is always bounded above by a universal constant Z.

Dropping the negative term — ;:JL‘EUL% on the right-hand side of Inequality and summing over ¢
from ¢t = 0 to T yields:

z < z T [E1E:
T+1 = 0+ c2 Zt:O min(v?t)?
()
< Zp+ces2/Vria
@
< ZO + 289 \/wl —+ wo maxtT:O Zt
@
< 2y + 2894/ /Ww + oS/ W \/maxt 02t (23)
\—,_/ ——
L) =
@ .
< max(Zy,2b% + 2a)
®

202 + 2a, (24)

where step @ uses Lemmab); step @ uses Inequality ; step @ uses va + b < \/a + Vb for
all a,b > 0; step @ uses Lemmawith a = a and b = b; step ® uses the fact that @ > Zj. This
further leads to:

Zro < 202424
< 9L s3wy + 220 + 3Lsa\/wy
O+ O(z0) + 0Ly ) ORT TOD) £ 2
< o),

<

where we use 51 L2925 =0(1),5 2 %7’1/2 =0 ?),c1 2 L2 =0(1), ¢ 2 2L =
O(L), 53 £ W =0 %), wy = ¢

5 — O1),w; =v+ 2L . o5 = O(v) + O(L).

Cc1

Part (b). We derive the following inequalities for all 7" > 0:

@
Vil < wi +wey/maxi o 2y
@ _
S w1y + U/QZ
< O)+O(L) 4+ O(LAv™1) + O(20) + O(Ly~/?),/O(v) + O(L) £ ¥
< o,

25



Under review as a conference paper at ICLR 2026

where step @ uses Inequality (22)); step @ uses Inequality (23).

O
B.2.2 PROOF OF THEOREM 3.3
Proof. Part (a). We have the following inequalities:
)
ico X =xt3 < Hmin(v)? T, xH -3
®
T
< EliolV e T —xN3
® T
= = iolr'lE = &Ry
® —
< .- 2X, (25)

uses the definition of r £ v © d’; step @ uses Lemma |B.1(a) that v2 + aR; < (vi*1)? < 72 for
all ¢.

where step @ uses v > v; step @ uses min(v)||d|| < ||d]|y for all v,d € R™ with v > 0; step @
ﬁ(

Part (b). First, by the first-order necessarily condition of x!*! that x!*! € Prox;, (y —gt+vt;vt) =
arg ming h(x) + 3[x — (y — g = v')[|2., we have:

0 € Oh(x) +g' +vi o (x' —yh). (26)

Second, we obtain:

IVf(xF1) + on(x"*1)]| VAT = Vi) —vio & -y

@

< Llly* = x4 max(v) [ly* — x|

(L +max(vh)) - []xt + ot~ (xt — xt71) — x|

@

< (L) (I = x4 lx = %), 27)

where step @ uses Equality with g = V f(y), as in AEPG; step @ uses the triangle inequality,
the fact that f(y) is L-smooth, and ||v* ® a|| < max(v')|a| for all a € R"; step ® uses y* =
xt + ot (xt — x!71); step @ uses v! < ¥, the triangle inequality, and o ~% < 1 for all ¢.

Third, we obtain the following results:

SF 19R(x ) + V f(xH )13

< oL +92 X — x + [Ix — x )

= 2L+ {3 I —xtF + 3 x T — X3}

= 2(L+79)2 {x ' =xO3 - |xTH —xT[B+ 230, Ix —x*)3}

< AL+ N, Ikt — X3

S 2AL+7)-X=0() 28)

where step @ uses Inequality ; step @ uses the choice x~! = x” as shown in Algorithm and
—[IxT+ — xT|| < 0; step ® uses Inequality (23).

Finally, using the inequality ||al|3 > (lla]l1)? for all a € RT+!, we deduce from Inequality

1
Z T11
that

21 ST 0R(H) + Vx| = O(—2).
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B.3 ANALYSIS FOR AEPG-SPIDER

This subsection provides the convergence analysis of AEPG-SPIDER.
We fix ¢ > 1. For all t > 0, we denote r, = Lé] + 1 leading to (r; — 1)g <t < ryqg — 1.

We introduce an auxiliary lemma from |Fang et al.| (2018).

Lemma B.S. (Lemma 1 in|Fang et al.|(2018])) The SPIDER estimator produces a stochastic gradient
g! that, for all ¢ with (r;—1)q < t < r,q—1, we have: E[||lgt =V f(y) 3] - llg -V f(y' Y3 <
Y, 1, where Vi £ E[|ly**! - y'|3]

Based on Lemma|[B.3] we have the following results for AEPG-SPIDER.
Lemma B.6. For any positive constant ¢, we define c; = %(%)Z = (3+2¢)L, c3

/
2
define Y; = E[||y**t! — y*|13]. For all t with (r; — 1)q < t < riq — 1, we have:

(@) Ellg’ — VI3 <L, ), Ye
(b) Zip1— Z+E[e1S) — St < = Zz (r—1)q

L

8=
>k

Proof. We define c; £ %(%)2 0’2 £ (3+2¢)L, and c3 £ i%, where ¢ > 0 can be any constant.

We define 2, £ F(x!') — F(x) + 1|x" —x'71|2

ot=1(vt+L)"
We define Y; 2 E[||y*+! — y*||3].
We define S} = m‘lii(ﬂ,%), and S}, = mlllrf(‘l,‘tg)g.

. . . — — 2
Part (a). Telescoping the inequality E[l|lg’ — Vf(y")|13] — llg"™' = Vf(y* DI} < LE[|ly" -
yt~1||3] (as stated in Lemma B.5)) over ¢ from (r; — 1)q + 1 to t, where ¢ < r¢q — 1, we obtain:

Elllg® = V")l

2
< E[lg" 0 = Vi(yTe D)3+ LS yee EllyT — v 3]
[©) 1 i .
= 0+ o Elly T = yl3, (29)
N———
2Y;

where step @ uses g/ = V f (yj) when j is a multiple of q. Notably, Inequahty . 29) holds for every
t of the form ¢ = (r; — 1)g, since at these points we have g' = V f(y*).

Part (b). For all ¢ with (r; — 1)g <t < ryq — 1, we have:

)
Zt+1_Zt+Clgi S EKdt,v ( t) >+CQS§
E[(d", Vf(y") —&") + st T3

@
oL
< smGee el + S A3 + 2$L||Vf(yt)*gt||§
®
< m||rt||2+m”rt”2+2b¢ S im(r—1)g Yo

3+9)L L t—1
CEE - e 1B + 25 5 i Vi
~ —_—
=c, IS4 L4
where step @ uses Lemma step @ uses (a,b) < 2-|ja|3 + 35z |Ibll3 for all a,b € R”, and
¢ > 0; step @ uses min(v?)[[d*|| < ||d* ® v?||, and Inequality (29).

O

"For example, if ¢ = 3 and t € {0,1,2,3,4,5,6,7,8,9}, then the corresponding values of 7, are
{1,1,1,2,2,2,3,3,3,4}.
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Based on Lemma [B-4] we obtain the following results.
Lemma B.7. We define V; = min(v?), and Y; = E[||y**! — y?||3]. We have:

(@) 1o ViYe < wE[Vr 1), where uy 2 (8 + 2i%)s1.
(b) Z;‘FZO Y; < usE[\/Vr11), where ug = 10ss.

Proof. We define V; 2 min(v?), and Y; £ E[[|y*T! — y?||2].

First, for all 7 > 0, we have the following results:

) _ _
Iy =3 = I +ofd") — (x' + 0 71d )3
= [(1+o")ad" =o' "d"3
@
< [(+D)[A+ah)ad"3+ (1 +1/7)|o" 3]
§41 dYZ+(1+1 di—12 30
< A +7)fdY 3+ A+ 1/7)] ll2, (30)

where step @ uses y'1 = x! + otd?; step @ uses |a+ b||3 < (1 +7)||al|3 + (1 + 1/7)||b|3
for all 7 > 0; step ® uses o < 0 < 1.

Second, we obtain the following inequalities:

min(v')[ly™* — '3 = min(v") - [41+7)[d)3 + 1+ 1/7)[d 3]
@ . " 12 N t—1 t—1)2
< 41+ 7)min(v)[d"||3 + (1 + 1/7)&min(v")[[d" |3
€]
< (44 &) (min(v")||d*[|3 + min(v'~ )l H3) @31

where step @ uses Inequality ; step @ uses min(v?') < min(v?~1)k, as shown in Lemmac);
step @ uses the choice 7 = 7.

Part (a). We have the following inequities:

T o . T . T _
SLomin(v)lly =yt < (44 k) (S min(v)lld3 + S min(vi—)dt L 3)

N T . T— .

= (44 i) (XTI min(v)llal3 + X7 min(v) |d!3)
N T . T— .

= (4+k) (tho min(v?)[|d*]|3 + 3, mln(vt)HdtH%)

< (8+20) (L min(v)d']3)

® N T . ty . 1 t dt 2

< (8+2k) Zt:o min(v’) min(vi)2 vt ©d'l3

@

< (8+2k)-s1 Vg, (32)
A
A

HVt © dtH; step @ uses 23:0 Stl < 81VT+1 with Sﬁ £ I |12

min(v?)

where step @ uses Inequality ; step @ uses d! = x — x~! = 0; step @ uses min(v?)||d’|| <
, as shown in Lemma a).
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Part (b). We obtain the following inequities:

)
Yisolly =yt3 < o (83 + 2(d 7 3)

@ T T _

2 os(Xhld3) +2 (S la3)
T

= 8(Tholat3) + 2 (05 at)3)
T

< 10 (X7, d')3)

®
T

< 10 (S stV 0 d')3)

@

<

10 - s9 v/ Vria,
2/ Vr+1

A
=us

where step @ uses Inequality (30) with 7 = 1; step @ uses d~! = xY — x~! = 0; step ® uses
)2
min(v?)[|d!|| < ||[v* @ d|; step @ uses 3, Sh < s91/Vri1 with S 2 I=ll2 _ “as shown in

min(vt)?”’
Lemma [B.4(b).

O

The following lemma simplifies the analysis by reducing double summations involving V; and Y; to
single summations, thereby facilitating the bounding of cumulative terms.

Lemma B.8. We define Y; 2 E[|ly™*" — yi[2], V; 2 min(v?), and ¢ 2 gk, For all t with
(re = 1)g <t <ryq— 1, we have:

@ 35 —1)alVi Zz (r—10q Yil <€ 01y ViYe
B) X 1, g Vil < (g = DT, 1, Ve
(C) Zt O[Zz (rt—l)qY} ( 71) Zt:l Y;

Proof. We define V; = min(v?), where {V }32¢ is non-decreasing. We define ¢ = £ gL,

For any integer ¢ > 0, we derive the following inequalities:

@
t—(re—1gZt— (|t +1-Dg=t—[Llg<q-1, (33)

where step @ uses r; = L%j + 1; step @ uses the fact that ¢ — Lé] q < q—1 for all integer ¢ > 0 and
qg=>1

Part (a). For any ¢t with ¢ > (r; — 1)q, we have the following results:

min(v?) _ min(v("t—Datl . min(v ("t ~Da+2) . min(v?)
min(v(rt=1a) - min(v(rt=1a) min(v(re=Da+1) ** " min(vi-T)
o 1
< R (34)

where step @ uses the fact that the product length is at most ([t] — [(r; — 1)¢ + 1] 4+ 1) and Inequal-

ity (33).
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For all ¢ with (r; — 1)g <t < r;qg — 1, we have:

¢ @ t—1
Z =(rs—1)q (V Zz (ri—1)q ) < =(rt—1)q (V Z (ri—1)q Y)
@
= 2j= (Tt—l)Q( 2= (m 1)q )
= =(r¢+—1)q (Y Z] (re—1)g )
3 gt A v,
= i=(r+—1)q j=(re—1)g V1
®
< qV;f Zz (re— 1)qY
®
N -1
< q(k? 1V(mfl)q) ZZ:(H,l)in
)
<

sag—1 t—1
qrI™" - Zi:(nfl)q ViYi,
Ay
=q
where step @ uses j < ¢ forall j € [(r, — 1)g, t]; step @ uses r; =1 forall j € [(r; — 1)g,t] with
t € [(re — 1)g,meq — 1]; step ® uses the fact that Z i(ay ZZ _;bi) = Zzzz(bz Zgzj a;) for all
i< gandi < jiystep@uses V; < Vyasj <t step@usestf (re — )g+ 1 < g; step ® uses
Inequality (34); step @ uses i > (r; — 1)q.

Part (b). For all ¢ with (r; — 1)g <t < ryq — 1, we have:
t j—1 @ t—1 Ny
2 i=(re—1)g Zim(r;—)q Yi =  Liz(re—1)g(t = )Y
([t =1 = [(re = Dal + 1) - 1=, -1 Vo

(q_ 1) Zz (re— l)qY

where step @ uses basic reduction; step @ uses i > (r; — 1)g; step @ uses Inequality .

IN® IN®

Part (c). We have the following results:

Zt o[zz (re— I)qY] (t=1=[(re =1)gl +1) Zf:oyt

(4= D0 Y
step @ uses the fact that the length of the summation is ([t — 1] — [(r: — 1)g] + 1); step @ uses
Inequality (33).

IN® INe

O

B.3.1 PROOF OF LEMMA [3.7]
Proof. We define V; = min(v?) and V; £ E[|ly*+! — y'||3].

We define St £ Il and St & [ElE
m

min(v?)’ in(vt)2"
Part (a). For all ¢ with (r, — 1)g <t < r,q — 1, we have from Lemma [B.6}
. t—1
Bur— 2 Bl b IR — i 3+ S ST Vi @)
—_———

Agt
=54

Multiplying both sides by min(v?) yields:

. c . t—1
0 < min(v")[Z, = Zup] + Eleh « gmery 1113 —enlir’ 13 + & - min(v) - 350, 1y, Vil (36)

Agt
*Sl
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Telescoping Inequality over t from (r; — 1)q to t with t < r;q — 1, we have:
0 < Z;:(rt—l)q (‘/J(ZJ - Zj+1) +E[C/2S§ - Cl||rj‘|%]) + CS Z =(ri— 1)q[V Zz (rj—1)q ]

Q -1 - e
< -1 (Vj(Zj = Zj41) +E[BBS] — a3+ 2 g - Vij])7

2y
where step @ uses Lemma a). We further derive the following results:

re=1,0< Y1 U
re=2,0< Y0 U
re=3,0< Y00 07

re=s,0<3°1 Ly,

j=sq
Assume that T' = sq, where s > 0 is an integer. Summing all these inequalities together yields:
0 < Y
@ - - c _
= X0 VilB = Zun) + B[S S - B[S 1B + %o S VY
ERr_1
)
< Vroa[max{5' 2 + chsiEVr] — B[Ry 1] + - ¢ 3 VY
®
< VplmaxiZy' Zi] + chs1EVr] — 255EVE — v+ 2 ¢ - uy - E[Vr 4]
@
< EWVr)maxS) 2 + chsiE[Vr] - ;35 EVr)? + ;2597 + % ¢ un - E[Vr], B7)

where step @ uses the definition of U’; step @ uses Lemma |A.4] and Lemma [B.4(a); step ® uses
the upper bound for Ry that Ry £ (V7. — v?)/(a + B), as shown in Lemma a); step @

uses Vir1 < v < Vi (as shown in Lemma[B.1[a)), and the fact that (E[v])? < E[v?] for any
random variable v (which is a direct consequence of the Cauchy-Schwarz inequality in probability
theory).

We have from Inequality (37):
25 EVr])? < (Lq'w + max5' 2]+ chs1 ) - EVr] + 2537,

T-1
b= 2q'ui + [max,Z Zi] + chs1, ¢ =

By applying Lemma with the parameters a =

oﬁﬁﬂyz, and z = E[Vr], we have, forall T > 0:

c1
a+p3’

EVr] < Vefa+b/a=v+ 2 (Sq'u + [max 2] + chs1)

= v+, (q'ur + chs1) + otf [max Zy). (38)
t=0
éwl é'W2

The upper bound for E[Vr] is established in Inequality ; however, it involves an unknown vari-
able (max;_' Z;).

Part (b). We now prove that (maxt 0 Zt) is always bounded above by a universal constant Z.
Dropping the negative term — - |lrt||3 on the right-hand side of Inequality , and summing

over t from (r; — 1)g to t where t < ryq — 1 yields:

[ j—1
0 =< E[Z;:(Trl)q (Z Zjt1 + CQSt) +9 Zy (re—1)q Zg:(wfl)q Y]
@
S E[ZE (7t—1)q[2 ZJ'H} + CQSt + 63 q Zj‘:(”'t—l)q YVA
S E[Z; (re—1)gq [Z - Z; +1] + CQSQ + C3 Zj:(thl)q Y;L

L[
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where step @ uses Lemma [B8|(b). We further derive the following results:
re=1,0<E[YI K]
re=2,0<E[Y7 K
re=3,0<E[Y17 K

=S, OSE[qu 1K]]

J=sq

Assume that T' = sq, where s > 0 is an integer. Summing all these inequalities together yields:

Zr < Zr+EXKY
® _ _
= Zr+EX L (B — Ze)] + GRSy Sl + e Yy Vil
®
< Zr+ (Zo — ZT) + C/QSQ]E[\/ VT] + Cg’LLQE[\/ VT]
= ZO + (6/252 + CgUQ) . ]E[\/ VT]
®
< 2o+ (chsa + czuz) - /E[Vr]
g Zo+ (chs +cu)-\/w +wymax, ' Z
< 2y 282 + C3uUz 1 2 i—0 2t
®
< Zy+ (chsa + czuz) - Jwi + (chsa + caug) - /w3 - maxf:_ol Z, (39)
2, 2j)
® . a2 s =
< max(Zy,2b% + 2a) = 20 + 2a = Z, (40)

where step @ uses the definition of K; step @ uses ZtT 0 S < s24/Vr41 (as shown in Lemma
b)), and ZtT;Ol Y: < uaE[\/Vr41] (as shown in Lemma b)) step ® uses E[/z] < \/Elz]

for all > 0, which can be derived by Jensen’s inequality for the convex function f(z) = —/z
with x > 0; step @ uses Inequality ; step ® uses vVa + b < \/a + Vb forall a,b > 0; step ®
uses Lemmal[A7]l This further leads to

Zr < 20®+2a
< 2((chsa + caug) - wa)? + 220 + 2(chsy + caua) - Jwr
- mﬁfﬂ+0@@+0@fﬂa(ow@+owﬂ)éz 1)
< 0,

where we use s; = 2k = O(1), 55 = %271/2 = Oy V%), 0 £ (02 = 0(1), ¢
BHDL — O(L), e5 2 L wy 2 2 = O(1), w1 = v+ 22 (2q'us +chs1) = O(v) + O(L).

Part (c). Finally, we derive the following inequalities for all 7' > 0:

@
EVr] < wi+ws - [maxi_, 2]
g w1 + ’U)Q?
< mg+ouyumﬁfﬂ+0@m+0@fﬂa(ow@+ou@gév
< 0(),

where step @ uses Inequality (38); step @ uses Inequality (@T).

B.3.2 PROOF OF THEOREM [3.§]

Proof. We define Y; = E[|ly"** — y?||3].
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Part (a). We have the following inequality:
E I =x 3] < HiE-v?)£X, (42)

where we employ the same strategies used in deriving Inequality (23).

Part (b). First, we have the following inequalities:

STElle - VAR £ XL, (S5 )
S L1 YT,
< E(g-1)-ua/Vin
S (- 1) - wVV=0(), (43)

where step @ uses Lemma [B.6|a); step @ uses Lemma [B-8|¢); step ® uses Lemma [B.7(b); step ®
uses V; <V for all ¢.

Second, we obtain the following results:

Seolyt = x2S kot (- x ) — x|
SRkt — x4kt — xt3)
= T — xS k-
< 2yl Ikt — B
2 2X = 0(1), (44)

where step @ uses y! = xt + ol ~1(x! — x!71); step @ uses o!~! < 1 for all ¢; step @ uses

x 1 = xY; step @ uses Inequality ,

Third, we have the following inequalities:

E[S 1 |Oh(x"*1) + V f(x+1)|3]

= OB, VAT — gt — vl o (x — y))3]

= B[S VA = V] + [V - g - vi o (1 = y)|[3]

£ SR VA = VLB + S0 IV — g3 + X IvE © (x+ —yh)[3]
< EBLYT Ik -y 3+ 357 IVF(y!) — gtl3 +3v 50, Ixt — yt[3]

S 0(1)+0(1) +0(1) < 0(1), (45)

where step @ uses the first-order necessarily optimality condition that 0 € dh(x!*1) + gt + vt ®
(x!T1 —y'); step @ uses [[a+b +c||3 < 3(||al|3 + ||b||3 + ||c||3) for all a, b, c € R™; step ® uses
Inequalities (4) and (@3).

Fourth, using the inequality [|a|3 > i (/[al|1)? forall a € R”*!, we deduce from Inequality
that

Elrts Yimo I0A( 1) + V()] = O(757).

In other words, there exists € [T7] such that E[||V f(x?) 4+ dh(x?)|]] < e, provided T' > 5.

Part (c). Let b denote the mini-batch size, and ¢ the frequency parameter of AEPG-SPIDER. As-
sume the algorithm converges in 7' = (’)(6%) iteration. When mod(¢, ¢) = 0, the full-batch gradient

Vf(y?) is computed in O(N) time, occurring [%] times; when mod(t,q) # 0, the mini-batch
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gradient is computed in b time, occurring (7" — [%1) times. Hence, the total iteration complexity is:

N-[El+b-(T-T5)) < N-TH4p.T
)
< N-TEN L UN.T

[l®

VN -O(L)+ N+ VN-0(3),
where step @ uses the choice that g = b = VN, step @ uses T' = (9(}2)

C PROOF FOR SECTIONM]

C.1 PROOF OF LEMMA [£.4]
Proof. We define W' = {x! x*~! o'~ v!},and W £ {x,x,0,Vv}.
We define Z(x,x/,0,v) £ F(x) — F(X) + 1||x — X’Hi(H_L).

First, we derive the following inequalities:

[ Z(WHD| 2 VAT + 0h(xH) 4+ o' (! —x!) @ (v 4+ )|

2 VI - Vi) - v e (T -y + ot (x T - x) o (v 4 1)

®

< (L+max(v))[x™ =y + (L + max(viFh) [x* — x|

@ _

< (LAY =yt + = xE])

S LAV - xt ot - x|+ - X))

® —

< LAV = x T+ 2l = x), (46)
where step @ uses the definition of Z(-,-,-,-); step @ uses the first-order necessarily condition of

x*1 thatx*! € Prox,(y — Vf(y") + vi;v') = argming h(x) + 3[|x — (y — Vf(y") = v))| 2.,
which leads to:

0 € Oh(x"™) + Vf(y') + vi O (x"! — yb):

® uses L-smoothness of f(x), and o < 1; step @ uses max(v’) < V), as shown in Lemma

4 step ® uses y! = x' + ot~ (xt — x'71); step ® uses o < 1.

Second, we obtain the following result:
10 Z(WHH) || + |0, Z(WHHD)| 4 |0y Z(WH) |
(o6t =X @ (v D) + (Bl =X 2) + (G = x ) @ (x - x))

@ — —
< LAV = x4+ gVx|x’ — x| + 32x]x" — x|
(L+V+Vx+3)x" — x|, 47)
where step @ uses the definition of Z(-, -, -, -); step @ uses max(v') <V, and o* < 1.

Finally, we have:
[OZ(W ]|

\/||3xZ(Wt“)H§ + 105 Z(WHIZ + [0, Z2(WH)2 + [0y Z(WH)|13

10 Z(WH) [ + 05 Z(WH) || + [0, Z(WH)| + (|0 Z(WH)|

2(L +V)||x — x| 4+ (2L + 2V + Vx + %) |x* — x|

IN® IN® INe

O = x|+ 9)fx" — x|,
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where step @ uses ||x|| < ||x||; for all x € R*; step @ uses Inequalities and ; step @ uses
the choice ¥ £ 2L + 2V + VX + X.

O

C.2 PROOF OF THEOREM [4.7]

Proof. We define W = {x! x*~1 o'~ v!},and W £ {x,x,0,Vv}.

We define Z(W) £ F(x) — F(x) + 3|x — x’||(27(v+L), and Z(W') £ F(x') — F(x) + 5|Ix' —
Xt_llli.t—l(vt_A'_L)'

We define 2t £ Z(W?) and 2> £ Z(W™>),
We define £ £ min(v®) — ¢3 > 0. We assume that ¢ > ¢,.

First, since the desingularization function ¢(+) is concave, we have: ¢(b) —p(a)+ (a—b)¢'(a) < 0.
Applying this inequality with a = Z* — Z° and b = Z!+! — Z°°, we have:

0 Z [Zt _ Zt+1] . QDI(Zt _ ZOO) + @(Zt-‘rl _ Zoo) _ w(zt _ ZOO)

A
Lttt

t+1 t

1
(2" = 2 Gomeyy T e

Ve Ve

t t+1 1 t+1 t
(2= 27 ] s T ¢ 45

where step @ uses Lemma that m < dist(0, 0Z(W?)), which is due to our

assumption that Z(W) is a KL function; step @ uses Lemma[d.4] that |02 (W!+1)|| < (|[x!** —
x| + =" = x 7).

Part (a). We derive the following inequalities:

)
I = < e IV O (T = xY)3
®
< f]ﬂrliml(v‘)2 ' ||rt||§ : §
® .
= sy I3 - (o min(vi) — o)
®
< fminl(vtﬁ ) ||rt||§ - (c1min(v') — ¢a)
® c t)2 c t2
= % (mll!:&v”f) - mfx!(rv"fl)%) = % (Clgﬁ - CQ§§)
®
S % (Zt o Zt+1) _ % (Z(Wt) _ Z(Wt+l))
®
< R =@ (I =T I =R, (49)

where step @ uses [|d*|| min(v?) < ||d* @ v?||; step @ uses v! © (x'T! — x*) = v?; step @ uses the
definition of &; step @ uses t > t,; step ® uses the definitions of {S}, St }; step ® uses Lemma
with g' = V f(y"); step @ uses Inequality (48).

Part (b). In view of Inequality , we apply Lemmawith P = %pt (satisfying P, > P11).
Then for all ¢ > ¢,
S 2302 X S w(Xy 4+ Xi1) + @,
49

where @ = max(1, °¢).

C.3 PROOF OF THEOREM [4.§]

Proof. We define ! = p(s?), where s* £ Z(W!) — Z(W>),
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We define X; 11 £ [[x"*! — x|, and S; = 372, X 1.

Jj=iq—q

ig—1 ; ; 00
We let X; = \/Zq [xi+t —x3||3, S, = 372, X;.

First, for any 7' > ¢ > 0, using the triangle inequality, we have: ||x* — xT|| < Z;f:_tl I — %I+
Letting " — oo yields:
I — x| < S, [ — x| = T, X = S (50)

Inequality (50) implies that establishing the convergence rate of .S, is sufficient to demonstrate the
convergence of ||x! — x>||.

Second, we obtain the following results:

1 @ t
ot < NOZ(Wh|le
@
< O(Ix" = x4 == %), (51)

where step @ uses uses Lemmal4.2]that ¢’ (Z(W?!) — Z(W))-||0Z(W?)|| > 1; step @ uses Lemma
4.4

Third, using the definition of .S;, we derive:

St £ E;ithJrl

2 (X + Xi 1)+ ¢f

L ot X))+ e {575

2 w(Xi+ X))+ @i {d(1-6) ohet T

(Xt X ) 4w {e(1—6) - (Xo+ X 1)} 5

S (X4 Xet)fw-&-{E1—6) -0 (S — Si)}'5"

= @(Sia—S)+w-é-[d1—5)0] 7 {Si_s— S} F, (52)
2p

where step @ uses Theorem 4.7(b); step @ uses the definitions that ¢! = ¢(s'), and ¢(s) = és'~%;
step @ uses ¢’ (s) = ¢(1—a)-[s] 79, leading to [s!]° = &(1—5)- ﬁ; step @ uses Inequality ;
step ® uses the fact that X; = S;_1 — S, resulting in S;_o — Sy = (S¢—1 — St) + (St—2— S¢—1) =
Xy — X,

Finally, we consider three cases for & € [0, 1).

Part (a). We consider ¢ = 0. We have the following inequalities:

_ _ _ @ ® ®
D — M+ =) 2 oy 2 e 2 (53)

where step @ from Inequality ; step @ uses ¢'(s) = &(1 — &) - [s]77; step @ uses 7 = 0.

Since ||x! — x!7| + [|x!7! — x!72|| — 0, and ¥, ¢ > 0, Inequality results in a contradiction
(J|x = x| + [x=!1 = x'2|) > &5 > 0. Therefore, there exists ¢’ such that ||x* — x'~![| = 0
forall t > t' > t,, ensuring that the algorithm terminates in a finite number of steps.

Part (b). We consider 6 € (0, 3]. We define u £ 1=2 € [1, 00).
We have: S; 5 — Sy = X + Xy 1 = ||xt —x! 7 4+ [|x7! — x! 72| < 4x £ R.
For all t > ' > t,, we have from Inequality (52):

S < @(Si—a—S) + (Siea—S) 7 p
@
< @(Si—2—Si)+ (Si—a —S;)-R*1.p
A ~
=p
< 8y g- AEZ (54)

p+w+1?
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where step @ uses the fact that % < R*lforallu > 1,and z € (0, R]. By induction we obtain
for even indices

_ T
+
Sor < Sp - (ﬁﬁwzil) ;
and similarly for odd indices (up to a constant shift). In other words, the sequence {S; }$°, converges

linearly at the rate S; = O(¢?), where ¢ £ ﬁi—;il € (0,1).

Part (c). We consider & € (1,1). We define u £ 122 € (0,1),and ¢ £ =% > 0.
We have: S;_o2 — S; = X; + X411 = HXt — Xt_1|| + ||Xt_1 — Xt_2|| <4x £ R.
We obtain: S; 1 — Sy = X;||x! —x!7!| <2x < R.

Forall t > t' > t,, we have from Inequality (52):

Sp < p(Sia—5)F +@(Sia—S)
L p(Si—a — i)+ @(Si—a — )" (X)L
% p(Si—2 — Se)* + @(Sp—2 — Sp)* - R' ™
= (Si—a—S)" - (p+wR™Y)
< o T = o),

where step @ uses the definition of « and the fact that S;_; — Sy = Xj; step @ uses the fact that
max,e o,z 2% < R ifu € (0,1) and R > 0; step ® uses Lemmal|A.11|with ¢ = p+wR' ™.

O

C.4 PROOF OF THEOREM[4.12]

Proof. We define W! = {x*, x*~! ot~ vt},and W £ {x,x,0,v}.
We define Z(W) £ Z(x,x~,0,v) £ F(x) — F(x) + 1||x — x_||(2f(v+L).

We define Z¢

Z(WH) £ Z(xt,xt71, 0t vt) & F(x!) — F(X) + %th - Xt_l||§t—1(vt+L)'

a1 , :
We define X; 2 \/z;q:iq_q i +1 — x][2.
We define € £ ¢ min(vt) — ¢ — 3¢’ > 0, where ¢’ £ 5c¢3.
We define r, = (r; — 1)q, and 7; = r;q — 1. We assume that g > 2.

ta '3 oo _rfl3
We define S| = CL S5 = TCZAEE

We define ! £ p(Zt — Z°).

First, since o(+) is a concave desingularization function, we have: ¢(b) + (a — b)¢'(a) < ¢(a).
Applying the inequality above with a = Z* — Z°° and b = Z!+! — Z>° we have:

P(Z" — 27) — p(ZH — Z27) £ o — !

2 (Zt _ Zt+1) . Lp/(zt _ Zoo)
©)
1 1
2 (Zt -z ) dist(0,0 Z (W¥))
@
Z (Zt - Zt+1) : 19(th,xt71H+1th71,xf,72”)7 (55)

step @ uses the inequality that m < dist(0, 0Z(W?)), which is due to Lemma
since Z(W) is a KL function by our assumption; step @ uses Lemma
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Second, we have the following inequalities:

Iy

= |x*" —x'+old — 0
(14 0")d" —o
(L+7)(1+ 0" d']l3 +

5lld’[13 + 5[ld" 13,

IN® |IN©

where step @ uses [la + b||3 <
and ot < 1.

Part (a). For all t with r, <t <7, we have from Lemma [B.6}

—¥3 = ot = (oY)
t_ldt_lH%

tfldtflng

(1+ 1/7’)||0t_1dt_1||§7 Y7 >0

(56)

(1+7)|all3 + (1 + 1/7)||b||3 for all 7 > 0; step @ uses 7 = 1/4

Zi—2 < -glrliy gl pasitt By -y
N——
=c; St =c,SE
-1 min(v*) ||t |2 et |2 t—1 ; i
< - (ommCOrlE AL ) e Tt Elly - v
@ r i i
L (e3¢ Gle et Ry -yl
&) . .
< —(E+3¢) - ld'I3 + < i, 1o Elly™! = yI3], (57)

where step @ uses the definition of min(v’) > min(v’+) for all ¢ > ¢,; step @ uses the definition
of £ £ ¢ymin(vi*) — ¢y — 3¢’ > 0, which leads to ¢; min(vl*) — ¢y = & + 3¢'; step @ uses

[l = [lv* © d[| = min(v*)[[d".

Telescoping Inequality (57) over ¢ from r, to 7, we have:

7 4 Zj;LE[zjfsz}
> (+3¢) 0, I3 — ey, ST Byt - 3]
@ 7 . Ty . i
> (+3¢) 5L, 1713 —5es 3000, (I1d7]13 + [1d771[3)
@ Tt ;
= (E+2)X0L, 13- €0, (13
= (E+2) 2, I3 — ¢ 305 1ldd)3
= —¢lamT Y3 + (€ 4+ 28) |13 + (€ +2¢" =€) 25 (|43
®
> =€) dmT 3+ (min( + 26,6+ 28 —¢) 0L, (| d7]f3]
@ ) 1|2
> d73]

é(X” 1)2
g(th 1 )+€ (%)

—€ B+ € T,
_,_/

(58)

where step @ uses Lemma || .b) and ¢ — 1 < ¢; step @ uses £’ = 5c; step @ uses the fact that
ab + cd > min(a,c)(b + d) for all a,b,c,d > 0; step ® uses ||d=~||3 = Zrt_l_l d7]3 <

J=r,

ST~4||d7 |2, which is due to the fact that 7, — 1 =7, —gandr, — 1 > r, — q.

J=r,—4q
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Now now focus on the upper bound for Z in Inequality (58). We derive:
Z & YL, ElZ - Zia] = 2L, [E(W)) — Z(WItH)]

€ 0 YT, (9 — ) - (0 4 T — i)

S VA (S, (9 — @) (D, It = xR, - X2

= 0Va (=) (S0 I+ 3T )

2 ﬂﬂ-(wm*)q—@w)-((2[2“ 2\|dtm+ud“ ) + fla=2) + 2ia= 1))

S OV (T - gty (2, ]+ [z 4 2dn )

< Va1 — ) (2, ]+ 25, )

= ﬂﬁ-(w(“‘”q—w’"”)-2([21 i+ [0, )

SR e FE NC R CVO DA LU ERYA I U )} (59)
£X,, £Xp, -1

where step @ uses Inequality ; step @ uses (a,b) < ,/gllal|1||b||; for all a,b € RY; step ®
uses df = xT! — x*; step @ uses r, 2 (r; — 1)q, and 7y = r,q — 1; step ® uses (2[2” 2 ||dt||]
[|d™1]]) < 2[2“ ! ||dt||] < 2[2 ., |d]]; step ® usesr, — 1 =7 —pandp > 2; step @ uses
llall. < ./qllal| for all a € RY.

Combining Inequalities (58) and (59) yields:

X2 +5(X2 - X2 ) <2 (oD — ) (X, — Xpy1).

Part (b). Applying Lemmawithj =1, Pjg = %g@jq with P, > P,y;, we have:
Vi>1, 32 X, < 16(§ +1)-X; 1+ 16(% +1) 9i-1)q-
—— —_—

C.5 PROOF OF THEOREM [4.13]

Proof. We define ¢! £ ¢(s?), where s £ Z(Wt) — Z(W>),

2 A oS} .
2,52 9%, X,

J=1q9—q

We let X; £ \/Zizq:-l |x+! — %7
First, for all s > 7 > 1, we have:

1 . .
S [ -

—i (k+i)g—1 1+1 l

F—1 ( 1=(k+i)g—q [x* —x ||>
—i kti)g—1

T L Ik — |3

A
=Xkti

x4 — x|

l® IANe

IN®

\[Zk 1Xk+z
= \[Zk:l-ﬁ-iXk'?

where step @ uses the triangle inequality; step @ uses basic reduction; step ® uses ||x||1 < \/q|x]|
for all x € R?. Letting s — oo yields:

I =% < Va4 Xk = VS (60)
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Inequality (60) 1mphes that establishing the convergence rate of St is sufficient to demonstrate the
convergence of ||xT —x>|.

Second, we obtain the following results:

1 ®
Sy < 10ZWElle

®

< 19(||X(t—1)q _ X(t—l)q—l” + ||X(t—1)q—1 _ X(t_1)q_2||) 61)
= O g X =]
g ﬁzﬁéﬁﬁ s+ — x|
SN RS i T (62)

A
=Xy

where step @ uses Lemma [.2] that ¢’ (Z(W?!) — Z(W>)) - |0Z(W*)|| > 1; step @ uses Lemma
(4.4 step @ uses ¢ > 2; step @ uses [[x||; < /g[|x]| for all x € RY.

Third, using the definition of .S;, we derive:
St Z;it X

wXi 1+ TP-1)q

1>

l® IAN®

1-5

WXy +w-é-{[stD7}F
WXt_l +w - C- {5(1 — 6') . m}%

[l®

< th,1+w-E-{6(1—5)~19th,1}%
g (St —S)+ w61 —6)9va T {Si—1 — S}, (63)
2p

where step @ uses Theorem Y b) step @ uses the dqﬁmtlons that ! £ ¢(s?), and ¢(s) = és'77;
step @ uses ¢’(s) = é(1 — a) [s]77, leading to [s']° = &(1 — &) - (1t), step @ uses Inequality

(62); step ® uses the fact that Xy = S;_1 — S;.

Finally, we consider three cases for & € [0, 1).

Part (a). We consider & = 0. We define A; £ ||x(t~17 — x(t=Da=1|| 4 ||x(t-Da—1 _ x(t=1)a=2),
We have:

1 @ 1 91
o' (s(t=Da) T E(1-5)-[s(t-Da]=F T &’
[s]79; step @ uses & = 0.

®
VA, >
where step @ from Inequality ; step @ uses ¢'(s) = ¢(1 — ) -

(64)

Since A; — 0, and ¥, ¢ > 0, Inequality 1) results in a contradiction 4; > % > (. Therefore,
there exists ¢’ such that ||x* — x!=1|| = 0 for all ¢ > ¢ > t,, ensuring that the algorithm terminates
in a finite number of steps.

Part (b). We consider 6 € (0, 1]. We define u £ =2 € [1, 00).

We have: S, 1 — Sy = Xp 1 = /S0 I —x[3 < \/aZR)2 2 R.
For all ¢t > ¢ > t,, we have from Inequality :
1—&
S < w(Sem1 = Si)+ (Sem1—Se) 7 p

®
< (Sio1 = S)(w+ R p)
—_——

A~
=p

Seo1- 5, (65)

IN
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where step @ uses the fact that % < R* lforallu > 1,and z € (0, R]. By induction we obtain

Sr < So- (52)".

In other words, the sequence {S; }9°, converges Q-linearly at the rate S; = O(7!), where 7 £ s

Part (c). We consider & € (1,1). We define u £ 12 € (0,1), and ¢ £ =% > 0.

20

We have: S;_1 — S; = X1 = \/Zf:‘éf’f);,q [|xi+1 — XjH% <Va(2) £R.
Forall t > t' > t,, we have from Inequality (63):

1—-&

St < p(Si—1—8) 7 +w(S—1 = Sy)
2 p(Sic1 = 8"+ w(Se1 — S)" - (Xem) Y
®
< p(Sim1 — S + @(Si—1 — Sp)* - R

= (Si-1=8)" - (p+wR™Y)
® _u )
< OT 1) =0(T"),
where step @ uses the definition of w and the fact that S;_; — S; = X;_1; step @ uses the fact

that '~ < R'™“ forall z € (0,R], u € (0,1), and R > 0; step ® uses Lemma with
c=p+wR™™

O

D ADDITIONAL EXPERIMENT DETAILS AND RESULTS
This section provides additional details and results of the experiments.

D.1 DATASETS

We utilize eight datasets in our experiments, comprising both randomly generated data and publicly
available real-world data. These datasets are represented as data matrices D € R™%d_ The dataset
names are as follows: ‘tdt2—m—d’, ‘20news—m—d’, ‘sector—m—d’, ‘mnist—rh—d", ‘cifar—nd—d’, ‘gisette-
m-d’, ‘cnncaltech—rh—d’, and ‘randn-r-d’. Here, randn(m, n) refers to a function that generates a
standard Gaussian random matrix with dimensions m x n. The matrix D € R"*4 is constructed by

randomly selecting m examples and d dimensions from the original real-world datasets available at
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html|and https:
//www.csie.ntu.edu.tw/~cjlin/libsvm/. We normalize the data matrix D to ensure it
has a unit Frobenius norm using the operation D < D/||D||g. ({) For the linear eigenvalue problem,
we generate the data matrix C using the formula C = —DTD. (ii) For the sparse phase retrieval
problem, we use the matrix D as the measurement matrix A € R™*™, The observation vector
y € R™ is generated as follows: A sparse signal x € R" is created by randomly selecting a support
set of size 0.1n, with its values sampled from a standard Gaussian distribution. The observation
vector y is then computed as y = u + 0.001 - ||ul| - randn(m, 1), where u = (Ax) © (Ax).

D.2 PROJECTION ON ORTHOGONALITY CONSTRAINTS

When h(x) = tp(mat(x)) with M = {V|VTV = I}, the computation of the generalized
proximal operator reduces to solving the following optimization problem:
X € argming & ||x — x'[|3, s.t. mat(x) e M £ {V|VTV =1}

This corresponds to the nearest orthogonal matrix problem, whose optimal solution is given by
% = vec(UVT), where mat(x’) = UDiag(s)U" represents the singular value decomposition
(SVD) of mat(x’). Here, vec(V) denotes the vector formed by stacking the column vectors of V
with vec(V) € R %" and mat(x) converts x € R(?7)*! into a matrix with mat(vec(V)) = V
with mat(x) € RY*"",
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D.3 PROXIMAL OPERATOR FOR GENERALIZED CAPPED ¢; NORM

When h(x) = A|| max(|x|, 7)|l1 + ta(x), where Q@ £ {x | ||x||oc < 7}, the generalized proximal

operator reduces to solving the following nonconvex optimization problem:
X € arg minyegn Al| max(|x|, 7)||; + ilx—al? st.—r <x <7
This problem decomposes into n dependent sub-problems:
X; € argmin, ¢;(z) £ $(z —a;)* + A max(|z], 7|, s.t. —F <z <7 (66)
2

To simplify, we define P(x) = max(—7, min(7, z)) and identify seven cases for .

(@ z1=0,290 = —r,and z3 = 7.

(b) 7 > x4 > 0 and |z4| > 7. Problem redu.ces to X; € argmin, ¢;(z) £ G(r — a;)? + \z.
The optimality condition gives 4 = a; — A/c;, and incorporating bound constraints yields
x4 = Pla; — A/c;).

(¢) 7 > x5 > 0 and |z5| < 7. Problem simplifies to X; € argmin, ¢;(v) = %(z — a;)?,
leading to x5 = P(a;).

(d) —7 < zg < 0and |zg| > 7. Problem reduces to X; € argmin, g;(z) = % (z—a;)? —Az.

The optimality condition gives z¢ = a; + A /¢, and incorporating bound constraints results in
Tg = P(ai + )\/Cl)

(e) —7 <7 < 0 and |z7 < %.'Problem simplifies to X; € arg min, ¢;(z) = G (r — a;)?,
leading to x7 = P(a;), identical to x5.

Thus, the one-dimensional sub-problem in Problem (66) has six critical points, and the optimal
solution is computed as:

X; = argmminqi(o:), s.t. x € {x1,x9, 3, 4, T5, T6 }

D.4 ADDITIONAL EXPERIMENT RESULTS

We present the experimental results for AEPG-SPIDER on the sparse phase retrieval problem in
Figures 3| 4] 5] [6] and for AEPG on the linear eigenvalue problem in Figures [9 and [10] The
key findings are as follows: (i) The proposed method AEPG does not outperform on dense, ran-
domly generated datasets labeled as ‘randn-10000-1000" and ‘randn-2000-500’. These results align
with the widely accepted understanding that adaptive methods typically excel on sparse, structured
datasets but may perform less efficiently on dense datasets [Kingma & Ba(2015)); Duchi et al.[(2011);
Ward et al.| (2020). (ii) Overall, except for the dense and randomly generated datasets on the linear
eigenvalue problem, the proposed method achieves state-of-the-art performance compared to exist-
ing methods in both deterministic and stochastic settings. These results reinforce the conclusions
presented in the main paper.
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Figure 3: The convergence curve for sparse phase retrieval with A = 0.01.
. = . : aa—————— .

ProxSARAH
—— SpiderBoost
—— SpiderBoost-M

AEPG-SPIDER(0)

—— AEPG-SPIDER(0.1)
AEPG-SPIDER(0.5)
AEPG-SPIDER(0.9)

ProxSARAH
—— SpiderBoost
~—— SpiderBoost-M
——— SGP-SPIDER
AEPG-SPIDER(0)
—— AEPG-SPIDER(0.1)
AEPG-SPIDER(0.5)
AEPG-SPIDER(0.9)

~—— SGP-SPIDER
AEPG-SPIDER(0)
—— AEPG-SPIDER(0.1)
AEPG-SPIDER(0.5)
AEPG-SPIDER(0.9)

ProxSARAH

AEPG-SPIDER(0)
—— AEPG-SPIDER(0.1)
AEPG-SPIDER(0.5)
AEPG-SPIDER(0.9)

1o 2 4 3 8 o 0 2 4 6 8 1o 4 3 8 0 2 4 6 8
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
(a) tdt2-9000-1000 (b) 20news-10000-1000 (c) sector-6412-1000 (d) mnist-2000-784
Figure 4: The convergence curve for sparse phase retrieval with A = 0.001.
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Figure 5: The convergence curve for sparse phase retrieval with A =0.01.
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Figure 6: The convergence curve for sparse phase retrieval with A = 0.001.
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Figure 7: The convergence curve for linear eigenvalue problems with 7 = 50.
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Figure 9: The convergence curve for linear eigenvalue problems with 7 = 20.
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Figure 10: The convergence curve for linear eigenvalue problems with 7 = 50.
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