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Abstract

The rising popularity of large foundation models has led to a heightened de-
mand for parameter-efficient fine-tuning methods, such as Low-Rank Adap-
tation (LoRA), which offer performance comparable to full model fine-
tuning while requiring only a few additional parameters tailored to the
specific base model. When such base models are deprecated and replaced,
all associated LoRA modules must be retrained, requiring access to either
the original training data or a substantial amount of synthetic data that
mirrors the original distribution. However, the original data is often inac-
cessible due to privacy or licensing issues, and generating synthetic data
may be impractical and insufficiently representative. These factors com-
plicate the fine-tuning process considerably. To address this challenge, we
introduce a new adapter, Cross-Model Low-Rank Adaptation (LoRA-X),
which enables the training-free transfer of LoRA parameters across source
and target models, eliminating the need for original or synthetic training
data. Our approach imposes the adapter to operate within the subspace
of the source base model. This constraint is necessary because our prior
knowledge of the target model is limited to its weights, and the criteria
for ensuring the adapter’s transferability are restricted to the target base
model’s weights and subspace. To facilitate the transfer of LoRA param-
eters of the source model to a target model, we employ the adapter only
in the layers of the target model that exhibit an acceptable level of sub-
space similarity. Our extensive experiments demonstrate the effectiveness
of LoRA-X for text-to-image generation, including Stable Diffusion v1.5
and Stable Diffusion XL.

1 Introduction

Large foundation models (LFMs) have demonstrated outstanding performance across var-
ious domains, including natural language processing (OpenAI et al., 2023; Gemini Team
et al., 2023; Anthropic, 2024; AI@Meta, 2024) and computer vision (Ho et al., 2020; Rom-
bach et al., 2022). Due to their remarkable capabilities, fine-tuning LFMs for a wide array
of downstream tasks has become common practice. In the full fine-tuning approach, each
new model tailored to a specific task generally retains the same number of parameters as
the original model. As models increase in size and customization requirements grow, the
need to store such fully fine-tuned checkpoints also rises, leading to substantial storage and
memory costs.
To address this challenge, Parameter-Efficient Fine-Tuning (PEFT) (Xu et al., 2023) meth-
ods, such as Low-Rank Adaptation (LoRA) (Hu et al., 2022), offer a promising solution.
PEFT methods aim to reduce the number of parameters that need to be updated during
fine-tuning, making the process more computationally efficient and less resource-intensive.
LoRA, in particular, addresses this by representing the weight changes in the model using
two low-rank matrices, A and B. Specifically, the weight update is expressed as W0 +
∆W = W0 + BA, where W0 is the original weight matrix, and ∆W is the change applied
during fine-tuning. By decomposing the weight changes into these low-rank matrices, LoRA
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Figure 1: LoRA-X training-free transfer (a) from source SD-v1.5 to targets SD Eff-v1.0 and
RV-v3.0, (b) from source SDXL to targets SSD-1B and RVXL-v3.0.

significantly reduces the number of parameters that need to be adjusted, thus making the
fine-tuning process more efficient.
Nevertheless, a consequential limitation of the LoRA approach is its dependency on the
base model. A LoRA adapter fine-tuned for a specific task is intrinsically tied to its base
model and cannot function independently of it. Moreover, it cannot be directly transferred
to another base model without additional training. This dependency poses a profound
challenge when the base model is deprecated and replaced by a newer version. In such
cases, applications utilizing LoRA adapters from the deprecated model must transition their
adapters to the newer base model. This process can be cumbersome, resource-intensive, and,
crucially, infeasible if the original fine-tuning data is no longer available.
This naturally leads us to an important question: Can we design a LoRA adapter that can
be transferred between different base models without requiring additional training or access to
the original data? A solution addressing this problem allows the longevity of LoRA adapters
and eliminates the need for repeated fine-tunings as base models evolve.
In this work, we introduce LoRA-X, a compact adapter that can be transferred between
different versions of a base model without the need for fine-tuning with the original data. The
core idea behind LoRA-X is to maintain the adapter within the column-row subspace of the
base model weights. This innovative strategy ensures that the adapter remains compatible
with alternative versions of the base model, simplifying the transition process and enhancing
the adaptability of fine-tuned models.
To the best of our knowledge, LoRA-X is the first adapter specifically designed with trans-
ferability capabilities without any additional training. Overall, our main contributions are
(See Figure 1):

• Concept of LoRA-X: We introduce LoRA-X, a versatile cross-model adapter
that can be seamlessly transferred across various base models without the need for
additional training. This innovation simplifies the process of adapting models to
new tasks or domains.

• Subspace Similarity and Transferrability Metrics: We propose a subspace
similarity metric to identify pairs of modules between source and target base models
that share a common subspace. Additionally, we compute a scalar transferability
cost metric to quantify the difficulty of transferring adapters. This metric is de-
rived from the optimal transport solution to pair-wise subspace similarities between
different modules of the source and target models.

• Transfer Method: We present a practical yet highly effective method to transfer
LoRA-X from a source model to a target model. This approach ensures that the tar-
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get model inherits the capabilities of the source model, enabling efficient knowledge
transfer and improved performance.

Throughout this paper, we refer to “Source” as the case where the LoRA-X adapter is trained
from scratch on a specific base model (pretrained weights) using a training dataset. Con-
versely, “Target” denotes the case where the LoRA-X adapter, transferred from a different
base model without any additional training, is applied to a new base model.

2 Related Work

Parameter Efficient Finetuning (PEFT) (Xu et al., 2023) has emerged as a pivotal
research area, particularly in transfer learning, where the challenge lies in adapting large
pretrained models to specific tasks without extensive retraining. The literature on PEFT
includes various strategies, each aiming to modify a minimal number of parameters while
maintaining competitive performance. Several PEFT methods have been introduced, such
as Adapter Modules (Sung et al., 2022), Prompt Tuning (Lester et al., 2021), and popular
Low-Rank Adaptation techniques like LoRA (Hu et al., 2022) and VeRA (Kopiczko et al.,
2023). Among these, recent methods such as SVDiff (Han et al., 2023), PiSSA (Meng et al.,
2024), SVFT (Lingam et al., 2024) and LoRA-XS (Ba lazy et al., 2024) fine-tune the singular
values of base model weight matrices. However, SVDiff and its follow-up works primarily
aim to reduce the number of parameters during fine-tuning rather than the transferability of
the adapter, which is our main objective. A drawback of existing PEFT techniques is their
lack of transferability across base models. Our approach addresses this challenge, providing
a novel solution for the first time.
Knowledge Distillation (Hinton, 2015; Gou et al., 2021; Kim & Rush, 2016; Park et al.,
2019; Bui Thi Mai & Lampert, 2019) is a technique where knowledge from a larger, typically
more complex model (teacher) is transferred to a smaller, more efficient model (student).
Variants of knowledge distillation include Self-Distillation (Zhang et al., 2019; 2021; Zhang
& Sabuncu, 2020), where the same model acts as both teacher and student, and Weak-to-
Strong Distillation (Bang et al., 2021; Kaplun et al., 2022; Wang et al., 2022), which can help
the stronger model avoid overfitting under certain circumstances. While these approaches
have shown promise in transferring knowledge between models, they still rely on a training
dataset for the distillation process, making them problematic to apply in data-free scenarios.
Adapter Transfer: Both (Wang et al., 2024) and (Ran et al., 2023) aim to transfer adapters
across different base models. The primary difference between (Wang et al., 2024) and our
method lies in their use of synthetic data generated by the source model, along with a
small subset of the original dataset, for the transfer process. (Ran et al., 2023) proposed a
universal mapper capable of transferring adapters from a source diffusion model to a target
model. However, this mapper requires training for each target model using a dataset subset
common to both the source and target models. In contrast, we develop an adapter transfer
methodology using a closed-form solution, which eliminates the need for additional training.
Additionally, we introduce adapters that are inherently transferable.

3 Motivation

A LoRA adapter is fine-tuned for a specific task using a designated base model and dataset,
making it dependent on that model. This dependency is problematic if the base model is
updated or if a user wants to use a distilled version, like SDXL to SSD-1B. Additionally,
users might lack access to the original training dataset, complicating transfers.
To address this, we propose a new type of adapter that can be easily transferred between
different base model versions. This approach leverages the strong correlation between layers
of different base model versions (Samragh et al., 2023), especially in deeper layers, which
significantly impact fine-tuned task performance (Frenkel et al., 2024).
We introduce LoRA-X, an adapter designed to stay within the same subspace as the base
model. This method focuses on amplifying or diminishing features relevant to specific tasks
without introducing new feature extractors.
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Figure 2: (a) source: only ∆Σs is finetuned for a down stream task, target: for a given
∆Σs from a source, first computes ∆Σs←t and then reconstruct the weight change using its
own left and right singular matrices. (b) Samples produced by diffusion target models SD
Eff-v1.0 and SSD-1B, utilizing training-free transferred adapters from sources SD-v1.5 and
SDXL, respectively.

Our method enhances flexibility and adaptability for using adapters across various base
model versions, ensuring fine-tuned tasks benefit from base model updates without los-
ing specific adaptations. Figure 2 (b) presents generated samples using a diffusion base
model (e.g., SD Eff-v1.0) with various training-free transferred style adapters. In contrast
to Transferred LoRA, the samples generated using Transferred LoRA-X—transferred from
a LoRA-X adapter trained on a different base model (e.g., SD-v1.5) without additional
training—successfully capture the BlueFire style.

4 Method

This section is organized as follows: LoRA-X: We first introduce LoRA-X and explain
how it should be defined based on the Source base model. Methods for Transferring
LoRA-X: Next, we elaborate on how to transfer LoRA-X, trained on the Source, to the
Target model without additional training.

4.1 LoRA-X

We design LoRA-X based on the following two criteria: First, (Hu et al., 2022) demonstrated
that LoRA can amplify key features for specific downstream tasks that were learned but not
highlighted in the general pre-training model. Second, we only have access to the target
pre-trained model. Therefore, any similarity measurement between different modules of the
source and target models can only be based on their pre-trained model weights and their
corresponding subspace. Building on these crucial insights, we constrain the adapter to
remain within the subspace of the (source) base model. This allows for straightforward
transfer to another (target) base model by projecting it into the target’s subspace.
To ensure that the adapter ∆W ∈ Rm×n remains in the same subspace as the base model
weight W0 ∈ Rm×n, ∆W should adhere to a specific structure. This typically involves
ensuring that ∆W is aligned with the principal components or directions of W0. One
common approach is to express ∆W in terms of the singular value decomposition (SVD)
of W0. If W0 = UΣV ⊤, where U and V are left and right singular matrices, respectively,
and Σ = diag(σ) and σ = [σ1, . . . , σn] is a diagonal matrix of singular values in descending
order1, then ∆W can be structured as:

∆W = Ũ∆ΣṼ ⊤ (1)

Here, Ũ ∈ Rm×r and Ṽ ∈ Rn×r are truncated left and right singular matrices obtained
by zeroing out the n − r smallest singular values from U and V respectively. The matrix

1Note that the SVD computation is performed only once and can be cached.
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∆Σ = diag([δσ1, . . . , δσr]) ∈ Rr×r is a diagonal matrix satisfying σi + δσi ≥ 0, ∀1 ≤ i ≤ r.
The parameter r represents the rank of ∆W identifying the rank of the adapter. During
fine-tuning task, Ũ and Ṽ are frozen and only ∆Σ learns the change of the singular values
of the pre-trained model.
By projecting ∆W onto W subspace, we have

UU⊤∆WV V ⊤ = UU⊤Ũ∆ΣṼ ⊤V V ⊤ = Ũ∆ΣṼ ⊤ = ∆W (2)
where UU⊤∆WV V ⊤ gives the “projection” of ∆W onto the subspace spanned by W . As
shown in equation 2 by projection we get ∆W back, indicating ∆W was already within the
W subspace. Figure 2 (a) illustrates LoRA-X training on a source base model, while (b)
shows the transfer of LoRA-X into a target model.
Generally, the matrix ∆Σ can be any arbitrary square matrix and does not need to be
diagonal. This flexibility allows the adapter to capture a wide range of transformations.
However, if the general pre-trained model has already learned the key features necessary for
specific downstream tasks, imposing a diagonal constraint on ∆Σ can be sufficient. This is
because the diagonal elements can scale the learned features appropriately without needing
to mix them. In cases where the pre-trained model’s features are not perfectly aligned with
the downstream task, the adapter must learn a linear combination of these features. This is
achieved by allowing ∆Σ to be a full matrix, enabling the adapter to reweight and combine
the pre-trained features in a more complex manner.
(Han et al., 2023) proposed a similar adapter structure called SVDiff, which specifically
targets the fine-tuning of the singular values within the weight matrices. There are some
differences between our method and SVDiff. First, we apply truncated SVD and only modify
1 ≤ r ≤ min(m, n) largest singular values, unlike SVDiff, which modifies all singular values.
Second, we apply LoRA-X only on attention modules, whereas SVDiff applies the adapter
to all modules, including convolutional ones. The primary motivation behind SVDiff was
to minimize the number of parameters that need to be adjusted during the fine-tuning
process. This approach is particularly beneficial in scenarios where computational resources
are limited or where there is a need to reduce the overall adapter size without significantly
compromising performance.
In contrast, our work emphasizes the transferability of the adapter. While reducing the
number of parameters is a valuable goal, our primary aim is to enhance the adapter’s
adaptability across different base models. By emphasizing transferability, we strive to create
an adapter that can be effectively reused in various LFMs, thereby improving both efficiency
and effectiveness. This distinction highlights the different priorities and outcomes of the
two approaches: SVDiff focuses on parameter efficiency, whereas our approach emphasizes
transferability and adaptability.

4.2 Methods for Transferring LoRA-X

Let us assume there exists a source model with the base model weight Ws,0 = UsΣsV
⊤

s ∈
Rm×n and the LoRA-X weight ∆Ws = Ũs∆ΣsṼs

⊤ ∈ Rm×n. Our goal is to transfer
∆Ws ∈ Rm×n to another target model with the base weight Wt,0 = UtΣtV

⊤
t ∈ Rm′×n′

without training.

4.2.1 Same Dimension

In the case, m = m′ and n = n′, by projecting the source adapter weight ∆Ws into the
target pre-trained based weight Wt = UtΣtV

⊤
t we have

∆Wt←s = UtU
⊤
t ∆WsVtV

⊤
t = UtU

⊤
t Ũs∆ΣsṼs

⊤
VtV

⊤
t = Ut∆Σt←sV

⊤
t (3)

where ∆Σt←s = U⊤t Ũs∆ΣsṼs
⊤
Vt rotates ∆Σs in a direction that the source and target

have highest subspace similarity. Consequently, ∆Σt←s can influence the target’s modules
that have pre-trained weight subspaces highly similar to those in the source model. More-
over, ∆Σt←s is no longer a diagonal matrix unless the source and target subspaces are
perfectly aligned, i.e., UtU

⊤
t Ũs = Ũt and Ṽs

⊤
VtV

⊤
t = Ṽt

⊤.
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4.2.2 Different Dimensions

If the dimensions of the source and target base model weights do not match, with either
m ̸= m′ or n ̸= n′, we cannot compute U⊤t Ũs or Ṽs

⊤
Vt in equation 3. Instead, we need to

find a subspace of the same dimension that captures the highest correlation. One possible
solution is to find a linear transformation that minimizes the Frobenius norm difference. As-
suming m ̸= m′, the linear transformation can be evaluated as P̂ = arg minP ∥PUs −Ut∥2

F .
Consequently, we have Ũs = UtU

⊤
s (UsU

⊤
s )−1Us. Similarly, if n ̸= n′, an approximate of

right singular matrix is given by Ṽs = Vs(V ⊤s Vs)−1V ⊤s Vt.

4.2.3 Subspace Similarity

To capture subspace similarity, we use unweighted similarity,

Φl(A, B) = Ψ(UA,UB) = ∥U⊤A UB∥2
F

n
=

∑
i

∑
j⟨ui

A,uj
B⟩2

n
(4)

to measure the subspace similarity between two column orthonormal matrices UA ∈ Rm×n

and UB ∈ Rm×n, obtained by taking columns of the left singular matrices of A ∈ Rm×n

and B ∈ Rm×n. Similarly, we use Φr(A, B) = Ψ(VA,VB) = ∥V ⊤
A VB∥2

F

n by taking columns of
VA ∈ Rn×n and VB ∈ Rn×n the right singular matrices of A and B, respectively. Refer to
Appendix C for additional variants of the subspace similarity metric.

4.2.4 Transferability Metric Across Models

To determine the transferability of adapters across models, we use subspace similarity be-
tween modules of a source and target base model. We propose a transferability metric
to guide training-free transfers between architectures, such as from SDXL to SD1.5. This
involves developing a cost function for transferring adapters between architectures.
Assume that the source model has S locations for attaching adapters, with weight matrices
W i

s for i ∈ {1, 2, ...S}. Similarly, the target model has T locations with weight matrices W j
t

for j ∈ {1, 2, ...T}. The cost of transferring adapter i from the source to j in the target is
computed using subspace similarity Φ(W i

s ,W j
t ). This similarity is then used to construct a

cost matrix. The cost matrix is employed to compute an optimal transport map, resulting
in an optimal transport cost, which we refer to as the Adapter Transferability Cost (ATC).
The ATC, normalized between 0 and 1, indicates the cost of transferring adapters, with
higher values representing greater difficulty. Details on obtaining the ATC are provided in
Appendix D

5 Experiment

This section describes our experiments evaluating the effectiveness of LoRA-X. We begin
by detailing the experimental setup and then present our evaluation. We analyze and
quantify LoRA-X through experiments that consist of a text-to-image generation task using
diffusion models in Section 5.1 and a text-generation task using large language models in
Appendix E.3.

5.1 Experimental Setup for Text-To-Image Generation

To evaluate the quality of images generated by LoRA-X and its training-free transferred
version, we consider two scenarios. In the first scenario, “Trained”, we train the LoRA-X on
a specific base model (e.g., SD Eff-v1.0) using a training dataset and generate samples with
this trained LoRA-X. In the second scenario, “Transferred”, we transfer a LoRA-X trained
on a different base model (e.g., SD-v1.5) to the same base model used in the “Trained”
scenario (SD Eff-v1.0) and generate samples with the transferred LoRA-X.
Datasets: For style transfer, we evaluate LoRA-X trained from scratch on base source
models and training-free transferred LoRA-X from source models to target models using

6
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Figure 3: Generated samples using LoRA-X style adapter on the SDXL and SD-v1.5 as the
source base models and corresponding training-free transferred samples using SSD-1B and
SD Eff-v1.0 as the target based models.

Table 1: Evaluation of LoRA-X trained from scratch on base models versus training-free
transferred LoRA-X from a source model into a target model in text-to-image tasks. LoRA-
X modifies the 320 largest singular values of the pre-trained weights. Results are averaged
over 30 seeds.

Datasets Base Model Adapter Training-Free HPSv2 (↑) LPIPS diversity (↑) DINOv2 (↑)

BlueFire
(900 images)

RealVis-v3.0 Trained 0.331 0.524 0.882Transferred 0.332 (+0.3%) 0.540 (+2.9%)

SD Eff-v1.0 Trained 0.296 0.534 0.851Transferred 0.307 (+3.6%) 0.538 (+0.7%)

RealVisXL-v3.0 Trained 0.319 0.484 0.947Transferred 0.319 (0.0%) 0.456 (−6.1%)

SSD-1B Trained 0.316 0.428 0.969Transferred 0.300 (−5.3%) 0.392 (−8.4%)

Paintings
(630 images)

RealVis-v3.0 Source 0.319 0.502 0.928Transferred 0.329 (+3.0%) 0.441 (−11.8%)

SD Eff-v1.0 Trained 0.298 0.485 0.820Transferred 0.292 (−2.0%) 0.476 (−2.0%)

RealVisXL-v3.0 Trained 0.333 0.467 0.945Transferred 0.325 (−2.5%) 0.421 (−9.6%)

SSD-1B Trained 0.319 0.409 0.961Transferred 0.320 (+0.3%) 0.355 (−13.2%)

datasets from public domains, such as BlueFire, Origami Styles, and Paintings. We follow
the same setup as described in (Borse et al., 2024). Additional details are provided in
Appendix B.
Models: For text-to-image generation tasks, we employ Stable Diffusion v1.5 (SD-
v1.5) (Rombach et al., 2022) and Stable Diffusion XL (SDXL) (Podell et al., 2024) as
the source models. The target models include Stable Diffusion Efficient v1.0 (SD Eff-v1.0)
(see Appendix A for details), Realistic Vision v3.0 (RealVis-v3.0), Segmind Stable Diffusion
1B (SSD-1B) (Gupta et al., 2024), and Realistic Vision XL v3.0 (RealVisXL-v3.0).
Metrics: To evaluate the quality of images generated in the “Trained” and “Transferred”
scenarios, we report the DINOv2 (Oquab et al., 2024), HPSv2.1 (Wu et al., 2023), and
LPIPS (Zhang et al., 2018) diversity scores. DINOv2 measures the similarity between
images generated in these scenarios based on their embedded representations. The HPSv2
metric assesses image quality and alignment with the prompt/style. The LPIPS diversity

7
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score captures the diversity among all possible pairs of generated images across different
seeds.

5.2 LoRA-X Performance

Table 1 compares the performance of LoRA-X in the “Trained” scenario, where it is trained
on various base models using the BlueFire and Painting datasets, with its performance in the
“Transferred” scenario, where it is moved from a source model with a different base model
to the target model using the same base model as in the “Trained” scenario. Appendix E
presents LoRA-X’s performance on the Origami dataset.
To enable training-free transfer from a source model to a target model, we begin by iden-
tifying the correlated modules between the source and target using Equation equation 4.
For additional details, please refer to Appendix C. Subsequently, we project the source’s
LoRA-X onto the corresponding module in the target model using Equation equation 2.
Appendix F provides a PyTorch pseudocode for LoRA-X transfer.
The HPSv2 and LPIPS scores in both scenarios are very similar, indicating that the Trans-
ferred LoRA-X performs comparably to the one Trained with the datasets, demonstrating
the effective transferability of LoRA-X. Additionally, the high DINOv2 scores suggest that
the generated samples in both scenarios are highly correlated.
Figure 3 presents several samples generated by LoRA-X based on the BlueFire style dataset.
The first row shows samples generated by the source models SDXL and SD-v1.5 using
LoRA-X trained on BlueFire, while the second and third row display samples generated
by training-free transferred LoRA-X to the target models SSD-1B, SD Eff-v1.0, RVXL-v3.0
and RV-v3.0.

Table 2: LoRA-X subspace constraint effect on transferability of style adapter. BlueFire
dataset, SD-v1.5 as the source model and SD Eff-v1.0 as the target.

Method Adapter Rank HPSv2 (↑) LPIPS diversity (↑) DINOv2 (↑) Total size (MB)

LoRA-X Trained 320 0.2958 0.5340 0.8513 0.16Transferred 0.3073 (+3.7%) 0.5376 (+0.6%)

LoRA

Trained 32 0.3153 0.5049 0.8471 34.07Transferred 0.2466 (−27.8%) 0.4834 (−4.4%)
Trained 16 0.2652 0.5248 0.8266 17.08Transferred 0.2408 (−10.1%) 0.5224 (−0.5%)
Trained 1 0.2650 0.5312 0.8228 1.15Transferred 0.2355 (−12.5%) 0.5274 (−0.7%)

5.3 Effect of Subspace Constraint

Table 2 demonstrates the impact of the subspace constraint imposed in the LoRA-X struc-
ture (equation 1) by comparing its transferability with LoRA (Hu et al., 2022). For this
comparison, we used the BlueFire dataset and fine-tuned both LoRA and LoRA-X on SD-
v1.5 as the source model, with SD Eff-v1.0 as the target. This comparison highlights how
the subspace constraint affects the adapter’s ability to transfer across different base models.
In this experiment, we trained the LoRA ∆W = BA of rank r = 32 on SD-v1.5 as the base
model. Subsequently, we transferred LoRA to SD Eff-v1.0 by projecting into its pre-trained
weights subspace, i.e., BAt←s(SD-v1.5) = UtU

⊤
t BAVtV

⊤
t . The evaluation demonstrates

that subspace constraint is essential for maintaining quality and diversity of transferred
style. We repeated the experiment for different LoRA ranks to show how LoRA’s transfer-
ability drops as rank is reduced, though its total size remains much higher than LoRA-X.
Appendix E.1 presents the effect of constraint based on the Origami dataset.
Additionally, we showed results for DoRA (Liu et al., 2024) and FouRA (Borse et al., 2024)
adapters in Table 3. From the results, we see that the projection idea works well on both
these type of adapters. However, the DINO score of the transfer is relatively small compared
to that of LoRA-X transfer. Moreover, the percentage change of transferred and trained
adapters are higher suggesting that LoRA-X transfers better.
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Table 3: Transferability of style adapters DoRA & FouRA. For DoRA, SDXL is the source
model and SSD-1B is the target model. For FouRA, SD-v1.5 is the source model and SD
Eff-v1.0 is the target model.

Method Adapter Rank Dataset HPSv2 (↑) LPIPS diversity (↑) DINOv2 (↑)

DoRA Trained 8 Paintings 0.3042 0.4624 0.9138Transferred 0.2764 (−9.1%) 0.4526 (−2.1%)
DoRA Trained 8 Origami 0.2491 0.3408 0.9441Transferred 0.2224 (−10.7%) 0.3073 (−9.8%)
FouRA Trained 64 Paintings 0.3034 0.4686 0.9153Transferred 0.2891 (−4.7%) 0.4446 (−5.1%)

5.4 Ablation Studies

5.4.1 Effect of Subspace Projection

Table 4: Evaluation of training-free trans-
formed LoRA-X by copying singular value
modifications from the source to the target
versus subspace projected one.

Subspace Proj. HPSv2 (↑) LPIPS diversity (↑) DINOv2 (↑)
0.1235 0.4804 0.7046
0.3073 0.5376 0.8513

Table 4 illustrates the impact of subspace
projection in LoRA-X by comparing the
training-free transfer of LoRA-X from a
source model using subspace projection
equation 2 with the method of directly
copying ∆Σs from the source to the tar-
get, i.e., ∆Ŵt←s = Ut∆ΣsV

⊤
t . This anal-

ysis focuses on the effect of the alignment
of left and right singular matrices between
the source and target models. As shown in the table, without subspace projection, the
performance of transferred LoRA-X significantly drops, indicating that subspace projection
is crucial. Appendix E shows the effect of subspace projection in the SDXL family.

5.4.2 LoRA-X Rank

We analyze LoRA-X performance at various ranks, indicating the number of modified sin-
gular values. Table 5 shows that trained LoRA-X (trained on SD Eff-v1.0) performance
declines as rank decreases. In contrast, transferred LoRA-X (from SD-v1.5) maintains per-
formance close to the Trained version.

Table 5: LoRA-X subspace constraint effect on transferability of style adapter. BlueFire
dataset, SD-v1.5 as the source model and SD Eff-v1.0 as the target.

Method Adapter Rank HPSv2 (↑) LPIPS diversity (↑) DINOv2 (↑) Total size (MB)

LoRA-X

Trained 320 0.2958 0.5340 0.8513 0.16Transferred 0.3073 (+3.7%) 0.5376 (+0.6%)
Trained 160 0.2850 0.5310 0.8352 0.1Transferred 0.2849 (−0.03%) 0.5263 (−0.8%)
Trained 80 0.2782 0.5294 0.8300 0.05Transferred 0.2723 (−2.1%) 0.5224 (−1.3%)

5.4.3 Smaller Source

In previous sections, we examined the transferability of LoRA-X from larger or similarly
sized source models to target models. Here, we demonstrate the performance of transfer
from a smaller source model. Table 6 presents the performance of LoRA-X transfer from
SD EFF-v1.0 to SD-v1.5. The Trained row indicates LoRA-X performance when trained
on SD-v1.5 from scratch using the BlueFire dataset. The Transferred row indicates LoRA-
X training-free transfer from the source model SD Eff-v1.0 to the target model SD-v1.5.
See Appendix E for evaluation of LoRA-X transfer from the smaller SSD-1B to the larger
SDXL.
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Table 6: Evaluation of Transferred LoRA-X from the smaller source (SD Eff-v1.0) to the
larger target (SD-v1.5) versus LoRA-X Trained on SD-v1.5 using BlueFire dataset.

Adapter HPSv2 score (↑) LPIPS diversity (↑) DINOv2 (↑)
Trained 0.2959 0.5386 0.8312Transferred 0.2834 (−4.4%) 0.5322 (−1.2%)

5.5 Cross Model Transferability Metric

We measure ATC for different pairs of source and target among following models: SD-v1.5,
SD Eff-v1.0, RV-v3.0, SDXL, SSD-1B and RVXL-v3.0. The cost is computed for both the
left and the right subspace similarities. The results are shown in Figure 4 (a) and (b),
respectively. ATC is normalized to be between 0 and 1, with higher values indicating a
larger cost of transferring adapters. From the plot, we observe that for both the left and
right subspace similarities, ATC among Family 1 (SD-v1.5, SD Eff-v1.0, and RV-v3.0) is
less than 0.5. Similarly, ATC among Family 2 (SDXL, SSD-1B, and RVXL-v3.0) is also less
than 0.5. However, ATC across different families shows higher cost, suggesting difficulty in
training-free adapter transferability. As expected, ATC is lower between same architectures,
such as between SD-v1.5 and RV-v3.0 or SDXL and RVXL-v3.0.

Figure 4: Adapter transferability cost (ATC) between source and target models using (a)
left subspace similarity and (b) right subspace similarity. Lower cost implies easier transfer.

5.6 Discussion and Future work

In this paper, we primarily focus on the training-free transferability of LoRA-X in text-to-
image generation tasks. To determine transferability, we use subspace similarity between
different modules of a source base model and a target base model to assess if LoRA-X is
transferable from source to target. We mainly considered architectures from the same
family when transferring LoRA. Training-free transfer across different architecture families
is a challenge, as demonstrated by our transferability cost. Future research in this area
is expected to address these challenges. While our primary focus is on transferring style
LoRA-X, future research could extend this to acceleration adapters such as LCM-LoRA (Luo
et al., 2023). Additionally, another promising area for future work could involve training-free
transfer across different architectures of Large Language Models (LLMs).

6 Conclusion

The increasing reliance on LFMs has amplified the need for PEFT methods like LoRA, which
offer comparable performance to full model fine-tuning with minimal additional parameters.
However, the necessity to retrain LoRA modules when base models are replaced poses sig-
nificant challenges, especially when the original training data is inaccessible. To address
this, we proposed the LoRA-X method, a compact adapter enabling training-free transfer of
LoRAs across different base models. This is achieved by maintaining the adapter within the
base model’s subspace and integrating it into layers with similar subspace characteristics.
This innovative approach has been validated with text-to-image generation models, demon-
strating its potential to streamline the adaptation process in scenarios where data privacy
or availability is a concern.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/

blob/main/MODEL_CARD.md.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024.

Klaudia Ba lazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank
adaptation with extremely small number of parameters. arXiv preprint arXiv:2405.17604,
2024.

Duhyeon Bang, Jongwuk Lee, and Hyunjung Shim. Distilling from professors: Enhancing
the knowledge distillation of teachers. Information sciences, 576:743–755, 2021.

Shubhankar Borse, Shreya Kadambi, Nilesh Prasad Pandey, Kartikeya Bhardwaj,
Viswanath Ganapathy, Sweta Priyadarshi, Risheek Garrepalli, Rafael Esteves, Munawar
Hayat, and Fatih Porikli. FouRA: Fourier low rank adaptation. arXiv [cs.CV], June 2024.

Phuong Bui Thi Mai and Christoph Lampert. Towards understanding knowledge distillation.
In Proceedings of the 36th International Conference on Machine Learning, volume 97,
2019.

Yarden Frenkel, Yael Vinker, Ariel Shamir, and Daniel Cohen-Or. Implicit style-content
separation using b-lora, 2024.

Gemini Team, Rohan Anil, and Borgeaud. Gemini: A family of highly capable multimodal
models. arXiv [cs.CL], December 2023.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation:
A survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Yatharth Gupta, Vishnu V. Jaddipal, Harish Prabhala, Sayak Paul, and Patrick Von Platen.
Progressive knowledge distillation of stable diffusion xl using layer level loss, 2024.

Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang.
Svdiff: Compact parameter space for diffusion fine-tuning. In 2023 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2023.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates,
Inc., 2020.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

Gal Kaplun, Eran Malach, Preetum Nakkiran, and Shai Shalev-Shwartz. Knowledge distil-
lation: Bad models can be good role models. Advances in Neural Information Processing
Systems, 35:28683–28694, 2022.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random
matrix adaptation. arXiv [cs.CL], October 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning, 2021.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In International
conference on machine learning, pp. 12888–12900. PMLR, 2022.

Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur,
Joydeep Ghosh, Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski, and Sujay Sang-
havi. Svft: Parameter-efficient fine-tuning with singular vectors. arXiv preprint
arXiv:2405.19597, 2024.

Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. Towards faster and stabi-
lized gan training for high-fidelity few-shot image synthesis. In International conference
on learning representations, 2020.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adapta-
tion. arXiv preprint arXiv:2402.09353, 2024.

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos,
Longbo Huang, Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion accelera-
tion module, 2023. URL https://arxiv.org/abs/2311.05556.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and
Benjamin Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https:
//github.com/huggingface/peft, 2022.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and
singular vectors adaptation of large language models. arXiv preprint arXiv:2404.02948,
2024.

OpenAI, Josh Achiam, Steven Adler, and Sandhini Agarwal. GPT-4 technical report. March
2023.
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Figure 5: Our Efficient UNet architecture.

A Efficient UNet Architecture

The SD-v1.5 UNet architecture has an attention block in the first three downsampling and
the last three upsampling stages. The highest input dimension feature maps to these stages
are 64 × 64, which are prevalent in the first upsampling stage and the last downsampling
stage. Hence, each cross attention block contains linear layers comprising of 4096 × 4096
matrices. From an on-device latency standpoint, these blocks incur majority of the com-
putational bottleneck. Furthermore, we observe that much of text and spatial-semantics
interaction is captured in low-resolution stages of UNet. These consist of 32 × 32 or lesser
dimensional feature vectors, along with a higher number of channels and capacity, critical for
Diffusion based Generative Models. Hence, we distill our pruned UNet, “SD Efficient-v1”,
presented in Figure 5, without these 4096 × 4096 dimensional cross-attention blocks.

B Datasets

In this section, we provide more details on the style transfer datasets we use for vision adap-
tation experiments. We followed the licensing terms for every dataset which was curated.
BlueFire (Training): The BlueFire dataset is created by collecting images from open
public domain and consist of 6 concepts - car, dragon, bird, fox, man and castle. The dataset
has a total of 54 images covering all the concepts.
BlueFire (Validation): The Bluefire validation set consists of 30 curated text prompts,
of which 9 prompts contain one of 6 categories on which the model was trained, and the
remaining 21 prompts correspond to categories which the low-rank adapter has not been
fine-tuned on. These contain categories such as: (football, monster, sword, chess rook, lion,
tiger, dog, cat, koala, panda).
For all training experiments validating on this dataset, we produce 30 images per prompt,
varying the input seed. Hence, the HPS analysis is over 900 image and LPIPS-diversity
analysis is over 14500 image pairs.
Paintings: On similar lines, the Paintings dataset is also a collection of images from public
domain (CC0 license). The dataset has a total of 90 images cover 9 concepts - fire, bird,
elephants, ship, horse, flower, woman, man and tiger.
Paintings (Validation): The Paintings validation set consists of 21 curated text prompts,
of which 9 prompts contain one of 9 categories on which the model was trained, and the
remaining 12 prompts correspond to categories which the low-rank adapter has not been
fine-tuned on. These contain categories such as: (lion, tiger, dog, cat, koala, panda, and
other landscapes)
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Origami: The Origami dataset is also a collection of origami images from public domains.
The dataset has a total of 52 images covering 7 concepts - bird, boat, flower, cat, dog, fox
and house.
Pokemon: The Pokemon dataset is a collect of Pokemon images, initially introduced in
(Liu et al., 2020). It consists of 833 images and captions, the captions have been labeled
using BLIP (Li et al., 2022).

B.1 LoRA-X on SDXL Family

To fine-tune SDXL for a specific downstream tasks, we applied LoRA-X exclusively to the
UNet attention processors and the [‘to_q’, ‘to_v’, ‘to_k’, ‘to_out’] modules. The
rank of the ∆Σs is r=320, i.e., ∆Ws = Ũs∆ΣsṼ

⊤
s , Ũs ∈ Rm×r, Ṽs ∈ Rn×r, meaning

the total number of parameters we fine-tune per module is only 320, which is significantly
lower than LoRA (Hu et al., 2022). For the adaptation, we use mixed precision training of
FP16, a batch size of 8, gradient accumulation steps of 1, use gradient checkpointing and
learning rate of 1e-3 with a constant scheduler. We use SNR Gamma = 5.0 and train for
5000 iterations. For training LoRA-X on SSD-1B and RealVisXL-V3.0, as well as for all the
datasets: BlueFire, Paintings and Origami, we follow the same set of hyper-parameters. The
implementation is derived from the codebase2, where the hyper-parameters are described as
above.

B.1.1 LoRA-X Transfer to SSD-1B

To transfer LoRA-X trained on a source model to a target model, we begin by identifying
correlated modules between the source and target models through subspace similarity across
their various modules.
Figure 6 (a) illustrates the subspace similarity between the common attention blocks of
down-blocks in SDXL and SSD-1B. It shows that certain attention blocks in down- and
up-blocks exhibit low subspace similarity. For instance, transformer block 3 (tb.3) in down-
block 2 (db.2) has a similarity of less than 0.4, which is significantly lower than other blocks.
To address this, we seek another transformer block within the same module that may have
higher similarity. As shown in Figure 6 (b), db.2.attentions.0.tb.3 of SSD-1B exhibits higher
similarity with db.2.attentions.0.tb.6 of SDXL. Therefore, we apply LoRA-X of that SDXL
block on SSD-1B. We observed the similar behavior in db.2.attentions.1.tb.3 and proceeded
accordingly.
Finally, as shown in Figure 7, up.0.attentions.2.tb.4 to tb.7 do not exhibit this behav-
ior, and hence we do not apply LoRA-X of SDXL on those blocks of SSD-1B. For
up.0.attentions.0.tb.3 and up.0.attentions.1.tb.3, we proceeded to seek another transformer
block using the process described in Figure 6 (b).
After identifying correlated modules, we transfer the LoRA-X of a specific module from the
source model to the target model by projecting the LoRA-X onto its pre-trained weight
using equation 2.

B.1.2 LoRA-X Transfer to RealVisXL-v3.0

To transfer LoRA-X trained on SDXL into RealVisXL-v3.0, we followed the same steps as
outlined in section B.1.1. First, we identified the correlated attention blocks, and then we
projected LoRA-X into the RealVis-v3.0 subspace.

B.2 LoRA-X on SD-v1.5 Family

To train LoRA-X on SD-v1.5 for a specific downstream tasks, we applied
LoRA-X to the UNet and the text-encoder attention processors and the
[‘to_q’, ‘to_v’, ‘to_k’, ‘to_out’] modules. The rank of the ∆Σs is r=320.

2https://shorturl.at/x56s8

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

db.1.ats.
0.tb

.0.at1

db.1.ats.
0.tb

.0.at2

db.1.ats.
0.tb

.1.at1

db.1.ats.
0.tb

.1.at2

db.1.ats.
1.tb

.0.at1

db.1.ats.
1.tb

.0.at2

db.1.ats.
1.tb

.1.at1

db.1.ats.
1.tb

.1.at2

db.2.ats.
0.tb

.0.at1

db.2.ats.
0.tb

.0.at2

db.2.ats.
0.tb

.1.at1

db.2.ats.
0.tb

.1.at2

db.2.ats.
0.tb

.2.at1

db.2.ats.
0.tb

.2.at2

db.2.ats.
0.tb

.3.at1

db.2.ats.
0.tb

.3.at2

db.2.ats.
1.tb

.0.at1

db.2.ats.
1.tb

.0.at2

db.2.ats.
1.tb

.1.at1

db.2.ats.
1.tb

.1.at2

db.2.ats.
1.tb

.2.at1

db.2.ats.
1.tb

.2.at2

db.2.ats.
1.tb

.3.at1

db.2.ats.
1.tb

.3.at2
0.2

0.4

0.6

0.8

0.9

1

su
bs

pa
ce

sim
ila

rit
y

Left Right

(a)

db.3.at1

db.3.at2

db.4.at1

db.4.at2

db.5.at1

db.5.at2

db.6.at1

db.6.at2

db.7.at1

db.7.at2

db.8.at1

db.8.at2

db.9.at1

db.9.at2

0.2

0.4

0.6

0.8

1

su
bs

pa
ce

sim
ila

rit
y Left Right

(b)

Figure 6: (a) Subspace similarity of common attention blocks of down-blocks (db) in
SDXL and SSD-1B, (b) Subspace similarity between db.2.attentions.0.tb.3 of SSD-1B and
db.2.attentions.0.tb.3 to db.2.attentions.0.tb.9 of SDXL.

For the adaptation, we use mixed precision training of FP16, a batch size of 8, gradient
accumulation steps of 1 and learning rate of 1e-4 with a cosine scheduler. We train for
5000 steps. For training LoRA-X on SD Eff-v1.0 and RealVis-V3.0, as well as for all the
datasets: BlueFire, Paintings and Origami, we follow the same set of hyper-parameters.
Table 7 presents the ablation study on hyperparameters, including Steps and Batch size,
which differ from the default values in the kohya-ss repository3 for LoRA finetuing.

Table 7: Ablation on different hyper parameters on training LoRA-X using base model SD-
v1.5 and BlueFire dataset.

Steps Batch size HPSv2 (↑) LPIPS (↑)
5000 4 0.284 0.528
2000 4 0.260 0.518
2000 8 0.266 0.517
5000 8 0.296 0.539

B.2.1 LoRA-X Transfer

We followed the procedures outlined in section B.1.1 to transfer LoRA-X trained on SD-v1.5
into both SD Eff-v1.0 and RealVis-v3.0.

3https://github.com/kohya-ss/sd-scripts
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Figure 7: Subspace similarity of common attention blocks in up-blocks (ub) of SDXL vs.
SSD-1B.

To analyze subspace similarity, we followed the same as in section B.1.1. The detailed
analysis has been shown in Figure 8 and Figure 9. In fact, the correlation between different
subspaces are quite high i.e. greater than 0.8 suggesting direct transfer of the LoRA-X’s
from the source model to the corresponding target model.

C Subspace Similarity

Weighted similarity, one can use

Φl(A, B) = ∥A⊤B∥2
F

∥A⊤A∥F ∥B⊤B∥F
=

∑
i

∑
j σi

Aσj
B⟨ui

A,uj
B⟩2√∑

i(σi
A)2

√∑
i(σi

B)2
(5)

to measure the subspace similarity between two subspaces spanned by the columns of A and
B. In this scenario, similarity is influenced by singular values, with larger singular values
contributing more significantly to subspace similarity. However, because the adapter can
enhance features associated with very small singular values, this similarity measure might
not be particularly effective for transferring LoRA-X from a source model to a target model.

D Optimal Transport Solution

In this section, we describe the method to compute the optimal transport cost. We calculate
Φ(W i

s ,W j
t ) for all i ∈ 1, 2, ...S and j ∈ 1, 2, ...T , creating a cost matrix C ∈ RS×T , where

Cij = 1 − Φ(W i
s ,W j

t ). Subspace similarity is invalid if: (a) W i
s and W j

t have different
row and column counts, making it impossible to minimize the Frobenius Norm difference.
(b) W i

s and W j
t belong to different network parts (e.g., up, down, mid block of UNet)

or different attention operations (e.g., query, key, value, output). In such invalid cases,
subspace similarity Φ(·) is considered 0.
This allows us to frame the adapter transfer problem as an optimal transport problem. We
solve for the transport map X ∈ RS×T by minimizing:

minimize
X

Tr(C⊤X) such that Xa = 1
S

b, X⊤b = 1
T

a, X ≥ 0

where a is a T × 1-dimensional vector of ones and b is a S × 1-dimensional vector of ones.
The standard solution to this problem is using a simplex algorithm, which is inherently
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Figure 8: Subspace similarity of common attention blocks in SD-v1.5 vs. SD Eff-v1.
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Figure 9: Subspace similarity of common attention blocks in SD-v1.5 and RV-v3.0.

slow. Alternately, we use the network simplex approach which is a graph-theoretic version
of the simplex approach. In this version, the linear program is converted into a min-cost
flow problem with a bipartite directed graph:

• There are two sets of nodes: source and target. The source has S nodes while
the target has T nodes, corresponding to the number of source and target adapter
locations.

• The direction of flow is from the source node to the target node, where the supply
at each source node is 1

S while demand at target node is 1
T .

• There is a cost associated with flow transfer from ith source node to the jth target
node, which is denoted as Cij .

Using this setup, we vectorize X into x and C into c and convert the optimization problem
to that of

minimize
x

c⊤x such that Ix = d, x ≥ 0, (6)
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Table 8: Evaluation of LoRA-X trained from scratch on base source models (∆Σs) versus
training-free transferred LoRA-X from a source base model into a target model (∆Σt←s)
in text-to-image tasks. LoRA-X modifies the 320 largest singular values of the pre-trained
weights. Results are averaged over 30 seeds.

Datasets Base Model Adapter Training-Free HPSv2 (↑) LPIPS diversity (↑) DINOv2 (↑)

Origami
(900 images)

RealVis-v3.0 Trained 0.3344 0.4476 0.9193Transferred 0.3294 (+1.5%) 0.4497 (+0.5%)

SD Eff-v1.0 Trained 0.2645 0.5210 0.8184Transferred 0.2703 (+2.1%) 0.4838 (−7.7%)

RealVisXL-v3.0 Trained 0.2450 0.4522 0.8847Transferred 0.2724 (+9.7%) 0.4180 (−8.1%)

SSD-1B Trained 0.2437 0.4124 0.9413Transferred 0.2695 (+9.5%) 0.3880 (−6.3%)

where I ∈ R(S+T )×ST is an incidence matrix of the bipartite graph. The rows of the
incidence matrix represent the nodes in the graph while the columns represent the edges in
the graph. d ∈ R(S+T )×1 is the demand vector where dk = − 1

S for the source nodes and
dk = 1

T for the target nodes for k = {1, 2, 3, ...S+T}. The optimal solution is a basic feasible
solution to the problem and can be obtained as a spanning tree of the bipartite graph. The
initial solution starts with a spanning tree followed by pivoting to another spanning tree
until the one with minimal cost is obtained.

E More results

We also evaluate our proposed LoRA-X on the the Origami dataset. On this dataset, we
show results of transferring from SDv1.5 to RealVis-v3.0 or SD Eff-v1.0 and from SDXL to
RealVisXL-3.0 or SSD-1B in Table 8. The HPSv2 score for both the transferred LoRA-X and
that trained from scratch is similar in score. In fact, transferred LoRA-X produces higher
performance in most of the cases. This can be attributed to better text-image alignment of
the source model from which LoRA-X is transferred. In terms of diversity, the transferred
LoRA-X mostly produces poorer performance. This can be due to the fact that all modes
of the dataset are not transferred during the subspace projection. However, DINO scores
among the dataset generated using transferred LoRA-X and that trained from scratch is
high. This suggests that the generated data using both the methods are well correlated.
Furthermore, we show visual results on the Painting and Origami datasets in Figure 10
and Figure 11, Figure 12 and Figure 13, respectively, with the SDXL and SD-v1.5 families.
Results are shown for the source models as well as cases of transferring LoRA-X to the
target model. Visually, we do not see much difference between the generated image styles
and contents of both the source or the target models.

E.1 Effect of Subspace Constraint

Here we show the effect of subspace constraint using Origami dataset. Table 9 demonstrates
the impact of the subspace constraint imposed in the LoRA-X structure (equation 1) by
comparing its transferability with LoRA (Hu et al., 2022). For this comparison, we used the
Oriami dataset and fine-tuned both LoRA and LoRA-X on SD-v1.5 as the source model,
with SD Eff-v1.0 as the target.

E.2 Ablation Studies on SDXL family

In Table 10, we show quantitative results when transferring LoRA-X from SSD-1B to SDXL
i.e. from a smaller source to a larger target. The HPSv2 scores and LPIPS diversity scores
are quite similar with that of SDXL LoRA-X trained form scratch. This suggests that our
LoRA-X is effective even for smaller sources in the SDXL family. Furthermore, high DINO
score suggests that image fidelity is quite high between the images generated from both the
models.
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Figure 10: Generated samples using LoRA-X style adapter for painting style on the SDXL
as source model and our proposed training-free transfer to SSD-1B and RVXL v3.0. Results
are also shown when SSD-1B and RVXL v3.0 are trained from scratch.

Table 9: LoRA-X subspace constraint effect on transferability of style adapter. SD-v1.5 as
the source model and SD Eff-v1.0 as the target.

Dataset Method Adapter Rank HPSv2 (↑) LPIPS diversity (↑) DINOv2 (↑) Total size (MB)

Origami

LoRA-X Trained 320 0.265 0.521 0.819 0.16Transferred 0.330 (+1.5%) 0.484 (−7.7%)

LoRA

Trained 32 0.253 0.414 0.812 34.07Transferred 0.226 (−10.6%) 0.482 (+16.4%)
Trained 16 0.261 0.460 0.781 17.08Transferred 0.229 (−12.2%) 0.475 (+3.2%)
Trained 1 0.255 0.480 0.798 1.15Transferred 0.230 (−9.4%) 0.492 (+2.5%)

In Table 11, we show that copying the singular values from source model (SDXL) to target
model (SSD-1B) produces slightly poorer performance compared to LoRA-X.

E.3 Experimental Setup for Text Generation

Table 10: Evaluation of training-free transferred LoRA-X from the smaller source (SSD-1B)
to the larger target (SDXL) versus LoRA-X trained on SDXL from scratch using BlueFire
dataset.

Adapter HPSv2 (↑) LPIPS diversity (↑) DINOv2 (↑)
Trained 0.3060 0.4216 0.9528Transferred 0.2793 (9.5%) 0.4329 (2.6%)
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Figure 11: Generated samples using LoRA-X style adapter for painting style on the SD-v1.5
as source model and our proposed training-free transfer to SD Eff-v1.0 and RV-v3.0. Results
are also shown when SD Eff-v1.0 and RV-v3.0 are trained from scratch.

Table 11: Evaluation of training-free transformed LoRA-X by copying singular value modi-
fications from the source (SDXL) to the target (SSD-1B) versus subspace projected one on
the BlueFire Dataset.

Subspace Proj. HPSv2 (↑) LPIPS diversity (↑) DINOv2 (↑)
0.296 0.351 0.966
0.300 0.392 0.969

We have implemented a LoRA-X application to fine-tune TinyLlama, a large language
model Zhang et al. (2024), and successfully transferred it from TinyLlama 3T to TinyLlama
2.5T for a prompt generation task using the ’awesome chatgpt prompts’ dataset. In this
experiment, the rank of LoRA-X is set to r = 32. We used the default hyperparameters from
the PEFT repository (Mangrulkar et al., 2022) for LoRA finetuning on the CAUSAL task
over 3 epochs. Table 12 shows the results for the Trained case versus the Transferred case,
indicating that Transferred LoRA-X outperforms in terms of BLEU and ROUGE metrics.

Table 12: Evaluation of LoRA-X trained from scratch on the base model TinyLlama 2.5T
versus training-free transferred LoRA-X from another base model TinyLlama 3T to the tar-
get model TinyLlama 2.5T in a text-generation task using the “awesome chatgpt prompts”
dataset.

Method Adapter Bleu (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) ROUGE-LSum (↑)

LoRA-X Trained 0.8612 0.9349 0.9346 0.9349 0.9349
Transferred 0.8819 0.9874 0.9873 0.9874 0.9874
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Figure 12: Generated samples using LoRA-X style adapter for origami style on the SDXL
as the source model and our proposed training-free transfer to SSD-1B and RVXL v3.0.
Results are also shown when adapters on SSD-1B and RVXL v3.0 are trained from scratch.

F Implementation

We also share the implementation of our LoRA-X transfer technique. It takes the LoRA-X
from the source model, the target model and filter blocks. The filter blocks are modules
where we do not apply the transfer due to low subspace similarity between the source and
target model. The output is the LoRA-X for the target model.
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Algorithm 1 Simplistic Pytorch style pseudocode for LoRA-X transfer

de f forward ( r e f l o r a , t a r mode l t en so r s , f i l t e r b l o c k s ) :

’ ’ ’
r e f l o r a : LoRA weights o f the r e f e r e n c e / source model .
For LoRA−X case , s i n g u l a r matrix i s absorbed in to down matrix
t a r m o d e l t e n s o r s : weights o f the t a r g e t model
f i l t e r b l o c k s : model weights which have low c r o s s s i m i l a r i t y
’ ’ ’

t a r l o r a = {}

f o r key , model key in z ip ( r e f l o r a . keys ( ) , t a r m o d e l t e n s o r s . keys ( ) ) :
# Consider t e n s o r s not in the f i l t e r b l o c k s
i f not key . s t a r t s w i t h ( tup l e ( f i l t e r b l o c k s ) ) :

i f key . endswith (”down . weight ” ) :
cont inue

tar model w = t a r m o d e l t e n s o r s [ model key ]

lora up w = r e f l o r a [ key ]
lora down key = key . r e p l a c e ( ’ l o r a . up ’ , ’ l o r a . down ’ )

lora down w = r e f l o r a [ lora down key ]
l o r a r a n k = lora down weight . shape [ 0 ]

u model w , s model w , vh model w = \
torch . l i n a l g . svd ( tar model w , f u l l m a t r i c e s=False )

# to p r o j e c t LoRA weights on base model weight
p ro j l o r a up w = u model w @ u model w .T @ lora up w

proj lora down w = lora down w @ vh model w .T @ vh model w

t a r l o r a [ key ] = pro j l o r a up w
t a r l o r a [ lora down key ] = pro j lora down w

return t a r l o r a
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Figure 13: Generated samples using LoRA-X style adapter for origami style on the SD-v1.5
as the source model and our proposed training-free transfer to SD Eff-v1.0 and RV-v3.0.
Results are also shown when adapters on SD Eff-v1.0 and RV-v3.0 are trained from scratch.
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