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ABSTRACT

We present Lumina-mGPT, a family of multimodal autoregressive models capable
of various vision and language tasks, particularly excelling in generating flexible
photorealistic images from text descriptions. By initializing from multimodal
Generative PreTraining (mGPT), Lumina-mGPT demonstrates that decoder-only
Autoregressive (AR) model can achieve image generation performance comparable
to modern diffusion model with high efficiency through Flexible Progressive Su-
pervised Finetuning (FP-SFT). Equipped with our proposed Unambiguous image
Representation (Uni-Rep), Lumina-mGPT can flexibly generate high-quality im-
ages of varying aspect ratios. Building on the strong image generation capabilities,
we further explore Ominiponent Supervised Finetuning (Omni-SFT), an initial at-
tempt to elevate Lumina-mGPT into a unified multi-modal generalist. The resulting
model demonstrates versatile multimodal capabilities, including visual generation
tasks like text-to-image/multiview generation and controllable generation, visual
recognition tasks like segmentation and depth estimation, and vision-language
tasks like multi-turn visual question answering, casting light on the rosy potential
of this direction. We release all code and checkpoints, hoping to facilitate the
progress toward building artificial general intelligence.

1 INTRODUCTION

Seminal models, including DALL-E 3 (Betker et al., 2023), Stable Diffusion 3 (Esser et al., 2024),
and SoRA (Brooks et al., 2024), have demonstrated superior performance in photorealistic image and
video generation using diffusion-based generative modeling over continuous latent image features.
In contrast, autoregressive (AR) generative models, which rely on “next-token prediction,” have
revolutionized text generation with groundbreaking reasoning abilities, as exemplified by models
like GPT-4 (Achiam et al., 2023) and Gemini (Team et al., 2023), over discrete token representation.
However, AR-based generative modeling over vector-quantized image features still lags far behind
diffusion-based counterparts in terms of photorealistic and controllable image generation.

Although previous autoregressive efforts, such as DALL-E (Ramesh et al., 2021), CogView (Ding
et al., 2021), Parti (Yu et al., 2022), OFA (Wang et al., 2022), Unified-IO (Lu et al., 2022; 2024a),
LlamaGen (Sun et al., 2024), and Chameleon (Team, 2024a), have extensively explored generative
modeling over vector-quantized image features following the paradigm of large language models
(LLMs), their results on text-to-image generation have either been unsatisfactory or produced high-
quality samples limited to academic benchmarks like ImageNet (Deng et al., 2009). We summarize the
limitations of previous approaches: (1) AR-based image generation models often rely on randomly-
initialized transformers, resulting in poor image quality and slow convergence due to the lack
of pretrained representations; (2) the verbose encoder-decoder architectures used complicate the
framework and hinder scalability and generalization to other tasks; (3) these models are limited in
decoding resolution and flexibility, often producing low-quality images with fixed resolutions; (4)
they lack task extensibility, restricting their applicability to a narrow range of scenarios without
integration with other tasks such as dense labeling and controllable image generation. More detailed
discussion of these challenges can be found in Appendix C.
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Generate an image according to the provided image, and according to the following caption:

Pose Estimation Depth Estimation Segmentation
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Figure 1: Unified in the next-token prediction framework, Lumina-mGPT can perform a wide range
of multi-modal tasks. See Figure 13 to Figure 18 in the Appendix for more demonstrations.
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Table 1: Overview of the design choices and capabilities of multimodal autoregressive approaches.
Lumina-mGPT is the only model capable of both flexible photorealistic image generation and
multimodal task unification, due to its decoder-only transformer design and multimodal generative
pretraining.

Method Model Multimodal Flexible Photorealistic Task
Architecture Pretraining Image Generation Extensibility

DALL-E (Ramesh et al., 2021) Decoder-only × × ×
Cogview (Ding et al., 2021) Decoder-only × × ×
Parti (Yu et al., 2022) Encoder-Decoder × × ×
LlamaGen (Sun et al., 2024) Encoder-Decoder × × ×
OFA (Wang et al., 2022) Encoder-Decoder ✓ × ✓
Unified-IO (Lu et al., 2022) Encoder-Decoder × × ✓
Unified-IO 2 (Lu et al., 2024a) Encoder-Decoder ✓ × ✓
CM3Leon (Yu et al., 2023) Decoder-only ✓ × ✓
Chameleon (Team, 2024a) Decoder-only ✓ × ×
Lumina-mGPT Decoder-only ✓ ✓ ✓

To address the aforementioned challenges, we present Lumina-mGPT, a decoder-only transformer
initiated with effective multimodal Generative PreTraining (mGPT) and then supervised-finetuned
over flexible, high-quality, high-resolution discrete image tokens in a progressive manner. This
framework illuminates flexible high-resolution photorealistic image generation and can be easily
extended to solve various component tasks in a unified manner. We provide a detailed comparison
of the architecture design choices and model capabilities of existing multimodal autoregressive
approaches in Table 1. The key features of Lumina-mGPT are outlined below:

➀ Effective Multimodal Generative Pretraining: Unlike commonly adopted approaches that utilize
a randomly-initialized causal transformer to generate discrete image tokens in an autoregressive
manner, Lumina-mGPT is initialized from an effective multimodal Generative PretTraining (mGPT)
representation, which is a multimodal autoregressive transformer trained at large scale using a
simple “next-token prediction” loss. We find that by leveraging the rich knowledge from large-scale
multimodal pretraining, mGPT can learn broad and general multimodal representation. This serves as
an excellent starting point, remarkably simplifying the task of text-to-image generation, accelerating
training convergence on downstream tasks, and unifying various vision-language tasks. Due to
the lack of training resources, this mGPT representation is directly adopted from the pretrained
Chameleon 7B and 30B models released by Meta (Team, 2024a).

➁ Simple Decoder-Only Architecture: Lumina-mGPT adopts the simple decoder-only architecture.
Compared to more complex designs like encoder-decoder architectures, decoder-only models have
a significant innate advantage: they provide a simple, elegant, and extensible framework to unify
various understanding and generation tasks across different modalities. This makes them a promising
candidate for achieving true unification. Besides, by sharing the same architecture as the flourishing
text-only LLMs, Lumina-mGPT can benefit from well-established theories and infrastructures in
the LLM community, such as scaling properties (Chowdhery et al., 2022; Brown et al., 2020) and
techniques to optimize the training and inference processes (Dao et al., 2022; Dao, 2024; Kwon et al.,
2023). We train a family of Lumina-mGPTs with up to 30 billion parameters to provide a flexible
trade-off between efficiency and performance and to explore the limit of its multimodal capabilities
as model parameters scale.

➂ Flexible High-quality Image Generation: Despite the aforementioned strengths of decoder-only
architecture, the image generation capabilities of such models remain limited, creating a gap between
the potential and the reality of this architecture. We thus propose Flexible Progressive Supervised
Finetuning (FP-SFT) to fully fulfill the potential of high-quality text-to-image generation. This
approach starts with low-resolution discrete tokens and progressively transitions to high-resolution
discrete tokens. Combined with Unambiguous image Representation (Uni-Rep), this weak-to-strong
SFT strategy effectively grants the model with the ability to generate high-quality photorealistic
images with flexible aspect ratios.

➃ Omnipotent Task Unification: The high-quality image generation capabilities achieved during
the FP-SFT stage provide the prerequisites for further exploring the fundamental advantages of
the decoder-only architecture. We thus propose Omnipotent Supervised Finetuning (Omni-SFT), a
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preliminary attempt to create an omnipotent generalist. Specifically, Omni-SFT treats various tasks–
such as multi-turn dialog, visual multi-turn understanding, dense labeling, text-to-image generation,
text-to-multiview generation, image editing, and spatial-conditional image generation–as a unified
discrete modeling task, allowing the model to achieve omnipotent task unification via a natural
language interface.

We summarize our contributions as follows: (1) We are the first (especially in the open-source
domain) to demonstrate that a decoder-only AR model can achieve image generation performance
comparable to modern diffusion models. Furthermore, by initializing from mGPT, the aforementioned
capability can be achieved at low computational cost (32 A100 GPUs × 7 days for 7B model). (2)
We propose UniRep, an image representation that empowers decoder-only AR models with the ability
to flexibly generate images of varying aspect ratios. (3) Building on the strong image generation
capabilities, we further explore Omni-SFT, an initial attempt to elevate the model into a unified
generalist. Experiments underscore the promising potential of this direction. (4) We open-source the
entire pipeline to encourage the community’s further exploration of this topic.

2 METHODOLGY

Lumina-mGPT is a decoder-only transformer initialized with multimodal Generative PreTraining
(mGPT) and finetuned over high-quality multimodal tokens derived from various tasks. Based on the
robust mGPT representation and our proposed supervised finetuning strategies with unambiguous
image representation, Lumina-mGPT achieves superior performance in photorealistic image genera-
tion and omnipotent task unification with high flexibility in image resolution and aspect ratio. In this
section, we first introduce mGPT, followed by the training and inference details of Lumina-mGPT.

2.1 REVISITING MGPT WITH CHAMELEON

mGPT represents the family of models utilizing a decoder-only transformer architecture, pretrained
on extensive multimodal token sequences. These models exhibit exceptional native multimodal
understanding, generation, and reasoning capabilities, offering the potential for universal modeling
across various modalities and tasks. We use the recent open-source model, Chameleon (Team, 2024a),
as an example to illustrate the design choices and implementing details of mGPT.

Multimodal Tokenization To unify text and images into a multimodal token sequence, it is
essential first to tokenize both text and image into discrete space. Especially for images, the choice of
tokenizer is crucial as it determines the upper limit of generation quality. Specifically, Chameleon
trains a new byte pair encoding tokenizer for text. For images, it adopts the quantization-based
tokenization method following prior works (Esser et al., 2021; Yu et al., 2022; Ramesh et al., 2021),
converting continuous image patches into discrete tokens from a fixed codebook while reducing spatial
dimensions. The quantized image tokens are then flattened into a 1D sequence and concatenated with
text tokens in various ways to form a multimodal token sequence for unified modeling.

Decoder-Only Transformer Unlike Unified-IO and Parti using an encoder-decoder architecture
with pretrained encoders, mGPT trains a decoder-only autoregressive transformer from scratch after
transforming text and image inputs into a unified sequence of discrete tokens x = (x1, x2, ..., xT ),
leading to a simpler and more unified approach for multimodal generative modeling. mGPT adopts a
standard dense transformer architecture for scalability and generalizability, with minor adaptations
like RoPE (Su et al., 2024) and SwiGLU (Shazeer, 2020) activation function, following the LLaMA
series (Touvron et al., 2023). However, this standard transformer architecture exhibits training
instability when scaling up the model size and context length of multimodal token sequences, as
observed in existing works (Team, 2024a; Zhuo et al., 2024). It has been found that this instability
is caused by the uncontrollable growth of network activations in transformer blocks. Therefore,
Pre-Norm, Post-Norm, and QK-Norm (Henry et al., 2020) are added to each transformer block to
preserve the magnitude of intermediate activation and further stabilize the training process.

Training Objective During training, mGPT models the conditional probability p(xt|x1, ..., xt−1)
of multimodal sequences using the standard next-token prediction objective. Additionally, Chameleon
applies z-loss (Chowdhery et al., 2022) to stabilize the training of 7B and 30B models. Initially, we
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Resolution-Aware Prompt Unambiguous Image Representation

Figure 2: Illustration of Resolution-Aware Prompt (bottom left) and Unambiguous Image Repre-
sentation (bottom right). These designs are used in all supervised finetuning stages to eliminate the
ambiguity in image representation, enabling flexible resolution image modeling.

underestimated the importance of z-loss in our attempts because it is absent in most works relevant
to the training of (multimodal) LLMs. However, we found that without this term, the magnitude of
logits surges, causing the loss to diverge. On the other hand, with z-loss, we observe that for the 7B
and 30B models, the optimal temperature for inference-time image generation is much lower, as the
magnitude of logits is significantly reduced in the larger models.

Limitations of Chameleon Although Chameleon demonstrates potential for joint image and text
understanding within one decoder-only transformer, its image generation ability remains inferior to
state-of-the-art diffusion-based frameworks (Esser et al., 2024; Chen et al., 2024a; Li et al., 2024c;
Team, 2024b; Zhuo et al., 2024) in both quality and resolution flexibility. Moreover, it is worth
noting that the image generation ability is even absent in the open-source version of Chameleon.
Additionally, the capabilities of Chameleon are confined to vision-language and text-only tasks,
excluding a broader range of vision-centric tasks. These include classic visual recognition tasks such
as segmentation and depth prediction, as well as creative visual generation tasks like controllable
generation and image editing. Lumina-mGPT is built upon Chameleon to unlock its full potential for
flexible photorealistic image generation and to become a versatile vision generalist.

2.2 LUMINA-MGPT

2.2.1 EFFECTIVE INITLIZATION

Large-scale pre-training and scalable model architecture have been widely verified as the golden
path to advanced intelligence. As mGPTs like Chameleon are pretrained on large-scale image-text
interleaved datasets and have developed effective and generalizable representations for both image
and text, they can better serve as the starting point for flexible photorealistic image generation and
beyond than random initialization or language-only models. Furthermore, the LLaMA (Touvron et al.,
2023) architecture integrated with features like QK-Norm has demonstrated strength and scalability
through extensive validation (Touvron et al., 2023; Meta, 2024; Sun et al., 2024; Gao et al., 2024). By
initializing from the Chameleon mGPT, which adheres to the LLaMA architecture, we can leverage
these architectural advantages. Consequently, initializing from mGPTs allowed us to efficiently train
high-performing Lumina-mGPT models, with parameters ranging from 7B to 30B, using just 10M
high-quality image-text data points.

2.2.2 SUPERVISED FINETUNING FOR LUMINA-MGPT

Unambiguous Image Representation Existing methods represent images as 1D flattened se-
quences of 2D discrete image codes. While adequate for fixed resolutions, this approach becomes
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ambiguous when supporting variable resolutions, as with Lumina-mGPT. For instance, images with
resolutions of 512 × 512, 256 × 1024, and 1024 × 256 can all be encoded into the same number of
tokens, making it impossible to infer the original shape without examining the token contents. This
ambiguity poses significant challenges for both image perception and generation.

To address this problem, we propose Unambiguous image Representation (Uni-Rep), which augments
the image representations by adding extra height/width indicator tokens immediately after the
<start-of-image> token and inserting <end-of-line> tokens after image tokens belonging
to the same row. As shown in Figure 2, this modification ensures that the original shape of the images
can be accurately parsed from the 1D representation without additional context or delving into the
contents of the image tokens. This enhancement provides the foundation for Lumina-mGPT’s ability
to perform image-related tasks at any resolution and aspect ratio.

Note that while either the height/width indicators or the <end-of-line> tokens can independently
achieve disambiguation, we still use both simultaneously because they have distinct benefits. When
generating images, the height/width indicators, generated before any image tokens, pre-determine
the shape of the image, aiding Lumina-mGPT in composing the image contents. On the other hand,
the <end-of-line> tokens can serve as anchors, offering the 1D tokens sequence with additional
explicit spatial information. We detailed in Section 3.3 to illustrate the role of these indicators.

Flexible Progressive Supervised Finetuning (FP-SFT) The FP-SFT process equips the pretrained
mGPT with the capability to generate high-resolution images with flexible aspect ratios in a pro-
gressive manner. The process is divided into three stages, where the product of width and height
approximates 5122, 7682, and 10242, respectively. In each stage, a set of candidate resolutions with
similar areas but different height-width ratios are prepared, and each image is matched to the most
suitable resolution. In the low-resolution stage, shorter sequence lengths and the resulting high
training throughput allow the model to quickly traverse a large amount of data, learning the general
composition of images and a broad spectrum of visual concepts. Conversely, in the high-resolution
stage, the model is expected to focus on learning high-frequency fine-grained details unique to
high-resolution images. Benefiting from the strong foundation built during the high-throughput
pretraining and low-resolution finetuning stages, the low-throughput high-resolution finetuning stage
is data-efficient, thereby enhancing the overall efficiency of the FP-SFT process.

A meticulously curated dataset of high-resolution photorealistic image-text pairs is used for FP-SFT.
Moreover, the pure-text data from OpenHermess (Teknium, 2023) and the image-to-text data from
Mini-Gemini (Li et al., 2024b) are also incorporated during training to prevent catastrophic forgetting.
To provide users with a natural way to specify the desired resolution of generated images, we
developed the resolution-aware prompt (Figure 2). For each image and its corresponding description,
the prompt is structured as follows:

Generate an image of {width}x{height} according to the following
prompt: \n {description}

Omnipotent Supervised Finetuning (Omni-SFT) While flexible photorealistic image generation
is the primary target of Lumina-mGPT, we find that the resulting model after FP-SFT can be efficiently
transferred to a wide spectrum of image understanding and generation tasks. We thus present Omni-
SFT, a preliminary exploration toward boosting Lumina-mGPT to a visual generalist. Training tasks
and data for Omni-SFT consists of the following:

1. Single- and multi-turn language-guided image-editing with data from MagicBrush (Zhang et al.,
2024) and SEED (Ge et al., 2024) (only involving the real-world and multi-turn subsets).

2. Dense prediction tasks, including surface norm estimation from NYUv2 Silberman et al. (2012)
and ScanNet Dai et al. (2017), depth estimation from Kitti v2 Cabon et al. (2020) and Sintel Butler
et al. (2012), pose estimation from MSCOCO Lin et al. (2014), semantic segmentation data annotated
with OneFormer (Jain et al., 2023) on image from Laion (Schuhmann et al., 2022), and grounding
data from RefCOCO (Kazemzadeh et al., 2014).

3. In-house spatial-conditional image generation following ControlNet (Zhang et al., 2023), with
conditions including surface norm, depth, pose, and segmentation.
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Figure 3: Qualitative comparison with LlamaGen and Parti. Lumina-mGPT can generate more
photorealistic images with high aesthetics and fine-grained details.

4. Text-conditional multiview generation using an internal dataset consisting of 100k high-quality
samples with rendered 3842 images from 16 viewpoints uniformly distributed in azimuth angles.

5. A small fraction of data sampled from those used in the previous FP-SFT process, including both
text modeling and text-to-image generation to maintain its learned capabilities.

We tokenize all text and images into discrete tokens and formulate these tasks as a unified next-
token prediction objective. Notably, we also incorporate tasks multiview generation, which requires
generating a sequence of image frames, as a preliminary for video generation. As demonstrated in
Section 3.2, after Omni-SFT, Lumina-mGPT exhibits a general capability for completing a wide
range of tasks other than text-to-image generation, indicating the potential for building a multimodal
generalist along this direction.

Training Setup Though multiple tasks are involved in the SFT process, a unified next-token-
prediction loss is used for all of the tasks. As Lumina-mGPT is designed as a chat model, all data are
organized into single or multi-turn dialogs, with the loss applied only to the response parts. For all
experiments, the AdamW (Loshchilov & Hutter, 2017) optimizer with weight decay = 0.1 and betas
= (0.9, 0.95) is used, and the learning rate is set to 2e-5. For stabilizing training, z-loss is applied
with weight 1e-5 for both the 7B and the 30B model, and for the 7B model dropout with probability
0.05 is additionally applied. Inspired by the classifier-free guidance in diffusion models (Ho &

7
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512x512 768x768 1024x1024

Figure 4: Samples with zoom-ins generated by Lumina-mGPT in different resolution finetuning
stages. The visual details continuously improve along with the progressively increasing resolution.

Salimans, 2022), we randomly drop the context by a probability of 10% during training, as detailed
in Appendix E. To accommodate the large model volume, PyTorch FSDP (Zhao et al., 2023) is
employed with gradient checkpointing. To increase training throughput, all data are pre-tokenized
before training and are clustered according to the number of tokens, ensuring that each global batch
is composed of data with similar lengths.

3 EXPERIMENTS

3.1 FUNDAMENTAL PHOTOREALISTIC TEXT-TO-IMAGE GENERATION

We first demonstrate the fundamental text-to-image generation capabilities of Lumina-mGPT with
FP-SFT. As shown in Figure 13, Lumina-mGPT can generate photorealistic images in a variety
of resolutions, achieving the first native 1K autoregressive generation without cascaded models, a
common technique in text-to-mage generation (Yu et al., 2022; Saharia et al., 2022; Chang et al.,
2023; Pernias et al., 2024). These generated images exhibit strong semantic coherence with intricate
visual details, despite being finetuned on limited computational resources and text-image pairs.

Qualitative Comparison with SoTA AR-based Approaches We compare the text-to-image
synthesis ability of Lumina-mGPT with LlamaGen (Sun et al., 2024) and Parti (Yu et al., 2022).
LlamaGen beats state-of-the-art diffusion models on ImageNet FID score. Compared with LlamaGen,
Lumina-mGPT can achieve better visual quality as shown in Figure 3 in text-to-image generation.
Note that Lumina-mGPT only requires 10M image-text pairs while LlamaGen is trained over 50M
low-quality image-text pairs accompanied by 10M in-house aesthetic image-text pairs. Compared to
Parti, an AR text-to-image model with 20 billion parameters, Lumina-mGPT also demonstrates better
visual quality and aesthetics. However, due to significant differences in computational costs and
training datasets, Lumina-mGPT demonstrates inferior text instruction following ability compared to
Parti. In addition, neither LlamaGen nor Parti supports the end-to-end generation of 1K resolution
images with arbitrary aspect ratios, as achieved by Lumina-mGPT. LlamaGen only supports a fixed
resolution of 512 × 512, while Parti generates 1024 × 1024 images using an additional super-
resolution upsampler. Beyond AR-based approaches, we also provide a side-by-side comparison with
diffusion-based counterparts by training on the same dataset, as detailed in Appendix F.

Quantitative Comparison on text-to-image benchmarks We evaluate Lumina-mGPT on the
popular text-to-image benchmarks T2I-CompBench (Huang et al., 2023), GenEval (Ghosh et al.,
2023), and DPG-Bench (Hu et al., 2024) to objectively demonstrate its performance. Results
are shown in Tab. 3.1. Lumina-mGPT shows clear improvement over Chameleon. Furthermore,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Lumina-mGPT outperforms Lumina-Next, a modern diffusion transformer trained using the same
text-to-image data as Lumina-mGPT, and we guess that generative pre-training may be the reason
behind this performance gap. Additionally, Lumina-mGPT shows competitive performance compared
to SDXL, while maintaining a stable advantage over SDv2.1, providing an intuitive picture of
Lumina-mGPT’s position in the field.

Table 2: Quatitative results of Lumina-mGPT-7B on text-to-image benchmarks.
T2I-CompBench GenEval DPG-Bench

Color Shape Texture Overall Average

Lumina-Next (Zhuo et al., 2024) 0.5088 0.3386 0.4239 0.46 75.66
SDv2.1 (Rombach et al., 2022) 0.5694 0.4495 0.4982 0.50 -
SDXL (Podell et al., 2023) 0.6369 0.5408 0.5637 0.55 74.65
Chameleon (Team, 2024a) - - - 0.39 -
Lumina-mGPT (ours) 0.6371 0.4727 0.6034 0.56 79.68

On the Effectiveness of FP-SFT To further validate the effectiveness of FP-SFT, we visualize
the images generated at different finetuning stages in Figure 4. With increasing image resolution,
we observe a progressive decrease in visual artifacts introduced by VQ-VAE and the emergence of
diverse fine-grained visual details. From these illustrations, we can conclude that our FP-SFT can
unleash the potential of generating high-quality images from mGPT in a progressive manner.

Decoding Configuration Matters In Appendix E, we highlight that optimal hyperparameters differ
between text and image generation, with a status-aware control mechanism switching settings based
on the type of content being generated. We then explore how different inference configurations, such
as temperature, top-k, and classifier-free guidance scale, affect the quality of generated images. For
example, lower temperatures and top-k values often result in over-smoothed images, while higher
values enhance detail but may introduce artifacts. Inspired by these observations, we leverage min-p
sampling (Nguyen et al., 2024) for visual generation and find it works significantly better compared
to standard top-k sampling by striking the balance between coherence and diversity.

Table 3: Quatitative results of Lumina-mGPT-7B on comprehensive VQA benchmarks.
MMBench MME-p MME-r SEEDBench-I MMMU-val POPE

Chameleon 19.80 153.10 49.60 30.50 22.40 19.40
Lumina-mGPT 32.20 976.85 290.36 50.93 27.11 70.43

3.2 OMNIPOTENT TASK UNIFICATION WITH LUMINA-MGPT

By applying Omni-SFT over FP-SFT, Lumina-mGPT demonstrates a multitude of capabilities, which
can be categorized into text-only multi-turn dialog, visual multi-turn dialog, multi-turn image editing,
dense labeling, spatial-conditional image synthesis, and multiview generation. To intuitively illustrate
these capabilities, we qualitatively visualize how various types of downstream tasks can be seamlessly
integrated into Lumina-mGPT from Figure 14 to Figure 18 in the Appendix.

First, Lumina-mGPT effectively handles general text-only tasks in LLMs, such as solving math
problems, coding, and commonsense reasoning, thanks to the extensive pertaining in Chameleon and
our multi-task finetuning to mitigate catastrophe forgetting. As shown in Figure 14, Lumina-mGPT
correctly answers “Which is bigger? 9.9 or 9.11”, a question that has confused almost
all existing LLMs including GPT-4 (Achiam et al., 2023) and Gemini (Team et al., 2023).

As depicted in Figure 15, Lumina-mGPT is also capable of handling various vision-language tasks
including image captioning, visual question answering, and general multi-turn multi-image dialog.
Quantitative results on multimodal understanding benchmarks (Liu et al., 2023b; Yue et al., 2024;
Li et al., 2023; 2024a; Fu et al., 2023) presented in Table 3 illustrate that Omni-SFT significantly
enhances the visual perception capabilities over the original Chameleon model.
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Figure 5: Visualization of averaged attention logits from the last image token. We observe “attention
sinks” (Xiao et al., 2024), where added indicator tokens allocate a large proportion of attention score.

As a visual generalist, Lumina-mGPT incorporates classic visual recognition tasks. Using natural
language as a unified interface, Lumina-mGPT can perform multiple high-level computer vision tasks
including image segmentation, pose estimation, depth estimation, surface normal estimation, and
referring object detection. See Figure 16 and 17 for examples.

For image generation, Lumina-mGPT supports both text and versatile spatial conditions, such as
depth maps, segmentation maps, normal maps, and human poses, to guide the generation of target
images, demonstrated in Figure 17 and 18. Beyond single-image generation, Lumina-mGPT can
produce a sequence of consistent images from multiview, as shown in Figure 18. This task marks a
preliminary step toward video generation by rendering the multiview images into a coherent video.

Given the above examples, though preliminary, they showcase that Lumina-mGPT can effectively
follow diverse instructions, highlighting its promising potential as a unification of various challenging
tasks in one framework.

3.3 ATTENTION VISUALIZATION

To better understand the sampling behavior of Lumina-mGPT, we visualize the average attention
logits of the last image token during text-to-image generation, as shown in Figure 5. The results
reveal that the attention score decreases for distant tokens, indicating that the model pays more
attention to local tokens compared to distant ones. This behavior aligns with the long-term decay
property designed in RoPE. Besides, we observe a similar pattern known as “attention sinks” in
LLMs (Xiao et al., 2024), where a large proportion of attention score is allocated to a small number
of tokens. After looking into details, these sink tokens are identified to be the indicators, including the
<start-of-image> and <end-of-line> tokens. Notably, the attention scores of text tokens
are significantly smaller than those of the <start-of-image> token. This suggests that most of
the semantic information in text tokens may have been encapsulated into the <start-of-image>
token. These intriguing findings indicate that Lumina-mGPT aggregates more information from these
sink tokens, demonstrating the effectiveness of these indicators in our proposed Uni-Rep and opening
up the potential for accelerating the sampling process with these sink tokens.

4 CONCOLUSION

In this work, we introduce Lumina-mGPT, a decoder-only transformer that can produce diverse, photo-
realistic images at any resolution from text prompts. Instead of random initialization, Lumina-mGPT
features initializing from an autoregressive transformer with multimodal Generative PreTraining
(mGPT). Leveraging the general multimodal representation learned from massive interleaved data,
we design two efficient finetuning strategies named FP-SFT and Omni-SFT to unleash the potential
of mGPT on text-to-image generation and omnipotent task unification, respectively. We demonstrate
Lumina-mGPT’s broad multimodal capabilities across a wide range of tasks, showcasing its potential
as a general vision-language assistant.
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A RELATED WORK

Multimodal Large Language Models Recent large language models (LLMs) (Chowdhery et al.,
2022; Touvron et al., 2023; Brown et al., 2020; Achiam et al., 2023; Team et al., 2023) demonstrate
strong instruction-following and reasoning capabilities, coupled with extensive world knowledge. To
extend LLMs’ expertise from the text domain to multimodal domains such as images and videos,
prior works (Liu et al., 2023a; Lin et al., 2023a; Maaz et al., 2023; Lin et al., 2023b) have aligned
pretrained encoders from various modalities with LLMs by curating multimodal instruction tuning
datasets. Although these multimodal large language models (MLLMs) have exhibited powerful visual
understanding capabilities, their multimodal functionality is primarily limited to perceiving the visual
world, exemplified by tasks such as visual question answering and image captioning, rather than
generating visual outputs. Another line of research Koh et al. (2024); Dong et al. (2024); Sun et al.
(2023); Wu et al. has proposed augmenting MLLMs with the ability to generate images, videos, and
audio from text instructions. These approaches introduce additional visual tokens for generation and
align these generative tokens as conditional information with a pretrained generator, such as Stable
Diffusion (Esser et al., 2024; Podell et al., 2023) for text-to-image generation. Consequently, the
generation capabilities heavily rely on the external expert generator rather than MLLMs themselves,
resulting in inconsistent and inferior generation results. To combine the strength of both approaches,
our model aims to learn both understanding and generation of images using an MLLM with native
multimodal capabilities, drawing inspiration from Chameleon (Team, 2024a), a mixed-modal early-
fusion foundation model.

Text-to-Image Generation The task of text-to-image generation seeks to synthesize photorealistic
and diverse images based on textual descriptions. Nowadays, diffusion models, whether in pixel
space (Saharia et al., 2022) or in latent space (Podell et al., 2023; Esser et al., 2024; Pernias
et al., 2024), have become the de-facto approaches due to their superior performance, particularly in
producing extremely high-aesthetic images. Among these models, the recent trend of scaling diffusion
transformers (DiTs) (Chen et al., 2024b;a; Gao et al., 2024; Esser et al., 2024; Li et al., 2024c; Team,
2024b) suggests a unified architecture for both text and image modeling. However, existing DiTs still
leverage separate language models, such as CLIP (Radford et al., 2021) or T5 (Raffel et al., 2020), as
text encoders. This modality gap between text and image representations not only leads to inaccurate
generation but also hinders the development of a unified multimodal foundational generative model.
Compared to the dominance of diffusion models, the progress of autoregressive image generation has
received less attention in recent years. Early works (Ramesh et al., 2021; Ding et al., 2021) proposed
a two-stage generation approach: first, training a VQ-VAE Van Den Oord et al. (2017); Esser et al.
(2021) for image tokenization and de-tokenization, and then using an autoregressive transformer to
model discrete image token sequences, akin to language modeling. Parti (Yu et al., 2022) scaled up
the autoregressive transformer to 20 billion parameters, demonstrating promising high-fidelity image
generation results. LlamaGen (Sun et al., 2024) further improved the image tokenizer and integrated
advanced techniques in LLMs, bridging the performance gap with diffusion counterparts. Unlike
Parti and LlamaGen, Lumina-mGPT proposes multimodal generative pertaining on unified text-image
sequences, followed by supervised finetuning on high-quality text-to-image pairs, achieving flexible
high-aesthetic image generation with autoregressive models.

B DISCUSSIONS ON RECONSTRUCTION QUALITY

VQ-VAEs (Van Den Oord et al., 2017; Razavi et al., 2019; Esser et al., 2021) compress images at
the cost of information loss, which introduces quality degradation at reconstruction, especially for
high-frequency details such as edges, hair, and text. As Generative models such as Lumina-mGPT
only has access to the VQ-VAE latents during training and cannot access original images, intuitively
the VQ-VAE reconstruction quality should somehow build an upper bound for such models’ image
generation quality.

However, we observe an interesting and counter-intuitive phenomenon. Given two data flows:

1. Image
VQVAE Encoder−−−−−−−−→ latent

VQVAE Decoder−−−−−−−−→ Recon1

2. Image
VQVAE Encoder−−−−−−−−→ latent

Lumina-mGPT using editing system prompt with instruction "no edit"−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ latent2
VQVAE Decoder−−−−−−−−→ Recon2
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Figure 6: Reconstruction quality of different methods. Lumina-mGPT means first encode using
VQ-VAE encoder, then send the latent to Lumina-mGPT using image editing system prompt with the
instruction "no edit", and finally decode the newly generated latents using VQ-VAE decoder.

We surprisingly find that the quality of Recon2 sometimes surpasses that of Recon1, and we show such cases
in Fig. 6. For reference, the reconstruction results using SDXL VAE (Podell et al., 2023) are also presented.
Note that while Lumina-mGPT has been trained on the image editing task, it is not trained with the "no edit"
instruction. This intriguing observation may suggest some meaningful insights. For example, it may possibly
indicate that the latents encoded by VQ-VAE encoder could contain noises of certain patterns that can be learned
and even corrected. It is worth noting that we believe this phenomenon should mainly be attributed to the
intrinsic properties of VQ-VAE’s discrete representation. We hypothesize that similar effects might also be
observed in various generative models (e.g., autoregressive models, discrete diffusion models, etc.) and not due
to any specific advantage or uniqueness of the decoder-only autoregressive architecture or other components of
Lumina-mGPT, especially those claimed as contributions. We leave the further exploration of this phenomenon
for future work.

C LIMITATIONS OF EXISTING APPROACHES

Randomly-Initialized Transformer While transfer learning has revolutionized key fields such as visual
recognition (He et al., 2016; Radford et al., 2021; Lu et al., 2019) and language generation (Raffel et al., 2020;
Radford et al., 2018; 2019; Brown et al., 2020), popular autoregressive image generation approaches such
as DALL-E, Parti, and LlamaGen all adopt a randomly-initialized causal transformer, which fails to utilize
pretrained transferable representation and large-scale datasets. As a result, AR-based approaches often lead to
poor image generation quality and slow convergence without leveraging proper large-scale pretraining.

Verbose Encoder-Decoder Architeture DALL-E and CogView initially propose using a decoder-only trans-
former for image generation with discrete representation, where a single transformer acts as both a text encoder
and an image token decoder. However, subsequent approaches, such as Parti and LlamaGen, adopt a verbose
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Figure 7: Failure cases of current Lumina-mGPT. Due to inadequate training and limited data size,
Lumina-mGPT sometimes struggles to understand input conditions and produce visual artifacts.

encoder-decoder architecture that injects frozen T5 text features (Raffel et al., 2020) using cross-attention or
prefix-filling approaches, motivated by the findings of Imagen (Saharia et al., 2022). Compared to the trend
in scaling LLMs (Touvron et al., 2023; Bai et al., 2023; Bi et al., 2024), such encoder-decoder architecture
is cumbersome due to the decoupling of text encoding and image token modeling. This design significantly
complicates the autoregressive-decoding framework, limits the scalability of image generation, and hinders the
generalization to additional modalities and tasks.

Limited Decoding Resolution and Flexibility Natural images exsit in various resolutions and aspect ratios.
Advanced diffusion models (Chen et al., 2024a;b; Esser et al., 2024; Team, 2024b; Li et al., 2024c; Zhuo et al.,
2024; Lu et al., 2024b) can successfully generate diverse photorealistic images at arbitrary resolution with
skewed ratios. In contrast, current AR-based approaches (Yu et al., 2022; Team, 2024a; Sun et al., 2024) rely
on central-cropping a low-resolution 512 × 512 image and transforming the cropped low-resolution image
into a fixed-length sequence of discrete tokens using a pretrained Vector-Quantized Variational Autoencoder
(VQ-VAE) (Van Den Oord et al., 2017; Razavi et al., 2019; Esser et al., 2021). This approach simplifies
autoregressive training but at the cost of deteriorated image quality and generation flexibility.

Poor Task Extensability Autoregressive modeling excels at unified generative modeling for various tasks and
modalities using discrete tokens (Wang et al., 2022; Lu et al., 2022; 2024a). However, previous AR-based image
generation approaches (Ramesh et al., 2021; Ding et al., 2021; Yu et al., 2022; Sun et al., 2024) have been
limited to text-to-image generation without exploring the unification with other tasks, such as dense labeling
and controllable image generation. This lack of task extensibility significantly constrains the applicability of
AR-based image generation models to a broader range of scenarios.

D LIMITATIONS OF LUMINA-MGPT

Failure Cases Despite Lumina-mGPT can generate photorealistic images, it sometimes produces images with
noticeable visual artifacts. For example, Lumina-mGPT may generate people and animals with unreasonable
limbs, as shown in the first row of Figure 7. Besides, compared to SoTA text-to-image generation approaches
including SD3 (Esser et al., 2024), Kolors (Team, 2024b), and HunyuanDiT (Li et al., 2024c), all pretrained over
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1B image-text pairs, Lumina-mGPT’s prompt-following ability is inferior due to the limited training resources
and data size, which are many times smaller than these SoTA methods. Regarding dense labeling and controllable
generation, Lumina-mGPT currently showcases preliminary results with a limited training budget. Hence, the
second row in Figure 7 provides such an example where Lumina-mGPT produces inaccurate predictions or
semantically inconsistent images, failing to understand the given image conditions. Therefore, we expect by
scaling data size with more computational resources, Lumina-mGPT can effectively address the above failure
cases such as inadequate instruction-following ability and visual artifacts.

Generation Speed Autoregressive models require numerous network evaluations during inference due to
the nature of next-token prediction, similar to the iterative denoising process in diffusion models. This becomes
worse when generating high-resolution images, which often require minutes to generate a full sequence of image
tokens, significantly slower than current diffusion models with advanced samplers. However, there have been
plenty of techniques to optimize the inference speed designed for autoregressive models, such as vLLM (Kwon
et al., 2023) and FlashAttention (Dao et al., 2022; Dao, 2024). We believe that by integrating these approaches
in the future, Lumina-mGPT can achieve a remarkable speed up during inference.

VQ-VAE Reconstruction Quality VQ-VAE is employed as the image tokenizer to convert continuous
images into discrete token representations. Meanwhile, it also introduces information bottlenecks by compressing
the spatial dimensions of images. As a result, the reconstruction quality of VQ-VAE largely determines the
upper limit of generation quality. We discover that the VQ-VAE proposed in Chameleon sometimes struggles to
reconstruct high-frequency details, especially when text and human faces are present in images. Incorporating
further improvements on VQ-VAE, such as FSQ (Mentzer et al., 2023), may also enhance the generation quality
of Lumina-mGPT.

E INFERENCE CONFIGURATION OF LUMINA-MGPT

In autoregressive models, various configuration parameters during Lumina-mGPT’s decoding stage significantly
affect sample quality (Holtzman et al., 2020; Radford et al., 2018; 2019). Hyperparameters such as temperature
(T), top-k, and classifier-free guidance scale (CFG) have not been extensively investigated in the visual domain.
In this section, we explore how these hyperparameters influence the generated image in terms of quality, texture,
and style.

Different Decoding Hyperparameters for Image and Text The sampling strategy of autoregressive
models involves numerous hyperparameters that significantly influence the sampling results. We find that the
optimal decoding hyperparameters differ greatly between text decoding and discrete image code decoding. For
example, the top-k=5 setting performs well in generating text. However, when generating images, the value of
top-k should be much larger (e.g. 2000) to avoid repetitive and meaningless patterns. Therefore, we implement
a status-aware control mechanism for inference. Specifically, a set of default hyperparameters is used for text
decoding; once a <start-of-image> token is generated, the hyperparameters switch to those optimized for
image generation. After the <end-of-image> token is generated, the parameters revert to the initial settings.

Classfier-Free Guidance Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) is originally proposed to
enhance the quality and text alignment of generated samples in text-to-image diffusion models. We incorporate
this technique into autoregressive models during inference. When generating an image token, the CFG-processed
logits lcfg are formulated as lcfg = l+s(l− l′), where l represents the original logits conditioned on the complete
context; l′ represents the context-independent logits, which are conditioned solely on the tokens following
the <start-of-image> token of the currently generating image, and are independent of any prior context;
s denotes the guidance scale of Classifier-Free Guidance. To make CFG work, during training, the context
before <start-of-image> is randomly dropped by a probability of 10%. In practice, KV cache can be used for
accelerating the computation of both l and l′. As shown in Fig. 8, similar to the trend of diffusion models,
increasing CFG initially raises the quality and stability of generation, but increasing it further would make the
quality deteriorate.

Influence of Temperature To evaluate the effect of these decoding parameters, we first set a standard
decoding configuration: T=1.0, top-k=2000, CFG=4.0, which serves as a good-to-use setting. From this baseline,
we gradually shift T from 0.7 to 1.0 to generate corresponding images at different temperatures. As shown
in Figure 9, it is evident that when setting the temperature low, visual details diminish and objects tend to be
over-smoothed. Conversely, when setting the temperature high, the generated images contain rich visual content
but are prone to contain more artifacts.

Influence of Top-k Based on the standard decoding setting, we vary the top-k value, from 50 to 8192,
where 8192 is equal to the size of the VQ-VAE codebook used usedin Lumina-mGPT. The results, visualized in
Figure 9, indicate a similar trend with increasing temperature. When top-k is low, the image content and texture
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Figure 8: Samples generated by Lumina-mGPT using different CFG; T=1.0, Top-k=2000.

are relatively simple, exhibiting the over-smoothed problem as well. When top-k is set high, the image detail
and texture are diverse, making it more aesthetically appealing, while increasing the potential of artifacts.
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Figure 9: Samples generated by Lumina-mGPT using different Top-k and Temperature.

F COMPARISON WITH DIFFUSION-BASED APPRAOCHES

For a long period of time, diffusion models have dominated the field of text-to-image generation compared
to autoregressive models. Although LlamaGen claims to beat diffusion models, their results are limited to
the ImageNet benchmark and there has been no direct comparison between these two architectures so far. In
this section, we aim to provide a detailed comparison of autoregressive and diffusion-based methods trained
on these same text-image datasets, focusing on image quality, diversity, text-rendering, and multilingual
capabilities. Specifically, we adopt Lumina-mGPT and Lumina-Next-SFT (Zhuo et al., 2024) as representatives
of autoregressive and diffusion-based methods, respectively. A direct visual comparison between Lumina-Next-
SFT and Lumina-mGPT reveals both the similarities and differences between autoregressive and diffusion-based
generative modeling approaches.

On the Similarity between Diffusion- and AR-based Generation Given the same set of text prompts, both
diffusion- and AR-based approaches generate photorealistic images with similar aesthetic style and fine-grained
details, illustrated in Figure 10. This reveals the fact that both architectures can achieve satisfactory text-to-image
generation performance when provided with the same training data, training budget, and comparable model sizes.
The AR-based methods display remarkable visual aesthetics on par with their diffusion counterparts, challenging
the notion that diffusion models are more effective and promising architecture in generative modeling. This
finding also aligns with the platonic representation hypothesis (Huh et al., 2024) that neural networks are
converging to learn a shared representation space despite being trained with different architectures and objectives.
Therefore, this hypothesis highlights the importance of collecting more high-quality data and optimizing training
infrastructure as directions for data and model scaling, to boost the overall model performance that is agnostic to
any specific architecture.

On the Differences between Diffusion- and AR-based Generation As shown in Figure 10, Lumina-mGPT
exhibits more diversity using different random seeds, while Lumina-Next-SFT generates similar images with
identical layouts and textures. This can be partly attributed to the use of high temperature and top-k values
in Lumina-mGPT. However, excessive diversity also causes our model to be less stable and more prone to
producing visual artifacts, which is discussed in Section D.

We also compare the text rendering and multilingual understanding capabilities between Lumina-mGPT and
Lumina-Next-SFT. As illustrated in Figure 11, Lumina-mGPT exhibits significantly better text synthesizing
results, while Lumina-Next-SFT struggles to generate any complete character. We argue that this underscores
the importance of mGPT, where the model learns a seamless multimodal representation between text and
images using massive interleaved data during the pertaining stage. However, when it comes to multilingual
understanding, Lumina-mGPT performs worse than Lumina-Next-SFT in terms of emoji and Chinese prompts
shown in Figure 12. The reason is that although Lumina-mGPT learns better text-image alignment, the lack
of multilingual text corpus used in pertaining limits its performance. In contrast, the text encoder used in
Lumina-Next-SFT showcases significantly stronger multilingual capabilities than Chameleon. Hence, we hope
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Figure 10: Comparison between Lumina-Next-SFT and Lumina-mGPT using different random seeds.
Images generated by Lumina-mGPT exhibit comparable aesthetics with greater diversity.

that by comprehensively enhancing the capabilities of the base mGPT model, such as adding more multilingual
data, Lumina-mGPT can benefit in all downstream tasks.

In addition to text-to-image generation, Lumina-mGPT supports various vision and language tasks within a
unified framework. However, the design of diffusion models limits their compatibility and performance across
multiple modalities and tasks. They often require specific architecture designs and additional training for each
unseen task (Ke et al., 2024; Xu et al., 2023). In contrast, Lumina-mGPT treats input from all modalities as
multimodal token sequences and leverages natural language as the interface to unify diverse tasks with next-token
prediction.
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Figure 11: Text rendering comparison between Lumina-Next-SFT and Lumina-mGPT. From left to
right, the correct texts to be rendered on the image are: “Bloom”, “Hope”, “Brew”, and “Joy”.
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is wearing .

prompt1 prompt2 prompt3 prompt4

prompt1: is wearing .
Prompt2: is sleeping on .
prompt3: 日落时分的海滩，阳光透过云层在海面上撒下一片金色的光芒，海浪轻轻拍打着沙滩，远处
的帆船在余晖中若隐若现。
prompt4: 森林中的清晨，阳光穿过茂密的树冠，形成斑驳的光影，地上覆盖着厚厚的落叶，几只小鹿
在林间悠闲地觅食。

Figure 12: Emoji and multilingual instruction understanding ability comparison between Lumina-
Next-SFT and Lumina-mGPT. Lumina-mGPT struggle to understand emojis and multilingual
prompts.
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Dense Labeling

Controllable Generation

Figure 13: Selected photorealistic images of various resolutions generated by Lumina-mGPT. At the
bottom, we include two examples to demonstrate the omnipotent task unification in Lumina-mGPT.
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1. Multi-Turn Dialog

I'm planning a trip to Paris.

That sounds exciting! Paris is a beautiful city with a rich history 
and culture. Have you considered checking the weather, flight 
deals, and any specific activities you're interested in while 
planning your trip?

No, I have not. Can you do some planning for me?

Of course! Here's a general outline of some things you can include in your itinerary when planning your trip to 
Paris:
1. Visit iconic landmarks such as the Eiffel Tower, Notre-Dame Cathedral, and Louvre Museum. These are all 
must-see attractions and offer a glimpse into Paris's architectural prowess and artistic heritage.
2. Take a romantic walk along the Seine River, which is a picturesque and romantic way to explore the city's 
central area. Stroll along the riverside, enjoying the scenery and the gentle sound of the water flowing nearby.
3. Explore Montmartre, one of Paris' most famous neighborhoods. With its narrow streets, colorful houses, and 
numerous art galleries, Montmartre is a must-visit destination for art and culture enthusiasts.
4. Take a food tour, as Paris is known for its delectable cuisine. Many of the city's restaurants offer a mix of 
traditional and modern dishes, and you can try traditional Parisian snacks and drinks at cafes and bakeries.
5. Visit the Musée de l'Orangerie, which is home to the famous Monet painting "Water Lilies." This museum is 
located in a beautiful, park-like setting with plenty of outdoor seating options, allowing you to enjoy the art in a 
more relaxed and enjoyable atmosphere.
6. Experience a traditional Parisian night out, with its lively bars, vibrant nightclubs, and numerous music and 
entertainment venues. Paris is known for its late-night scene and its bustling club culture.
7. Take a guided tour of the Palace of Versailles, which is located just outside the city and about 20 miles east 
of Paris. This majestic estate is an excellent day trip from the city and offers a chance to explore the opulent 
and extravagant lifestyles of the French aristocracy.
Remember to research flight deals, local transportation options, and activities that interest you before 
embarking on your journey to Paris. Good luck and have a great trip!

2. Math

Which is bigger? 9.9 or 9.11

The bigger value between 9.9 and 9.11 is 9.9.

A bat and a ball together cost $1.10. The bat costs $1.00 more than 
the ball. How much does the ball cost? Let's think step by step.

Step 1: Identify the given information
We know that the total cost of the bat and the ball combined is $1.10. We also know that the bat costs $1.00 
more than the ball.
Step 2: Create an equation
Let's denote the cost of the ball as 'x' (since it's the unknown variable). Then, the cost of the bat is 'x + $1.00' 
(since it's $1.00 more than the ball).
Step 3: Use the given information to form an equation
Using the given information, we can create an equation:
(x + $1.00) + x = $1.10
Step 4: Simplify and solve for the unknown variable 'x'
Combining the terms with 'x', we get:
2x + $1.00 = $1.10
2x + $1.00 - $1.00 = $1.10 - $1.00
2x = $0.10
Step 5: Solve for the unknown variable 'x'
To find the cost of the ball (x), we need to divide both sides of the equation by 2:
x = $0.10 / 2
x = $0.05
Step 6: State the conclusion
The ball costs $0.05, which is 5 cents.

3. Coding

Write a python script, implementing a sorting algorithm.

Here is a simple sorting algorithm implemented in Python:

def sort_list(list):
    sorted_list = list
    for i in range(len(sorted_list) - 1):
        min_index = i
        for j in range(i + 1, len(sorted_list)):
            if sorted_list[min_index] > sorted_list[j]:
                min_index = j
        sorted_list[i], sorted_list[min_index] = sorted_list[min_index], sorted_list[i]
    return sorted_list

list = [3,6,8,1,7]
print(sort_list(list))

The sort_list function implements the selection sort algorithm. This is one of the simplest sorting algorithms, 
but it can be quite slow and inefficient for larger datasets. It works by finding the minimum element in an 
unsorted part of the list and swapping it with the first unsorted element. This process continues until the entire 
list is sorted.

Figure 14: Lumina-mGPT as a generalist for various multimodal tasks.
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4. Flexible Photorealistic Image Generation

8. Image Editing

6. Visual Question Answering

7. Multi-Turn Multi-Image Dialog

“The image captures a moment on a city street that appears to be in a Southeast Asian country, likely 
Vietnam, based on the script on the signs, which is in Devanagari script used for several languages in 

India, but also used in Southeast Asia, particularly in Vietnam. The presence of English text on the signs 
indicates that this is a region frequented by tourists or by locals familiar with Western languages. The 

scene is bustling with a diverse array of individuals and goods, indicating a market or marketplace. People 
are seen engaged in various activities, such as walking and handling items for sale, which contributes to 

the impression of a busy urban environment. The image's composition shows a snapshot of daily life, 
illustrating the interaction between people and their surroundings in this urban setting.”

“In the next second, the photographer is likely to continue taking photos of this moment. The 
crocodile and its open mouth are positioned to create an appealing composition for a shot. Given 
the open mouth and visible teeth, the photographer might capture a more dramatic and intense 
image by positioning themselves and the crocodile closer to the camera, aiming to include more 

of the crocodile's head in the frame. The next photograph could potentially feature the 
crocodile with its mouth open wide to mimic the one in the first image, creating a sense of 

continuity and action in the scene.”

“What if I use the tool shown in this image to hit the porcelain?<|image|>”

“Based on the image, the porcelain teapot with its intricate floral designs and 
golden trim is shown in a stationary position. However, the tool depicted—a red, 
metallic hammer with a black rubber grip—is designed for striking purposes. If 
used to hit the teapot, the hammer's weighty metal head would likely cause the 
teapot to shatter or chip due to its fragile nature, especially if struck with any 

force applied from above as a hammer would. “

“Generate an image of 768x768 according to the following prompt:
A piece of porcelain is placed on the table.”

5. Image Caption

“Generate an image of 512x512 according to the following prompt:
A cup of coffee is placed on the table.”

“Remove the cup in the background.”

“Add a spoon.”

“Generate an image of 1280x800 according to the following prompt: A serene alpine meadow in 
spring: The meadow is a carpet of vibrant green, dotted with colorful wildflowers in full bloom. 

Snow-capped mountains provide a stunning backdrop, their peaks glittering in the bright sunlight. 
A clear, babbling brook winds through the meadow, adding to the scene's tranquility”.

“<|image|>”

“Generate an image of 640x1536 according to the following prompt: A serene alpine meadow in 
spring:A rocket launching into space, captured at the peak of its ascent: The rocket, sleek and 
powerful, is shown against a backdrop of a twilight sky. Flames and smoke trail behind it as it 
pierces through the atmosphere. The intense light from the engines illuminates the scene, 

creating a breathtaking contrast with the darkening sky.”

“<|image|>”

“Describe this image in detail.<|image|>”

“What might happen in this image in the next second?<|image|>”

“<image|>”

“<image|>”

“<image|>”

“<image|>”

Figure 15: Lumina-mGPT as a generalist for various multimodal tasks.
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Human pose estimation.

9. Image Segmentation

12. Surface Normal Estimation

10. Pose Estimation

11. Depth Estimation

“Semantic segmentation. <|image|>”

“Human pose estimation. <|image|>”

“Depth estimation. <|image|>”

“Surface normal estimation. <|image|>”

“<|image|>”

“<|image|>”

“<|image|>”

“<|image|>”

Figure 16: Lumina-mGPT as a generalist for various multimodal tasks.
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Human pose estimation.

14. Depth Conditioned Image Generation

13. Referring Object Detection

“Detect: The red apple. <|image|>”
“<|image|>”

“Detect: The green apple. <|image|>”
“<|image|>”

“Generate an image according to the provided image, and 
according to the following caption: 
An ice cream with pink color.  <|image|>”

“<|image|>”

“Generate an image according to the provided image, and 
according to the following caption: 
An ice cream with vanilla flavor.  <|image|>”

“<|image|>”

“Generate an image according to the provided image, and 
according to the following caption: 
An ice cream with golden textured background. <|image|>”

“<|image|>”

Figure 17: Lumina-mGPT as a generalist for various multimodal tasks.
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16. Surface Normal Conditioned Image Generation

17. Pose conditioned Image Generation

15. Segmentation Conditioned Image Generation

“Generate an image according to the provided image, and 
according to the following caption:
A butterfly is flying in the forest. <|image|>”

“Generate an image according to the provided image, and 
according to the following caption:
A birthday cake. <|image|>”

“Generate an image according to the provided image, and 
according to the following caption:
A woman is holding a bag. <|image|>”

“<|image|>”

“<|image|>”

“<|image|>”

18. Multi-view Image Generation

“Generate 16 object views of 384x384 according to the following prompt:
A red samurai helmet with a black face guard and green horns on the top, the surface is 
decorated with yellow and purple patterns, 3d asset”

“ <|image|><|image|><|image|><|image|><|image|><|image|><|image|><|image|>
  <|image|><|image|><|image|><|image|><|image|><|image|><|image|><|image|> ”

Figure 18: Lumina-mGPT as a generalist for various multimodal tasks.
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