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Abstract

Composing poetry or lyrics involves several001
creative factors, but a challenging aspect of gen-002
eration is the adherence to a more or less strict003
metric and rhyming pattern. To address this004
challenge specifically, previous work on the005
task has mainly focused on reverse language006
modelling, which brings the critical selection007
of each rhyming word to the forefront of each008
verse. On the other hand, reversing the word or-009
der requires that models be trained from scratch010
with this task-specific goal and cannot take ad-011
vantage of transfer learning from a Pretrained012
Language Model (PLM). We propose a novel013
fine-tuning approach that prepends the rhyming014
word at the start of each lyric, which allows the015
critical rhyming decision to be made before the016
model commits to the content of the lyric (as017
during reverse language modelling), but main-018
tains compatibility with the word order of reg-019
ular PLMs as the lyric itself is still generated020
in a left-to-right order. We conducted exten-021
sive experiments to compare this fine-tuning022
against the current state-of-the-art strategies for023
rhyming, finding that our approach generates024
more readable text. Furthermore, we furnish025
a high-quality dataset in English and 12 other026
languages, analyse the approach’s feasibility027
in a multilingual context, provide extensive ex-028
perimental results shedding light on good and029
bad practices for lyrics generation, and propose030
metrics to compare methods in the future.031

1 Introduction032

Lyrics generation, the task of generating lyrics033

based on desiderata defined by a user, e.g., genre or034

topic, is gaining momentum thanks to the recent ad-035

vances in text generation. Generating lyrics, how-036

ever, has its peculiarities, making it a different task037

from open text generation. Indeed, songs need to038

follow a high-level structure, defining choruses and039

verse and adhering to rhyming constraints. This is040

similar to the task of poetry generation, but songs041

present a vocabulary and styles that differentiate042

Figure 1: Drawing of the proposed model. Green boxes
correspond to the main fine-tuning strategy LWF, while
the violet ones correspond to the LWF+EPR approach.

them. We chose Lyrics Generation since lyrics 043

form our datasets and inherit these peculiarities. 044

In general, a few approaches have been proposed 045

either for specific cases, e.g., rap lyrics generation 046

(Xue et al., 2021a), or in a more general fashion to 047

adhere with desiderata from English songwriters 048

(Ram et al., 2021), or to incorporate verse structure 049

within a model (Li et al., 2020). 050

This work mainly focuses on the rhyming con- 051

trol aspect of generating lyrics. Previous work on 052

the task (Xue et al., 2021a; Li et al., 2020) has fo- 053
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cused on reverse language modelling, i.e.g training054

a model to generate the output in a right-to-left man-055

ner. This has the benefit of bringing the critical se-056

lection of the rhyming word to the forefront of each057

verse, ensuring that it is unaffected by the semantic058

context of the verse. The downside of this approach059

is that reversing the word order requires that mod-060

els be trained from scratch with this task-specific061

goal. As such, these approaches cannot take advan-062

tage of transfer learning from Pretrained Language063

Models (PLM) which are generally trained through064

left-to-right conditional language modelling.065

We propose a novel fine-tuning strategy, namely066

Last Word First (LWF), that can be used for gener-067

ating human-like text with rhyming control. This068

strategy fine-tunes a model under a structure where069

the rhyming word (i.e. the last word of each verse)070

is prepended at the start of the verse as well (Fig. 1)071

and constrained (during inference) to follow the072

rhyming schema. This enables the model to follow073

a user-defined rhyming pattern and benefit from074

bringing the critical selection of the rhyming word075

to the forefront (as in reverse language modelling),076

while the rest of the verse is still being generated077

in a left-to-right manner. Our strategy allows us to078

fine-tune PLMs and benefit from transfer learning,079

requiring much less data and computing power,080

where previous work often required retraining a081

model from scratch. To the best our knowledge,082

no work has investigated finetuning PLMs to gen-083

erate lyrics following an arbitrary rhyming pattern084

defined by a user.085

We additionally condition the lyrics generation086

on various user-defined aspects, like genre or a spe-087

cific artist’s style, and explore how this strategy088

can be augmented through a secondary training089

objective to predict the Ending Phonetic Represen-090

tation (EPR) of each word. Finally, while previous091

work primarily focused on only one language (e.g.092

English or Chinese), we introduce a novel high-093

quality dataset of lyrics in English and 12 other094

languages, and use it to demonstrate that LWF is095

language-agnostic. Our contribution is threefold:096

1. A novel approach to adapt pretrained mod-097

els so that they appropriately follow a given098

rhyming schema, enabling meaningful out-099

puts and precision in rhyming while benefiting100

from PLM transfer-learning;101

2. High-quality data in 13 languages for lyrics102

generation augmented with rhyme schema at103

the paragraph level;104

3. Extensive experiments and error analysis, 105

showing the pitfalls of current models, includ- 106

ing multiple metrics over different aspects of 107

the generation, like diversity (distinct-2, 3 and 108

4), Mauve, and a new metric on copyright. 109

Code and data will be released upon acceptance. 110

2 Related Work 111

The task of lyrics generation has to be viewed in the 112

broader context of text generation. Text generation 113

has recently gained much attention thanks to large 114

pretrained language models, e.g., GPT-2 (Radford 115

et al., 2019), and GPT-3 (Brown et al., 2020), or 116

encoder-decoder models, e.g., BART (Lewis et al., 117

2020), and T5 (Raffel et al., 2020). Compared to 118

those only trained on the target task, the main ad- 119

vantage of such models is the so-called knowledge 120

transfer, i.e., during their pretraining, assimilated 121

knowledge can be later reused in different down- 122

stream tasks. A recent challenge in text generation 123

is to add constraints to a model, from soft con- 124

ditions, such as respecting a given style, to more 125

complex rules, e.g., respecting a predefined schema 126

for the output text, as when writing a poem. 127

Lyrics generation is a long-standing task in NLP, 128

with the first attempts dating back to the 1960s 129

(Queneau, 1961). More complex systems started 130

spawning around the 2000s (Gervás, 2000; Manu- 131

rung, 2004) and recently reached a more satisfac- 132

tory performance thanks to the advent of deep learn- 133

ing, recurrent neural networks and PLMs (Wöck- 134

ener et al., 2021; Shao et al., 2021; Li et al., 2020; 135

Ormazabal et al., 2022). The lyrics’ vocabulary and 136

syntax are different from poetry and usually more 137

contemporary; therefore, they need to be treated 138

separately. Several works focused on the Rap and 139

Hip Hop genres. They propose to model rhythm 140

and rhyming with unique tokens within the text 141

(Xue et al., 2021a) or to generate verses condi- 142

tioned on input keywords and post-process the text 143

to adhere with a rhyme schema (Nikolov et al., 144

2020). While most systems are stand-alone, i.e., do 145

not require human intervention, nowadays, we ob- 146

serve a significant demand for human-in-the-loop 147

approaches, that is, models that can help humans 148

better pursue their goals. In this spirit, Ram et al. 149

(2021) proposed a songwriter assistant able to con- 150

sider different aspects of a song, including produc- 151

ing verses with a given metric or that rhyme with a 152

given word. 153
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We join this cause and propose an interactive154

approach to lyrics generation in English and other155

12 languages, which can be conditioned on differ-156

ent song attributes and an arbitrary rhyme schema.157

Different from Xue et al. (2021a), our approach158

does not require reversing a text nor implementing159

architectural changes as in Li et al. (2020), allow-160

ing us to leverage the knowledge encoded within a161

PLM easily, yet being able to produce high-quality162

rhymes as requested by a songwriter. Furthermore,163

our approach is more flexible than the one proposed164

in Ram et al. (2021) as it allows us to define words165

each verse should rhyme with or generate a stanza166

from scratch, given only the desired rhyme schema.167

Finally, we show that our approach is language-168

agnostic and propose a unified neural network to169

produce lyrics in 13 languages.1170

3 Model171

We make use of an encoder-decoder architecture172

to condition the lyrics generation on a given set173

of inputs, such as artist’s style, title, genre, topics,174

emotions, and rhyme schema. The input to the175

model is formatted as follows:176

<BOS><title> The River <Artist> Bruce Springsteen177

<emotions> sad <rhyming_schema> A B B <EOS>178

Here, the model is trained to generate three verses,179

where the second and third rhyme. However, due180

to training through conditional language modelling,181

the last words of the verse tend to attend more182

heavily on the generated context than the rhyming183

schema, leading to non-rhyming output.184

We propose the Last Word First (LWF) approach,185

that relies on anticipating the rhyming word. The186

last word of a sentence is generated as the first187

token right after the rhyming symbol and separated188

by the sentence it belongs to with the special token189

<sep>, as in the example below (and LWF models190

in Appendix A.1):191

A: river <SEP> We’d go down the river <EOS>192

B: dive <SEP> And into the river we’d dive <EOS>193

B: ride <SEP> Oh, down the river we’d ride <EOS>194

Consult Fig. 1; the green boxes represent the in-195

put/output of the model. The lower box is the en-196

coder input that provides information for generat-197

ing the lyrics. The left box is the rhyme schema198

template, passed explicitly to the decoder to en-199

force that it generates a stance coherent with the200

1Due to the resources all languages are European.

Train Dev Test

# Examples 564K 3.5K 3.5K
With Genres 146K 587 804
With Emotions 27K 62 104
With Topics 170K 719 893

Avg. Tokens 46.92 74.90 70.79
Avg. Sentences 5.84 9.77 9.24
Avg. Sentence Length 8.03 7.67 7.67

Table 1: Statistics for Train, Dev and Test splits of the
Genius.com dataset.

input rhyme schema. In more detail, the rhyme 201

schema is forced at generation time by detecting 202

when a sentence-end token is generated and forcing 203

the following token to be the next rhyming symbol 204

in the queue. 205

With this approach, we can generate coherent 206

sentences that end with rhyming words and quickly 207

identify rhyming patterns since a rhyming word 208

always follows a rhyming symbol. Retaining pre- 209

training knowledge is a key advantage, as opposed 210

to training from scratch. Based on this strategy, we 211

propose the following two models variants: 212

Plain Last Word First (LWF) the encoder- 213

decoder model is fed with a prompt specifying dif- 214

ferent desiderata such as: artist’s style, title, genre, 215

topic and emotions and trained by minimising the 216

cross-entropy loss at the token level. As usual for 217

generation models, we use teacher forcing at train- 218

ing time, i.e., to predict the i-th token, we feed 219

into the decoder the gold tokens up to time-step 220

i − 1. Formally, for each input, we minimise the 221

following loss: 222

L =
1

N

N∑
i

|V |∑
j

pji log ŷji (1) 223

ŷi = M(X, t1, . . . , ti−1) (2) 224

where X is the input to our model M, V is the 225

model’s vocabulary, t1, . . . ti−1 are the gold tokens 226

for the first i − 1 timesteps, M(. . . ) outputs a 227

vector of logits of size |V | and · j selects the j-th 228

element of a vector. 229

Last Word First + Ending Phonetic Representa- 230

tion (LWF+EPR) Beyond lyrics generation, as 231

the plain LWF model, this variant includes the sec- 232

ondary objective of generating the ending phonetic 233

representation of a word given as input. Intuitively, 234
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Train Dev Test

# Examples 2.6M 10K 10K
With Genres 1.2M 4.3K 4.5K
With Topics 170K 493 493
Languages 13 13 13

Avg. Tokens 40.19 39.80 39.80
Avg. Sentences 6.99 6.79 6.60
Avg. Sentence Length 5.75 5.87 6.03

Table 2: Statistics for Train, Dev and Test splits of the
multilingual dataset.

this objective helps inject the word’s phonetic fea-235

tures into the model, thus helping to produce more236

accurate rhymes (see violet boxes in Figure 1). The237

model is trained through multitasking, by alternat-238

ing batches between tasks, computing the cross-239

entropy losses, and updating the model weights240

separately. We computed the phonetic representa-241

tion of a word by using CMU Pronouncing Dic-242

tionary (Weide et al., 1998), and, specifically, the243

pronouncing python library.2 At training time, we244

use the list of the last words in the lyrics dataset245

and sample them according to their frequency.246

4 Datasets247

This section details the sources and procedures to248

recreate the datasets used within this work.249

4.1 English Dataset250

For the English data, we selected the top 1000251

artists according to Spotify3 and downloaded all252

their songs’ lyrics available at https://genius.253

com.4. We ensure that the language is English 5.254

Genius.com offers well-polished lyrics comprising255

annotations for choruses, pre-choruses, verses, etc.256

(Table 14). Since our goal is not to generate the full257

song lyrics all at once but to create verses that fol-258

low a specific rhyme schema and other desiderata,259

we need to reshape song lyrics data. To this end,260

we split each song into paragraphs corresponding261

to different parts, i.e., choruses, bridges, verses, etc.262

Thus, each item in our dataset is a song paragraph263

2https://github.com/aparrish/pronouncingpy
3https://chartmasters.org/

most-streamed-artists-ever-on-spotify/
4we used python API available at https:

//lyricsgenius.readthedocs.io
5language detection: https://pypi.org/

project/phonemizer/, https://pypi.org/project/
spacy-langdetect/https://pypi.org/project/
stanza/ and spacy’s language detector.

with its song’s metadata, i.e., title, artist, genre, 264

topics and emotion (whenever available). Further- 265

more, to allow a model to generate a stanza based 266

on previous verses, we add to the metadata informa- 267

tion the verses of the stanza preceding them, when 268

appropriate. 269

In this work, we focus on cross-sentence 270

rhyming, i.e., rhymes that occur between the last 271

word of different sentences within the same para- 272

graph, since this is the most common kind of 273

rhymes in Pop music, as opposed to other rhetori- 274

cal figures as alliteration. As Genius.com does not 275

provide the rhyming schema, we computed it for 276

each item, by first tokenising its lyrics. We added 277

the phonetic representation of the last token of each 278

verse6. Then, we compared them pairwise by ap- 279

plying Ghazvininejad et al. (2016)’s algorithm for 280

rhymes and near rhymes in English to assign the 281

same rhyming letter to all words that rhyme to- 282

gether. For example, given the lyrics in Table 14, 283

we assign to the chorus this rhyme schema: ABB. 284

Once the dataset is created, we split it into three 285

subsets for training, development and testing, re- 286

spectively; we report their statistics in Table 1. 287

4.2 Multilingual Dataset 288

For languages other than English, we resort to data 289

available within Wasabi (Buffa et al., 2021), an 290

extensive database of songs containing lyrics and 291

other metadata about roughly 2M of songs in 21 lan- 292

guages. To build our multilingual dataset, we kept 293

pieces in all languages for which we can extract the 294

phonemes7 and filtered out those languages with 295

less than 3000 songs. As a result, our dataset cov- 296

ers 12 languages plus English. Once we selected 297

the languages, we built the dataset similarly to the 298

English case. However, since Wasabi data is nois- 299

ier than Genius.com ones, it is not always the case 300

that a song can be clearly divided into sections. 301

Therefore, in all those cases where such splitting is 302

not explicit, we apply a simple heuristic and divide 303

the songs into groups of 6 sentences.8 In this case, 304

the rhyme schema is also automatically induced by 305

slightly modifying the algorithm of near rhymes 306

6We used the phonemizer python library available at
https://github.com/bootphon/phonemizer

7Please, refer to https://github.com/espeak-ng/
espeak-ng/blob/master/docs/languages.md for the list
of phonemizer library’s supported languages.

8We decided to use 6 since that is the average number
of sentence for each paragraph in the Genius.com English
training set.
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used for English9 by defining the set of vowels for307

each language of interest.10308

The final dataset is created by merging all309

language-specific datasets and splitting them into310

training, development and testing subsets; we re-311

port the multilingual dataset statistics in Table 2.312

5 Experimental Setup313

This section introduces the research questions we314

aim to answer throughout our experiments, the re-315

sults attained, and a human analysis of the lyrics316

we produced.317

Models and training We carried out our experi-318

ments with the T5 (Raffel et al., 2020) encoder-319

decoder architecture for English experiments,320

through the transformers library.11 For each one of321

the models, we used the two decoding strategies de-322

scribed in 5.3. we fine-tuned Multilingual T5 (Xue323

et al., 2021b, MT5) on our multilingual datasets.324

Notation We indicate that a model finetunes a325

pretrained model with *Pretrain and with *Rand when326

training from scratch. The sub-incidences indi-327

cate the fine-tuning technique, with *LWF, and328

LWF+EPR meaning Last-Word-First, and Last-Word-329

First plus Ending-Phonetic-Representation respec-330

tively. Regarding the decoding techniques, BS331

stands for Beam Search12 while S+R stands for332

sampling sentences k13 and reranking them accord-333

ing to adherence with the rhyme schema. Examples334

selected randomly can be found in Appendix A.1.335

5.1 Evaluation Metrics336

We evaluate the models with different metrics to337

provide information on various generation aspects.338

Coherence metrics To assess to what extent the339

model was able to learn the language of lyrics340

and its structure, we chose two metrics: perplexity341

(PPL) as a base measure and Mauve for a deeper342

comparison of the distributions. For a deeper343

lookup of the second one, check the paper (Pillutla344

et al., 2021).345

9For tokenisation, we used stanza python library.
10We acknowledge that each language may have peculiar-

ities to form rhymes. However, investigating all of them is
out of the scope of this work, and it is left as a possible future
direction.

11https://huggingface.co/docs/transformers/
index

12We use beam equal 4
13We use k = 20 in our experiments.

We use the model perplexity as a base measure to 346

assess to what extent the model learnt the language 347

of lyrics. For each song s, we consider the model 348

perplexity as follows: 349

PP (s) = eH(s) (3) 350

H(s) = −
N∑
i

p(yi|y<i, x) log p(yi|y<i, x) (4) 351

where, N is the number of tokens in s, yi is the i-th 352

token, y<i is the sequence of tokens before i and 353

x is the input data, i.e., artist, title, topics, rhyme 354

schema (as explained in Section 3). 355

Rhyming metrics As for evaluating rhyming, we 356

measure the model macro precision concerning the 357

required schema and the false positive rate between 358

tokens that are not supposed to rhyme. Finally, 359

we estimate the ability of the model to generate 360

the number of sentences required by the input and 361

the coverage in terms of necessary rhyming tokens. 362

Formally, for each song, we compute the Rhyming 363

Precision (RP) and the Rhyming False Positive 364

Rate (R. FP) as follows: 365

P =
1

|R|

R∑
ti,tj

rhyme(ti, tj) 366

FPR =
1

|NR|

NR∑
ti,tj

1− rhyme(ti, tj) 367

368

where P is the rhyming precision, i.e., for each 369

pair (ti, tj) in the set R of generated tokens that are 370

supposed to rhyme according to the input schema, 371

rhyme(ti, tj)14 evaluates to 1 if ti and tj rhyme and 372

0 otherwise. Instead, FPR (False Positive Rate) 373

measures the ratio of token pairs in NR, i.e., the 374

set of generated tokens that are not supposed to 375

rhyme while rhyming. 376

Diversity metrics To obtain how diverse the gen- 377

erated text is, we use distinct metrics, i.e., we mea- 378

sure the number of N -grams that are unique and 379

divide it by the total number of N -grams in the text. 380

In the tables 3 and 4 we can find the values for N 381

equal to 2, 3 and 4 which we denote as D-2, D-3, 382

and D-4, respectively. 383

14To evaluate whether two tokens rhyme, we apply the same
approach described in Section 4.
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CopyRight metric © To detect cases where the384

generated lyrics contained sentences from the orig-385

inal dataset, we created a string matching measure386

that we denote as ©. For each generated output,387

we compare it to each entry in the entire data set388

and find the longest subsequence, allowing a wrong389

token in the middle. If the length of the longest390

subsequence is above a pre-determined threshold,391

we choose 20 for our dataset and tokeniser, we con-392

sider the generated output to be at risk of being393

deemed plagiarised. We also calculate the percent-394

age of this subsequence’s length to the generated395

output’s size as references for checking. The final396

score is the number of generated outputs at risk397

divided by the number of outcomes.398

5.2 Research Questions399

Through our experiments, we aim to answer the400

following research questions:401

1. Q1: What is the impact of the LWF strategy402

in terms of rhyming accuracy?403

2. Q2: Considering that generating lyrics differ404

from generating standard text, is the knowl-405

edge contained in a PLM still relevant regard-406

ing rhyming accuracy and text fluency?407

3. Q3: Since syllables may be relevant when408

dealing with rhymes, what is the impact of409

tokenisation on the overall performance?410

4. Q4: Does the phonetic information intro-411

duced by multitasking LWF+EPR result in412

any improvement in terms of rhyming?413

5. Q5: Can we learn a model shared across lan-414

guages while preserving rhyming accuracy?415

We present models and corresponding results for416

each of these questions in the next section.417

5.3 Results418

English Evaluation We report the main results419

in Table 5. To answer Q1, we fine-tuned models420

with the LWF strategy (e.g. T5-LLWF) and com-421

pare against the same architecture trained on plain422

data, i.e., in a left-to-right manner without LWF423

(e.g. T5-LPretrain). The LWF models (see Section424

3), based on the simple yet effective approach pro-425

posed in this paper, attain consistently better results426

in terms of RP, R.FP, and Mauve. The best system427

in terms of rhyming is instead T5-BLWF with Ran-428

dom initialisation and S+R, also beating its larger429

and pretrained counterpart (T5-LLWF). Nonethe- 430

less, as Mauve indicates and we show in Table 7, 431

T5-BLWF produces much less meaningful lyrics, 432

not creating human-like songs. Interestingly, the 433

decoding technique highly affects the rhyming per- 434

formance and copyright. While BS led to modest 435

performance, we could boost performance with 436

S+R in both aspects. As expected, Mauve and the 437

three diversity metrics get better results with a sam- 438

pling decoding. 439

To investigate whether the knowledge in a PLM 440

is relevant to lyrics generation (Q2), we provide 441

results attained by a T5-base model trained from 442

scratch (T5-BRand
LWF ) and compare against a pre- 443

trained version (T5-LPretrain
LWF ). In preliminary exper- 444

iments, we compared T5-LPretrain
LWF against T5-LRand

LWF , 445

but finally opted for the base model as it produced 446

better results. We assume this is due to the amount 447

of data introduced during finetuning compared to 448

the size of the dataset. T5-LPretrain attains the best 449

score on perplexity across the board, yet its RP 450

and R.FP are the worst. On the other hand, T5- 451

LPretrain
LWF obtains the best results in Mauve, a coher- 452

ence metric with a higher correlation with humans. 453

The superior coherence of the pretrained models 454

will be further confirmed in Section 6, where we 455

present human evaluation. 456

To provide insights on the role of the tokenis- 457

ers (Q3), we trained T5-BLWFwith two different 458

tokenisers, the original one for T5-base and a word- 459

level one. In Table 4, we show that the word to- 460

keniser, which may not split the end of the words 461

into tokens, produces worse results even when train- 462

ing from scratch. 463

For Q4, we observe that EPR does not affect 464

the model positively. While outperforming T5- 465

LPretrain, T5-LPretrain
LWF+EPR attains worse scores than 466

both T5-BLWF and T5-LLWF, suggesting that gener- 467

ating phonemes does not inject proper knowledge 468

to ease the rhyming generation process. 469

In addition, although prompt conditioning has 470

been previously studied, Section A.2 of the ap- 471

pendix shows that, even if these conditions are not 472

explicitly stated in the objective function, they cor- 473

relate well with human-generated lyrics. 474

Multilingual Evaluation To address Q5, in Ta- 475

ble 6 we report the results breakdown of the mul- 476

tilingual model in each language. Results indicate 477

that learning rhyming across languages is quite 478

complicated. Some languages are more complex, 479

with Finnish, Norwegian, and Swedish having the 480
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Model Token. Decod. PPL ↓ R. P ↑ R. FP ↓ Mauve ↑ © D-2 D-3 D-4

T5-LPretrain T5 BS 3.50 11.36 2.31 0.0110 31.50 16.05 34.65 51.07
T5-LPretrain T5 S+R 3.50 35.44 3.68 0.0087 8.37 25.1 61.07 85.50

T5-BRand
LWF T5 BS 5.91 55.18 19.10 0.0120 32.35 7.61 25.73 50.38

T5-BRand
LWF T5 S+R 5.91 94.13 11.28 0.0152 5.13 19.47 58.31 87.78

T5-LPretrain
LWF T5 BS 5.88 55.82 18.99 0.0238 26.09 18.91 41.76 60.51

T5-LPretrain
LWF T5 S+R 5.88 89.79 11.68 0.0240 8.52 22.36 59.66 87.32

Table 3: Results of various models trained on the English dataset. We follow the notation from 5.1 for the metrics
and 5.3 for models and decoding. T5-B indicates the base model of T5, T5-L the large version, *LWF indicates that
the model has been trained with last-word-first, while *LWF+EPR that the model has been trained on lyrics generation
and phoneme generation tasks.

Model Token. Decod. PPL ↓ R.P ↑ R.FP ↓ Mauve ↑ © D-2 D-3 D-4

T5-BRand
LWF Word BS 6.79 15.38 7.96 0.0046 42.16 1.87 5.89 10.79

T5-BRand
LWF Word S+R 6.79 59.40 8.71 0.0056 5.11 8.20 33.65 58.43

T5-BRand
LWF T5 BS 5.91 55.18 19.10 0.0120 32.35 7.61 25.73 50.38

T5-BRand
LWF T5 S+R 5.91 94.13 11.28 0.0152 5.13 19.47 58.31 87.78

Table 4: Tokenizer comparison: Results of two models trained on the English dataset from scratch, one with a word
tokenizer (Word) and the other with the default tokenizer (T5), as indicated in the column Token. We follow the
notation from 5.1 for the metrics and 5.3 for models and decoding.

Model Decod. PPL ↓ R.P ↑ R.FP ↓
T5-LPretrain

LWF BS 5.88 55.82 18.99
T5-LPretrain

LWF S+R 5.88 89.79 11.68

T5-LPretrain
LWF+EPR BS 5.54 36.43 5.68

T5-LPretrain
LWF+EPR S+R 5.54 48.45 7.55

Table 5: Results of the comparison between Last Word
First T5-LPretrain

LWF and the Last Word First + Ending Pho-
netic Representation T5-LPretrain

LWF+EPR. We follow the nota-
tion from 5.1 for the metrics and 5.3 for models and
decoding.

worst scores and English, French, and Dutch hav-481

ing the best. This is mainly due to the nature of482

the pretraining data of mT5 (Xue et al., 2021b),483

where most text is in English followed, at a consid-484

erable distance but a similar amount among them,485

by Spanish, German, and French. Less frequently486

represented languages in mT5 and our dataset (see487

Table 18 in the Appendix) correspond to languages488

with lower scores.489

We can also observe shared learning between490

languages from the same phonetic family. While491

Spanish is the most common in our dataset, the492

results are lower than in French or German, with 493

phonetically Latin languages a lower score in gen- 494

eral. The case of Finish is more remarkable since, 495

not being Indo-European, it has no other supporting 496

languages, giving the worst result. Even Danish 497

and Croatian have better metrics with a lower rep- 498

resentation in both datasets. 499

Worse results are expected when converting a 500

model into a multilingual, especially in our case, 501

where the dataset is significantly smaller. On aver- 502

age, model performance is poor (40.99), more than 503

40 points lower in terms of Rhyme Precision than 504

the English-only model. While the model proved 505

capable (to some extent) of deriving rhyming rules 506

in English with text data only, it fails to do so when 507

presented with data in several languages while 508

showing some correlation based on phonetics. In- 509

deed, rhyming is strictly tight to the way words are 510

pronounced. Recently, phonetic representation of 511

text has been proposed as interlingual (Leong and 512

Whitenack, 2022) with encouraging results, and, 513

in future work, it would be interesting to explore 514

this idea also in the context of lyrics generation. 515

Examples can be found in Appendix A.1 516
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Language R.P R.FP Support

English 54.78 9.96 1593
French 52.2 15.53 1355
Dutch 46.83 11.89 258
German 42.34 8.87 1386
Danish 39.25 6.49 53
Swedish 30.27 8.09 197
Norwegian 27.44 8.80 88
Portuguese 36.6 11.64 841
Italian 35.82 7.91 742
Spanish 32.62 8.90 2485
Croatian 35.61 10.81 90
Polish 34.94 9.23 338
Finnish 24.09 8.09 370

Micro AVG 40.99 10.19

Table 6: Results of the multilingual model by fine-
tuning mT5 with LWF technique. We used nucleus
with 0.92 for top p as a sampling strategy

Human T5-LPretrain
LWF T5-BRand

LWF

Correctness 2.61± 0.07 2.41 ± 0.03 2.13± 0.07

Meaningfulness 2.43± 0.02 2.19 ± 0.02 1.69± 0.06

Is-Human Rate 79.67± 2.43 57.00 ± 1.81 23.43± 1.39

Table 7: Results on the human-evaluation tasks. Correct-
ness: 3 is maximum, 1 is minimum; Meaningfulness:
3 is maximum, 1 is minimum; Is-Human Rate: rate at
which annotators annotated a paragraph from the refer-
ence system as human.

6 Human Evaluation517

Given the open-domain nature of text generation,518

automatic evaluation can often be inaccurate. In519

this section, we detail experiments where human520

annotators assess the quality of generated lyrics.521

6.1 Setup522

For more reliable information about the quality of523

the lyrics, we designed an annotation to measure524

the grammatical correctness and the meaningful-525

ness of the produced text. Furthermore, we also526

asked annotators to guess whether a human wrote527

the presented text or not. The annotators were three528

English-speaking university students not directly529

associated with the work.530

Specifically, we sampled 100 snippets from our531

test set and used their metadata (artist, rhyme532

schema, etc.) to generate as many texts from the533

two best models in Table 3, i.e., T5-BRand
LWF (line 4)534

and T5-LPretrain
LWF (line 6). Hence, for each model,535

we have 200 items (100 paragraphs written by hu- 536

mans and 100 automatically created). We shuffled 537

the items and asked three annotators to review them 538

and assign scores to the following three categories: 539

1. Correctness: following Li et al. (2020), anno- 540

tators had to rate lyrics with 3, grammatically 541

correct; 2, readable but with some grammar 542

mistakes; and 1, unreadable. 543

2. Meaningfulness: 3, meaningful text; 2, the 544

text has some meaning but is expressed con- 545

fusingly; and 1, the text has no meaning. 546

3. Is it from a Human?: annotators were asked 547

whether the presented text was written by a 548

human or automatically. 549

6.2 Results 550

In Table 7, we report the results of our human evalu- 551

ation. As previously stated, T5-LLWF attains results 552

in terms of correctness (2.41) and meaningfulness 553

(2.19) close to that assigned to lyrics written by hu- 554

mans, i.e., 2.61 and 2.43 for correctness and mean- 555

ingfulness, respectively. On the opposite, T5-BLWF, 556

while still producing grammatically correct texts, 557

their meaningfulness is much lower than human 558

lyrics. Finally, T5-LLWF generations are classified 559

as written by humans 57% of the time, and, surpris- 560

ingly, human products are recognised as such 79% 561

of the times. We believe that this is due to the high 562

percentage of lyrics without formal meaning. 563

7 Conclusion 564

We presented a new approach to enhancing 565

rhyming in a PLM and a first attempt to scale 566

lyrics generation across languages. Our frame- 567

work provides a tool for the composer to automati- 568

cally generate paragraphs given several desiderata, 569

i.e., artist’s style, song title, song genre, emotions, 570

topics, and rhyme schema. The proposed method 571

proved more effective than fine-tuning lyrics data 572

and coherent lyrics without too much risk of copy- 573

right infringement. It produces meaningful and 574

grammatically correct texts by reassembling hu- 575

man songs almost 6 out of 10 (according to human 576

annotators). Furthermore, its accuracy in following 577

the given rhyme schema is nearly 90%. 578

In future work, we aim to focus on biases that 579

affect our model and approaches to mitigate them. 580

Another area that requires further investigation is 581

multilingualism, where performance still needs to 582

be improved from the English one. 583

8



8 Limitations584

One limitation of all analysed models is the need585

for more control over the language used by the586

model. Indeed, when specific genres are requested,587

e.g., rap and hip hop, the model may produce para-588

graphs interpreted as racist or insulting to certain589

minorities (e.g., women). This is a huge issue590

that has not been addressed systematically in the591

context of lyrics generation, causing, among other592

things, issues and concerns outside the scientific593

community.15 In this paper we did not address this594

issue directly but instead proposed a study focused595

on rhyming and multilingualism. We intend to con-596

duct this research shortly, focusing on mitigating597

biases and actively controlling the kind of language598

when generating lyrics.599

Another limitation of the proposed approach600

lies in the algorithm checking whether two words601

rhyme. While designed for English, we adapted it602

to work for most European languages. However,603

each language may have its exceptions, which we604

might have neglected.605
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A Appendix 733

A.1 Examples of Generated Lyrics 734

Using two randomly selected prompts, we offer illustrations of the outputs generated by the models 735

discussed in section 5. We must recognise the existence of slurs and offensive language within some of 736

these generated outputs. It should be noted that the language models employed in this study can produce 737

text that may encompass offensive or inappropriate language originating from the training data. We wish 738

to emphasise that these outputs were automatically generated and were not deliberately included by the 739

authors. 740

Model Tokenizer generation

T5-L T5

RHYME_A<sentence_end>
RHYME_B ’Cause I’m a fool for you<sentence_end>
RHYME_C Look at me now<sentence_end>
RHYME_D Oh, oh<sentence_end>
RHYME_D Ooo, look at me now, now yea heah heaheh, hahaha,
yeah<sentence_end>
RHYME_D<sentence_end>

T5-BRand
LWF Word

RHYME_A now<SEP>I’m ready now<sentence_end>
RHYME_B down<SEP>Don’t wanna put me down<sentence_end>
RHYME_C around<SEP>’Cause you’re not around<sentence_end>
RHYME_D me<SEP>You should be ready for me<sentence_end>
RHYME_D see<SEP>So you can see<sentence_end>
RHYME_D be<SEP>What you gotta be<sentence_end>

T5-BRand
LWF T5

RHYME_A me <SEP>I’m me <sentence_end>
RHYME_B oh <SEP>Oh, oh <sentence_end>
RHYME_C <unk><SEP><unk><unk><sentence_end>
RHYME_D <unk><SEP>Yeah, yeah - - <sentence_end>
RHYME_D me <SEP>And I know you’re all for me ( Yeah ) <sen-
tence_end>
RHYME_D Yeah <SEP>( Oh ) Yeah <sentence_end>

T5-LPretrain
LWF T5

RHYME_A now<SEP>Look at me now<sentence_end>
RHYME_B you<SEP>I’m so in love with you<sentence_end>
RHYME_C do<SEP>And I don’t know what to do<sentence_end>
RHYME_D me<SEP>But you’ve got a hold on me<sentence_end>
RHYME_D see<SEP>You’re the only one I see<sentence_end>
RHYME_D be<SEP>That I wanna be<sentence_end>

Table 8: "Random examples generated with Beam Search decoding by the models from Tables 3 and 4 for the
prompt: "<title>Look at Me Now<artist>Charlie Puth<schema>RHYME_A RHYME_B RHYME_C RHYME_D
RHYME_D RHYME_D</s>".
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Model Tokenizer generation

T5-L T5

RHYME_A<sentence_end>
RHYME_B<sentence_end>
RHYME_C ooh<sentence_end>
RHYME_D<sentence_end>
RHYME_D....<sentence_end>
RHYME_D..<sentence_end>

T5-BRand
LWF Word

RHYME_A eyes<SEP>See in the dark, I was lookin’ past the
eyes<sentence_end>
RHYME_B die<SEP>I used to lie like I would never die<sentence_end>
RHYME_C you<SEP>And no good for you<sentence_end>
RHYME_D me<SEP>Even though I really cared that you would let
me<sentence_end>
RHYME_D see<SEP>That’s not you, now I see<sentence_end>
RHYME_D be<SEP>Just remember how it’d always be<sentence_end>

T5-BRand
LWF T5

RHYME_A shit <SEP>I want you been talking talking shit <sen-
tence_end>
RHYME_B yeah <SEP>Oh, oh, yeah <sentence_end>
RHYME_C this <SEP>Well, I can feel this <sentence_end>
RHYME_D say <SEP>Yeah, you, say <sentence_end>
RHYME_D way <SEP>You really get this way ( It’s all ) <sentence_end>
RHYME_D away <SEP>But baby, baby get so hard ( Baby get a yes ) (
Yeah now.. ( Oh ) yeah ) just. <sentence_end>

T5-LPretrain
LWF T5

RHYME_A love<SEP>I’m dancin’, all I am is love<sentence_end>
RHYME_B you<SEP>When I find you<sentence_end>
RHYME_C me<SEP>But that’s not enough, now you know
me<sentence_end>
RHYME_D go<SEP>Don’t wanna let go<sentence_end>
RHYME_D know<SEP>’Cause all that I see is what you need to
know<sentence_end>
RHYME_D so<SEP>Look at me now, and see that you love me
so<sentence_end>

Table 9: Random examples generated with the Sampling and Reranking decoding stratgey by the models from
Tables 3 and 4 for the prompt: "<title>Look at Me Now<artist>Charlie Puth<schema>RHYME_A RHYME_B
RHYME_C RHYME_D RHYME_D RHYME_D</s>".
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Model Tokenizer generation

T5-L T5

RHYME_A<sentence_end>
RHYME_B<sentence_end>
RHYME_C<sentence_end>
RHYME_D<sentence_end>
RHYME_E<sentence_end>
RHYME_F<sentence_end>
RHYME_E..... sex laws<sentence_end>
RHYME_G.<sentence_end>

T5-BRand
LWF Word

RHYME_A eyes<SEP>When you close your eyes<sentence_end>
RHYME_B you<SEP>I’m with you<sentence_end>
RHYME_C time<SEP>It’s been a long time<sentence_end>
RHYME_D mind<SEP>But you’re on my mind<sentence_end>
RHYME_E me<SEP>And you don’t know what to do with
me<sentence_end>
RHYME_F do<SEP>’Cause what you do<sentence_end>
RHYME_E be<SEP>What you wanna be<sentence_end>
RHYME_G you<SEP>So what are you?<sentence_end>

T5-BRand
LWF T5

RHYME_A <unk> <SEP> <unk>, <unk> <sentence_end> RHYME_B
<unk> <SEP> I’ve got to get to the <unk> - - <sentence_end> RHYME_C
<unk> <SEP> And I can’t get enough of my own own’s <sentence_end>
RHYME_D <unk> <SEP> Oh, oh - oh <sentence_end> RHYME_E yeah
<SEP> Yeah, yeah <sentence_end> RHYME_F <unk> <SEP> Ooh -
ooh <sentence_end> RHYME_E yea <SEP> Hey, yea <sentence_end>
RHYME_G <unk> <SEP> Ah, ah - ah <sentence_end>

T5-LPretrain
LWF T5

RHYME_A law<SEP> Sex laws, sex law<sentence_end> RHYME_B
laws<SEP> There’s no escape from the sexx laws<sentence_end>
RHYME_C man<SEP> I’m just a man<sentence_end> RHYME_D
law<SEP> Sex laws..<sentence_end> RHYME_E me<SEP> You
can’t take it from me<sentence_end> RHYME_F you<SEP> ’Cause
if you<sentence_end> RHYME_E be<SEP> Then you’re gonna
be<sentence_end> RHYME_G law<SEP> A victim of the Sexx
law!<sentence_end>

Table 10: Random examples generated with Beam Search decoding by the models from Tables 3 and 4 for
the prompt: "<title> Sexx Laws (Malibu remix)<artist> Beck<schema>RHYME_A RHYME_B RHYME_C
RHYME_D RHYME_E RHYME_F RHYME_E RHYME_G</s>". Note: the tokenization of the prompt yeilds
unkown tokens, thereby influincing the generation. Throughout the generation process, we did not force any of the
models to skip <unk> tokens.
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Model Tokenizer generation

T5-L T5

RHYME_A Asked the judge for the cost<sentence_end> RHYME_B
"Doctor can I make a small complaint?"<sentence_end> RHYME_C
And he asked for ten of her dollars<sentence_end> RHYME_D "What’s
the point in making me suffer?"<unk><sentence_end> RHYME_E
*ahem*<sentence_end> RHYME_F *yeah<sentence_end> RHYME_E
********uh-oh!<sentence_end> RHYME_G.<sentence_end>

T5-BRand
LWF Word

RHYME_A live<SEP> I feel in my soul, I’m gonna live<sentence_end>
RHYME_B rain<SEP> Flying round and around in the
rain<sentence_end> RHYME_C away<SEP> The only thing I
know when my troubles fly away<sentence_end> RHYME_D blue<SEP>
In a red light, there’s the sky like the blue<sentence_end> RHYME_E
me<SEP> So don’t throw out the oceans inside me<sentence_end>
RHYME_F feel<SEP> Don’Cause I can’ve got the darkest thing about
how I want the way I to feel<sentence_end> RHYME_E free<SEP>
It’ll be over myself, why are we in front row free?<sentence_end>
RHYME_G say<SEP> There’re no quiet life and there is nothing left to
say<sentence_end>

T5-BRand
LWF T5

RHYME_A room <SEP> The <unk> <unk> has <unk> into a room
<sentence_end> RHYME_B again <SEP> I don’t ever ever again <sen-
tence_end> RHYME_C face <SEP> My soul is in my face <sentence_end>
RHYME_D you <SEP> Well I never ever wanted time to let you <sen-
tence_end> RHYME_E know <SEP> And I’ll be back when I say I
didn’didn didn oh so you thought I knew I would know <sentence_end>
RHYME_F <unk> <SEP> For the second that I had <unk> <sen-
tence_end> RHYME_E no <SEP> That I, I was gonna get to get, get
a get from a better for a <unk> with a chance, a a no <sentence_end>
RHYME_G away <SEP> Oh, Oh! <sentence_end>

T5-LPretrain
LWF T5

RHYME_A you<SEP> It’s like being caught out and not supposed to
love you<sentence_end> RHYME_B it<SEP> And it’ll be hard to say
you’re not in it<sentence_end> RHYME_C baby<SEP> But in my eyes,
baby<sentence_end> RHYME_D truth<SEP> There’d be no use in escap-
ing the truth<sentence_end> RHYME_E me<SEP> Just go with me, go
along with I<sentence_end> RHYME_F man<SEP> Until the day that we
met, man„man<sentence_end> RHYME_E see<SEP> I will never forget
the world I see<sentence_end> RHYME_G yeah<SEP> In my sight and
in your mouth, yeah<sentence_end>

Table 11: Random examples generated with the Sampling and Reranking decoding stratgey by the models from
Tables 3 and 4 for the prompt: "<title> Sexx Laws (Malibu remix)<artist> Beck<schema>RHYME_A RHYME_B
RHYME_C RHYME_D RHYME_E RHYME_F RHYME_E RHYME_G</s>".
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[Input]
<title> Você Não Sabe De Nada
<artist> Ivan Lins
<lang> portuguese
<schema> ABCCD
<genre> MPB

[Generation]
Você não sabe de nada
E não espera um des
Vai fazer amor
Depois de mais uma flor
Para mim

[Gold]
Você não sabe de nada
Se pensa que me convence
As coisas que você diz
São coisas que ninguém diz
E isso lhe fica mal

Table 12: Multilingual generation output. The generation follows the schema even if it contains wrong words, like
"des" which is just part of a word

[Input]
<title> Je Suis Mes Pas
<artist> Lucie Bernardoni
<lang> french
<schema> AAAB

[Generation]
Je suis mes pas
Tout seul et sans voi
Et moi tout bas
Sans amour perdu

[Gold]
Le jour se lève, je brise le silence
Je défie les apparences
C’est le grand jour, la fin de l’innocence
Il y a tant de choses à comprendre

Table 13: Multilingual output example. One of the rhymes is wrong ("voi") and moreover, it is not a real word but
the start of a singular person of the verb "voir"
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[Verse 1]
I come from down in the valley
Where, mister, when you’re young
They bring you up to do
Like your daddy done
Me and Mary we met in high school
When she was just seventeen
We’d drive out of this valley
Down to where the fields were green

[Chorus 1]
We’d go down to the river
And into the river we’d dive
Oh, down to the river we’d ride
...

Table 14: Example from Genius.com data of the song "The River" by Bruce Springsteen.
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A.2 Conditional generation 741

This subsection presents the results of our conditional generation experiment. Although the use of special 742

tokens for conditional generation has been thoroughly studied (Chen et al., 2022), we included it to ensure 743

our model’s performance. We study how the Title and the genre affect the generated text. We used the 744

sentence embedder all-MiniLM -L6-v2 to get the embeddings in both cases. We split the training data 745

as 80/20 for Train and Dev. The Test set was used to generate the synthetic data for all the models, so the 746

values of the metrics over the Test should be considered as the reference of a human-like text. We also 747

include the values on the Dev set to show the variance from one to another. 748

For the Title, we compute the dot product between the Title and the lyrics generated. Title correlation is 749

the average of the dot product between the title embedding and the average of the verses embeddings. In 750

the case of the genre, we trained multiple classifiers, SVM with different kernels and MPL with different 751

structures, among others. We use Cross-Validation with a split 80/20, obtaining the best model, SVM 752

with linear kernel. Since the dataset has a huge imbalance, we randomly select a maximum of 700 data 753

points for each of the 24 genres appearing in the test set. We use Accuracy for the genre. 754

The results show that conditioning generation works. The correlation between the Title and lyrics is 755

close to the Test set, even higher in the case of the pretrained models. The genre shows a high heterogeneity 756

among the songs from the same genre. This fact makes it complicated to obtain a good classifier. Still, the 757

results show values very close to actual cases. 758

Model/Dataset Decod. Title correlation Genre classification

Train Human 0.3892 0.6276
Dev Human 0.4063 0.3622
Test Human 0.4149 0.2562

T5-BRand
LWF BS 0.2951 0.2460

T5-BRand
LWF S+R 0.2863 0.2620

T5-LPretrain
LWF BS 0.5429 0.2566

T5-LPretrain
LWF S+R 0.4092 0.2527

Table 15: Results of the analysis in conditional generation. Genre classification is measured with the accuracy and
Title correlation with the dot product. We follow the notation from 5.3 for models and decoding. T5-B indicates the
base model of T5, T5-L the large version, *LWF indicates that the model has been trained with last-word-first, while
*Rand means that it has been trained from scratch.
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A.3 Dataset statistics759

More statistics on the datasets used in this work are presented below. First, in Table 16, we present the760

statistics of the English dataset in more detail. In Table 17, we do the same for the multilingual dataset.761

We finish with Table 18 where we can find the representation of each language in the multilingual dataset.762

Split # Examples With
Genres

With
Emotions

With
Topics

Avg.
Tokens

Avg.
Sentences

Avg.
Sentence

Length

Train 564 552 146 613
(25.97%)

27 118
(4.80%)

170 074
(30.13%)

46.92 5.84 8.03

Dev 3500 587
(16.77%)

62
(1.77%)

719
(20.54%)

74.90 9.77 7.67

Test 3500 804
(22.97%)

104
(2.97%)

893
(25.51%)

70.79 9.24 7.67

Table 16: Statistics for Train, Dev and Test splits of the Genius.com dataset.

Split # Examples With
Genres

With
Emotions

With
Topics

Avg.
Tokens

Avg.
Sentences

Avg.
Sentence

Length

Languages

Train 2 588 424 1 238 067
(47.83%)

58 280
(2.25%)

170 917
(6.60%)

40.19 6.99 5.75 13

Dev 10 000 4368 228 493 39.80 6.79 5.87 13
(43.68%) (2.28%) (4.93%)

Test 10 000 4541 211 493 39.80 6.60 6.03 13
(45.41%) (2.11%) (4.93%)

Table 17: Statistics for Train, Dev and Test splits of the multilingual dataset.

Language # Examples

Spanish 672 264
English 387 600
German 361 272
French 360 812
Italian 228 386
Portuguese 199 367
Finnish 99 119
Polish 86 887
Dutch 70 605
Swedish 61 980
Norwegian 23 921
Croatian 21 260
Danish 14 951

Table 18: Statistics by language of the multilingual dataset.

18


