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Abstract
Understanding the causal relationships that
underlie a system is a fundamental prerequisite
to accurate decision-making. In this work, we
explore how expert knowledge can be used to
improve the data-driven identification of causal
graphs, beyond Markov equivalence classes. In
doing so, we consider a setting where we can query
an expert about the orientation of causal relation-
ships between variables, but where the expert may
provide erroneous information. We propose strate-
gies for amending such expert knowledge based on
consistency properties, e.g., acyclicity and condi-
tional independencies in the equivalence class. We
then report a case study, on real data, where a large
language model is used as an imperfect expert.

1. Introduction
Understanding the cause-and-effect relationships that under-
lie a complex system is critical to accurate decision-making.
Unlike any statistical association, causal relationships allow
us to anticipate the system’s response to interventions.
Currently, randomized control trials (RCTs) serve as the
gold standard for establishing causation (Peters et al., 2017).
However, RCTs can be costly and oftentimes impractical
or unethical. As such, there has been growing interest in
causal discovery, which aims to uncover causal relationships
from data collected by passively observing a system (see
(Glymour et al., 2019) for a review).

Causal discovery methods have been successfully applied in
various fields, including genetics (Sachs et al., 2005) and cli-
mate science (Runge et al., 2019). Nevertheless, a fundamen-
tal limitation of such methods is their ability to only recover
the true graph of causal relationships up to a set of equivalent
solutions known as the Markov equivalence class (MEC),
leading to uncertainty in downstream applications, such as
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estimating the effect of interventions (Maathuis et al., 2009).

One approach to reducing such uncertainty is the incorpo-
ration of expert knowledge, e.g., to rule out the existence of
certain edges and reduce the set of possible solutions (Meek,
1995). However, such methods typically assume that the
knowledge provided by the expert is correct. In this work, we
consider a more realistic case, where the expert is potentially
incorrect. Our approach leverages such imperfect experts,
e.g., large language models, to reduce uncertainty in the
output of a causal discovery algorithm by orienting edges,
while maintaining fundamental consistency properties, such
as the acyclicity of the causal graph and the conditional
independencies in the MEC.

Contributions:

• We formalize the use of imperfect experts in causal
discovery as an optimization problem that minimizes
the size of the MEC while ensuring that the true graph
is still included (Section 3).

• We propose a greedy approach that relies on Bayesian
inference to optimize this objective by incrementally
incorporating expert knowledge (Section 4).

• We empirically evaluate the performance of our ap-
proach, on real data, with an expert that returns correct
orientations with some fixed probability (Section 5).

• We then empirically assess if the approach holds when
taking a large language model as the expert – with
mitigated results (Section 5).

2. Background and Related Work
We now review key background concepts and related work.

Causal Bayesian networks: Let X := (X1,...,Xd) be a
vector of d random variables with distribution p(X) and
G⋆ := ⟨VG⋆ ,EG⋆⟩ be a directed acyclic graph (DAG) with
vertices VG⋆ ={v1,...,vd} and edges EG⋆ ⊂ VG⋆ × VG⋆ .
Each vertex vi ∈ VG⋆ corresponds to a random variable
Xi and a directed edge (vi, vj) ∈ EG⋆ represents a direct
causal relationship from Xi to Xj . We assume that p(X) is
Markovian with respect to G⋆, i.e.,

p(X1,...,Xd)=

d∏
i=1

p(Xi |paG
⋆

i ),
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where paG
⋆

i denotes the parents of Xi in G⋆.

Causal discovery: This task consists of recovering G⋆

from data, which are typically sampled from p(X) (Glymour
et al., 2019). Existing methods can be broadly classified as
being: i) constraint-based (Spirtes et al., 2000; 2013), which
use conditional independence tests to rule-out edges, or ii)
score-based (Chickering, 2002; Zheng et al., 2018), which
search for the DAG that optimizes some scoring function.
One common limitation of these approaches is their inability
to fully identify the true underlying graph G⋆ beyond its
Markov equivalence class (MEC) (Peters et al., 2017).

Equivalence classes: The MEC,MG⋆ , is a set of graphs
that includes G⋆ and all other DAGs with equivalent
conditional independences. These may have different edge
orientations, leading to uncertainty in downstream tasks,
such as treatment effect estimation (Maathuis et al., 2009).
One common approach to reducing the size ofMG⋆ is to in-
clude interventional data (Eberhardt et al., 2005; Brouillard
et al., 2020; Mooij et al., 2020). However, similar to RCTs,
the collection of such data may not always be feasible or ethi-
cal. An alternative approach, which we adopt in this work, is
to eliminate graphs that are deemed implausible by an expert.

Expert knowledge: Previous work has considered experts
that give: (i) forbidden edges (Meek, 1995), (ii) (partial) or-
derings of the variables (Scheines et al., 1998; Andrews et al.,
2020), (iii) ancestral constraints (de Campos & Castellano,
2007; Li & Beek, 2018; Chen et al., 2016), and (iv) con-
straints on interactions between types of variables (Brouillard
et al., 2022) (see Constantinou et al. (2023) for a review).
Typically, all DAGs that are contradicted by the expert are
discarded, resulting in a new equivalence classME⊆MG⋆ .
One pitfall is that, realistically, an expert is unlikely to
always be correct, and thus, G⋆ might be discarded, i.e.,
G⋆ ̸∈ME . In this work, we attempt to reduceMG⋆ as much
as possible, while ensuring G⋆∈ME with high probability,
in the presence of imperfect expert knowledge. We note that
our work is akin to Oates et al. (2017), but a key difference
is that they assume a directionally informed expert, i.e., that
cannot misorient edges in G⋆. Moreover, their approach is
expert-first, i.e., data is used to expand an initial graph given
by an expert, while our approach is data-first, i.e., the expert
is used to refine the solution of a causal discovery algorithm.

Large language models: In situations where access to
human experts is limited, Large Language Models (LLMs),
such as GPT-4 (OpenAI, 2023a), offer promising alternatives.
Recent studies have demonstrated that certain LLMs possess
a rich knowledge base that encompasses valuable informa-
tion for causal discovery (Choi et al., 2022; Long et al., 2023;
Hobbhahn et al., 2022; Willig et al., 2022; Kıcıman et al.,
2023; Tu et al., 2023), achieving state-of-the-art accuracy
on datasets such as the Tübingen pairs (Mooij et al., 2016).
In this work, we investigate the use of LLMs as imperfect

experts within the context of causal discovery. Unlike prior
approaches, which typically assume the correctness of ex-
tracted knowledge,1 we propose strategies to use, potentially
incorrect, LLM knowledge to eliminate some graphs in
MG⋆ , while ensuring that G⋆∈ME with high probability.

3. Problem Setting
We now formalize our problem of interest. Let G⋆ represent
the true causal DAG, as defined in Section 2, and letMG⋆

be its MEC. We assume thatMG⋆ is known, e.g., that it has
been obtained via some causal discovery algorithm. Further,
we assume the availability of metadata {µ1,...,µd}, where
each µi provides some information about Xi, e.g., a name,
a brief description, etc. We then assume access to an expert,
who consumes such metadata and makes decisions:

Definition 3.1. (Expert) An expert is a function that, when
queried with the metadata for a pair of variables (µi,µj),
returns a hypothetical orientation for the Xi−Xj edge:

E(µi,µj)=

{
→ if it believes that (vi,vj)∈EG⋆

← if it believes that (vj ,vi)∈EG⋆
. (1)

Of note, E(µi,µj) can be incorrect (imperfect expert) and
thus, our problem of interest consists in elaborating strategies
to maximally make use of such imperfect knowledge.

Let U(MG⋆) be the set of indices of all pairs of variables
related by an edge whose orientation is ambiguous inMG⋆ :

U(MG⋆) :={(i,j) | i<j and ∃G,G′∈MG⋆ s.t.
(vi,vj)∈EG∧(vj ,vi)∈EG′}.

(2)

We aim to elaborate a strategy S that uses the expert’s
knowledge to orient edges in U(MG⋆) and obtain a new
equivalence classME,S , such that uncertainty is reduced
to the minimum, i.e., |ME,S |≪|MG⋆ |, but G⋆ still belongs
toME,S with high probability, that is:

min
∣∣ME,S

∣∣ (3)

such that p
(
G⋆∈ME,S

)
≥1−η,

where η∈ [0,1] quantifies tolerance to the risk that the true
graph G⋆ is not in the resulting equivalence class. This prob-
lem can be viewed as a trade-off between reducing uncer-
tainty, by shrinking the set of plausible DAGs, and the risk as-
sociated with making decisions based on an imperfect expert.

4. Strategies for Imperfect Experts
Instead of blindly accepting expert orientations, we leverage
the consistency information provided by the true MEC to
estimate which decisions are most likely incorrect. Indeed,

1The Bayesian approach of Choi et al. (2022) is an exception.
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among all possible combinations of edge orientations, only
a few are possible, since many of them would create cycles
or introduce new v-structures. The different strategies that
we now propose for solving Problem (3) leverage such
consistency imperatives, as well as Bayesian inference, to
increase robustness to errors in expert knowledge.

Noise model: First, let us define the noise model that, we
assume, characterizes mistakes made by the expert. Figure 1
shows the dependency graph for the decision process of a
type of imperfect expert that we dub “ε-expert”. For any pair
pi=(pi1,pi2)∈U(MG⋆), we use the notation Opi to denote
the unknown true edge orientation and Epi

:=E(µpi1 ,µpi2)
denotes the orientation given by the expert. Further, for any
subset of indices I⊆U(MG⋆), we use OI :={Opi

}|I|i=1; the
same applies to EI . Notice that (i) true edge orientations are,
in general, interdependent because of the aforementioned
consistency properties of the MEC, and that (ii) edges already
oriented inMG⋆ are not represented since they are constants
(i.e., the expert is not queried for those). In this model, we
assume that, for any pi∈U(MG⋆), the expert’s response de-
pends only on the true value Opi , i.e., p(Epi |OU(MG⋆ ))=
p(Epi |Opi) and is incorrect with constant probability ε.

We now define the components of our Bayesian approach.

Prior: We consider a simple prior that encodes the knowl-
edge given by the true MEC. It boils down to an uniform prior
over the graphs inMG⋆ , effectively assigning no mass to any
edge combination that is not consistent (creates a cycle or a
new v-structure). Thus, the prior for a partial edge orientation
OI corresponds to its frequency in the graphs ofMG⋆ :

p(OI) =
∑
o¬I

p
(
OI , OU(MG⋆ )\I = o¬I

)
,

where we marginalize over all possible combinations of
values, o¬I , for the remaining unoriented edges OU(MG⋆ )\I .

Posterior: The posterior probability that orientations for
all edges in U(MG⋆) are correct, given all observed expert
decisions EU(MG⋆ ), is then given by:

p
(
OU(MG⋆ ) |EU(MG⋆ )

)
=

p
(
EU(MG⋆ ) |OU(MG⋆ )

)
p
(
OU(MG⋆ )

)
p
(
EU(MG⋆ )

) , (4)

where, for the ε-expert noise model, the likelihood is s.t.,

p(EU(MG⋆ ) |OU(MG⋆ )) =
∏

pi∈U(MG⋆ )

p(Epi
|Opi

).

In contrast, due to interdependencies between the true edge
orientations, the posterior probability cannot similarly be
factorized and, in general, p(Opi

|EU(MG⋆ )) ̸=p(Opi
|Epi

).
Note that the posterior for a subset edges I⊆U(MG⋆), e.g,
oriented by an iterative strategy, can be obtained via simple

marginalization. Finally, note that the posterior can be used
to estimate p

(
G⋆∈ME,S

)
, since any mistake in orienting

pi∈U(MG⋆) results in excluding G⋆ fromME,S .

Op1
Op2

... Opu

Ep1
Ep2

... Epu

Figure 1. The ϵ-expert’s dependency graph between true edge ori-
entations (Opi ) and expert decisions (Epi ), where u= |U(MG⋆)|.

Greedy approach: We now propose a greedy strategy
for optimizing Problem (3) that iteratively orients edges in
U(MG⋆). LetM(t) denote the MEC at the t-th iteration
of the algorithm and let M(t)

pi denote the MEC resulting
from additionally orienting pi ∈ U(M(t)) at step t and
propagating any consequential orientations using Meek
(1995)’s rules. The algorithm starts withM(1)=MG⋆ . We
consider two strategies to greedily select the best pi:

1. Ssize: selects the edge that leads to the smallest
equivalence class:

argmin
pi

|M(t)
pi
|

2. Srisk: selects the edge that leads to the lowest risk of
excluding G⋆ from the equivalence class:

argmin
pi

[
1−p

(
OU(MG⋆ )\U

(
M(t)

pi

) |EU(MG⋆ )

)]
This procedure is repeated while p

(
G⋆∈M(t)

pi

)
, estimated

according to Equation (4), is greater or equal to 1−η.

5. Results and Discussion
We now evaluate the ability of our approach to leverage im-
perfect expert knowledge using real-world causal Bayesian
networks from the bnlearn repository (Scutari, 2010).

Networks: We considered the following networks: (i)
Asia (Lauritzen & Spiegelhalter, 1988), (ii) ALARM (Bein-
lich et al., 1989), (iii) CHILD (Spiegelhalter & Cowell,
1992), and (iv) Insurance (Binder et al., 1997). For each
network, we extracted variable descriptions from the related
publication and used them as metadata µi (see Appendix C).

Experts: We considered two kinds of expert: (i) ε-experts,
as defined in Section 4, with various levels ε, and (ii)
LLM-based experts based on GPT-3.5 (Ouyang et al., 2022).
Details about prompting can be found at Appendix D. For
each kind of expert, we considered both strategies: Ssize
and Srisk. Moreover, for the LLM-based expert, we also
considered a naive strategy that consists of simply orienting
all edges according to the expert, as in Long et al. (2023).
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Metrics: The expert/strategy combinations were evaluated
based on: (i) the resulting size of their equivalence class,
|ME,S |, (ii) the structural Hamming distance (SHD)
between the completed partially DAG (CP-DAG; see
Glymour et al. (2019)) of ME,S and the true graph G⋆,
(iii) an empirical estimate of p(G⋆ ∈ ME,S), taken over
repetitions of the experiment.

Protocol: For each Bayesian network, we extracted the
MECMG⋆ based on the structure of G⋆. This simulates
starting from the ideal output of a causal discovery algorithm.
We then attempted to reduce the size ofMG⋆ by querying
each expert according to the greedy approach in Section 4
for η∈ [0.1,1], where η=1 corresponds to disregarding the
constraint of Problem 4. Each ε−expert experiment was
repeated 5 times and LLM-expert experiment was repeated
8 times. Given that the LLM-experts have a deterministic
output for a given prompt, we randomized the causation verb
in order to introduce stochasticity (see Appendix D). Figure 2
shows the results of our experiments for Insurance and
Asia with strategy Srisk. Results for other networks and
strategy Ssize are in Appendix A.

Results for ε-experts: On all networks, our approach, com-
bined with both strategies, decreases the MEC’s size for all
noise levels (ε), while keeping the true graph inME,S with
probability at least 1−η, as predicted by our theoretical re-
sults. Consequently, the SHD also decreases as the tolerance

to risk increases. This highlights the effectiveness of our ap-
proach when the expert satisfies the noise model of Section 4.

Results for the LLM-expert: Overall, we observe a clear
reduction in SHD forME,S compared to the starting point
MG⋆ . This shows that some causally-relevant knowledge
can be extracted from LLMs, which is in line with the
conclusions of recent work.

On all datasets, the LLM-based experts achieve SHDs that are
on par or better than those of their naive counterparts (Long
et al., 2023) for η = 1, while additionally enabling the
control of the probability of excluding G⋆. Further, on
every dataset, except for ALARM, each LLM-based expert
performs comparably to at least one of the ε-experts. For
ALARM, we observe that G⋆ is excluded fromME,S , even
for small tolerance η. This can be explained by ambiguities
in the metadata, which are sometimes ambiguous even for
human experts (see Appendix C).

Finally, another key observation is the poor uncertainty
calibration of text-davinci-003 compared to
text-davinci-002, which is in line with observations
made by OpenAI (2023b). The text-davinci-003
model is often over-confident in its answers, which leads it to
underestimate the probability of excluding G⋆ fromME,S .
Consequently, even for small tolerance η, the resulting
equivalence classes contain incorrectly oriented edges.
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6. Conclusion
This work studied how imperfect expert knowledge can
be used to refine the output of causal discovery algorithms.
We proposed a greedy algorithm that iteratively rejects
graphs from a MEC, while controlling the probability of
excluding the true graph. Our empirical study revealed that
our approach is effective when combined with experts that
satisfy our assumptions. However, its performance was
mitigated when a LLM was used as the expert. Nevertheless,
our results show the clear potential of LLMs to aid causal
discovery and we believe that further research in this direc-
tion is warranted. Possible extensions to this work include
the exploration of noise models better-suited for LLMs, as
well as alternative methods for querying such models (e.g.,
different prompt styles, better uncertainty calibration, etc.,).
Further, our approach could be coupled with Bayesian causal
discovery methods, replacing our MEC-based prior by one
derived from a learned posterior distribution over graphs.
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A. Additional Experimental Results
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Figure 3. All results for strategy Srisk. We observe that the MEC size consistently decreases as the tolerance level is increased.
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Figure 4. All results for strategy Ssize. We observe that the MEC size consistently decreases as the tolerance level is increased.
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Table 1. Characteristics of included causal networks
Dataset # Nodes # Edges Parameters

Asia 8 8 18
CHILD 20 25 230

Insurance 27 52 1008
ALARM 37 46 509

B. Implementation details
The code for this work is available at https://github.com/StephLong614/Causal-disco.

C. Details for the BnLearn causal Bayesian networks
Acquisition: All Bayesian network structures were acquired from https://www.bnlearn.com/bnrepository/.

Variable metadata: For each of the included causal Bayesian networks, we extracted a code book, i.e., a list of variable
names and an associated description (e.g., ’birth asphyxia’: ’lack of oxygen to the blood during birth’), from the associated
original paper. For instance, for the CHILD network, this information was extracted from Spiegelhalter & Cowell (1992).
All code books are available at: https://github.com/StephLong614/Causal-disco/tree/main/codebooks.

Metadata pitfalls: Certain Bayesian networks contain edge orientations between variable pairs that appear incongruent
with intuitive reasoning. For example, in the CHILD Network (Figure 6 ), the edge orientation between disease and age
exhibits a counterintuitive direction: disease→age. Implying the causal relationship of “disease causes age” rather than
the more intuitive and expected “age causes disease”.

D. Details for LLM-based experts
D.1. Querying for edge orientations

In order to obtain a probability distribution over the orientations of an edge, we use a prompt similar to Bai et al. (2022).
We use the following prompt format:

Among these two options which one is the most likely true:
(A) {µi} {verbk} {µj}
(B) {µj} {verbk} {µi}
The answer is:

where verbk is randomized at each decision and the variables .

For example, if we wanted to elicit a prediction for the direction of an edge between variables with metadata µi: “lung cancer”,
µj : “cigarette smoking”, and causation verb verbk: “causes” we would use the following prompt:

Among these two options which one is the most likely true:
(A) lung cancer causes cigarette smoking
(B) cigarette smoking causes lung cancer’
The answer is:

We then compute the log probability of the responses (A) and (B), and use the softmax to obtain a probability distribution
over the directions of the edge (Kadavath et al., 2022). Since we rely on scoring, instead of generation, the output of the
LLM-expert is deterministic given a fixed prompt. To foster randomness in the LLM-expert outputs, we randomly draw
verbk from the following verbs of causation: provokes, triggers, causes, leads to, induces, results in, brings about, yields,
generates, initiates, produces, stimulates, instigates, fosters, engenders, promotes, catalyzes, gives rise to, spurs, and sparks.

E. Causal Bayesian networks included
We included the following causal Bayesian networks in this work. All were extracted from the bnlearn Repository
https://www.bnlearn.com/bnrepository/.

https://github.com/StephLong614/Causal-disco
https://www.bnlearn.com/bnrepository/
https://github.com/StephLong614/Causal-disco/tree/main/codebooks
https://www.bnlearn.com/bnrepository/
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Figure 5. Asia Bayesian network representing a fictitious medical illustrating possible causes of shortness-of-breath (dyspnoae) (Lauritzen
& Spiegelhalter, 1988). Abbreviations: asia = visit to Asia?; tub = Tuberculosis; either = either tuberculosis or lung cancer; lung = lung
cancer; bronc = bronchitis; dysp = dyspnoae. ]

Figure 6. CHILD Bayesian network which represents the presentation of six possible conditions that lead to “blue babies” i.e., birth asphyxia
(Spiegelhalter & Cowell, 1992). Abbreviations: LungParench = Lung parenchyma, LVH = left ventricular hypertrophy; HypDistrib =
hypoxia distribution; RUQO2 = right upper quad oxygen level.
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Figure 7. ALARM Bayesian network representing a diagnostic application for patient monitoring which includes 8 diagnoses, 16 findings,
and 13 intermediate variables (Beinlich et al., 1989). Abbreviations: MINVOLSET = minute ventilation; VENTMACH = ventilation
machine; PULMEMBOLOUS = pulmonary embolism; PAP = pulmonary artery pressure; FIO2 = fraction of inspired oxygen; MINVOL
= minute volume; VENTALV = alveolar ventilation; PVSAT = pulmonary artery oxygen saturation ; ARTCO2 = arterial CO2; TPR =
total peripheral resistance; SAO2 = oxygen saturation; EXPCO2 = expelled CO2; LVFAILURE = left ventricular failure; CATECHOL
= catecholamine; LVEDVOLUME = left ventricular end-diastolic volume; HR = heart rate; ERR = error; PCWP = pulmonary capillary
wedge pressure; CVP = central venous pressure; CO = cardiac output; HRBP = rate blood pressure; HRSAT = heart rate saturation

Figure 8. Insurance Bayesian network illustrating factors that affect expected claim costs for a car insurance policyholder (Binder et al.,
1997). Abbreviations: DrivHist = driving history; ILiCost = insurance liability cost; PropCost = property cost
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