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ABSTRACT

High-quality, error-free datasets are a key ingredient in building reliable, accu-
rate, and unbiased machine learning (ML) models. However, real world datasets
often suffer from errors due to sensor malfunctions, data entry mistakes, or im-
proper data integration across multiple sources that can severely degrade model
performance. Detecting and correcting these issues typically require tailor-made
solutions and demand extensive domain expertise. Consequently, automation is
challenging, rendering the process labor-intensive and tedious. In this study, we
investigate whether Large Language Models (LLMs) can help alleviate the burden
of manual data cleaning. We set up an experiment in which an LLM, paired with
Python, is tasked with cleaning the training dataset to improve the performance
of a learning algorithm without having the ability to modify the training pipeline
or perform any feature engineering. We run this experiment on multiple Kaggle
datasets that have been intentionally corrupted with errors. Our results show that
LLMs can identify and correct erroneous entries—such as illogical values or out-
liers—by leveraging contextual information from other features within the same
row, as well as feedback from previous iterations. However, they struggle to detect
more complex errors that require understanding data distribution across multiple
rows, such as trends and biases.

1 INTRODUCTION

Despite being essential for achieving high model performance (Jäger & Biessmann, 2024), data
cleaning remains one of the least engaging yet most time-consuming tasks for data scientists (Sam-
basivan et al., 2021). While many algorithms and approaches exist to speed up this process, sig-
nificant challenges remain in efficiently deploying fully automated methods in real world scenarios
(Ni et al., 2023). This is because devising a one-size-fits-all method that works universally for data
cleaning is hard. What constitutes an error varies from dataset to dataset. As a result, the stan-
dard practice is to manually explore and inspect the dataset using domain knowledge, iteratively
formulating hypotheses about potential erroneous entries, correcting these errors, and repeating the
process until the dataset is deemed clean (Ridzuan & Zainon, 2019).

In recent years, LLMs have revolutionized various fields, including coding (Jiang et al., 2024),
writing (Li et al., 2024a), information search (Zhu et al., 2023). Even within the field of ML—the
very domain from which LLMs originate—researchers are exploring their potential to automate
tasks such as feature selection, model tuning, and optimization (Huang et al., 2024a; Küken et al.,
2024). Some studies suggest that these models have already surpassed median human performance
for certain tasks (Chan et al., 2024). However, most studies have focused on boosting ML model
performance by optimizing model architecture and feature processing, rather than on enhancing the
quality of the raw data.

Therefore, in this work, we shift the focus to data quality. Specifically, we ask: If we keep the
pre-processing and training pipeline fixed, can an LLM improve model performance purely
by detecting and correcting errors in the data?
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Our main contribution is the introduction of a simple framework for the systematic study of LLMs’
ability to interact with datasets to achieve a specific goal—namely, improving the quality of training
data for ML downstream tasks and to provide an initial analysis of the LLMs’ performance.

2 RELATED WORK

2.1 DATA CLEANING METHODS

Data scientists have a wide array of tools available for detecting and correcting errors and inconsis-
tencies. Classical approaches rely on predefined rules and statistical techniques to identify issues in
syntax, semantics, and outliers. These methods might involve checking for violations of integrity
constraints, identifying duplicate entries, or applying outlier detection algorithms (Fan & Geerts,
2012). For error correction, problematic data is often replaced using external sources, basic statisti-
cal computations, or established integrity constraints (Ilyas et al., 2015). However, these techniques
require careful parameter tuning and rigid rule definitions, making the process both time-consuming
and labor-intensive. To alleviate these challenges, several approaches have been developed: Raha
(Mahdavi et al., 2019) and HoloDetect (Heidari et al., 2019) focus on error detection, while Baran
(Mahdavi & Abedjan, 2020) addresses error correction. These methods leverage ML to reduce or
even eliminate the reliance on manually defined rules. Furthermore, these methods tend to also have
better overall performance than classical methods, however they struggle in case of rare or complex
error types (Ni et al., 2023). With the advent of LLMs, many works have begun exploring their
utilisation for dataset cleaning motivated by the common sense reasoning of these models. Narayan
et al. (2022) has explored using the GPT-3.5 architecture for various data wrangling tasks including
error detection and data imputation, showing state of the art performance. Other works, such as
Qi & Wang (2024) and Li et al. (2024b), also explore the use of LLMs for value standardization.
Recently, IterClean (Ni et al., 2024) has claimed state of the art performance for entire detection-
correction pipeline while using fewer supervised examples than previous methods. However, while
the results are impressive, current evaluation has been restricted only to established benchmarks of
data cleaning, and it still unclear to which extent LLM can automate the entire data cleaning pipeline
(Majumder et al., 2024).

2.2 BENCHMARKING LLM POWERED AGENTS ON DATA SCIENCE TASKS

LLMs have been extensively studied for a variety of data science applications. The seminal work
of Lai et al. (2023) benchmarked LLMs for code generation in data science using thousands of
problems specifically targeting data science tasks. Other studies have expanded the range of tasks
and improved evaluation methodologies (Zhang et al., 2024; Huang et al., 2024b; Galimzyanov
et al., 2024).

Closely related to our work, several benchmarks move beyond simple question answering to enable
function tool calling and multi-turn interactions. For example, Liu et al. (2023) evaluates LLMs on
question answering tasks that involve tabular data. Similarly, Hu et al. (2024) proposes a frame-
work for evaluating LLM-based agents on data analysis tasks—including data exploration, sum-
mary statistics, regression analysis, and feature engineering. Moreover, Majumder et al. (2024)
introduces a comprehensive benchmark that formalizes the entire multi-step process of data-driven
discovery—from hypothesis formulation and verification using both real-world and synthetic tasks
across diverse domains—to systematically assess and improve LLMs’ capabilities in automating
scientific discovery. Likewise, Chen et al. (2024) presents a benchmark that assesses LLMs abil-
ity to autonomously generate executable Python programs for diverse, expert-validated data-driven
scientific discovery tasks. Finally, approaches such as Huang et al. (2024a) and Chan et al. (2024)
benchmark LLMs on ML competitions with explicit target of improving performance on a test set.
However, the focus in these works is on feature engineering and machine learning, rather than on
improving the quality of the training data.

3 METHOD

Our goal is to evaluate how LLMs can effectively detect and correct errors in dirty training datasets
that negatively impact model performance on a held-out dataset. In our setup, the LLM has access to
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IPython  
LLM

Dataset0
Prompt p0

Detect Errors in this dataset to increase 
performance by at least X%. You can find the 

dataset here: sandbox/train.csv 

Date of MarriageAgeSexName

2045.10.1835femaleMr. Austen

2005.10.184femaleMrs. Austen

Performance 
Evaluation

DatasetBest

Date of MarriageAgeSexName

2005.10.1835maleMr.  Austen

2005.10.1834femaleMrs. Austen

Tools

Cleaning Agent

Chat 
History

Hint: No errors in Name

Iterationj

Figure 1: We provide the model with the path to the dataset along with a prompt instructing it to
identify errors so that performance on a held-out set increases by a given threshold. At each iteration
j, the LLM can send code to IPython to execute and get back the sys.output and/or send the path of
the modified dataset Di to get a performance score. The loop continues until the cumulative number
of tokens used for the entire conversation reaches a pre-defined threshold. All the modified datasets
D0...i are stored and the dataset with the highest score is considered as DBest.

two tools. The first is the interactive Python shell IPython (Pérez & Granger, 2007), which executes
Python code. Using this tool, the LLM can inspect and modify the dirty dataset used to train a ML
model. The second is the performance evaluation. It can iteratively submit a modified version of the
training dataset to an evaluation pipeline, which returns the performance score of the model trained
on the this new data and evaluated on a clean held-out evaluation set. The pre-processing, training,
and evaluation pipelines are kept fixed and non-modifiable by the LLM, ensuring that the LLM can
influence model performance solely by altering the training dataset. Figure 1 shows an overview of
our approach. In the following sections, we outline the procedure for generating dirty versions of
the datasets and describe how the LLM interacts with them.

3.1 DATASET CREATION

While some datasets in the literature (Rekatsinas et al., 2017; Mahdavi et al., 2019) provide both
clean and dirty versions, the data quality issues in the corrupted versions do not significantly impair
the performance of downstream tasks (Ni et al., 2023).

To address this limitation, we create our own clean and dirty dataset versions as follows. First, we
identify popular datasets from Kaggle. Each dataset, denoted as D, is divided into a training set
DTrainClean and a testing set DTestClean, which serves as a held-out evaluation set that remains non-
modifiable and unseen by both the model and the LLM. We train a model on DTrainClean and evaluate
its performance on DTestClean, establishing a baseline performance, PClean. Next, we introduce three
systematic errors in DTrainClean, resulting in DTrainDirty. These errors are selected from the categories
defined below (Numerical Shift, NaN Corruption, and Categorical Shift). We re-train the model on
DTrainDirty and again evaluate its performance on DTestClean, yielding a performance score of PDirty.

The difference between PClean and PDirty represents the maximum potential performance improve-
ment achievable by correcting the introduced systematic errors. However, PClean is not strictly an
upper bound on performance, as other inherent issues within the Kaggle datasets may exist that, if
addressed, could lead to even higher performance.

We define the following three categories of systematic errors introduced in DTrainClean:

• Numerical Shift: Alters numerical values to introduce a distribution shift in a subset of the
dataset (e.g., increasing all age entries by 10 years or restricting them to a range between 0
and 10).

• NaN Corruption: Replaces a fraction of well-defined values with NaN in a subset of the
dataset, following a missing at random corruption strategy (e.g., corrupting with NaN the
values of a specific column where a specific condition happens).
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• Categorical Shift: Shifts the distribution of categorical feature values within a subset of the
dataset, leading to statistical or contextual inconsistencies (e.g., changing the category of a
feature to one that is uncommon or contextually inappropriate for that subset).

In order to create a fair evaluation scenario, we also ensure that the introduced errors meet the
following criteria:

1. They are detectable through statistical analysis, contextual understanding of the dataset, or
a combination of both; and

2. The resulting decrease in model performance due to dataset corruption can be mitigated
through dataset manipulations that do not require access to the original clean dataset.

Additionally, to gain preliminary insights into how humans compare to LLMs on this task, we asked
two data scientists to solve the same task as the LLMs on each dataset within a time limit of one
hour and recorded their peformance improvement over PDirty . This also offers an initial perspective
on the perceived difficulty of detecting and correcting errors in our datasets. Details on the datasets
and the introduced errors can be found in the Appendix A.1.

3.2 CLEANING AGENT

We provide an initial prompt P0 to the LLM, which includes clear instructions for the task, examples
of inconsistencies, the path to DTrainDirty, explanations of the available tools, and guidance on how to
solve the task effectively. The full prompt is provided in the Appendix A.2. The LLM has access to
the following two tools:

• Performance Evaluation (Input: DatasetPath, Outptut: PerformanceScore): This tool
submits the dataset modified by the LLM and evaluates it. It takes as input the path to
DTrainModifiedi , performs pre-defined pre-processing steps, trains the learning algorithm on it,
and returns the model’s performance score on a classification task using DTestClean. Note that
the LLM cannot modify the evaluation pipeline or add new columns, though it is permitted
to drop columns or rows if necessary.

• IPython (Input: PythonCode, Output: StandardOutput): Executes the code provided as
input, using the interactive IPython shell and returns the standard output produced during
execution. This includes the output of print statements, the contents of defined variables,
and any errors encountered. The shell preserves a persistent session state across executions,
so variables and outputs from earlier runs remain available in subsequent executions.

The LLM’s interactions with the dataset begin after the initial prompt P0 is provided. An iteration
j starts when the LLM generates text, and in each iteration, the LLM may invoke one or both
tools. The responses from these tools, along with the previous prompt and the LLM’s output from
the current iteration, are appended to form the prompt for the next iteration (i.e., pj+1 = pj +
outputj + ToolResponsej). If the LLM wants to submit a modified version of the training dataset
DTrainModifiedi , it must save the dataset and provide its path to the Performance Evaluation tool,
which then returns the score for that submission. The loop terminates when the cumulative number
of tokens used (input plus output, summed over all iterations) reaches a predefined threshold, and
the dataset submission with the highest score is considered the LLM’s best result.

4 EXPERIMENTS AND RESULTS

4.1 SETUP

We consider three popular datasets from Kaggle: Titantic, Meat Consumptions, Hotel Bookings.
A classification task is defined for each dataset. We perform minimal pre-processing and ensure
the classification tasks remain challenging by removing columns that contain information which
would make the tasks trivial. A standard train/test split is performed, and, as outlined in Section 3.1,
three different types of systematic errors are introduced into the training data. Each of these errors
requires investigating rows, columns, or both within the dataset. Further details on the errors are pro-
vided in the Appendix A.1. We conduct experiments using the following models with the function
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calling feature: gpt-4o, o3-mini-2025-01-31, claude-3-5-sonnet-20241022, and
gemini-2.0-flash-exp. Each experiment is run with a limit of 200k tokens and repeated six
times to ensure consistency. Our code structure is based on Swarm from OpenAI (2024) due to its
lightweight design and flexibility. Table 1 provides an overview of the different datasets including
the data scientist performance and the type of errors introduced.

Dataset Shape Data Scientist Perf. Error Types
Improvement [1h]

Titanic (408, 12) 6.2% (easy) Numerical Shift
Categorical Shift

Meat Consumption (9160, 10) 2.5% (medium) Numerical Shift
Hotel Bookings (100000, 28) 0% (hard) Numerical Shift

Nan Corruption
Categorical Shift

Table 1: Comparison of the three Kaggle datasets in terms of shape, the performance improvement
achieved by humans in one hour and error types. The perceived difficulty of each dataset (easy,
medium, hard) as reported by the human participants is also provided.

4.2 RESULTS

In the following sections, we first present our quantitative results alongside a qualitative discussion to
interprets them. Next, we analyze how cumulative token consumption and the strength of provided
hints affect performance improvements. Finally, we describe recurring issues observed in the model
interactions.

4.2.1 HOW EFFECTIVE ARE LLMS AT IMPROVING MODEL PERFORMANCE BY CORRECTING
ERRORS?

Titanic Meat Consumption Hotel Bookings
Dataset
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Human performance

Figure 2: Performance improvement over PDirty for the four models and three datasets.

Figure 2 shows that no model reaches the maximum potential performance improvement, i.e.,
achieving PClean. A significant gap between the achieved performance improvement and PClean is
noticeable for both the Meat Consumption and Hotel Bookings datasets, highlighting their increased
difficulty. Specifically, for Hotel Bookings, all models achieve less than 1% improvement, which
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emphasizes the challenging errors introduced in this dataset. Interestingly, the perceived difficulty
of the datasets by humans is also reflected in the LLMs’ performance, with the Titanic dataset being
the easiest, followed by Meat Consumption and Hotel Bookings. Overall, while o3-mini and claude-
3-5-sonnet show a slight edge over the others for the Titanic and Meat Consumption datasets, no
model clearly outperforms the rest.

To better understand where the models face challenges, we manually inspect the conversation traces
from the runs. Listing 1 shows the code generated in the first response by o3-mini during a sample
interaction on the Meat Consumption dataset. We observe that the models begin their analysis by ex-
ploring the data using pandas functions such as .describe(), .info(), and .head(), along
with performing simple sanity checks on individual entries. However, models rarely investigate
more complex relationships within the data.
print(df.head())
print(df.describe(include=’all’))

columns_to_check = [’Poultry’, ’Beef’, ’Sheep and goat’, ’Pork’, ’Other meats’, ’Fish and seafood’]
print(’\nNegative value counts:’)
for col in columns_to_check:

if col in df.columns:
neg_count = (df[col] < 0).sum()
print(f’{col}: {neg_count}’)

else:
print(f’{col} not found in dataset’)

print(’\nMax values in consumption columns:’)
for col in columns_to_check:

if col in df.columns:
max_val = df[col].max()
print(f’{col}: {max_val}’)

print(’\nMissing value counts:’)
print(df.isnull().sum())

Listing 1: Python code generated in a first response by o3-mini on the Meat Consumption dataset.

As a result, errors that require the analysis of multiple values in the dataset—such as identifying
distribution shifts, trends, or biases— go undetected. Even when errors are identified, limited explo-
ration across different values hinders effective error mitigation. For example, no model was able to
detect the numerical shift introduced in the Hotel Bookings dataset, where 10 was added to all values
in the lead time column only for the year 2016. This represents a simple bias that the models
failed to identify. Listing 2 shows an example from the Meat Consumption dataset, where claude-3-
5 correctly detects that some landlocked countries, such as Afghanistan and Nepal, have abnormally
high fish consumption. However, instead of applying a statistically meaningful approach, such as
using quantiles, it applies an arbitrary scaling factor.
landlocked_countries = [’Afghanistan’, ’Mongolia’, ’Nepal’, ’Bhutan’, ’Laos’, ’Uganda’]
for country in landlocked_countries:

mask = (df_cleaned[’Entity’] == country) & (df_cleaned[’Fish and seafood’] > 15)
df_cleaned.loc[mask, ’Fish and seafood’] = df_cleaned.loc[mask, ’Fish and seafood’] * 0.3

Listing 2: Successful error detection, but arbitrary error mitigation by claude-3-5 in the Meat
Consumption dataset.

We observe the same behavior for categorical variables. For example, in the Hotel Bookings dataset,
the NaN corruption involved replacing 70% of entries with NaN where country == ’PRT’ in
the years 2016 and 2017. All models, except for gpt-4o in a single run, fail to address this error
correctly. Instead of recognizing that PRT is the most frequent country based on the available data
from 2015, they replace the missing values with a new entry labeled Other, as shown in Listing 3.
# Fix negative adr: replace negative adr with median of non-negative adr
adr_median = df.loc[df[’adr’] >= 0, ’adr’].median()
df.loc[df[’adr’] < 0, ’adr’] = adr_median
# Fill missing values
# For country, fill missing with ’Other’
df[’country’] = df[’country’].fillna(’Other’)

Listing 3: Arbitrary error mitigation by o3-mini in the Hotel Bookings dataset.

4.2.2 HOW MANY TOKENS ARE NEEDED TO ACHIEVE THE BEST PERFORMANCE?

Figure 3 shows the cumulative tokens consumed, ranging from 25k up to a maximum of 200k,
in relation to the best achieved improvement in performance. Across all models and datasets, a
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Figure 3: Performance improvement for different Cumulative tokens thresholds from 25k to 200k

logarithmic trend is observed, indicating diminishing returns as token consumption increases. Given
that gemini-2.0-flash-exp supports a context window of up to 1M tokens, we conduct an additional
experiment by increasing the cumulative token consumption limit to 2M for this model. Table 2
shows that, for the Titanic and Hotel Bookings datasets, performance increases by 5.19% and 1.82%,
respectively, compared to the results with a 200k token limit. This suggests that the gemini-2.0-
flash-exp benefits significantly from the larger context window, possibly allowing for more thorough
exploration and error correction.

Dataset 200k Tokens 2M Tokens
Titanic 3.69% 8.88%
Meat Consumption 1.51% 1.79%
Hotel Bookings 0.08% 1.90%

Table 2: Performance improvements of gemini-2.0-flash-exp with 200k and 2 million cumulative
token limits across all datasets.

4.2.3 DO HINTS HELP?
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Figure 4: Impact of providing no hint, a weak hint, and a strong hint on the performance improve-
ment for all models and datasets.

Figure 4 shows how performance improvement across all models and datasets changes depending
on how much additional context is provided to the model in the initial prompt P0. The models
are evaluated under three conditions: no hint, a weak hint, or a strong hint. A weak hint provides
partial information about the location of the error in the dataset, while a strong hint offers complete
information about the error’s location and partial guidance on how to correct it. Examples of these
hints for all datasets are provided in the Appendix A.1.
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Overall, a clear trend emerges: providing hints generally enhances performance, as the models can
leverage the extra contextual information to improve error detection and correction. However, there
are exceptions. We noticed that, on some occasions, the weak hint causes the model to apply an inap-
propriate error correction strategy to a column—one that actually decreases performance—whereas,
with no hint, that column would remain unchanged.

4.2.4 ADDITIONAL REMARKS

Beyond the points mentioned earlier, our analysis of the conversation traces revealed several recur-
ring issues common to all models. In particular, we observed:

• Models frequently fail to submit a valid dataset. As shown in Table 3, a significant percent-
age of submissions contain errors. Major reasons include providing a file path that does not
exist and submitting datasets with extra columns.

• Models tends to apply a brute-force approach by repeatedly submitting datasets without
meaningful analysis. Table 4 shows the fraction of dataset submissions relative to the gen-
erated code, highlighting that in the majority of iterations, the models prioritize submitting
datasets over generating code for meaningful analysis.

• Models (with the exception of gpt-4o) seems to ignore that the state is preserved in IPython.
Specifically, in each tool call, the code is generated from scratch rather than building on
outputs from previous executions. This hinders in-depth exploration of the dataset across
multiple iterations.

Model Column Dataset Other [%] Total
Violation [%] not found [%] Failures [%]

claude-3-5-sonnet 8.84 0.00 4.69 13.53
gemini-2.0-flash-exp 5.05 4.32 3.73 13.10
gpt-4o 5.87 0.00 2.07 7.94
o3-mini 0.00 5.40 5.47 10.87

Table 3: Percentage of invalid submissions for each model. Column Violation indicates that new
columns were added to the modified dataset, violating the rules described in the initial prompt P0.
Dataset not found means the dataset path provided by the LLM to the evaluation function does not
exist. Other refers to additional violation errors.

Model Dataset related submissions
over total tool calls [%]

claude-3-5-sonnet 61.86%
gemini-2.0-flash-exp 63%
gpt-4o 29%
o3-mini 84.70%

Table 4: Percentage of calls to the IPython tool related to the creation of a new submission dataset
compared to the total number of calls.

5 DISCUSSION

5.1 CONCLUSIVE REMARKS

We present a simple strategy to benchmark LLMs in one of the most crucial yet often overlooked
activities of data scientists: cleaning data prior to model training. We propose a pipeline in which the
LLM has access to IPython to programmatically modify a training dataset that has been corrupted
with errors. The processes of training the ML model and performing any feature engineering are
kept fixed and are not modifiable by the LLM. The LLM can iteratively explore the dataset to

8
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detect and correct errors, receiving feedback based on the model’s performance when trained on its
submitted modified datasets and evaluated on a clean, held-out test set. Our goal is to explore the
strength and limitations of the current state-of-the-art LLMs on this cleaning task across different
datasets. Our results show that while LLMs can detect and mitigate errors in two of the three datasets
considered, none of them achieve the maximum potential performance improvement achievable by
fully correcting the introduced systematic errors. Overall, providing the LLM with hints about the
errors leads to improved performance, indicating that the models can effectively process contextual
information to solve the given task. An analysis of the conversation traces reveals that LLMs are able
to identify and correct errors that involve investigating single values or individual rows. However,
they struggle with errors spanning multiple rows, such as distribution shifts, trends, or biases.

5.2 LIMITATIONS AND FUTURE WORK

Our work can be extended from multiple angles. First, the current setup enforces text-based commu-
nication between the LLM and the tools. This could be extended to allow the LLM to receive visual
artifacts, such as plots generated from code, which are often essential during the data exploration
phase. Second, our current approach involves manually introducing and validating errors, which is
labor-intensive and limits the scalability of the benchmark to a wider range of datasets. Moreover,
since only the authors were involved in creating errors for our three datasets, there is a potential
risk of limited diversity and biases influencing our findings. Future work should focus on automat-
ing error generation to ensure a diverse and realistic set of errors across various datasets, thereby
mitigating potential biases. Third, some of the insights in this work were derived from manually
inspecting the raw messages exchanged at each iteration between the LLM and the tools. Future re-
search should focus on automating this process to enable quantifiable measurements and address the
following questions: 1) What types of failures affect the LLM, such as reasoning flaws, ineffective
exploration, or other factors? and 2) At which stages these failures occur most frequently—whether
during error detection or correction. Finally, the impact of different prompting approaches should be
explored. Specifically, future research should investigate how varying prompts influence the LLM’s
performance, as well as its error detection and correction strategies. We plan to extend this work by
addressing these limitations.
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A APPENDIX

A.1 DATASETS

In the following, we briefly describe the three errors introduced in the Titanic, Meat Consumption,
and Hotel Bookings datasets from Kaggle, along with the corresponding hints (weak, strong) pro-
vided for each.

A.1.1 TITANTIC

Errors:

1. The values of the column Sex of 50% of female survivors (identified by Miss. or Mrs. in
their names) are randomly changed to male. This constitutes a categorical shift.

2. The values of the column Age are assigned unrealistically low ages (between 2 and 8 years
old) for 50% of married female non-survivors. This constitutes a numerical shift.

3. Reduces the values of the column Fare to 10% of their original amounts for passengers
with high status titles such as Dr. or Lady in their names. This constitutes a numerical shift.

Hints (weak, strong):

• ”Errors are in the Sex, Age and Fare columns.”

• ”Errors are here: Female survisors had their sex entry corrupted, The same happened for
the age of female married non-survivors, and the fare of some passengers with high
social status was corrupted.”

A.1.2 MEAT CONSUMPTION

Errors:

1. The values for the column Poultry are set to near-zero (random values between 0 and
0.1) for all countries in specific years (1986, 1990, 1993, 1995, 2000, 2005, 2010,
2015), simulating missing or drastically reduced data for those periods. This constitutes a
numerical shift.

2. The values for the columns Fish and Seafood consumption for landlocked
countries—Afghanistan, Burkina Faso, Chad, Burundi, Central African Republic,
Niger, Nepal, Mali, Tajikistan, Uzbekistan, and Kyrgyzstan—are set between the 85th and
95th percentiles of the dataset for all years, creating unrealistically high fish and seafood
consumption that does not match real-world patterns. This constitutes a numerical shift.

3. The values for the total meat consumption (Poultry, Beef, Sheep and goat,
Pork, Other meats, Fish and seafood) for Mauritius, Italy, Japan, Vietnam,
China, and Mexico are progressively increased by 30% each year between 1997 and
2004, resulting in unrealistically high meat consumption sums during these years. This
constitutes a numerical shift.

Hints (weak, strong):

• ”Errors are observed in 1) certain years [1986, 1990, 1993, 1995, 2000, 2005, 2010,
2015]), 2) In some countries regarding fish and seafood consumption, and in
consecutive years for the following countries Mauritius, Italy, Japan, Vietnam, China,
Mexico.”

• ”Observed errors:

1. In the years [1986, 1990, 1993, 1995, 2000, 2005, 2010, 2015], poultry con-
sumption is significantly underreported.

2. In landlocked countries such as Afghanistan, Burkina Faso, Chad, Burundi, Cen-
tral African Republic, Niger, Nepal, Mali, Tajikistan, Uzbekistan, and Kyrgyzstan,
fish and seafood consumption is reported to be excessively high.
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3. In countries like Mauritius, Italy, Japan, Vietnam, China, and Mexico, the to-
tal meat consumption is notably overreported during the years [1997, 1998, 1999,
2000, 2001, 2003, 2004].”

A.1.3 HOTEL BOOKINGS

Errors:

1. The values for the column lead time are increased by 10 days for all records in the
year 2016, resulting in consistently inflated booking lead times for that year. This
constitutes a numerical shift.

2. Changes the deposit type to Non Refund for all bookings made through the TA/TO
distribution channel in 2017, creating an unrealistic scenario where all such
reservations are non-refundable. This constitutes a categorical shift.

3. Replaces 70% of the country entries with NaN values in the country column to PRT
(Portugal) for all years except 2015, although PRT is the most frequent country based on
the available data from 2015. This constitutes a NaN corruption.

Hints (weak, strong):

• ”Errors are in the lead time, deposit and country columns, there are no errors in
any entries from 2015.”

• ”Errors are here: There is a systematic bias in the lead time of 2016, the deposit with
distribution channel TA/TO looks wrong in 2017 and often when people arrive
from PRT, the country is not recorded.”
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A.2 INITIAL PROMPT P0 PROVIDED TO THE MODEL

You have been provided with a dataset containing structural errors that degrade your model’s performance. Your
goal is to identify and correct these errors so that the model’s F1 score increases from {metadata["

performance_test"]} to at least {goal}. The target column is {metadata["target_column"]}.

1. Locate and fix any inconsistent or illogical values in the data. Examples of inconsistencies might include
negative values where they cannot logically occur, incorrect category assignments, or strange drift in
the data.

2. Your training dataset is located in sandbox/train.csv.

3. Each time you attempt a fix, save your cleaned dataset as train_cleaned_v*.csv with an updated version
number (e.g., train_cleaned_v1.csv, train_cleaned_v2.csv, etc.).

4. After updating and saving the cleaned dataset, call submit_clean_data() to evaluate the model on the test
set.

5. You may run code to explore and fix the dataset with execute_code_ipython_shell(), but you cannot:
- Plot graphs or use graphical libraries.
- Add new columns to the dataset.
- Modify or drop the _competition_index column (doing so will break the evaluation process).
- Add new rows to the dataset.

6. Focus on increasing the model’s F1 score by correcting structural issues. These issues typically involve
values that are inconsistent with the dataset’s real-world context.

Tip: You need to understand the dataset to identify and correct errors. Don’t just submit attempts blindly.

The dataset description is as follows:
{dataset_description}

This is the preprocessing pipeline code before training:
‘‘‘python
{metadata["pipeline_code"]}
‘‘‘

Hint: {Hints}

Where metadata[”pipeline code”] is dataset specific
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