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Abstract

In practice, many models from a function class can fit a dataset almost equally well.
This collection of near-optimal models is known as the Rashomon set. Prior work
has shown that the Rashomon set offers flexibility in choosing models aligned with
secondary objectives like interpretability or fairness. However, it is unclear how
far this flexibility extends to different trustworthy criteria, especially given that
most trustworthy machine learning systems today still rely on complex specialized
optimization procedures. Is the Rashomon set all you need for trustworthy model
selection? Can simply searching the Rashomon set suffice to find models that
are not only accurate but also fair, stable, robust, or private, without explicitly
optimizing for these criteria? In this paper, we introduce a framework 2 for
systematically analyzing trustworthiness within the Rashomon set and conduct
extensive experiments on high-stakes tabular datasets. We focus on sparse decision
trees, where the Rashomon set can be fully enumerated. Across seven distinct
metrics, we find that the Rashomon set almost always contains models that match
or exceed the performance of state-of-the-art methods specifically designed to
optimize individual trustworthiness criteria. These results suggest that for many
practical applications, computing the Rashomon set once can serve as an efficient
and effective method for identifying highly accurate and trustworthy models. Our
framework can be a valuable tool for both benchmarking Rashomon sets of decision
trees and studying the trustworthiness properties of interpretable models.

1 Introduction

With the increasing use of machine learning (ML) in high-stakes domains such as healthcare, lending,
and criminal justice, the demand for models that satisfy multiple trustworthiness criteria, such as
interpretability, robustness, fairness, privacy, and regulatory compliance, has grown substantially
[53, 65, 82, 87]. However, achieving these properties in practice remains difficult, especially when
they must be satisfied simultaneously. Most algorithms address only one aspect of trustworthiness at a
time, typically by adding a new objective or constraint to the loss function. This often requires solving
a specialized (usually non-convex) optimization problem which is tailored to that specific criterion,
and is rarely transferable across objectives. As a result, developing trustworthy ML systems today
often means solving a different optimization problem for each property, which is computationally
expensive, resource-intensive, and can be infeasible in legally constrained environments.

Recent work challenges the assumption that separate optimization is always necessary. Building on
the Rashomon Effect [10], which describes the existence of many models that can perform nearly
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as well as the best one for a given dataset, researchers have proposed methods to construct and
analyze the Rashomon set, the collection of near-optimal models [6, 28, 43, 44, 62, 74, 95, 98]. These
methods make it possible to enumerate or approximate the Rashomon set across different hypothesis
spaces, enabling new approaches to model selection that do not require additional retraining [71].
This raises a fundamental question: Can the Rashomon set already contain models that satisfy
trustworthiness goals, without the need for separate, objective-specific optimization?

To answer the question, we introduce a framework for systematically evaluating trustworthiness within
the Rashomon set. We focus on decision trees and their Rashomon sets because they are interpretable,
simple, and well-suited for high-stakes decision-making problems [70]. We use TreeFARMS [95],
which can enumerate all sparse trees within the epsilon loss of the optimal tree, to study whether
this full set of near-optimal models inherently contains ones that naturally satisfy a wide range of
trustworthiness properties. Our framework supports seven different trustworthy measures, including
(1) adversarial robustness [48], (2) stability to data perturbations [47], (3) protection of privacy
against membership attacks [75], (4) unlearning a small portion of data [8], and fairness metrics, such
as (5) statistical parity [25], (6) equalized odds and (7) equal opportunity [39]). We systematically
compare the sparse trees in the Rashomon set with trees optimized for specific criteria.

Our contributions include (1) introducing an open and extensible evaluation framework with standard
datasets, baselines, trustworthy metrics and attacks, and evaluation protocols, enabling reproducible
research on trustworthy model selection and interpretable model evaluation; (2) showing that the
Rashomon set of sparse decision trees often contains models that match or exceed the performance of
specialized models across multiple trustworthiness criteria, easing the need for specialized optimiza-
tion per criterion; (3) showing that models optimized for one property (e.g., fairness) do not always
generalize to others (e.g., robustness), motivating the explicit model selection within the Rashomon
set instead of separate optimization.

Our findings suggest that enumerating near-optimal models, rather than retraining for each new
objective, offers a practical and principled strategy for building responsible and trustworthy ML
systems. By leveraging the natural diversity within the Rashomon set, practitioners can select models
that align with application-specific constraints and learn tradeoffs between trustworthiness criteria,
thereby bridging the gap between theoretical insight and real-world deployment.

2 Related Works

We discuss related work on the Rashomon Effect, decision trees, and trustworthy benchmarks and
frameworks.

Rashomon Effect. The Rashomon set, a formal quantification of the Rashomon Effect, contains
multiple different models that achieve approximately equal performance [28, 43, 62, 71, 74, 95].
Recent work in this area can be broadly categorized into those that focus on computing and char-
acterizing the Rashomon Effect and the Rashomon set [43, 62, 88, 95, 98] and those that study
the implications of large Rashomon set for different applications and trustworthy machine learning
as a whole [6, 32, 89]. In this paper, we focus on TreeFARMS [95], which finds the Rashomon
set of sparse decision trees. Many works in this domain that focus on understanding fairness and
less discriminative hypothesis in the presence of a large Rashomon set are the closest to our work
[7, 18, 20, 33, 52, 64]. However, none of the prior works consider multiple trustworthy criteria within
one Rashomon set of interpretable models.

Decision trees. Decision trees are among the most popular methods in interpretable machine learning.
Recent advances can find sparse optimal trees using either mathematical programming solvers [1, 4,
5, 26, 36, 80, 81] or dynamic programming with branch-and-bound [2, 21, 58, 63]. Recent research
also incorporates other metrics, such as fairness [46, 79], robustness [12, 13, 14, 37, 47, 83, 84], and
privacy [85], into the optimization problem, aiming to make sparse decision trees align with more
trustworthy principles. Despite these advancements, there has been no systematic evaluation of these
algorithms, nor has any study specifically examined if sparse decision trees that achieve high accuracy
naturally exhibit trustworthy properties without being explicitly optimized for them.

Trustworthy Benchmarks and Frameworks. Trustworthiness in ML has emerged as a critical
concern, especially as AI systems are increasingly deployed in high-stakes environments. While
trustworthiness encompasses a broad spectrum of principles, metrics such as interpretability, robust-
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ness, privacy, and fairness consistently emerge as essential components [49, 54]. Benchmarks have
been developed for robustness [19, 22, 40, 76], privacy [67, 78], and fairness [3, 38, 90]. Beyond
individual trustworthiness benchmarks, some comprehensive trustworthiness benchmarks have been
proposed [45, 72]. However, existing benchmarks primarily focus on deep learning models, leav-
ing interpretable models, such as sparse decision trees, largely unexamined. Given their extensive
use in healthcare, finance, and criminal justice, evaluating sparse decision trees under a rigorous
trustworthiness framework is crucial.

In this work, we develop a framework for interpretable models, assessing robustness, privacy, and
fairness while leveraging the Rashomon set as a unifying concept (see Section 3). Our framework
enables researchers to explore whether models within the Rashomon set can naturally satisfy multiple
trustworthiness criteria without sacrificing accuracy, providing a new perspective on the design and
evaluation of trustworthy interpretable models. In Section 4, we provide empirical evidence that the
Rashomon set often contains trustworthy models and analyze sparsity, timing, and cross-property
behavior using our framework.

3 Background and Evaluation Framework

Our framework provides a systematic approach for evaluating the trustworthiness of models within the
Rashomon set of sparse decision trees. It integrates five evaluation components, including robustness,
stability to noise, membership inference, machine unlearning, and fairness. For each criterion, we
define quantitative metrics, select state-of-the-art baseline algorithms that explicitly optimize for that
property, and apply standardized datasets and evaluation protocols for fair comparison. We formally
define the Rashomon set of sparse decision trees next and then focus on each trustworthy property.

3.1 The Rashomon set of sparse decision trees

Let {(xi, yi)}ni=1 be the training dataset, where xi ∈ {0, 1}p are binary features and yi ∈ {0, 1}
are labels. Let ℓ(t,x,y) = 1

n

∑n
i=1 1[ŷi ̸= yi] + λHt be the loss of tree t on the training set,

where ŷi = t(xi), Ht is the number of leaves in tree t and λ is a regularization parameter. The loss
function controls both the misclassification loss and the sparsity of the tree. Following the definition
in Semenova et al. [74] and Xin et al. [95], we define the Rashomon set of sparse decision trees
as follows: Let tref be a reference model from T , where T is a set of binary decision trees. The
ϵ-Rashomon set is a set of all trees t ∈ T with ℓ(t,x,y) at most ℓ(tref,x,y) + ϵ: Rset(ϵ, tref, T ) :=
{t∈T :ℓ(t,x,y) ≤ ℓ(tref,x,y) + ϵ}.
Typically, the reference model is an empirical risk minimizer tref ∈ argmint∈trees ℓ(t,x,y). Xin
et al. [95] propose the TreeFARMS algorithm, the first method to construct the Rashomon set to
find all good sparse decision trees. It uses mathematical bounds to prune infeasible spaces, dynamic
programming for computation reuse, and the model set representation to extract and store the entire
Rashomon set. TreeFARMS can find millions of good sparse trees within a short amount of time
(within seconds or minutes, depending on the dataset size, see Section 4.4).

While TreeFARMS can enumerate all good sparse trees, it remains unclear whether models within
the Rashomon set inherently satisfy trustworthiness principles. Also, in the presence of thousands or
millions of near-optimal trees, it might not be clear which model to choose for deployment. Next,
we investigate these questions by benchmarking sparse trees from the Rashomon set and other tree
methods across multiple trustworthiness criteria.

3.2 Robustness

Robustness ensures models maintain performance under various conditions such as adversarial
perturbations and data noise [30, 59]. Here, we focus on adversarial robustness and stability to
random perturbations and investigate whether robust models are naturally contained in diverse
Rashomon sets.

Adversarial robustness measures the ability of a machine learning model to correctly classify inputs
that have been intentionally perturbed through white-box or black-box attacks [34]. Given that
decision trees are inherently interpretable, meaning their structure is humanly understandable, we
primarily consider white-box attacks (attacks with information about the model). Specifically, we
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consider evasion-style attacks, which aim to minimally perturb an input to cause misclassification.
Given a dataset D = {(xi, yi)}ni=1, and a tree t ∈ T , Kantchelian et al. [48] propose an algorithm
that generates adversarial examples x′

i, such that the misclassification error of t is maximized on
the dataset D′ = {(x′

i, yi)}ni=1. In other words, if t(x) = y, the algorithm outputs a perturbed point
x′ that results in t(x′) ̸= y. The perturbations are constrained such that ∥x′

i − xi∥∞ ≤ θ, where
θ ∈ R+ specifies the strength of the attack. If no such x′

i exists under the constraint, the original
input xi remains unchanged. We create an evaluation set Dadv = {(xadv

i , yi)}ni=1, where for each xi,
we take the nearest adversarial example x′

i, and apply the distance based on θ: xadv
i = xi+ θ

xi−x′
i

|xi−x′
i|
.

Many prior works focus on improving the adversarial robustness of decision trees against this attack.
Common approaches include those that globally optimize over the space of decision trees, such as
ROCT-V [84]; those that greedily focus on local optimizations using adversarially modified impurity
measures, such as GROOT [83]; and those that construct decision trees with theoretically provable
robustness guarantees, such as FPRDT [37]. We select the most recent methods from each category
as baselines: ROCT-V, GROOT, and FPRDT. We also include the greedy method CART [9].

ROCT-V [84] finds optimal robust decision trees. It frames robust tree learning as a min-max problem
over the 0-1 loss and solves it using mixed-integer programming (MIP).

FPRDT [37] is a greedy recursive approach for constructing robust decision trees. It directly
minimizes the adversarial 0-1 loss by making a tradeoff between global and local optimizations over
the potential splitting features and thresholds. FPRDT has a computational complexity of O(n log n),
which is the smallest among all provably robust decision trees.

GROOT [83] makes greedy splits according to the adversarial Gini impurity – a splitting criterion
that measures the worst-case Gini impurity after an attacker has maximally worsened the split by
moving points within a specified perturbation range. Since impurity is concave to the number of
modified data points, GROOT uses its analytical solution to compute the function in constant time.

Stability in our context refers to a model’s ability to maintain accurate predictions under natural
perturbations of the input data. We follow the approach from Justin et al. [47] to evaluate this
property. First, for every feature with index j ∈ {0, . . . p}, a “confidence level” qjt is sampled
from a normal distribution: qjt ∼ N (ρ, σ), where ρ and σ are the normal distribution parameters.
The value qj represents the likelihood that the feature j remains unperturbed. If qjt = 1, then no
perturbation occurs. Next, the noise is sampled as ξji ∼ Sj

i · (G
j
i −1), where Gj

i ∼ Geom(qjt ), S
j
i =

2 ·Bj
i − 1 with Bj

i ∼ Bernoulli(0.5).

Intuitively, Gj
i represents the strength of the noise for feature j of sample i, and Sj

i determines
the sign, ensuring equal probability of positive and negative noise. Because features and splits are
integer-valued, this symmetric geometric step targets flips/threshold crossing: any nonzero step flips
a binary feature, and a split at threshold θ is crossed iff |ξji | ≥ d(xj

i , θ) (the integer distance to θ).
The new dataset is then Dstab = {(xstab

i , yi)}ni=1, where xstab,j
i = xj

i + ξji .

We use ROCT-N [47] as the stability baseline. It finds a globally optimal robust tree using a two-stage
robust optimization approach. The first stage determines the tree structure to maximize correctly
classified training samples under worst-case perturbation, where confidence levels qjt define the
uncertainty set for each feature j. The second stage optimizes the classification of training samples
after observing the worst-case perturbation. This problem is formulated as a mixed-integer program
and solved using a customized Benders decomposition algorithm.

For both robustness and stability, we evaluate CART, FPRDT, GROOT, ROCT-N, ROCT-V, and Tree-
FARMS across 8 datasets (Table 5) with standard five-fold nested cross-validation. The configuration
for each method is in Appendix A.

3.3 Privacy

Protecting privacy is essential for machine learning systems that handle sensitive or personally
identifiable data. Among many privacy threats studied in the literature, we focus on membership
inference attacks and machine unlearning.
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3.3.1 Membership Inference Attack

Membership inference attacks (MIAs) aim to determine whether a particular data point was used
to train a given model [75]. We evaluate whether sparse decision trees within the Rashomon set
are inherently resistant to MIAs compared to explicitly private trees. To comprehensively evaluate
privacy, our setup includes both defense mechanisms and attack mechanisms.

Existing defenses against MIAs fall into two broad categories: theoretical guarantees such as
differential privacy [24], and empirical defenses that aim to reduce overfitting or confidence leakage.
In this work, we focus on the former and compare TreeFARMS to representative differentially private
decision-tree algorithms. Differential privacy offers formal protection against MIAs by injecting
randomness during training. Formally, an algorithm M is (η1, η2)-differentially private if for all
datasets D,D′ that differ on a single element, and for any S ⊆ range(M), P [M(D) ∈ S] ≤
eη1P [M(D′) ∈ S] + η2, where η1, η2 ≥ 0. The basic idea of differential privacy is to ensure that
individual data points cannot be identified while still preserving overall data utility. We include
three representative DP tree algorithms as baselines: PRIVA [85], BDPT [35], and DPLDT from
DiffPrivLib [41]. These greedy algorithms introduce randomness into split selection and leaf labeling
to ensure privacy, though often at the cost of predictive performance.

PRIVA [85] first determines quantile-based bins for numerical features and then uses private his-
tograms to select good splits with minimal privacy budget. It partitions the data recursively until it
reaches leaf nodes, which are then labeled using a noise-based majority vote mechanism.

BDPT [35] builds the tree top-down. The best splitting attribute is chosen based on the Gini index
via the exponential mechanism, and continuous attributes are discretized using down-sampling. At
each leaf node, noisy class counts are calculated (using Laplace noise) to determine the final label.

DPLDT [41] implements the randomized split tree from [29]. Each tree is built by randomly selecting
a feature at each node and partitioning the data accordingly. The leaf nodes use the Exponential
Mechanism (with smooth sensitivity) to output only the majority label to maintain differential privacy.

To evaluate the privacy of both TreeFARMS and DP tree models described above, we adopt four
representative MIA algorithms from the literature, varying in the level of adversarial knowledge and
access to the model, ranging from simple prediction-based heuristics to shadow-model training.

• The baseline attack [97] infers membership based on the correctness of the model’s predictions: a
sample is considered a member if the model predicts it correctly. This attack serves as a reference
point for other methods, relying purely on the extent of model overfitting.

• The label-only attack [55] requires only hard class predictions. It infers the membership by
estimating the minimum perturbation needed to flip the predicted label. If this distance exceeds a
threshold, the sample is inferred to be a member. We calibrate a membership threshold at the 50th
percentile of distance scores computed on a pool of unlabeled points.

• The label-only supervised attack [15] is a stronger variant of label-only attack, which leverages
partial knowledge of the data distribution to calibrate the threshold. In experiments, the attacker is
given 500 reference samples with known membership status to determine the threshold.

• The shadow model attack [75] trains auxiliary models to mimic the target model and uses a
separate classifier to predict the membership.

We evaluate on a balanced dataset of 1000 samples, where 500 samples are randomly sampled from
the training set (members) and 500 from the test set (non-members). For two label-only attacks, we
allow up to five perturbation queries per sample. Detailed configurations are in Appendix B.1.

3.3.2 Machine Unlearning

Machine unlearning refers to the process of removing the influence of specific training data from a
trained model, ensuring that the model behaves as if those data points had never been used [8, 68].
It has become an important topic, with extensive work in deep learning and ensemble models
[11, 73, 92], but little analysis has been conducted on sparse trees. To address this gap, besides
TreeFARMS, we consider two unlearning algorithms in our framework: data removal-enabled (DaRE)
forests [11] and GBDT unlearning [57].

DaRE [11] is an unlearning algorithm for random forests that leverages randomness and caching to
enable efficient unlearning. The trees in the forest can follow a greedy top-down approach, referred
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to as G-DaRE, or incorporate random layers in the top, where splits are chosen uniformly at random,
referred to as R-DaRE.

GBDT unlearning [57] provides an algorithm for gradient boosted trees that uses intermediate data
statistics to decide if subtrees need retraining. It uses random split point selection to limit split values
and optionally adds random layers to restrict retraining to a subset of subtrees. The standard version
without random layers is called G-Boosting, while the version with random layers is R-Boosting.

Unlearning in TreeFARMS requires no retraining. Instead, we can directly search within the
Rashomon set to find an optimal tree after removing data points. Theorem 5.3 in [95] states that if
ϵ ≥ 2K

n , where K is the number of removed points and n is the original data size, the optimal tree
after removal remains in the Rashomon set trained on the full dataset. Thus, with a properly chosen ϵ,
the optimal tree can always be found in the Rashomon set, regardless of which or how many (up to
K) samples are removed.

We evaluate these methods on 5 datasets. Configurations for each method are in Appendix B.2.

3.4 Fairness

We consider three group fairness metrics: statistical parity, equal opportunity, and equalized odds.
Throughout the paper, we report each metric as a parity score in [0, 1], where higher is better (1
indicates perfect parity). Let Y, Ŷ , A, and A be random variables for labels, predicted labels, sensitive
features, and a set of possible values for A, respectively.

Statistical Parity (sp) [25] requires P (Ŷ = 1 | A = a) = P (Ŷ = 1 | A = b). We report
sp := 1− |P (Ŷ = 1 | A = 0)− P (Ŷ = 1 | A = 1)|.

Equal Opportunity (eopp) [39] requires P (Ŷ = 1 | Y = 1, A = a) = P (Ŷ = 1 | Y = 1, A = b).
We report eopp := 1− |P (Ŷ = 1 | Y = 1, A = 0)− P (Ŷ = 1 | Y = 1, A = 1)|.

Equalized Odds (eodds/eo) [39] requires P (Ŷ = 1 | A = a, Y = y) = P (Ŷ = 1 | A = b, Y = y)

for y ∈ {0, 1}. We report eodds := 1−maxy∈{0,1}|P (Ŷ = 1 | A = 0, Y = y)− P (Ŷ = 1 | A =
1, Y = y)|.
We evaluate the fairness performance of trees within the Rashomon set and trees from optimal fair
tree algorithms, DPF [79] and FOCT [46]. Both are in-processing methods that incorporate fairness
constraints directly into the optimization process. We also include the greedy method CART [9] and
a post-processing method LinearPost [93, 94] as baselines.

DPF [79] finds an optimal tree with a given depth that minimizes misclassification loss with a
statistical parity constraint. This constraint ensures that the difference in positive rates does not
exceed a predefined threshold δ. The optimization problem is solved using dynamic programming,
and a custom bound is used to prune partial solutions that cannot lead to the optimal fair tree.

FOCT [46] formulates the optimization problem as a MIP problem, which a mathematical solver
then solves. This algorithm can incorporate fairness constraints using the above-mentioned metrics,
ensuring that the absolute difference remains within a predefined threshold δ.

LinearPost [93] is a post-processing method to achieve fairness by linearly transforming the pre-
dictions of the base classifier. A tolerance α controls the tradeoff between accuracy and fairness.
LinearPost is model-agnostic, and we use CART and Gradient-Boosted Tree as base predictors,
denoted as PostCART and PostGBT.

We consider binary classification with binary sensitive features. The sensitive feature is not used in
training but is used for evaluation. Detailed setup is available in Appendix C. Note that DPF is only
optimized for statistical parity, whereas other methods can be applied to all three fairness metrics.

4 Experimental Results

Our evaluation aims to answer the following questions: Q1. How do models in the Rashomon set
compare to baselines optimized for specific trustworthiness criteria, such as robustness, privacy, and
fairness (Section 4.1)? Q2. What proportion of models in the Rashomon set outperforms baseline
models on key metrics, and how consistently does this occur across datasets (Section 4.2)? Q3.
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What connections, if any, exist between model sparsity and trustworthy properties, and how do these
insights inform model selection (Section 4.3)? Q4. How does the computational cost of computing
the Rashomon set compare to training separate models optimized for individual criteria (Section 4.4)?
Q5. Are there observable interactions between different trustworthiness criteria (e.g., do fair models
also tend to be robust) (Section 4.5)?

To address these questions, we conducted a comprehensive empirical analysis of sparse decision trees
in the Rashomon set and compared them to baselines using our evaluation frameworks described in
Section 3. We use up to eight different datasets for each metric (see Table 5,11,17, and 20). We also
provide results for other hypothesis spaces in Appendix D.

4.1 Q1. The Rashomon Set of Sparse Decision Trees Contains Trustworthy Models

Adversarial Robustness. Figure 1 compares the adversarial accuracy of trees within the Rashomon
set to various baseline models on the test set. The light blue density plot represents the distribution of
adversarial accuracy for all trees in the Rashomon set. Vertical lines indicate the accuracy of baseline
models, including CART, FPRDT, GROOT, and ROCT, as well as some trees from the Rashomon set,
such as the optimal tree, the tree with the fewest leaves, the tree with the most leaves, and RSET_kan,
a tree chosen from the held-out selection set. Many trees within the Rashomon set achieve higher
accuracy than the baselines, indicating their robustness against adversarial attacks. Also, the selected
tree, RSET_kan, can perform comparably to or even better than baselines on the test set.

Stability. Figure 1 compares the stability of tree models when random perturbations are added to the
data. Note that only ROCT-N explicitly accounts for these perturbations during training, while all
other methods are trained normally or for robustness and evaluated for stability on perturbed test data.
As we can see, different representative trees from the Rashomon set (bars colored in blue palette) and
CART generally perform better than other methods. Although ROCT-N is designed to optimize for
robustness against perturbations, its performance on the test set does not dominate other methods.
This suggests that while the Rashomon set is not explicitly designed for stability, it contains trees that
perform well under perturbations. More results are in Appendix A.

Figure 1: Left: Comparison of adversarial accuracy between trees in the Rashomon set (light blue
histogram) and baseline models (vertical lines) on the test set. Most Rashomon set trees achieve
higher robustness than baselines. Right: Stability comparison of different methods under random
perturbations. Trees in the Rashomon set (colored in a blue palette) generally perform better than
baselines.

Membership Inference Attacks (MIAs). Table 1 shows the attack success rate when two different
MIAs are applied to various methods. A lower value indicates that the method is more resistant to
attacks. Overall, these attacks are not successful as the highest observed accuracy remains close
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Figure 2: Test accuracy vs. fairness for trees in the Rashomon set (blue density contours) and
baselines (dots) at depth 2 on german-credit dataset. Higher values on both axes indicate better
performance. The colorbar displays the number of trees in the Rashomon set at each contour level.

to 0.5, meaning the attacker does not significantly outperform random guessing. Compared to 3
differential private tree methods, trees from the Rashomon set with the fewest leaves (RSET_min)
achieve comparable against both attacks, despite the fact that the TreeFARMS algorithm does not
incorporate any explicit randomness for privacy protection. Results for more attacks are in Appendix
B.1.

Table 1: Membership inference attack success rates. Lower values indicate better resistance to attacks.
Attack failed when no effective perturbation was found.

Attack Data BDPT DPLDT PRIVA RSET_min

Label-only

adult Attk Failed 0.513 ± 0.012 0.498 ± 0.010 0.509 ± 0.017
bank Attk Failed Attk Failed 0.503 ± 0.011 Attk Failed
compas Attk Failed 0.517 ± 0.010 0.513 ± 0.012 0.494 ± 0.016
credit-fusion Attk Failed 0.504 ± 0.010 0.507 ± 0.015 0.505 ± 0.017
oulad Attk Failed Attk Failed Attk Failed Attk Failed

Shadow

adult 0.492 ± 0.017 0.492 ± 0.017 0.496 ± 0.013 0.502 ± 0.022
bank 0.496 ± 0.006 0.498 ± 0.004 0.495 ± 0.005 0.508 ± 0.014
compas 0.498 ± 0.010 0.506 ± 0.020 0.501 ± 0.011 0.506 ± 0.016
credit-fusion 0.506 ± 0.003 0.506 ± 0.015 0.502 ± 0.009 0.500 ± 0.006
oulad 0.503 ± 0.007 0.502 ± 0.007 0.503 ± 0.007 0.490 ± 0.016

Table 2: Proportion of test data with different predicted labels between the unlearned and retrained
models (i.e., ŷunlearn ̸= ŷretrain) after 1% of the training data are randomly removed.

Data RSET G-DaRE G-Boosting

adult 0 0.018% ± 0.013% 0.064% ± 0.027%
bank 0 0.607% ± 0.103% 0.888% ± 0.096%
carryout 0 1.294% ± 0.465% 5.548% ± 0.741%
compas 0 0.000% ± 0.000% 0.478% ± 0.543%
restaurant 0 1.902% ± 0.433% 4.746% ± 0.623%

Machine Unlearning. Table 2 shows the proportion of test data with different predicted labels
between the unlearned and retrained models for the Rashomon set, G-DaRE, and G-Boosting after
1% of the original training data are randomly removed. Since the optimal tree after data deletion is
guaranteed to be within the Rashomon set if ϵ is set appropriately, the RSET column always reports 0.
In contrast, such a guarantee does not hold for other methods. More results are in Appendix B.2.

Fairness. Figure 2 compares the test accuracy and fairness of trees within the Rashomon set to
baseline models at depth 2, with each figure representing a different fairness metric. A higher value
on both axes (top-right corner) indicates better performance. The blue density contours represent
the distribution of trees in the Rashomon set. Baseline models trained with different tolerance α
are shown as dots. The results show that the contours usually overlap with the baseline points and
cover the region close to the top-right corner, indicating that the Rashomon set contains trees with
performance comparable to the baselines. Appendix C displays results on 6 datasets at more depths.
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Table 3: Percentage of models in Rashomon set that perform better than baselines for adversarial
robustness (left) and outperforming all selected models from baselines for fairness at depth 4 (right)
on the test set.

Robustness FPRDT ROCT-V Fairness SP EOpp EO

banknote 95.5 ± 6.0% 95.5 ± 6.0% adult 0.0 ± 0.0% 8.7 ± 4.9% 0.3 ± 0.3%
blood 28.5 ± 39.6% 26.9 ± 40.4% bank 71.0 ± 27.1% 45.0 ± 17.5% 49.6 ± 12.3%
breast 63.0 ± 38.8% 62.8 ± 29.8% compas 0.0 ± 0.0% 1.6 ± 3.4% 0.0 ± 0.0%
compas 27.4 ± 8.1% 68.4 ± 39.6% german-credit 37.8 ± 28.1% 34.2 ± 30.8% 20.7 ± 21.5%
diabetes 51.6 ± 29.8% 53.9 ± 27.4% oulad 41.2 ± 13.6% 28.7 ± 14.1% 60.9 ± 15.9%
spambase 39.3 ± 18.9% 45.1 ± 18.7% student-por 15.2 ± 15.4% 29.6 ± 32.1% 14.7 ± 11.4%

Table 4: Mean training time, in seconds, for TreeFARMS and baselines averaged over eight robustness
datasets (left) and six fairness datasets (right) for depth 2.

ROCT-V ROCT-N RSET DPF FOCT RSET

Mean Fit Time 1525.635 1828.071 139.45 0.04 3444.06 0.57

4.2 Q2. Many Near-Optimal Trees are Trustworthy

Figure 1 and 2 have shown that many trees in the Rashomon set have comparable performance in
adversarial robustness and fairness to baseline models. Table 3 reports the percentage of trees within
the Rashomon set that outperforms baselines. In certain datasets, more than 50% of trees in the
Rashomon set achieve higher test adversarial accuracy than FPRDT and ROCT-V. Similarly, the
Rashomon set contains trees that have greater fairness than all baselines, except for the adult and
compas, where post-processing models and DPF can achieve higher fairness at the cost of reduced
accuracy.

4.3 Q3. The Importance of Tree Sparsity for Trustworthy Properties

A larger Rashomon set can contain models with different complexity [74, 95]. In the case of sparse
decision trees, we can measure complexity by the number of leaves, and indeed our computed
Rashomon sets often contain trees with different numbers of leaves (for example, the Rashomon set
of the german-credit dataset includes trees with leaves in the range from 1 to 13, Appendix C.2).
Sparsity is important for trustworthy metrics, such as robustness or privacy, as it reduces the amount
of information encoded in a model, limiting the risk of revealing sensitive data [56]. Our results also
support this. Sparser Rashomon set trees (RSET_min) tend to perform better than more complex
counterparts (RSET_max) for adversarial robustness (Figure 1 and Appendix A.1) and under the
membership inference attack (Appendix B.1). Notably, we did not observe a connection between the
sparsity of our models and fairness (Appendix C.2) and stability (Figure 1 and Appendix A.2).

4.4 Q4. TreeFARMS Training Time is Comparable to Optimal Baselines

TreeFARMS effectively optimizes the search space of trees, allowing us to find thousands or millions
of near-optimal trees in seconds or minutes. Table 4 (and Appendices A.1, C.2) supports this with a
summary of the training time compared to the robustness and fairness baselines that optimize for the
best model averaged over datasets. Although TreeFARMS might require more time to run for deep
depth, it finds significantly more trees (Appendix C.2).

Once the Rashomon set is constructed, model selection becomes a lightweight post-hoc step. Rather
than retraining from scratch for each trustworthiness criterion, as required by optimization-based
methods (e.g., robust or fair optimal trees), TreeFARMS allows users to evaluate and filter precom-
puted models according to desired constraints. Evaluating the entire set scales linearly with its size,
is trivially parallelizable, and remains far cheaper than repeated retraining. In practice, enumerating
and screening Rashomon sets with TreeFARMS is typically the more efficient and flexible option
within an ML workflow.
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Figure 3: Evaluation of trees selected from the Rashomon set in Section 4.1 on different metrics.

4.5 Q5. Trees in the Rashomon Set Often Satisfy Multiple Trustworthy Properties

For different trustworthy metrics in Section 4.1, we selected trees that performed well based on the
selection set. Here, in Figure 3, we further compare how these trees perform on other metrics. First
of all, the accuracy of the trees is approximately the same since they all are from the same Rashomon
set. All selected trees tend to be stable and perform well under membership inference attack, while
the minimum complexity tree (RSET_min) is still preferred sometimes (e.g. bank). Similarly, trees
selected specifically for statistical parity (e.g., german-credit and bank datasets) seem to be preferable
to other models, especially optimal trees. Overall our results highlight the importance of considering
multiple trustworthy metrics when selecting models, as no single tree consistently outperforms others
across all criteria. Please see Appendix E for more datasets.

5 Conclusion, Limitations and Implications

We introduced a framework for evaluating trustworthy properties of models inside the Rashomon set
of sparse decision trees. By benchmarking the Rashomon set against state-of-the-art tree baselines
targeted to individual trustworthiness criteria and analyzing fairness, stability, robustness, and privacy,
we provide a systematic methodology for understanding and intentionally navigating tradeoffs in
high-stakes settings. Empirically, we find that Rashomon sets often contain models that are robust,
stable, privacy-preserving, and fair even without explicit optimization for these properties. This
reframes the Rashomon set as a resource: rather than retraining for every criterion, one can search
within the set to identify models that meet desired constraints.

Our results suggest a simple selection protocol that mirrors the experiments: (i) enumerate or
approximate the Rashomon set for a target loss tolerance and model class; (ii) evaluate trustworthiness
metrics (fairness, stability, robustness, membership-inference privacy, and/or unlearning) for each
model; (iii) filter by hard constraints (e.g., max disparity, min stability); (iv) choose model on the
empirical Pareto frontier (e.g., fairness-accuracy or privacy-simplicity), or aggregate via a weighted
objective when priorities are known. This procedure produces models that satisfy multiple criteria
without retraining and exposes transparent tradeoffs when criteria conflict.

One limitation of our approach is that we focus on the hypothesis space of decision trees, though our
methodology can be extended to other model classes (see Appendix D). Another limitation is that we
evaluate membership inference using a limited number of membership inference attack algorithms
for trees, as few such methods have been proposed in the literature. Nonetheless, the diversity of
near-optimal trees within the Rashomon set already offers benefits: it can be leveraged for robustness
via moving-target defenses, for fairness by covering different subpopulations, and for exploring
explicit Pareto tradeoffs between properties such as privacy and simplicity.

Our findings motivate concrete questions for future work: When does model diversity most improve
trustworthiness? Under what data/model conditions do multiple properties co-occur? How should
we quantify diversity to predict trust gains? And to what extent do these effects transfer to richer
model families? We hope that our evaluation frameworks can be used by data and machine learning
scientists, as well as policymakers, to assess model performance across multiple trustworthiness
criteria in a systematic and scalable way as well as inspire further research on model selection under
larger Rashomon sets.
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Compute Resources All experiments were run on a Slurm cluster. Each job requested 256 GB of
RAM and used Intel Xeon CPUs. We did not use GPUs for any experiments. For certain baselines,
Gurobi was required and we used academic Gurobi licenses.

A Experiments: Robustness

Table 5: Summary of datasets used for Robustness Evaluation.
Dataset # Inst. # Feat. % Pos.

banknote [61] 1372 4 44.5%
blood [96] 748 4 23.8%
breast-w [91] 683 9 35.0%
compas [51] 6907 7 46.3%
diabetes [77] 768 8 34.9%
fico [27] 10459 23 52.2%
spambase [42] 4601 57 39.4%
wine-quality [17] 6497 11 63.3%

A.1 Adversarial Robustness

A.1.1 Setup

We ran adversarial robustness experiments on 8 datasets listed in Table 5. Both TreeFARMS and
ROCT-N solve NP-hard optimization problems, requiring preprocessing (binarization) for real-
valued features. We applied GOSDT threshold guessing with n_estimator=30, max_depth=2, learn-
ing_rate=0.1, backselect=True [63]. The resulting tree is converted into a standard tree structure
with appropriate features and thresholds by replacing binary splits with their corresponding threshold
values. This step is necessary for adversarial attacks to generate perturbations.

We perform five-fold cross-validation with hyper-parameter tuning. For all greedy methods, we tune
max depth of [2, 3, 4] and regularization parameters [0.005, 0.01, 0.015, 0.02] if they exist. For attack
strength θ, we set to 0.1 for all datasets. To be more specific, we tune the following:

• TreeFARMS: For regularization, we tune TreeFARMS λ = [0.005, 0.01, 0.015, 0.02]. To select
representative models for evaluation, we evaluate the optimal model (RSET_opt) and also consider
the minimum- and maximum-leaf trees, choosing the highest-validation-accuracy tree among
each to obtain RSET_min and RSET_max. We also use the validation set to generate adversarial
examples on RSET_opt and select the best-performing model as RSET_kan.

• GROOT: For regularization, we tune min sample leaf to be [0.005, 0.01, 0.015, 0.02] ∗ n where n
is the number of samples when fitting the models. Similarly, min sample split would just be double
of min sample leaf. For attack budget, we set it to 0.1.

• FPRDT: Same as GROOT, we tune min sample leaf to be [0.005, 0.01, 0.015, 0.02] ∗ n where n is
the number of samples when fitting the models, and min sample split is double of min sample leaf.
For attack budget, we set it to 0.1.

• ROCT-V: We set max depth to 2, time limit to 1800, and attack budget to 0.1.
• ROCT-N: We set max depth to 2 and time limit to 1800. ROCT-N defines a robustness budget with

a cost budget and confidence value. We set confidence value for each feature to be 90%, matching
the 0.1 attack strength.

Note that both ROCT-V and ROCT-N are optimal algorithms with computationally expensive opti-
mization processes, thus they are not tuned.

A.1.2 Results

Table 6 shows the test accuracy of all models on 8 datasets we used in adversarial robustness
experiments. Trees within the Rashomon set (e.g., RSET_opt and RSET_max) perform competitively
and often achieve the highest test accuracy (shown in bold). In contrast, robust tree models such
as GROOT, ROCT-N, and ROCT-V generally have lower accuracy as their robustness-focused
optimization comes at the cost of predictive performance.

Table 7 shows accuracy on adversarial samples generated from the test dataset. The highest adversarial
accuracy for each dataset is in bold. In our setup, the attack targets the optimal tree in the Rashomon
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Table 6: Comparison of test accuracy across all methods. The highest accuracy for each dataset is
bolded. Trees within the Rashomon set consistently achieve competitive performance.

CART FPRDT GROOT ROCT-V ROCT-N RSET_opt RSET_min RSET_max RSET_kan

banknote 0.950 ± 0.016 0.908 ± 0.009 0.838 ± 0.098 0.908 ± 0.009 0.913 ± 0.013 0.953 ± 0.029 0.937 ± 0.025 0.955 ± 0.029 0.963 ± 0.021
blood 0.795 ± 0.011 0.762 ± 0.004 0.762 ± 0.003 0.766 ± 0.004 0.762 ± 0.003 0.770 ± 0.013 0.762 ± 0.003 0.765 ± 0.054 0.758 ± 0.044
breast-w 0.936 ± 0.014 0.946 ± 0.013 0.941 ± 0.021 0.950 ± 0.012 0.950 ± 0.014 0.952 ± 0.012 0.934 ± 0.032 0.944 ± 0.026 0.941 ± 0.021
compas 0.666 ± 0.014 0.561 ± 0.010 0.558 ± 0.009 0.552 ± 0.013 0.653 ± 0.015 0.672 ± 0.010 0.645 ± 0.016 0.672 ± 0.015 0.664 ± 0.020
diabetes 0.749 ± 0.017 0.647 ± 0.008 0.646 ± 0.007 0.650 ± 0.005 0.695 ± 0.043 0.738 ± 0.026 0.738 ± 0.026 0.728 ± 0.040 0.742 ± 0.028
fico 0.705 ± 0.013 0.540 ± 0.011 0.534 ± 0.007 0.522 ± 0.000 0.653 ± 0.078 0.708 ± 0.009 0.697 ± 0.008 0.709 ± 0.015 0.684 ± 0.014
spambase 0.892 ± 0.008 0.734 ± 0.027 0.663 ± 0.035 0.648 ± 0.028 0.819 ± 0.009 0.900 ± 0.004 0.868 ± 0.020 0.905 ± 0.005 0.895 ± 0.009
wine-quality 0.744 ± 0.007 0.635 ± 0.001 0.633 ± 0.000 0.634 ± 0.002 0.633 ± 0.000 0.731 ± 0.009 0.730 ± 0.006 0.744 ± 0.013 0.735 ± 0.004

Table 7: Comparison of test accuracy on adversarial samples. The highest accuracy for each dataset
is in bold. The optimal tree RSET_opt in the Rashomon set is attacked and RSET_kan is the model
within the Rashomon set selected from the selection set.

CART FPRDT GROOT ROCT-V ROCT-N RSET_opt RSET_min RSET_max RSET_kan

banknote 0.544 ± 0.050 0.665 ± 0.023 0.642 ± 0.055 0.665 ± 0.023 0.612 ± 0.071 0.598 ± 0.033 0.785 ± 0.110 0.814 ± 0.088 0.938 ± 0.016
blood 0.385 ± 0.041 0.759 ± 0.004 0.762 ± 0.003 0.761 ± 0.007 0.762 ± 0.003 0.544 ± 0.173 0.762 ± 0.003 0.661 ± 0.143 0.739 ± 0.035
breast-w 0.833 ± 0.027 0.931 ± 0.012 0.930 ± 0.018 0.937 ± 0.017 0.900 ± 0.017 0.893 ± 0.043 0.912 ± 0.041 0.930 ± 0.036 0.940 ± 0.020
compas 0.184 ± 0.030 0.543 ± 0.010 0.558 ± 0.009 0.326 ± 0.209 0.193 ± 0.154 0.195 ± 0.015 0.583 ± 0.019 0.485 ± 0.103 0.667 ± 0.022
diabetes 0.477 ± 0.151 0.645 ± 0.013 0.642 ± 0.015 0.637 ± 0.015 0.540 ± 0.126 0.439 ± 0.098 0.719 ± 0.026 0.651 ± 0.066 0.728 ± 0.031
fico 0.224 ± 0.024 0.525 ± 0.005 0.532 ± 0.007 0.522 ± 0.000 0.394 ± 0.083 0.263 ± 0.010 0.561 ± 0.082 0.500 ± 0.028 0.680 ± 0.010
spambase 0.000 ± 0.000 0.653 ± 0.015 0.631 ± 0.015 0.616 ± 0.010 0.031 ± 0.040 0.083 ± 0.106 0.634 ± 0.116 0.490 ± 0.091 0.894 ± 0.007
wine-q 0.198 ± 0.018 0.632 ± 0.002 0.633 ± 0.000 0.633 ± 0.000 0.633 ± 0.000 0.355 ± 0.030 0.487 ± 0.165 0.647 ± 0.034 0.719 ± 0.032

set, so it often has lower adversarial accuracy. However, many other trees within the Rashomon set
remain robust. RSET_kan achieves the highest accuracy on most datasets, indicating that the selected
trees can provide both robustness and accurate predictions.

Table 8: Adversarial accuracy of different Rashomon set trees when the attack targets a randomly
selected tree instead of the optimal tree.

Dataset RSET_opt RSET_min RSET_max RSET_kan

banknote 0.772 ± 0.066 0.767 ± 0.076 0.794 ± 0.08 0.812 ± 0.046
blood 0.71 ± 0.089 0.762 ± 0.003 0.485 ± 0.076 0.639 ± 0.085
breast-w 0.726 ± 0.266 0.918 ± 0.027 0.946 ± 0.018 0.911 ± 0.034
compas 0.529 ± 0.081 0.389 ± 0.152 0.503 ± 0.052 0.472 ± 0.087
diabetes 0.71 ± 0.037 0.716 ± 0.054 0.693 ± 0.063 0.706 ± 0.061
fico 0.564 ± 0.054 0.547 ± 0.044 0.576 ± 0.079 0.64 ± 0.043
spambase 0.764 ± 0.119 0.853 ± 0.013 0.708 ± 0.112 0.665 ± 0.121
wine-quality 0.604 ± 0.059 0.609 ± 0.056 0.583 ± 0.078 0.57 ± 0.072

We also investigate how different representative trees within the Rashomon set perform when the
attack targets a randomly selected tree rather than the optimal tree. Table 8 shows that attacking
different random trees from the Rashomon set leads to different robustness performances of represen-
tative trees. In some cases, RSET_kan, the model chosen from the selection set, achieves the highest
accuracy. However, in most cases, RSET_min, the tree with the fewest leaves, outperforms the others.
This finding suggests that sparser trees tend to be more robust against adversarial attacks compared to
their more complex counterparts, such as RSET_max, as we discussed in Section 4.3.

Figure 4 compares the adversarial accuracy of trees within the Rashomon set to various baseline
models on the test set. This figure expands on the discussion in Section 4.1. The light blue density
plot represents the distribution of adversarial accuracy for all trees in the Rashomon set or a random
subsample of 100,000 trees of the Rashomon set, whichever is smaller. Vertical lines indicate the
accuracy of baseline models, including CART, FPRDT, GROOT, ROCT-V, and ROCT-N, as well as
specific Rashomon set trees such as the optimal tree (RSET_opt), the sparsest tree (RSET_min), the
most complex tree (RSET_max), and RSET_kan, a tree selected from the held-out validation set.

As we can see, many trees within the Rashomon set achieve higher accuracy than the baselines,
indicating their robustness against adversarial attacks. This suggests that careful selection within
the Rashomon set can yield robust models for critical tasks facing adversarial attacks, as attackers
cannot possibly generate 100,000 distinct adversarial examples. Additionally, these density plots
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Table 9: Percentage of RSET trees outperforming baseline models for Test Adv Accuracy (mean ±
std across folds)

dataset ALL FPRDT ROCT-V

banknote 95.5 ± 6.0% 95.5 ± 6.0% 95.5 ± 6.0%
blood 26.9 ± 40.4% 28.5 ± 39.6% 26.9 ± 40.4%
breast-w 54.9 ± 35.9% 63.0 ± 38.8% 62.8 ± 29.8%
compas 27.4 ± 8.2% 27.4 ± 8.1% 68.4 ± 39.6%
diabetes 50.3 ± 30.2% 51.6 ± 29.8% 53.9 ± 27.4%
fico 59.2 ± 12.6% 59.5 ± 12.1% 60.5 ± 13.8%
spambase 39.3 ± 18.9% 39.3 ± 18.9% 45.1 ± 18.7%
wine-quality 45.4 ± 15.5% 46.2 ± 15.9% 45.5 ± 15.6%

highlight areas for improving our selection metric. For instance, while the selected Rashomon set
tree performs best on certain datasets, it does not always achieve the best performance in others (e.g.,
breast cancer). This finding might inspire future research on developing better selection criteria.

Figure 4: Comparison of adversarial accuracy between trees in the Rashomon set (light blue his-
togram) and baseline models (vertical lines) on the test set. Most Rashomon set trees achieve higher
robustness than baselines.

Table 9 extends Table 3 in Section 4.2, reporting the percentage of trees within the Rashomon set that
outperform the baseline models on the test set. Across all datasets, the Rashomon set includes trees
that achieve higher adversarial accuracy than the baselines. In certain cases, such as banknote and
fico datasets, nearly 80% of trees in the Rashomon set achieve higher test adversarial accuracy than
FPRDT and ROCT-V.

A.2 Stability

A.2.1 Setup

To ensure stability, we evaluate our models on the same 8 datasets used in the adversarial robustness
experiments (Table 5). We consider five different noise perturbations, briefly introduced in Section

20



Table 10: Training Time for RSET and Optimal Robust Tree Baselines.
ROCT-V ROCT-N RSET

banknote 1800.781 ± 0.035 1810.124 ± 6.608 17.895 ± 12.102
blood 977.194 ± 295.281 1809.429 ± 3.032 2.782 ± 2.876
breast-w 352.586 ± 76.484 1810.625 ± 11.337 16.391 ± 21.468
compas 1802.747 ± 0.247 1840.383 ± 15.924 29.072 ± 15.638
diabetes 1800.526 ± 0.042 1817.740 ± 11.857 68.044 ± 69.641
fico 1806.438 ± 0.474 1863.387 ± 37.000 481.208 ± 280.406
spambase 1861.620 ± 77.444 1842.396 ± 21.302 365.972 ± 255.280
wine-quality 1803.188 ± 0.334 1830.481 ± 24.930 134.246 ± 123.406

3.2. Additionally, threshold guessing is applied to all datasets to generate a binary dataset. Same
hyperparameter tuning as the adversarial robustness section is applied.

For baselines that require an attack strength specification, we set their budget to 10% by default. This
choice is justified by the expected perturbation value for noise, which is approximately 11%. This
value is derived from the expectation of a geometric distribution, 1

qjt
, where the expected value of qjt

corresponds to the mean of our normal distribution, which is 0.9. Thus, using a 10% budget ensures
consistency with the setup used in other sections.

For each perturbation, we conduct 5000 repeated trials, resampling the noise in each iteration while
maintaining the fixed confidence level. We compute the average and worst-case scores and record the
standard deviation of the results. This process is repeated across five folds.

A.2.2 Results

Figure 5 and Figure 6 visualize the stability performance of trees across 8 datasets under five different
types of noise perturbations. Note that only ROCT-N explicitly accounts for these perturbations during
training. As shown in the figures, different representative trees from the Rashomon set (bars colored
in blue palette) are generally comparable to other baselines. This indicates that while the Rashomon
set is not explicitly designed for stability, it contains trees that perform well under perturbations.
Interestingly, CART also performs well for stability. We believe that the similar stability performance
may be due to intrinsic tree properties.

Training Time: Time consumption is an important metric to consider when evaluating model
performance. We investigate whether TreeFARMS’ consistently strong results come at the cost of
significantly longer training times. Table 10 reports the training time (in seconds) for each method in
the adversarial robustness setting. Greedy methods are not included as CART, FPRDT, and GROOT
complete training quickly due to their heuristic-based construction. In contrast, ROCT-N, ROCT-V,
and TreeFARMS aim to find globally optimal solutions, which are NP-hard problems. As a result,
ROCT-N and ROCT-V often reach or nearly approach the 1,800-second time limit. TreeFARMS
(RSET) usually completes training within a reasonable time frame. Note that the table shows training
latency – for example, ROCT-N continues processing beyond the time limit before terminating.

B Experiments: Privacy

B.1 Membership Inference Attack

B.1.1 Setup

We evaluate the membership inference attack on seven datasets, see Table 11 for details. As
before, we apply GOSDT threshold guessing to binarize continuous dataset using n_estimator=30,
max_depth=2, and learning_rate=0.1 with back select.

We perform five-fold cross-validation with hyper-parameter tuning. For all methods, we tune max
depth of [2, 3, 4] and regularization parameters [0.005, 0.01, 0.015, 0.02]. To be more specific, we
tune the following:

• TreeFARMS: For regularization, we tune TreeFARMS λ = [0.005, 0.01, 0.015, 0.02]. To select
representative models for evaluation, we evaluate the optimal model (RSET_opt) and also consider
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Figure 5: Comparison of average stability accuracy across different methods under 5 perturbation
types. Error bars represent the average standard deviation across 5000 trials over five folds.

Table 11: Summary of datasets used for Membership Inference Attack Evaluation.
Dataset # Inst. # Feat. % Pos.

adult [23] 45222 18 24.8%
bank [66] 45211 47 11.7%
cal-h [69] 20634 8 50.0%
compas [51] 6172 10 54.5%
credit-fusion [31] 16714 10 50.0%
fico [27] 10459 23 52.2%
oulad [50] 21562 46 68.0%

the minimum- and maximum-leaf trees, choosing the highest-validation-accuracy tree among each
to obtain RSET_min and RSET_max.

• PRIVA: For regularization, we tune min sample leaf to be [0.005, 0.01, 0.015, 0.02] ∗ n where n is
the number of samples when fitting the models. Similarly, min sample split would just be double of
min sample leaf. For privacy threshold η1, we set it to 0.1.

• BDPT: We tune min sample split as [0.005, 0.01, 0.015, 0.02] ∗ 2n. We further set the privacy
threshold η1 to 0.1.

• DPLDT: We set the privacy η1 threshold to 0.1. DPLDT does not have a regularization parameter.

Both DPLDT and BDPT were designed as base estimators for random forest, but we evaluate whether
a single estimator can provide sufficient privacy against membership inference attacks.

B.1.2 Results

Table 12 presents the standard test accuracy of different methods, including greedy tree CART, differ-
entially private trees BDPT, DPLDT, and PRIVA, and representative trees within the Rashomon set.
The highest accuracy for each dataset is bolded. The results show that trees within the Rashomon set
(especially RSET_max) usually achieve higher test accuracy compared to all baselines. Differentially
private trees often underperform. This is likely due to their reliance on randomized splitting or noise
injection during training, which introduces additional variability and reduces accuracy.
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Figure 6: Comparison of worst-case stability accuracy across different methods under 5 perturbation
types. Error bars represent the standard deviation across five folds.

Table 12: Comparison of test accuracy between differentially private tree models and trees within the
Rashomon set.

CART BDPT DPLDT PRIVA RSET_opt RSET_min RSET_max

adult 0.832 ± 0.009 0.752 ± 0.000 0.752 ± 0.000 0.789 ± 0.028 0.837 ± 0.005 0.794 ± 0.002 0.838 ± 0.005
bank 0.894 ± 0.003 0.883 ± 0.000 0.883 ± 0.000 0.884 ± 0.007 0.893 ± 0.002 0.883 ± 0.000 0.897 ± 0.003
cal-h 0.780 ± 0.004 0.500 ± 0.000 0.763 ± 0.013 0.716 ± 0.029 0.816 ± 0.010 0.769 ± 0.013 0.825 ± 0.013
compas 0.663 ± 0.007 0.545 ± 0.000 0.641 ± 0.011 0.606 ± 0.040 0.663 ± 0.006 0.643 ± 0.017 0.666 ± 0.005
credit 0.750 ± 0.005 0.500 ± 0.000 0.722 ± 0.006 0.701 ± 0.028 0.762 ± 0.006 0.729 ± 0.014 0.760 ± 0.007
fico 0.711 ± 0.007 0.522 ± 0.000 0.687 ± 0.013 0.675 ± 0.030 0.706 ± 0.006 0.699 ± 0.005 0.714 ± 0.010
oulad 0.681 ± 0.002 0.673 ± 0.000 0.673 ± 0.000 0.672 ± 0.001 0.673 ± 0.000 0.673 ± 0.000 0.686 ± 0.004

Tables 13 - 16 report the accuracy of four different attacks, ordered from weakest to strongest:
baseline attack, label-only inference attacks, label-sup inference attack, and shadow model attack. A
lower value indicates that the method is more resistant to attacks.

Table 13: Rule-based MIA success rates for different methods. Lower values imply better privacy.
CART BDPT DPLDT PRIVA RSET_opt RSET_min RSET_max

adult 0.506 ± 0.014 0.513 ± 0.012 0.513 ± 0.012 0.505 ± 0.018 0.502 ± 0.012 0.509 ± 0.017 0.502 ± 0.011
bank 0.499 ± 0.004 0.499 ± 0.008 0.498 ± 0.007 0.499 ± 0.011 0.511 ± 0.019 0.508 ± 0.015 0.510 ± 0.015
cal-h 0.505 ± 0.016 0.510 ± 0.014 0.504 ± 0.013 0.499 ± 0.011 0.502 ± 0.009 0.499 ± 0.006 0.504 ± 0.009
compas 0.517 ± 0.006 0.507 ± 0.006 0.514 ± 0.010 0.515 ± 0.011 0.500 ± 0.010 0.494 ± 0.016 0.501 ± 0.014
credit 0.514 ± 0.008 0.496 ± 0.006 0.509 ± 0.012 0.510 ± 0.013 0.503 ± 0.009 0.505 ± 0.017 0.502 ± 0.014
fico 0.489 ± 0.009 0.483 ± 0.008 0.486 ± 0.011 0.490 ± 0.014 0.504 ± 0.017 0.502 ± 0.012 0.506 ± 0.018
oulad 0.500 ± 0.006 0.496 ± 0.006 0.496 ± 0.006 0.496 ± 0.006 0.502 ± 0.019 0.502 ± 0.019 0.498 ± 0.018

Overall, these attacks are not successful as the highest observed accuracy remains close to 0.5 in all
four tables, meaning the attacker does not significantly outperform random guessing. Compared to 3
differential private tree methods, trees from the Rashomon set with the fewest leaves (RSET_min)
achieve comparable or even better resistance against both attacks, despite the fact that the TreeFARMS
algorithm does not incorporate any explicit randomness for privacy protection.
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Table 14: Label-only unsupervised MIA success rates for different methods. Lower values imply
better privacy. Attack failed when no effective perturbation was found.

CART BDPT DPLDT PRIVA RSET_opt RSET_min RSET_max

adult 0.506 ± 0.014 Attk Failed 0.513 ± 0.012 0.498 ± 0.010 0.502 ± 0.012 0.509 ± 0.017 0.502 ± 0.011
bank 0.499 ± 0.004 Attk Failed Attk Failed 0.503 ± 0.011 0.511 ± 0.019 Attk Failed 0.510 ± 0.015
cal-h 0.505 ± 0.016 Attk Failed 0.504 ± 0.011 0.497 ± 0.013 0.502 ± 0.009 0.499 ± 0.006 0.504 ± 0.009
compas 0.517 ± 0.006 Attk Failed 0.517 ± 0.010 0.513 ± 0.012 0.500 ± 0.010 0.494 ± 0.016 0.501 ± 0.014
credit 0.514 ± 0.008 Attk Failed 0.504 ± 0.010 0.507 ± 0.015 0.503 ± 0.009 0.505 ± 0.017 0.502 ± 0.014
fico 0.489 ± 0.009 Attk Failed 0.501 ± 0.012 0.500 ± 0.009 0.504 ± 0.017 0.502 ± 0.012 0.506 ± 0.018
oulad 0.500 ± 0.006 Attk Failed Attk Failed Attk Failed Attk Failed Attk Failed 0.498 ± 0.018

Table 15: Label-only supervised MIA success rates for different methods. Lower values imply better
privacy.

CART BDPT DPLDT PRIVA RSET_opt RSET_min RSET_max

adult 0.505 ± 0.009 0.500 ± 0.000 0.512 ± 0.020 0.494 ± 0.011 0.503 ± 0.007 0.509 ± 0.017 0.503 ± 0.005
bank 0.501 ± 0.007 0.500 ± 0.000 0.499 ± 0.007 0.494 ± 0.006 0.511 ± 0.019 0.500 ± 0.000 0.507 ± 0.012
cal-h 0.505 ± 0.013 0.500 ± 0.000 0.497 ± 0.012 0.504 ± 0.010 0.499 ± 0.008 0.496 ± 0.004 0.503 ± 0.004
compas 0.504 ± 0.009 0.500 ± 0.000 0.516 ± 0.013 0.502 ± 0.008 0.497 ± 0.006 0.492 ± 0.007 0.494 ± 0.012
credit 0.505 ± 0.009 0.500 ± 0.000 0.502 ± 0.007 0.509 ± 0.018 0.500 ± 0.007 0.502 ± 0.017 0.498 ± 0.011
fico 0.500 ± 0.011 0.500 ± 0.000 0.486 ± 0.005 0.491 ± 0.014 0.512 ± 0.007 0.502 ± 0.012 0.508 ± 0.008
oulad 0.499 ± 0.006 0.500 ± 0.000 0.500 ± 0.000 0.503 ± 0.004 0.500 ± 0.000 0.500 ± 0.000 0.492 ± 0.014

B.2 Machine Unlearning

B.2.1 Setup

We evaluate TreeFARMS, DaRE, and GBDT unlearning on 5 datasets: adult, bank, carryout, compas,
and restaurant. Note that adult, compas, and bank datasets are binarized, while carryout and restaurant
are real-valued. Details are shown in Table 17. The datasets are split into training and test sets using
an 80-20 split. All methods are fitted on the training set after hyperparameters have been tuned based
on the configurations described:

• TreeFARMS: We tune depth=[2,3,4] and λ = [0.01, 0.005, 0.001].
• DaRE: We first fix the number of random layers to 0 and tune G-DaRE, considering the maximum

tree depth [1,3,5,10,20], the number of trees [10,25,50,100,250], and the number of threshold
values per attribute [5,10,25,50]. After identifying the best configuration for G-DaRE, we tune the
number of random layers from 1 to 10, stopping when the cross-validation score exceeds a 0.5%
tolerance compared to the greedy model for R-DaRE.

• GBDT unlearning: Similar to DaRE, we first ignore random layers and tune the maximum number
of leaves [5,10,15,20] and feature sampling rate [0.05, 0.1, 0.5, 1] for G-Boosting. We then tune
the number of random layers from 1 to 4.

Note that constructing the Rashomon set is NP-hard, so we apply GOSDT threshold guessing with
n_estimator=30, max_depth=2, learning_rate=0.1, backselect=True [63] when fitting TreeFARMS on
carryout and restaurant datasets.

We randomly remove 0.5%, 1%, and 2% of training samples 10 times and compare the results
of unlearning with those of retraining for each method. Note that we only need to construct one
Rashomon set from TreeFARMS by setting ϵ = 0.04.

Table 16: Shadow MIA success rates for different methods. Lower values imply better privacy.
CART BDPT DPLDT PRIVA RSET_opt RSET_min RSET_max

adult 0.492 ± 0.012 0.492 ± 0.017 0.492 ± 0.017 0.496 ± 0.013 0.500 ± 0.018 0.502 ± 0.022 0.501 ± 0.020
bank 0.490 ± 0.004 0.496 ± 0.006 0.498 ± 0.004 0.495 ± 0.005 0.505 ± 0.009 0.508 ± 0.014 0.509 ± 0.015
cal-h 0.499 ± 0.019 0.489 ± 0.011 0.491 ± 0.018 0.495 ± 0.013 0.503 ± 0.020 0.491 ± 0.020 0.504 ± 0.021
compas 0.500 ± 0.017 0.498 ± 0.010 0.506 ± 0.020 0.501 ± 0.011 0.504 ± 0.020 0.506 ± 0.016 0.508 ± 0.015
credit 0.504 ± 0.019 0.506 ± 0.003 0.506 ± 0.015 0.502 ± 0.009 0.501 ± 0.005 0.500 ± 0.006 0.503 ± 0.004
fico 0.489 ± 0.010 0.496 ± 0.020 0.493 ± 0.011 0.490 ± 0.011 0.498 ± 0.020 0.509 ± 0.015 0.492 ± 0.017
oulad 0.508 ± 0.022 0.503 ± 0.007 0.502 ± 0.007 0.503 ± 0.007 0.490 ± 0.016 0.490 ± 0.016 0.492 ± 0.014
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Table 17: Summary of datasets used for Machine Unlearning Evaluation.
Dataset # Inst. # Feat. % Pos.

adult [23] 45222 18 24.8%
bank [66] 45211 47 11.7%
carryout [86] 2280 22 73.77%
compas [51] 6172 10 54.5%
restaurant [86] 2653 22 70.90%

B.2.2 Results

Table 18 is a complete version of Table 2. It shows the proportion of test data with different predicted
labels between the unlearned and retrained models for the Rashomon set, G-DaRE, R-DaRE, G-
Boosting, and R-Boosting. Since the Rashomon set has a theoretical guarantee that the optimal tree
for the reduced dataset remains within the set after a subset of the training data is removed, the RSET
column always reports 0. However, other methods do not have this guarantee.

Table 18: Proportion of test data with different predicted labels between the unlearned and retrained
models (i.e., ŷunlearn ̸= ŷretrain) after a subset of the original data is randomly removed. The Rashomon
set achieves the lowest mismatch loss, as it is guaranteed to contain the optimal tree trained after a
certain proportion of samples are removed.

Dataset unlearn size RSET G-DARE R-DARE G-Boosting R-Boosting

carryout
0.5% 0% 1.272% ± 0.611% 1.601% ± 0.529% 5.680% ± 0.385% 2.961% ± 0.660%
1% 0% 1.294% ± 0.465% 1.601% ± 0.510% 5.548% ± 0.741% 3.224% ± 0.844%
2% 0% 1.469% ± 0.501% 1.689% ± 0.393% 4.978% ± 1.334% 3.662% ± 1.233%

restaurant
0.5% 0% 2.015% ± 0.267% 1.620% ± 0.388% 4.708% ± 0.834% 4.087% ± 0.513%
1% 0% 1.902% ± 0.433% 1.808% ± 0.493% 4.746% ± 0.623% 3.691% ± 0.847%
2% 0% 2.147% ± 0.349% 1.846% ± 0.582% 4.501% ± 0.755% 3.974% ± 0.865%

adult
0.5% 0% 0.008% ± 0.007% 0.066% ± 0.037% 0.052% ± 0.019% 0.170% ± 0.170%
1% 0% 0.018% ± 0.013% 0.067% ± 0.047% 0.064% ± 0.027% 0.175% ± 0.165%
2% 0% 0.010% ± 0.014% 0.060% ± 0.036% 0.051% ± 0.024% 0.238% ± 0.166%

compas
0.5% 0% 0.000% ± 0.000% 0.000% ± 0.000% 0.470% ± 0.198% 1.741% ± 1.599%
1% 0% 0.000% ± 0.000% 0.000% ± 0.000% 0.478% ± 0.543% 1.895% ± 1.422%
2% 0% 0.000% ± 0.000% 0.000% ± 0.000% 0.810% ± 0.871% 1.879% ± 1.608%

bank
0.5% 0% 0.587% ± 0.117% 0.201% ± 0.040% 0.911% ± 0.099% 1.081% ± 0.157%
1% 0% 0.607% ± 0.103% 0.248% ± 0.033% 0.888% ± 0.096% 1.006% ± 0.105%
2% 0% 0.631% ± 0.077% 0.289% ± 0.055% 0.850% ± 0.139% 1.066% ± 0.124%

Another important metric in machine unlearning experiments is time consumption. Table 19 compares
the unlearning time and retraining time for each method after different proportions of the training
data are removed in seconds. In general, unlearning is faster than retraining for all methods, and the
timing is fairly comparable across different methods. Additionally, removing fewer samples results in
faster unlearning times. In some cases, retraining may be faster than unlearning for the Rashomon set.
This is because unlearning in the Rashomon set is actually a search process. When the Rashomon
set is large, and the proportion of removed data is high, more models within the set may need to be
evaluated to identify the optimal one, leading to a longer learning time.
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C Experiments: Fairness

Table 20: Summary of datasets used for Fairness Evaluation.
Dataset # Inst. # Feat. % Pos. Sens. Feat. Sens. %

adult [23] 45222 18 24.8% Sex 32.5%
bank [66] 45211 47 11.7% marital 39.8%
compas [51] 6172 10 54.5% Race 65.9%
german-credit [23] 1000 70 70.0% Gender 31.0%
oulad [50] 21562 46 68.0% gender:M 46.4%
student-por [16] 649 56 84.6% Sex 59.0%

C.1 Setup

We ran fairness experiments on 6 datasets: adult, bank, compas, german-credit, oulad, and student-por.
Details are shown in Table 20. They are all binarized datasets. The datasets are split into training,
selection, and test sets using a 70-10-20 split. One note is that we follow the convention of dropping
the sensitive feature before training on TreeFARMS. The selection set is used to (1) find representative
trees from the Rashomon set under different criteria (2) apply the post-processing step for PostCART
and PostGBT.

Note that FOCT and post-processing methods optimize all three fairness metrics, while DPF works
only with statistical parity. We ran experiments 5 times and reported the mean and standard deviation
for every method and dataset.

We configure each method as follows:

• TreeFARMS: We construct the Rashomon set with depth=[2,3,4], λ = 0.01, ϵ = 0.05 and select
the best tree that maximizes the fairness parity score and validation accuracy.

• DPF: We train trees with depth=[2,3,4].
• FOCT: We train trees with depth=[2,3,4] and regularization λ = 0.01.
• PostCART: We train CART with depth=[2,3,4] and the minimum sample per leaf is set to 1% of

the training sample size.
• PostGBT: We train GBT with depth=[2,3,4] and minimum sample per leaf=1% of the training

sample size.

For fairness parameters, we sweep through values between [0, 1] roughly in a log-
arithmic scale. For post-processing methods and DPF, we consider these values:
[0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 1]. For FOCT, due to its lengthy
optimization process, and its optimal behavior, close parameters lead to the same tree, so we only
sweep through [0.001, 0.01, 0.1, 1].

C.2 Results

For each dataset, depth, and fairness metric, we display the performance of the entire Rashomon set
and baseline trees evaluated on the test set (Figures 7-9). For fairness baselines, the models across
five folds are plotted as scatter plots with different markers. For TreeFARMS, models across five
folds are plotted using kernel density estimation to generate the blue contours of the distribution of
the Rashomon set. On the x-axis, we plot fairness parity, and on the y-axis, we plot accuracy.

While the Rashomon set typically contains trees generated by baseline methods, we observe cases
where it fails to capture all baseline models. We identify two scenarios where this occurs. First, the
Rashomon set may exclude models that sacrifice significant accuracy to satisfy fairness constraints.
This is evident in the compas dataset, where optimal fair trees (such as DPF and FOCT) successfully
navigate this tradeoff but fall outside the Rashomon set.

Second, at depth 2, the Rashomon set appears too constrained to include the higher-performing
models produced by postGBT. We observe this in the adult and oulad datasets, where postGBT’s
complex architecture and ensemble nature allow it to outperform the simpler trees within the set. In
both cases, these exclusions illustrate fundamental tradeoffs in machine learning: the tension between
fairness and accuracy, and the balance between complexity and interpretability.
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Figure 7: Comparison of test accuracy and fairness between trees in the Rashomon set at depth 2

Table 21: Percentage of RSET trees performing equally or better than ALL baseline models at depth
2 (mean ± std across folds)

Dataset Statistical Parity Equal Opportunity Equalized Odds

adult 4.2 ± 3.5% 3.5 ± 3.6% 1.0 ± 0.1%
bank 0.8 ± 0.5% 1.3 ± 0.6% 0.8 ± 0.5%
compas 0.0 ± 0.0% 6.7 ± 10.4% 0.0 ± 0.0%
german-credit 9.1 ± 9.7% 13.7 ± 12.3% 11.3 ± 14.5%
oulad 6.6 ± 3.6% 7.1 ± 3.6% 6.6 ± 3.6%
student-por 34.0 ± 40.9% 3.5 ± 2.1% 22.6 ± 27.4%
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Figure 8: Comparison of test accuracy and fairness between trees in the Rashomon set at depth 3

Table 22: Percentage of RSET trees performing equally or better than ALL baseline models at depth
3 (mean ± std across folds)

Dataset Statistical Parity Equal Opportunity Equalized Odds

adult 0.5 ± 0.4% 24.3 ± 12.6% 9.7 ± 5.4%
bank 96.3 ± 2.7% 54.3 ± 29.5% 60.0 ± 18.6%
compas 0.1 ± 0.1% 1.4 ± 2.3% 3.3 ± 4.4%
german-credit 45.1 ± 30.5% 43.0 ± 24.8% 24.6 ± 15.8%
oulad 60.7 ± 19.5% 63.3 ± 20.2% 64.3 ± 6.3%
student-por 27.2 ± 24.0% 33.7 ± 21.3% 38.0 ± 21.8%
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Figure 9: Comparison of test accuracy and fairness between trees in the Rashomon set at depth 4

Table 23: Percentage of RSET trees performing equally or better than ALL baseline models at depth
4 (mean ± std across folds)

Dataset Statistical Parity Equal Opportunity Equalized Odds

adult 0.0 ± 0.0% 10.6 ± 9.1% 0.4 ± 0.3%
bank 98.1 ± 1.1% 44.8 ± 11.3% 46.3 ± 10.6%
compas 0.0 ± 0.0% 2.5 ± 5.5% 0.0 ± 0.0%
german-credit 43.4 ± 31.1% 37.1 ± 31.5% 30.5 ± 22.9%
oulad 48.3 ± 22.1% 39.5 ± 20.5% 73.8 ± 3.4%
student-por 25.2 ± 32.5% 34.4 ± 17.0% 14.4 ± 13.2%
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Besides visualization, we also show some quantitative results. Tables 21, 22, 23 display the percentage
of trees in the Rashomon set that perform equally or better than all baselines at different configurations
on the test data. We notice that other than adult and compas datasets, a sizable portion of trees within
the Rashomon sets outperform all baselines at depth 3 and 4. We also observe that as we increase the
depth of trees, the Rashomon set is able to generate superior trees more consistently. However, note
that some of these performances have high variance. Nevertheless, for many datasets the Rashomon
set contains trees that are fairer than baselines.

We also show examples of comparing model-to-model here. Following the settings in [79], we use
alpha of 0.3 for post-processing methods and delta of 0.01 for DPF and FOCT. For TreeFARMS, we
select the fair tree by maximizing accuracy + 0.3∗ fairness parity on the validation set. We also show
the optimal tree in comparison.

We show the statistical parity and accuracy on the test set in Table 24 for depth 2 and Table 25 and 26
for depth 3 and 4. We also show this for equal opportunity in Table 30-32, and equalized odds in
Table 27-29.

31



Ta
bl

e
24

:T
es

tp
ar

ity
sc

or
e

in
st

at
is

tic
al

pa
ri

ty
(S

P)
an

d
ac

cu
ra

cy
(A

cc
)f

or
th

e
sp

ar
se

de
ci

si
on

tr
ee

s
w

ith
de

pt
h

lim
it

2.
M

od
el

C
A

R
T

PO
ST

_C
A

R
T

PO
ST

_G
B

T
D

PF
FO

C
T

R
SE

T
_s

p
R

SE
T

_o
pt

M
et

ri
c

SP
A

cc
SP

A
cc

SP
A

cc
SP

A
cc

SP
A

cc
SP

A
cc

SP
A

cc

ad
ul

t
0.

77
6
±

0.
04

2
0.

81
2
±

0.
00

7
0.

91
7
±

0.
01

8
0.

77
8
±

0.
00

6
0.

92
4
±

0.
00

9
0.

81
1
±

0.
00

4
0.

92
7
±

0.
00

4
0.

79
3
±

0.
00

2
0.

98
6
±

0.
02

7
0.

33
0
±

0.
07

7
0.

94
9
±

0.
01

4
0.

80
1
±

0.
00

2
0.

81
2
±

0.
00

8
0.

80
8
±

0.
00

3
ba

nk
0.

98
5
±

0.
00

4
0.

89
4
±

0.
00

4
0.

98
5
±

0.
00

4
0.

89
4
±

0.
00

3
0.

98
8
±

0.
00

7
0.

89
8
±

0.
00

2
0.

99
3
±

0.
00

2
0.

89
4
±

0.
00

2
1.

00
0
±

0.
00

0
0.

11
7
±

0.
00

0
0.

99
2
±

0.
00

3
0.

89
5
±

0.
00

2
0.

99
6
±

0.
00

5
0.

88
6
±

0.
00

5
co

m
pa

s
0.

85
1
±

0.
04

6
0.

63
8
±

0.
00

7
0.

91
2
±

0.
03

4
0.

60
2
±

0.
00

7
0.

93
0
±

0.
01

1
0.

61
3
±

0.
00

7
0.

92
6
±

0.
01

7
0.

60
5
±

0.
00

6
0.

93
9
±

0.
01

6
0.

58
5
±

0.
01

1
0.

85
5
±

0.
03

3
0.

65
0
±

0.
01

4
0.

84
4
±

0.
02

7
0.

66
3
±

0.
00

6
ge

rm
an

-c
re

di
t

0.
98

7
±

0.
02

9
0.

70
5
±

0.
01

1
0.

98
7
±

0.
02

9
0.

70
5
±

0.
01

1
0.

92
4
±

0.
01

8
0.

74
5
±

0.
02

4
0.

94
9
±

0.
03

8
0.

71
1
±

0.
04

3
0.

96
5
±

0.
01

8
0.

70
7
±

0.
02

7
0.

97
3
±

0.
01

7
0.

68
5
±

0.
02

6
0.

96
0
±

0.
02

3
0.

71
1
±

0.
04

0
ou

la
d

0.
99

1
±

0.
01

3
0.

67
4
±

0.
00

3
0.

99
2
±

0.
01

1
0.

67
4
±

0.
00

2
0.

97
9
±

0.
01

4
0.

68
7
±

0.
00

7
0.

97
7
±

0.
00

8
0.

67
7
±

0.
00

3
0.

99
4
±

0.
01

1
0.

64
1
±

0.
04

4
0.

98
3
±

0.
01

1
0.

67
6
±

0.
00

2
1.

00
0
±

0.
00

0
0.

67
3
±

0.
00

0
st

ud
en

t-
po

r
0.

92
0
±

0.
03

7
0.

92
8
±

0.
01

0
0.

92
7
±

0.
04

0
0.

91
8
±

0.
01

2
0.

93
2
±

0.
04

6
0.

90
3
±

0.
01

5
0.

92
4
±

0.
03

3
0.

91
0
±

0.
01

2
0.

92
3
±

0.
03

9
0.

90
1
±

0.
00

7
0.

93
4
±

0.
05

2
0.

89
7
±

0.
01

7
0.

92
0
±

0.
03

7
0.

92
8
±

0.
01

0

Ta
bl

e
25

:T
es

tp
ar

ity
sc

or
e

in
st

at
is

tic
al

pa
ri

ty
(S

P)
an

d
ac

cu
ra

cy
(A

cc
)f

or
th

e
sp

ar
se

de
ci

si
on

tr
ee

s
w

ith
de

pt
h

lim
it

3.
M

od
el

C
A

R
T

PO
ST

_C
A

R
T

PO
ST

_G
B

T
D

PF
R

SE
T

_s
p

R
SE

T
_o

pt
M

et
ri

c
SP

A
cc

SP
A

cc
SP

A
cc

SP
A

cc
SP

A
cc

SP
A

cc

ad
ul

t
0.

79
0
±

0.
04

5
0.

81
9
±

0.
01

0
0.

91
1
±

0.
01

8
0.

79
7
±

0.
00

6
0.

92
5
±

0.
01

0
0.

81
0
±

0.
00

3
0.

93
0
±

0.
00

4
0.

80
4
±

0.
00

3
0.

90
6
±

0.
05

8
0.

81
3
±

0.
01

3
0.

80
3
±

0.
00

8
0.

82
3
±

0.
00

5
ba

nk
0.

98
5
±

0.
00

5
0.

89
4
±

0.
00

2
0.

98
6
±

0.
00

5
0.

89
4
±

0.
00

2
0.

98
4
±

0.
00

6
0.

90
0
±

0.
00

2
0.

98
6
±

0.
00

4
0.

89
6
±

0.
00

2
0.

99
3
±

0.
00

5
0.

89
6
±

0.
00

3
0.

99
6
±

0.
00

5
0.

88
6
±

0.
00

5
co

m
pa

s
0.

84
4
±

0.
02

7
0.

66
3
±

0.
00

6
0.

92
6
±

0.
02

0
0.

61
5
±

0.
00

9
0.

92
4
±

0.
01

5
0.

62
0
±

0.
00

8
0.

91
8
±

0.
02

0
0.

61
7
±

0.
00

9
0.

84
9
±

0.
01

0
0.

65
1
±

0.
02

2
0.

84
4
±

0.
02

7
0.

66
3
±

0.
00

6
ge

rm
an

-c
re

di
t

0.
94

1
±

0.
06

6
0.

67
5
±

0.
03

4
0.

93
3
±

0.
05

4
0.

67
7
±

0.
03

1
0.

90
4
±

0.
03

0
0.

74
8
±

0.
02

7
0.

94
6
±

0.
02

7
0.

70
2
±

0.
03

8
0.

96
5
±

0.
02

9
0.

69
2
±

0.
02

2
0.

95
1
±

0.
05

4
0.

71
3
±

0.
03

1
ou

la
d

0.
95

9
±

0.
01

2
0.

67
4
±

0.
00

9
0.

96
4
±

0.
00

9
0.

67
4
±

0.
00

9
0.

98
4
±

0.
00

7
0.

68
5
±

0.
00

5
0.

96
8
±

0.
00

8
0.

68
3
±

0.
00

4
0.

98
4
±

0.
01

2
0.

67
8
±

0.
00

7
1.

00
0
±

0.
00

0
0.

67
3
±

0.
00

0
st

ud
en

t-
po

r
0.

91
2
±

0.
02

5
0.

92
3
±

0.
00

9
0.

92
1
±

0.
02

5
0.

91
0
±

0.
01

8
0.

94
3
±

0.
03

3
0.

91
0
±

0.
02

5
0.

93
6
±

0.
03

2
0.

91
6
±

0.
01

6
0.

93
3
±

0.
05

1
0.

89
8
±

0.
02

5
0.

92
0
±

0.
03

7
0.

92
8
±

0.
01

0

Ta
bl

e
26

:T
es

tp
ar

ity
sc

or
e

in
st

at
is

tic
al

pa
ri

ty
(S

P)
an

d
ac

cu
ra

cy
(A

cc
)f

or
th

e
sp

ar
se

de
ci

si
on

tr
ee

s
w

ith
de

pt
h

lim
it

4.
M

od
el

C
A

R
T

PO
ST

_C
A

R
T

PO
ST

_G
B

T
D

PF
R

SE
T

_s
p

R
SE

T
_o

pt
M

et
ri

c
SP

A
cc

SP
A

cc
SP

A
cc

SP
A

cc
SP

A
cc

SP
A

cc

ad
ul

t
0.

84
0
±

0.
00

6
0.

83
2
±

0.
00

9
0.

92
0
±

0.
00

6
0.

80
6
±

0.
00

7
0.

92
5
±

0.
01

0
0.

81
1
±

0.
00

3
0.

92
6
±

0.
00

3
0.

80
9
±

0.
00

3
0.

89
1
±

0.
05

2
0.

82
0
±

0.
01

3
0.

83
3
±

0.
00

6
0.

83
7
±

0.
00

5
ba

nk
0.

98
4
±

0.
00

3
0.

89
6
±

0.
00

2
0.

98
4
±

0.
00

3
0.

89
6
±

0.
00

2
0.

98
1
±

0.
00

5
0.

90
1
±

0.
00

2
0.

98
6
±

0.
00

3
0.

89
9
±

0.
00

1
0.

99
0
±

0.
00

4
0.

89
6
±

0.
00

1
0.

99
6
±

0.
00

5
0.

88
6
±

0.
00

5
co

m
pa

s
0.

84
6
±

0.
02

9
0.

66
3
±

0.
00

8
0.

92
7
±

0.
01

7
0.

62
0
±

0.
00

9
0.

91
9
±

0.
01

6
0.

61
7
±

0.
00

8
0.

91
3
±

0.
02

4
0.

61
8
±

0.
00

7
0.

84
3
±

0.
01

5
0.

65
5
±

0.
01

7
0.

84
4
±

0.
02

7
0.

66
3
±

0.
00

6
ge

rm
an

-c
re

di
t

0.
92

4
±

0.
05

3
0.

68
2
±

0.
01

7
0.

91
5
±

0.
03

5
0.

68
2
±

0.
02

1
0.

92
5
±

0.
02

1
0.

74
6
±

0.
02

6
0.

94
3
±

0.
04

4
0.

70
9
±

0.
03

7
0.

97
9
±

0.
02

2
0.

68
7
±

0.
03

6
0.

94
8
±

0.
05

9
0.

70
5
±

0.
03

1
ou

la
d

0.
97

1
±

0.
01

3
0.

68
2
±

0.
00

1
0.

97
8
±

0.
00

9
0.

68
2
±

0.
00

2
0.

98
5
±

0.
00

7
0.

68
5
±

0.
00

7
0.

96
9
±

0.
01

0
0.

68
3
±

0.
00

3
0.

98
2
±

0.
01

4
0.

68
2
±

0.
00

7
1.

00
0
±

0.
00

0
0.

67
3
±

0.
00

0
st

ud
en

t-
po

r
0.

92
3
±

0.
02

3
0.

90
8
±

0.
01

6
0.

92
4
±

0.
03

1
0.

90
5
±

0.
01

6
0.

94
7
±

0.
04

1
0.

90
1
±

0.
02

3
0.

91
7
±

0.
03

5
0.

88
9
±

0.
01

5
0.

89
8
±

0.
03

9
0.

92
0
±

0.
02

1
0.

92
0
±

0.
03

7
0.

92
8
±

0.
01

0

32



Ta
bl

e
27

:T
es

tp
ar

ity
sc

or
e

in
eq

ua
liz

ed
od

ds
(E

O
)a

nd
ac

cu
ra

cy
(A

cc
)f

or
th

e
sp

ar
se

de
ci

si
on

tr
ee

s
w

ith
de

pt
h

lim
it

2.
M

od
el

C
A

R
T

PO
ST

_C
A

R
T

PO
ST

_G
B

T
D

PF
FO

C
T

R
SE

T
_e

o
R

SE
T

_o
pt

M
et

ri
c

E
O

dd
s

A
cc

E
O

dd
s

A
cc

E
O

dd
s

A
cc

E
O

dd
s

A
cc

E
O

dd
s

A
cc

E
O

dd
s

A
cc

E
O

dd
s

A
cc

ad
ul

t
0.

85
8
±

0.
03

3
0.

81
2
±

0.
00

7
0.

91
8
±

0.
00

7
0.

79
7
±

0.
00

3
0.

92
5
±

0.
01

6
0.

83
0
±

0.
00

3
0.

95
0
±

0.
00

1
0.

79
3
±

0.
00

2
0.

99
5
±

0.
00

6
0.

55
4
±

0.
17

1
0.

96
0
±

0.
04

2
0.

80
6
±

0.
00

6
0.

89
0
±

0.
01

1
0.

80
8
±

0.
00

3
ba

nk
0.

96
3
±

0.
02

9
0.

89
4
±

0.
00

4
0.

96
7
±

0.
02

8
0.

89
2
±

0.
00

4
0.

96
6
±

0.
02

5
0.

89
8
±

0.
00

2
0.

96
9
±

0.
02

5
0.

89
4
±

0.
00

2
1.

00
0
±

0.
00

0
0.

11
7
±

0.
00

0
0.

96
6
±

0.
02

1
0.

89
4
±

0.
00

3
0.

99
3
±

0.
01

3
0.

88
6
±

0.
00

5
co

m
pa

s
0.

81
5
±

0.
05

1
0.

63
8
±

0.
00

7
0.

90
9
±

0.
02

3
0.

59
3
±

0.
01

0
0.

88
7
±

0.
01

7
0.

61
5
±

0.
01

1
0.

88
9
±

0.
02

0
0.

60
5
±

0.
00

6
0.

92
4
±

0.
01

3
0.

59
0
±

0.
00

5
0.

86
0
±

0.
05

6
0.

63
6
±

0.
02

1
0.

79
8
±

0.
03

0
0.

66
3
±

0.
00

6
ge

rm
an

-c
re

di
t

0.
98

0
±

0.
04

4
0.

70
5
±

0.
01

1
0.

97
6
±

0.
05

5
0.

70
3
±

0.
00

7
0.

89
4
±

0.
02

7
0.

74
4
±

0.
02

5
0.

89
0
±

0.
05

1
0.

71
1
±

0.
04

3
0.

92
0
±

0.
03

6
0.

70
5
±

0.
03

1
0.

95
5
±

0.
02

8
0.

70
1
±

0.
01

6
0.

91
7
±

0.
03

1
0.

71
1
±

0.
04

0
ou

la
d

0.
98

4
±

0.
02

2
0.

67
4
±

0.
00

3
0.

98
6
±

0.
02

1
0.

67
4
±

0.
00

3
0.

96
1
±

0.
01

4
0.

68
6
±

0.
00

7
0.

95
0
±

0.
01

7
0.

67
7
±

0.
00

3
0.

99
3
±

0.
00

7
0.

64
5
±

0.
03

9
0.

99
5
±

0.
00

5
0.

67
3
±

0.
00

2
1.

00
0
±

0.
00

0
0.

67
3
±

0.
00

0
st

ud
en

t-
po

r
0.

81
7
±

0.
06

9
0.

92
8
±

0.
01

0
0.

82
5
±

0.
04

0
0.

90
0
±

0.
01

3
0.

78
5
±

0.
12

8
0.

90
2
±

0.
01

4
0.

79
2
±

0.
10

6
0.

91
0
±

0.
01

2
0.

86
5
±

0.
06

1
0.

88
4
±

0.
00

7
0.

80
9
±

0.
13

2
0.

88
8
±

0.
00

9
0.

81
7
±

0.
06

9
0.

92
8
±

0.
01

0

Ta
bl

e
28

:T
es

tp
ar

ity
sc

or
e

in
eq

ua
liz

ed
od

ds
(E

O
)a

nd
ac

cu
ra

cy
(A

cc
)f

or
th

e
sp

ar
se

de
ci

si
on

tr
ee

s
w

ith
de

pt
h

lim
it

3.
M

od
el

C
A

R
T

PO
ST

_C
A

R
T

PO
ST

_G
B

T
D

PF
R

SE
T

_e
o

R
SE

T
_o

pt
M

et
ri

c
E

O
dd

s
A

cc
E

O
dd

s
A

cc
E

O
dd

s
A

cc
E

O
dd

s
A

cc
E

O
dd

s
A

cc
E

O
dd

s
A

cc

ad
ul

t
0.

87
5
±

0.
03

9
0.

81
9
±

0.
01

0
0.

93
3
±

0.
00

8
0.

80
6
±

0.
00

3
0.

92
9
±

0.
02

0
0.

83
1
±

0.
00

4
0.

95
0
±

0.
00

3
0.

80
4
±

0.
00

3
0.

92
6
±

0.
00

9
0.

83
2
±

0.
00

4
0.

89
0
±

0.
01

1
0.

82
3
±

0.
00

5
ba

nk
0.

97
5
±

0.
01

6
0.

89
4
±

0.
00

2
0.

97
7
±

0.
01

4
0.

89
3
±

0.
00

2
0.

96
8
±

0.
03

1
0.

90
0
±

0.
00

2
0.

97
5
±

0.
01

6
0.

89
6
±

0.
00

2
0.

96
9
±

0.
01

9
0.

89
4
±

0.
00

3
0.

99
3
±

0.
01

3
0.

88
6
±

0.
00

5
co

m
pa

s
0.

79
8
±

0.
03

0
0.

66
3
±

0.
00

6
0.

87
7
±

0.
04

7
0.

61
5
±

0.
01

7
0.

88
3
±

0.
02

9
0.

61
4
±

0.
01

1
0.

87
6
±

0.
02

2
0.

61
7
±

0.
00

9
0.

83
9
±

0.
04

3
0.

64
5
±

0.
02

5
0.

79
8
±

0.
03

0
0.

66
3
±

0.
00

6
ge

rm
an

-c
re

di
t

0.
92

3
±

0.
06

5
0.

67
5
±

0.
03

4
0.

90
1
±

0.
06

6
0.

67
8
±

0.
02

8
0.

89
3
±

0.
04

1
0.

74
5
±

0.
02

6
0.

90
2
±

0.
02

3
0.

70
2
±

0.
03

8
0.

91
2
±

0.
06

9
0.

69
4
±

0.
01

5
0.

92
5
±

0.
05

1
0.

71
3
±

0.
03

1
ou

la
d

0.
93

0
±

0.
02

3
0.

67
4
±

0.
00

9
0.

93
9
±

0.
02

6
0.

67
4
±

0.
00

9
0.

96
2
±

0.
01

6
0.

68
5
±

0.
00

5
0.

93
1
±

0.
02

6
0.

68
3
±

0.
00

4
0.

97
8
±

0.
01

5
0.

67
7
±

0.
00

6
1.

00
0
±

0.
00

0
0.

67
3
±

0.
00

0
st

ud
en

t-
po

r
0.

78
2
±

0.
09

8
0.

92
3
±

0.
00

9
0.

82
5
±

0.
05

7
0.

91
3
±

0.
00

6
0.

79
5
±

0.
19

0
0.

90
3
±

0.
02

3
0.

74
5
±

0.
06

8
0.

91
6
±

0.
01

6
0.

75
7
±

0.
06

2
0.

90
0
±

0.
02

3
0.

81
7
±

0.
06

9
0.

92
8
±

0.
01

0

Ta
bl

e
29

:T
es

tp
ar

ity
sc

or
e

in
eq

ua
liz

ed
od

ds
(E

O
)a

nd
ac

cu
ra

cy
(A

cc
)f

or
th

e
sp

ar
se

de
ci

si
on

tr
ee

s
w

ith
de

pt
h

lim
it

4.
M

od
el

C
A

R
T

PO
ST

_C
A

R
T

PO
ST

_G
B

T
D

PF
R

SE
T

_e
o

R
SE

T
_o

pt
M

et
ri

c
E

O
dd

s
A

cc
E

O
dd

s
A

cc
E

O
dd

s
A

cc
E

O
dd

s
A

cc
E

O
dd

s
A

cc
E

O
dd

s
A

cc

ad
ul

t
0.

92
5
±

0.
00

8
0.

83
2
±

0.
00

9
0.

94
2
±

0.
00

2
0.

81
4
±

0.
00

4
0.

93
2
±

0.
01

2
0.

83
1
±

0.
00

3
0.

95
0
±

0.
00

9
0.

80
9
±

0.
00

3
0.

92
7
±

0.
00

9
0.

83
6
±

0.
00

8
0.

92
4
±

0.
00

7
0.

83
7
±

0.
00

5
ba

nk
0.

97
3
±

0.
02

7
0.

89
6
±

0.
00

2
0.

97
3
±

0.
02

4
0.

89
5
±

0.
00

3
0.

97
8
±

0.
01

8
0.

90
1
±

0.
00

2
0.

97
6
±

0.
01

0
0.

89
9
±

0.
00

1
0.

96
4
±

0.
01

8
0.

89
4
±

0.
00

4
0.

99
3
±

0.
01

3
0.

88
6
±

0.
00

5
co

m
pa

s
0.

80
4
±

0.
03

3
0.

66
3
±

0.
00

8
0.

89
2
±

0.
01

8
0.

61
6
±

0.
01

0
0.

87
4
±

0.
03

4
0.

61
5
±

0.
01

0
0.

86
6
±

0.
02

3
0.

61
8
±

0.
00

7
0.

83
6
±

0.
04

1
0.

64
4
±

0.
02

5
0.

79
8
±

0.
03

0
0.

66
3
±

0.
00

6
ge

rm
an

-c
re

di
t

0.
90

1
±

0.
04

9
0.

68
2
±

0.
01

7
0.

87
3
±

0.
04

5
0.

67
8
±

0.
02

1
0.

89
8
±

0.
04

0
0.

74
9
±

0.
02

8
0.

89
7
±

0.
04

5
0.

70
9
±

0.
03

7
0.

88
3
±

0.
06

4
0.

69
6
±

0.
02

2
0.

91
7
±

0.
06

4
0.

70
5
±

0.
03

1
ou

la
d

0.
93

1
±

0.
03

0
0.

68
2
±

0.
00

1
0.

95
0
±

0.
02

0
0.

68
2
±

0.
00

2
0.

95
5
±

0.
01

2
0.

68
5
±

0.
00

7
0.

93
1
±

0.
02

4
0.

68
3
±

0.
00

3
0.

97
0
±

0.
01

9
0.

67
8
±

0.
00

5
1.

00
0
±

0.
00

0
0.

67
3
±

0.
00

0
st

ud
en

t-
po

r
0.

79
3
±

0.
18

0
0.

90
8
±

0.
01

6
0.

81
1
±

0.
13

4
0.

90
1
±

0.
01

3
0.

81
7
±

0.
14

5
0.

89
4
±

0.
02

4
0.

80
8
±

0.
07

3
0.

88
9
±

0.
01

5
0.

85
2
±

0.
05

8
0.

89
8
±

0.
01

7
0.

81
7
±

0.
06

9
0.

92
8
±

0.
01

0

33



Ta
bl

e
30

:T
es

tp
ar

ity
sc

or
e

in
eq

ua
lo

pp
or

tu
ni

ty
(E

O
pp

)a
nd

ac
cu

ra
cy

(A
cc

)f
or

th
e

sp
ar

se
de

ci
si

on
tr

ee
s

w
ith

de
pt

h
lim

it
2.

M
od

el
C

A
R

T
PO

ST
_C

A
R

T
PO

ST
_G

B
T

D
PF

FO
C

T
R

SE
T

_e
op

p
R

SE
T

_o
pt

M
et

ri
c

E
O

pp
A

cc
E

O
pp

A
cc

E
O

pp
A

cc
E

O
pp

A
cc

E
O

pp
A

cc
E

O
pp

A
cc

E
O

pp
A

cc

ad
ul

t
0.

90
1
±

0.
04

7
0.

81
2
±

0.
00

7
0.

93
7
±

0.
01

5
0.

80
5
±

0.
00

7
0.

93
2
±

0.
01

7
0.

83
8
±

0.
00

3
0.

96
2
±

0.
01

1
0.

79
3
±

0.
00

2
0.

99
2
±

0.
00

7
0.

72
5
±

0.
05

0
0.

95
8
±

0.
04

0
0.

81
4
±

0.
00

6
0.

94
9
±

0.
02

8
0.

80
8
±

0.
00

3
ba

nk
0.

96
3
±

0.
02

9
0.

89
4
±

0.
00

4
0.

96
8
±

0.
02

9
0.

89
2
±

0.
00

4
0.

96
4
±

0.
02

3
0.

89
8
±

0.
00

2
0.

97
0
±

0.
02

5
0.

89
4
±

0.
00

2
1.

00
0
±

0.
00

0
0.

11
7
±

0.
00

0
0.

97
1
±

0.
02

2
0.

89
3
±

0.
00

4
0.

99
4
±

0.
01

3
0.

88
6
±

0.
00

5
co

m
pa

s
0.

91
6
±

0.
04

5
0.

63
8
±

0.
00

7
0.

94
6
±

0.
02

5
0.

61
4
±

0.
00

9
0.

94
3
±

0.
03

5
0.

65
2
±

0.
00

7
0.

96
0
±

0.
02

0
0.

60
5
±

0.
00

6
0.

95
5
±

0.
02

1
0.

62
5
±

0.
00

7
0.

91
8
±

0.
02

5
0.

66
0
±

0.
01

2
0.

92
5
±

0.
03

3
0.

66
3
±

0.
00

6
ge

rm
an

-c
re

di
t

0.
98

0
±

0.
04

4
0.

70
5
±

0.
01

1
0.

97
9
±

0.
04

7
0.

70
4
±

0.
00

9
0.

92
4
±

0.
02

0
0.

74
4
±

0.
02

3
0.

94
8
±

0.
04

1
0.

71
1
±

0.
04

3
0.

95
7
±

0.
01

8
0.

70
3
±

0.
03

5
0.

93
2
±

0.
06

1
0.

68
0
±

0.
02

5
0.

93
3
±

0.
02

7
0.

71
1
±

0.
04

0
ou

la
d

0.
99

2
±

0.
01

1
0.

67
4
±

0.
00

3
0.

99
3
±

0.
01

0
0.

67
4
±

0.
00

2
0.

97
9
±

0.
00

8
0.

68
7
±

0.
00

7
0.

98
6
±

0.
00

5
0.

67
7
±

0.
00

3
0.

99
7
±

0.
00

4
0.

65
6
±

0.
03

7
0.

99
0
±

0.
01

2
0.

67
5
±

0.
00

4
1.

00
0
±

0.
00

0
0.

67
3
±

0.
00

0
st

ud
en

t-
po

r
0.

97
6
±

0.
02

1
0.

92
8
±

0.
01

0
0.

96
6
±

0.
01

9
0.

91
7
±

0.
01

1
0.

96
9
±

0.
02

4
0.

90
5
±

0.
01

6
0.

96
7
±

0.
01

8
0.

91
0
±

0.
01

2
0.

97
0
±

0.
02

2
0.

91
0
±

0.
01

5
0.

95
9
±

0.
02

9
0.

88
8
±

0.
00

9
0.

97
6
±

0.
02

1
0.

92
8
±

0.
01

0

Ta
bl

e
31

:T
es

tp
ar

ity
sc

or
e

in
eq

ua
lo

pp
or

tu
ni

ty
(E

O
pp

)a
nd

ac
cu

ra
cy

(A
cc

)f
or

th
e

sp
ar

se
de

ci
si

on
tr

ee
s

w
ith

de
pt

h
lim

it
3.

M
od

el
C

A
R

T
PO

ST
_C

A
R

T
PO

ST
_G

B
T

D
PF

R
SE

T
_e

op
p

R
SE

T
_o

pt
M

et
ri

c
E

O
pp

A
cc

E
O

pp
A

cc
E

O
pp

A
cc

E
O

pp
A

cc
E

O
pp

A
cc

E
O

pp
A

cc

ad
ul

t
0.

92
7
±

0.
06

0
0.

81
9
±

0.
01

0
0.

93
8
±

0.
04

4
0.

81
8
±

0.
00

8
0.

94
0
±

0.
02

5
0.

83
9
±

0.
00

3
0.

96
3
±

0.
00

8
0.

80
4
±

0.
00

3
0.

96
2
±

0.
03

0
0.

83
0
±

0.
00

6
0.

96
8
±

0.
00

9
0.

82
3
±

0.
00

5
ba

nk
0.

97
5
±

0.
01

6
0.

89
4
±

0.
00

2
0.

97
6
±

0.
01

7
0.

89
4
±

0.
00

2
0.

96
8
±

0.
02

9
0.

90
1
±

0.
00

2
0.

97
6
±

0.
01

7
0.

89
6
±

0.
00

2
0.

97
2
±

0.
01

7
0.

89
5
±

0.
00

3
0.

99
4
±

0.
01

3
0.

88
6
±

0.
00

5
co

m
pa

s
0.

92
5
±

0.
03

3
0.

66
3
±

0.
00

6
0.

95
0
±

0.
02

5
0.

64
8
±

0.
00

4
0.

94
4
±

0.
03

5
0.

65
5
±

0.
00

6
0.

95
7
±

0.
01

7
0.

61
7
±

0.
00

9
0.

91
7
±

0.
03

0
0.

66
1
±

0.
01

3
0.

92
5
±

0.
03

3
0.

66
3
±

0.
00

6
ge

rm
an

-c
re

di
t

0.
94

3
±

0.
05

5
0.

67
5
±

0.
03

4
0.

94
1
±

0.
06

4
0.

67
8
±

0.
03

2
0.

92
0
±

0.
02

7
0.

74
7
±

0.
02

6
0.

94
7
±

0.
01

8
0.

70
2
±

0.
03

8
0.

95
2
±

0.
05

8
0.

68
4
±

0.
02

6
0.

93
9
±

0.
04

4
0.

71
3
±

0.
03

1
ou

la
d

0.
96

8
±

0.
01

8
0.

67
4
±

0.
00

9
0.

97
1
±

0.
01

7
0.

67
4
±

0.
00

9
0.

98
2
±

0.
01

1
0.

68
5
±

0.
00

5
0.

97
7
±

0.
00

4
0.

68
3
±

0.
00

4
0.

98
8
±

0.
00

6
0.

67
7
±

0.
00

4
1.

00
0
±

0.
00

0
0.

67
3
±

0.
00

0
st

ud
en

t-
po

r
0.

96
5
±

0.
01

2
0.

92
3
±

0.
00

9
0.

96
9
±

0.
01

9
0.

91
6
±

0.
01

3
0.

96
6
±

0.
02

0
0.

90
4
±

0.
02

3
0.

98
1
±

0.
00

6
0.

91
6
±

0.
01

6
0.

95
0
±

0.
04

5
0.

90
0
±

0.
02

7
0.

97
6
±

0.
02

1
0.

92
8
±

0.
01

0

Ta
bl

e
32

:T
es

tp
ar

ity
sc

or
e

in
eq

ua
lo

pp
or

tu
ni

ty
(E

O
pp

)a
nd

ac
cu

ra
cy

(A
cc

)f
or

th
e

sp
ar

se
de

ci
si

on
tr

ee
s

w
ith

de
pt

h
lim

it
4.

M
od

el
C

A
R

T
PO

ST
_C

A
R

T
PO

ST
_G

B
T

D
PF

R
SE

T
_e

op
p

R
SE

T
_o

pt
M

et
ri

c
E

O
pp

A
cc

E
O

pp
A

cc
E

O
pp

A
cc

E
O

pp
A

cc
E

O
pp

A
cc

E
O

pp
A

cc

ad
ul

t
0.

96
7
±

0.
02

2
0.

83
2
±

0.
00

9
0.

96
1
±

0.
01

0
0.

82
5
±

0.
00

6
0.

95
3
±

0.
02

1
0.

84
0
±

0.
00

3
0.

96
3
±

0.
01

0
0.

80
9
±

0.
00

3
0.

95
9
±

0.
03

9
0.

83
3
±

0.
00

7
0.

95
4
±

0.
02

9
0.

83
7
±

0.
00

5
ba

nk
0.

97
3
±

0.
02

7
0.

89
6
±

0.
00

2
0.

97
4
±

0.
02

5
0.

89
5
±

0.
00

3
0.

97
9
±

0.
01

6
0.

90
1
±

0.
00

2
0.

97
6
±

0.
01

0
0.

89
9
±

0.
00

1
0.

96
7
±

0.
01

9
0.

89
4
±

0.
00

4
0.

99
4
±

0.
01

3
0.

88
6
±

0.
00

5
co

m
pa

s
0.

92
5
±

0.
03

5
0.

66
3
±

0.
00

8
0.

94
6
±

0.
03

4
0.

64
8
±

0.
01

0
0.

94
3
±

0.
03

1
0.

65
4
±

0.
00

7
0.

96
0
±

0.
01

3
0.

61
8
±

0.
00

7
0.

91
6
±

0.
02

5
0.

66
0
±

0.
01

3
0.

92
5
±

0.
03

3
0.

66
3
±

0.
00

6
ge

rm
an

-c
re

di
t

0.
92

6
±

0.
06

6
0.

68
2
±

0.
01

7
0.

91
0
±

0.
04

7
0.

68
1
±

0.
02

2
0.

94
2
±

0.
04

2
0.

75
0
±

0.
02

9
0.

94
0
±

0.
03

7
0.

70
9
±

0.
03

7
0.

93
8
±

0.
03

7
0.

69
1
±

0.
02

2
0.

93
1
±

0.
06

1
0.

70
5
±

0.
03

1
ou

la
d

0.
98

5
±

0.
01

1
0.

68
2
±

0.
00

1
0.

98
8
±

0.
00

7
0.

68
2
±

0.
00

1
0.

98
5
±

0.
01

1
0.

68
5
±

0.
00

7
0.

98
2
±

0.
00

9
0.

68
3
±

0.
00

3
0.

98
6
±

0.
01

1
0.

68
3
±

0.
00

8
1.

00
0
±

0.
00

0
0.

67
3
±

0.
00

0
st

ud
en

t-
po

r
0.

97
4
±

0.
01

5
0.

90
8
±

0.
01

6
0.

97
2
±

0.
01

7
0.

90
1
±

0.
01

0
0.

96
6
±

0.
02

5
0.

89
5
±

0.
02

1
0.

95
5
±

0.
02

6
0.

88
9
±

0.
01

5
0.

95
1
±

0.
02

7
0.

90
9
±

0.
01

7
0.

97
6
±

0.
02

1
0.

92
8
±

0.
01

0

34



Figure 10: Model-to-model comparison of test accuracy and fairness between baselines and selected
tree in the Rashomon set at depth 2.

Our earlier plots already demonstrate that the Rashomon set covers the hypothesis-space of fairness
models within the parameters we sweep. Here we show clearly that we can select a model that
is comparable with other fairness baselines. In Figure 10-12, we display the performance of the
Rashomon set as blue contours, and we plot the table results of fairness baselines and the fair tree
selected in the Rashomon set as dots with error bars.

In these results, we fixed the α parameter to control tradeoff. When α = 1, the fairness is valued as
much as accuracy. During our experiment, we chose α = 0.3 to be consistent with baseline setups
to demonstrate that a representative from the Rashomon set can be comparable with baselines that
optimize fairness, but we don’t claim α = 0.3 to be the optimal value.
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Figure 11: Model-to-model comparison of test accuracy and fairness between baselines and selected
tree in the Rashomon set at depth 3.

Table 33: Results for Train Time across depths (Avg±Std).
Depth 2 Depth 3 Depth 4

Dataset DPF FOCT RSET DPF RSET DPF RSET

adult 0.042±0.001 3999.251±1.778 0.354±0.006 0.169±0.011 1.613±0.023 931.531±319.693 12.711±0.489
bank 0.123±0.006 4729.554±5.793 2.055±0.123 1.435±0.095 35.772±2.646 23654.268±9915.746 1286.891±31.113
compas 0.011±0.001 3615.251±1.286 0.055±0.005 0.018±0.000 0.116±0.005 4.237±1.468 0.269±0.016
german 0.015±0.001 3603.118±0.425 0.304±0.004 1.312±0.127 35.523±2.978 336.964±98.572 11334.616±1919.513
oulad 0.031±0.001 3661.748±4.469 0.574±0.040 0.971±0.013 10.236±0.335 23595.305±4914.847 261.087±16.785
stud-por 0.010±0.001 1055.451±326.725 0.140±0.021 0.249±0.020 14.208±1.552 16.007±1.268 3134.127±668.377
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Figure 12: Model-to-model comparison of test accuracy and fairness between baselines and selected
tree in the Rashomon set at depth 4.
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Training Time Table 33 shows the average training time of TreeFARMS (RSET), DPF, and FOCT.
We discover that TreeFARMS training time is significantly shorter than FOCT. At deeper depths,
training time varies across datasets – sometimes DPF takes absurdly long time to train, while some
times TreeFARMS takes longer to train. Overall, we do see TreeFARMS scales better than DPF as
the training time increase smaller at deeper depth. FOCT consistently shows extremely long training
times across all datasets. For example, on the bank dataset, FOCT takes over 4500 seconds, whereas
both DPF and TreeFARMS require less than a few seconds. This huge gap suggests that, even at
shallow depths, FOCT cannot find fair trees efficiently.

Sparsity Plots Lastly, as an additional study in how sparsity affects fairness, we provide an
interesting visualization of this at Figure 13.

In this figure, we plot a scatter of trees and highlight the selected trees with distinct markers. While
we do not observe consistent trends across datasets, we do see recurring patterns that may spark
further research questions.

D Additional Hypothesis Space: Random Forests and FasterRisk

To support our findings with other hypothesis spaces, we conducted additional experiments on random
forests for both fairness and robustness. To approximate the Rashomon set in this setting, we trained
100 random forests with different random seeds. As baselines, we used PostRF [93] for fairness (a
post-hoc editing method) and GROOT-RF [83] for robustness (also a post-hoc method). We observed
that this approximate Rashomon set tends to contain models that outperform the baselines in terms of
both fairness and robustness.

Tables 34 and 35 show fairness and robustness comparisons for the random forest model class,
respectively. "X Win Rate" refers to the proportion of models in the Rashomon set that outperform the
baseline in metric X (e.g., accuracy, fairness, or robustness). "Joint Win Rate" denotes the proportion
of models that outperform the baseline in both accuracy and the trustworthiness metric. Results are
reported over 5 folds, with mean and standard deviation.

Table 34: Fairness comparison between the Random Forest Rashomon set constructed with different
random seeds and PostRF. (Avg ± Std)

Dataset Joint Win Rate Accuracy Win Rate SP Win Rate
adult 8.0± 11.0% 60.0± 21.0% 36.0± 33.0%
california-houses 0.0± 0.0% 99.0± 2.0% 0.0± 0.0%
default-credit 19.0± 15.0% 43.0± 9.0% 46.0± 28.0%
diabetes-130US 44.0± 24.0% 68.0± 18.0% 59.0± 29.0%

Table 35: Robustness comparison between the Random Forest Rashomon set and baseline. (Avg ±
Std)

Dataset Joint Win Rate Accuracy Win Rate Adv. Acc. Win Rate
adult 16.0± 10.0% 100.0± 0.0% 16.0± 10.0%
california-houses 63.0± 24.0% 100.0± 0.0% 63.0± 24.0%
default-credit 49.0± 24.0% 75.0± 33.0% 51.0± 22.0%
diabetes-130US 1.0± 2.0% 100.0± 0.0% 1.0± 2.0%

We note that in the california-houses dataset, we were unable to find a fair model in the approximated
Rashomon set. At this point, we cannot conclude whether this is due to limitations in our approxi-
mation method or because the baseline (PostRF) is a post-hoc method that may not correspond to
any near-optimal model in the Rashomon set. If this experiment had been conducted in the sparse
decision tree setting, we would have had a definitive answer due to the ability to enumerate the entire
Rashomon set and the availability of fairness-optimal algorithms.

We can also extend our framework to sparse linear models. However, to the best of our knowledge,
there is no method that can exactly enumerate the Rashomon set for linear classifiers; only approxi-
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Figure 13: Sparsity plot for TreeFARMS at depth 4. Trees evaluated over five folds are concatenated.
Specific trees like optimal tree, best selection min/max leaf tree, and best selection fairness tree are
plotted with different markers. The y-axis is the fairness parity score and the x-axis is the number of
leaves.
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mators are available. For example, we use the FasterRisk algorithm [60] for sparse linear models and
report the fairness results in Table 36.

Table 36: Fairness results using the FasterRisk Algorithm. (Avg ± Std)
Dataset Joint Win Rate Accuracy Win Rate SP Win Rate
california-houses 0.0± 0.0% 75.0± 0.0% 0.0± 0.0%
default-credit 7.0± 12.0% 12.0± 18.0% 75.0± 26.0%
diabetes-130US 8.0± 16.0% 13.0± 15.0% 48.0± 27.0%
german-credit 1.0± 2.0% 4.0± 6.0% 51.0± 38.0%

We also observe that for california-houses we could not outperform the baseline. The limitation of
the approximated Rashomon set makes empirical analysis less conclusive than in our current setting
with decision trees, where the Rashomon set can be exactly enumerated.

E Evaluation of Selected Trees Across Multiple Criteria

Setup: As mentioned in Section 4.5, we are interested in evaluating the performance of decision
trees across various metrics. To achieve this, we consider eight datasets: adult, bank, california-
houses, compas, credit-fusion, default-credit, diabetes-130US, and german-credit. These datasets are
binarized using the threshold guessing procedure described in Section A.2. We train TreeFARMS
after removing the sensitive feature, as required for the evaluation of fairness metrics. For robustness
and privacy considerations, these omitted features do not interact with the framework. For adversarial
attacks, trees are converted into continuous domain using the binarized thresholds.

Result: Figure 14 presents a comprehensive comparison of six trees within the Rashomon set across
eight datasets, evaluated using seven different metrics discussed in this paper. For privacy metrics,
we compute 1− score to provide an intuitive visualization, where taller bars indicate better metric
performance. Since all trees belong to the Rashomon set, they achieve comparable performance
based on the test accuracy, as visible using the y-axis scale. We see that none of the trees are outside
the ± 3% range. However, we observe a sparsity-accuracy tradeoff within the trees with minimum
and maximum number of leaves on many datasets such as adult, bank, and compas. In terms of
adversarial accuracy, we still see that our approach in choosing the best adversarial tree (gray bar) on
the validation set is always the best performer except on the german-credit dataset.

For statistical (demographic) parity, we find that the selected fair tree performs well on multiple
datasets (for example, see adult and california-houses). Interestingly, these fair trees selected using
the validation set often transfer across the fairness metrics (for example, see bank and default-credit).
We also observe that the tree with minimum leaves (RSET_min) can be fair, but this observation
is not consistent across all datasets. Finally, regarding privacy metrics, we observe that most trees
perform similarly around 50%. As discussed in Section 4.1, these attacks are generally ineffective
against tree-based models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction are consistent with the paper’s
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we have discussed the limitation of the work in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper is a benchmark study and does not include theoretical results or
formal proofs. The focus is on empirical evaluation.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental setups are detailed in Appendix B-F. Code is available in
supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Datasets used in this paper are publicly available. Code is available online. We
have detailed experimental setup in Appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report mean and standard deviation over five folds for evaluation metrics.
We explain the computation of reported statistics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute details are available in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have mentioned the social impact in the conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper doesn’t release models that have the potential to cause harm.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use open access datasets and baselines and cite the sources of all the
datasets and baselines we used in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code for this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We used LLM only for editing and improving the clarity of wording.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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