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Abstract

In practice, many models from a function class can fit a dataset almost equally well.
This collection of near-optimal models is known as the Rashomon set. Prior work
has shown that the Rashomon set offers flexibility in choosing models aligned with
secondary objectives like interpretability or fairness. However, it is unclear how
far this flexibility extends to different trustworthy criteria, especially given that
most trustworthy machine learning systems today still rely on complex specialized
optimization procedures. Is the Rashomon set all you need for trustworthy model
selection? Can simply searching the Rashomon set suffice to find models that are not
only accurate but also fair, stable, robust, or private, without explicitly optimizing
for these criteria? In this paper, we introduce a framework E] for systematically
analyzing trustworthiness within Rashomon sets and conduct extensive experiments
on high-stakes tabular datasets. We focus on sparse decision trees, where the
Rashomon set can be fully enumerated. Across seven distinct metrics, we find
that the Rashomon set almost always contains models that match or exceed the
performance of state-of-the-art methods specifically designed to optimize individual
trustworthiness criteria. These results suggest that for many practical applications,
computing the Rashomon set once can serve as an efficient and effective method
for identifying highly accurate and trustworthy models. Our framework can be a
valuable tool for both benchmarking Rashomon sets of decision trees and studying
the trustworthiness properties of interpretable models.

1 Introduction

With the increasing use of machine learning (ML) in high-stakes domains such as healthcare, lending,
and criminal justice, the demand for models that satisfy multiple trustworthiness criteria, such as
interpretability, robustness, fairness, privacy, and regulatory compliance, has grown substantially
[56} 70, 187, 92]]. However, achieving these properties in practice remains difficult, especially when
they must be satisfied simultaneously. Most algorithms address only one aspect of trustworthiness at a
time, typically by adding a new objective or constraint to the loss function. This often requires solving
a specialized (usually non-convex) optimization problem which is tailored to that specific criterion,
and is rarely transferable across objectives. As a result, developing trustworthy ML systems today
often means solving a different optimization problem for each property, which is computationally
expensive, resource-intensive, and can be infeasible in legally constrained environments.

Recent work challenges the assumption that separate optimization is always necessary. Building on
the Rashomon Effect [10], which describes the existence of many models that can perform nearly as
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well as the best one for a given dataset, researchers have proposed methods to construct and analyze
the Rashomon set, the collection of near-optimal models [6, 29, 45, 46 |67, [79} 1100, [103]. These
methods make it possible to enumerate or approximate the Rashomon set across different hypothesis
spaces, enabling new approaches to model selection that do not require additional retraining [73]].
This raises a fundamental question: Can the Rashomon set already contain models that satisfy
trustworthiness goals, without the need for separate, objective-specific optimization?

To answer the question, we introduce a framework for systematically evaluating trustworthiness within
Rashomon sets. We focus on decision trees and their Rashomon sets since trees are interpretable,
simple, and are well-suited for high-stakes decision-making problems [74]. We use TreeFARMS
[LOO]], which can enumerate all sparse trees within the epsilon loss of the optimal tree, to study
whether this full set of near-optimal models inherently contains ones that naturally satisfy a wide
range of trustworthiness properties. Our framework supports seven different trustworthy measures,
including (1) adversarial robustness [50], (2) stability to data pertubations [49]], (3) protection of
privacy against membership attacks [80], (4) unlearning a small portion of data [8]], and fairness
metrics, such as (5) statistical parity [26l], (6) equalized odds and (7) equal opportunity [41]). We
systematically compare the sparse trees in the Rashomon set with trees optimized for specific criteria.

Our contributions include (1) introducing an open and extensible evaluation framework with standard
datasets, baselines, trustworthy metrics and attacks, and evaluation protocols, enabling reproducible
research on trustworthy model selection and interpretable model evaluation; (2) showing that the
Rashomon set of sparse decision trees often contains models that match or exceed the performance of
specialized models across multiple trustworthiness criteria, easing the need for specialized optimiza-
tion per criterion; (3) showing that models optimized for one property (e.g., fairness) do not always
generalize to others (e.g., robustness), motivating the explicit model selection within the Rashomon
set instead of separate optimization.

Our findings suggest that enumerating near-optimal models, rather than retraining for each new
objective, offers a practical and principled strategy for building responsible and trustworthy ML
systems. By leveraging the natural diversity within the Rashomon set, practitioners can select models
that align with application-specific constraints and learn trade-offs between trustworthiness criteria,
thereby bridging the gap between theoretical insight and real-world deployment.

2 Related Works

We discuss the related works about the Rashomon Effect, decision trees, and trustworthy benchmarks
and frameworks.

Rashomon Effect. The Rashomon set, a formal quantification of the Rashomon Effect, contains
multiple different models that achieve approximately equal performance [29, 45, 167, 75} [79} [100].
Recent work in this area can be broadly categorized into those that focus on computing and char-
acterizing the Rashomon Effect and the Rashomon set [45] 167, 193| [100} [103]] and those that study
the implications of large Rashomon set for different applications and trustworthy machine learning
as a whole [6l 132, [94]. In this paper, we focus on TreeFARMS [100], which finds the Rashomon
set of sparse decision trees. Many works in this domain that focus on understanding fairness and
less discriminative hypothesis in the presence of a large Rashomon set are the closest to our work
[7, 19,1211 1331155, 169]]. However, none of the prior works consider multiple trustworthy criteria within
one Rashomon set of interpretable models.

Decision trees. Decision trees are among the most popular methods in interpretable machine learning.
Recent advances can find sparse optimal trees using either mathematical programming solvers [1} 4]
5,127,137, 1851 186]] or dynamic programming with branch-and-bound [2} 22} 62, |68]]. Recent research
also incorporates other metrics, such as fairness [48 [84], robustness [12} [13 14} 138} 149, |88 189], and
privacy [90], into the optimization problem, aiming to make sparse decision trees align with more
trustworthy principles. Despite these advancements, there has been no systematic evaluation of these
algorithms, nor has any study specifically examined if sparse decision trees that achieve high accuracy
naturally exhibit trustworthy properties without being explicitly optimized for them.

Trustworthy Benchmarks and Frameworks. Trustworthiness in ML has emerged as a critical
concern, especially as Al systems are increasingly deployed in high-stakes environments. While
trustworthiness encompasses a broad spectrum of principles, metrics such as interpretability, robust-



ness, privacy, and fairness consistently emerge as essential components [51} 58]]. Benchmarks have
been developed for robustness [20, 23} 142} [81]], privacy [72} 183]], and fairness [3} 140, 95]. Beyond
individual trustworthiness benchmarks, some comprehensive trustworthiness benchmarks have been
proposed [47, [76]. However, existing benchmarks majorly focus on deep learning models, leav-
ing interpretable models, such as sparse decision trees, largely unexamined. Given their extensive
use in healthcare, finance, and criminal justice, evaluating sparse decision trees under a rigorous
trustworthiness framework is crucial.

In this work, we develop a framework for interpretable models, assessing robustness, privacy, and
fairness while leveraging the Rashomon set as a unifying concept (see Section 3). Our framework
enables researchers to explore whether models within the Rashomon set can naturally satisfy multiple
trustworthiness criteria without sacrificing accuracy, providing a new perspective on the design and
evaluation of trustworthy interpretable models. In Section 4, we provide empirical evidence that the
Rashomon set often contains trustworthy models and analyze sparsity, timing, and cross-property
behavior using our framework.

3 Background and Evaluation Framework

Our framework provides a systematic approach for evaluating the trustworthiness of models within the
Rashomon set of sparse decision trees. It integrates five evaluation components, including robustness,
stability to noise, membership inference, machine unlearning, and fairness. For each criterion, we
define quantitative metrics, select state-of-the-art baseline algorithms that explicitly optimize for that
property, and apply standardized datasets and evaluation protocols for fair comparison. We formally
define the Rashomon set of sparse decision trees next and then focus on each trustworthy property.

3.1 The Rashomon set of sparse decision trees

Let {(x;,y;)}~, be the training dataset, where x; € {0, 1}? are binary features and y; € {0, 1} as
labels. Let ((t, z,y) = + > | 1[§; # yi] + AH; be the loss of tree ¢ on the training set, where
9; = t(x;), Hy is the number of leaves in tree ¢ and ) is a regularization parameter. The loss function
controls both the misclassification loss and the sparsity of the tree. Follow the definition in Semenova
et al. [79], Xin et al. [100] defines the Rashomon set of sparse decision trees as follows: Let .. be
a reference model from 7, where 7 is a set of binary decision trees. The e-Rashomon set is a set
of all trees t € T with £(¢,z,y) at most £(ter, T, Y) + € Reer(€,bret, T) :={t €T : £(t, x,y) <
g(trefa T, y) + 6}'

Typically, the reference model is an empirical risk minimizer t,.f € arg mingeees £(¢, €, y). Xin
et al. [[100] propose the TreeFARMS algorithm, the first method to construct the Rashomon set to
find all good sparse decision trees. It uses mathematical bounds to prune infeasible spaces, dynamic
programming for computation reuse, and the model set representation to extract and store the entire
Rashomon set. TreeFARMS can find millions of good sparse trees within a short amount of time
(within seconds or minutes, depending on the dataset size, see Section[d.4)).

While TreeFARMS can enumerate all good sparse trees, it remains unclear whether models within
the Rashomon set inherently satisfy trustworthiness principles. Also, in the presence of thousands or
millions of near-optimal trees, it might not be clear which model to choose for deployment. Next,
we investigate these questions by benchmarking sparse trees from the Rashomon set and other tree
methods across multiple trustworthiness criteria.

3.2 Robustness

Robustness ensures models maintain performance under various conditions such as adversarial
perturbations and data noise [31} |64]]. Here, we focus on adversarial robustness and stability to
random perturbations and investigate whether robust models are naturally contained in diverse
Rashomon sets.

Adpversarial robustness measures the ability of a machine learning model to correctly classify inputs
that have been intentionally perturbed through white-box or black-box attacks [34]. Given that
decision trees are inherently interpretable, meaning their structure is humanly understandable, we
primarily consider white-box attacks (attacks with information about the model). Specifically, we



consider evasion-style attacks, which aim to minimally perturb an input to cause misclassification.
Given a dataset D = {(z;,y;)}_;, and atree ¢t € T, Kantchelian et al. [50] propose an algorithm
that generates adversarial examples ;, such that the misclassification error of ¢ is maximized on
the dataset D’ = {(x},v:)}"_. In other words, if t(x) = y, the algorithm outputs a perturbed point
' that results in t(2’) # y. The perturbations are constrained such that ||} — x;||cc < 6, where
6 € RT specifies the strength of the attack. If no such «} exists under the constraint, the original
input x; remains unchanged. We create an evaluation set D*® = {(z%", y;)}"_,, where for each x;,
i —xi |

we take the nearest adversarial example z/, and apply the distance based on 6: 2% = x; + 0

Many prior works focus on improving the adversarial robustness of decision trees against this attack.
Common approaches include those that globally optimize over the space of decision trees, such as
ROCT-V [89]]; those that greedily focus on local optimizations using adversarially modified impurity
measures, such as GROOT [88]]; and those that construct decision trees with theoretically provable
robustness guarantees, such as FPRDT [38]]. We select the most recent methods from each category
as baselines: ROCT-V, GROOT, and FPRDT. We also include the greedy method CART [9].

ROCT-V [89] finds optimal robust decision trees. It frames robust tree learning as a min-max problem
over the 0-1 loss and solves it using mixed-integer programming (MIP).

FPRDT [38] is a greedy recursive approach for constructing robust decision trees. It directly
minimizes the adversarial 0-1 loss by making a tradeoff between global and local optimizations over
the potential splitting features and thresholds. FPRDT has a computational complexity of O(n logn),
which is the smallest among all provably robust decision trees.

GROOT [88] makes greedy splits according to the adversarial Gini impurity — a splitting criterion
that measures the worst-case Gini impurity after an attacker has maximally worsened the split by
moving points within a specified perturbation range. Since impurity is concave to the number of
modified data points, GROOT uses its analytical solution to compute the function in constant time.

Stability in our context refers to a model’s ability to maintain accurate predictions under natural
perturbations of the input data. We follow the approach from Justin et al. [49] to evaluate this

property. First, for every feature with index j € {0,...p}, a “confidence level” q{ is sampled
from a normal distribution: q{ ~ N (p, o), where p and o are the normal distribution parameters.
The value ¢’ represents the likelihood that the feature j remains unperturbed. If qg = 1, then no
perturbation occurs. Next, the noise is sampled as £/ ~ S - (G7 — 1), where G? ~ Geom(q}), ! =
2- B/ — 1 with B/ ~ Bernoulli(0.5).

Intuitively, G7 represents the strength of the noise for feature j of sample ¢, and S determines
the sign, ensuring equal probability of positive and negative noise. Because features and splits are
integer-valued, this symmetric geometric step targets flips/threshold crossing: any nonzero step flips
a binary feature, and a split at threshold 6 is crossed iff [¢/| > d(x], 0) (the integer distance to 6).

The new dataset is then D¥® = { (a5, y;)}7_ |, where 257 = o7 + ¢/,

K2
We use ROCT-N [49] as the stability baseline. It finds a globally optimal robust tree using a two-stage
robust optimization approach. The first stage determines the tree structure to maximize correctly
classified training samples under worst-case perturbation, where confidence levels ¢! define the
uncertainty set for each feature j. The second stage optimizes the classification of training samples
after observing the worst-case perturbation. This problem is formulated as a mixed-integer program
and solved using a customized Benders decomposition algorithm.

For both robustness and stability, we evaluate CART, FPRDT, GROOT, ROCT-N, ROCT-V, and
TreeFARMS across 13 datasets (Table [3)) with standard five-fold nested cross-validation. The
configuration for each method is in Appendix

3.3 Privacy

Protecting privacy is essential for machine learning systems that handle sensitive or personally
identifiable data. Among many privacy threats studied in the literature, we focus on membership
inference attacks and machine unlearning.



3.3.1 Membership Inference Attack

Membership inference attacks (MIAs) aim to determine whether a particular data point was used
to train a given model [80]. We evaluate whether sparse decision trees within the Rashomon set
are inherently resistant to MIAs compared to explicitly private trees. To comprehensively evaluate
privacy, our setup includes both defense mechanisms and attack mechanisms.

Existing defenses against MIAs fall into two broad categories: theoretical guarantees such as
differential privacy [25]], and empirical defenses that aim to reduce overfitting or confidence leakage.
In this work, we focus on the former and compare TreeFARMS to representative differentially
private decision-tree algorithms. Differential privacy offers formal protection against MIAs by
injecting randomness during training. Formally, an algorithm M is (7, 72)-differentially private if
for all dataset D, D’ that differ on a single element, and for any S C range(M), P[M(D) € S] <
e P[M(D’) € S| + 19, where 11,12 > 0. The basic idea of differential privacy is to ensure that
individual data points cannot be identified while still preserving overall data utility. We include
three representative DP tree algorithms as baselines: PRIVA [90]], BDPT [36], and DPLDT from
DiffPrivLib [43]. These greedy algorithms introduce randomness into split selection and leaf labeling
to ensure privacy, though often at the cost of predictive performance.

PRIVA [90] first determines quantile-based bins for numerical features and then uses private his-
tograms to select good splits with minimal privacy budget. It partitions the data recursively until it
reaches leaf nodes, which are then labeled using a noise-based majority vote mechanism.

BDPT [36] builds the tree top-down. The best splitting attribute is chosen based on the Gini index
via the exponential mechanism, and continuous attributes are discretized using down-sampling. At
each leaf node, noisy class counts are calculated (using Laplace noise) to determine the final label.

DPLDT [43] implements the randomized split tree from [30]. Each tree is built by randomly selecting
a feature at each node and partitioning the data accordingly. The leaf nodes use the Exponential
Mechanism (with smooth sensitivity) to output only the majority label to maintain differential privacy.

To evaluate the privacy of both TreeFARMS and DP tree models described above, we adopt four
representative MIA algorithms from the literature, varying in the level of adversarial knowledge and
access to the model, ranging from simple prediction-based heuristics to shadow-model training.

* The baseline attack [[102]] infers membership based on the correctness of the model’s predictions:
a sample is considered a member if the model predicts it correctly. This attack serves as a reference
point for other methods, relying purely on the extent of model overfitting.

* The label-only attack [59] requires only hard class predictions. It infers the membership by
estimating the minimum perturbation needed to flip the predicted label. If this distance exceeds a
threshold, the sample is inferred to be a member. We calibrate a membership threshold at the 50th
percentile of distance scores computed on a pool of unlabeled points.

* The label-only supervised attack [[16] is a stronger variant of label-only attack, which leverages
partial knowledge of the data distribution to calibrate the threshold. In experiments, the attacker is
given 500 reference samples with known membership status to determine the threshold.

* The shadow model attack [80] trains auxiliary models to mimic the target model and uses a
separate classifier to predict the membership.

We evaluate on a balanced dataset of 1000 samples, where 500 samples are randomly sampled from
the training set (members) and 500 from the test set (non-members). For two label-only attacks, we
allow up to five perturbation queries per sample. Detailed configurations are in Appendix

3.3.2 Machine Unlearning

Machine unlearning refers to the process of removing the influence of specific training data from a
trained model, ensuring that the model behaves as if those data points had never been used [, [73].
It has become an important topic, with extensive work in deep learning and ensemble models
[L1} [78) 197], but little analysis has been conducted on sparse trees. To address this gap, besides
TreeFARMS, we consider two unlearning algorithms in our framework: data removal-enabled (DaRE)
forests [11]] and GBDT unlearning [61]].

DaRE [11] is an unlearning algorithm for random forests that leverages randomness and caching to
enable efficient unlearning. The trees in the forest can follow a greedy top-down approach, referred



to as G-DaRE, or incorporate random layers in the top, where splits are chosen uniformly at random,
referred to as R-DaRE.

GBDT unlearning [61] provides an algorithm for gradient boosted trees that uses intermediate data
statistics to decide if subtrees need retraining. It uses random split point selection to limit split values
and optionally adds random layers to restrict retraining to a subset of subtrees. The standard version
without random layers is called G-Boosting, while the version with random layers is R-Boosting.

Unlearning in TreeFARMS requires no retraining. Instead, we can directly search within the
Rashomon set to find an optimal tree after removing data points. Theorem 5.3 in [100] states
that if e > % where K is the number of removed points and n is the original data size, the optimal
tree after removal remains in the Rashomon set trained on the full dataset. Thus, with a properly
chosen ¢, the optimal tree can always be found in the Rashomon set, regardless of which or how
many (up to K') samples are removed.

We evaluate these methods on 5 datasets. Configurations for each method are in Appendix [C.2}

3.4 Fairness

We consider three group fairness metrics: statistical parity, equal opportunity, and equalized odds.

LetY, Y, A, and A be random variables for labels, predicted labels, sensitive features, and a set of
possible values for A, respectively.

Statistical Parity (sp) ensures that the probability of a positive outcome is the same across all
protected groups [26], i.e., P(Y = 1|A = a) = P(Y = 1|A = b),Va,b € A.

Equal Opportunlty (eopp) requires a model to have equal true positive rates (TPR) across different
groups,ie., PY =1Y =1,A=a)=P(Y =1|Y =1,A=b),Va,b € A.

Equalized Odds (eodds) requires that the model has equal true posmve rates (TPR) and false posmve
rates (FPR) across all groups. Mathematically, it’s defined as: P(Y = 1|A = a,Y =y) = P(Y =
1JA=bY =y),Va,be A,y € ).

We evaluate the fairness performance of trees within the Rashomon set and trees from optimal fair tree
algorithms, DPF [84] and FairOCT [48]]. Both are in-processing methods that incorporate fairness
constraints directly into the optimization process. We also include the greedy method CART [9] and
a post-processing method LinearPost [98] 99] as baselines.

DPF [84] finds an optimal tree with a given depth that minimizes misclassification loss with a
statistical parity constraint. This constraint ensures that the difference in positive rates does not
exceed a predefined threshold §. The optimization problem is solved using dynamic programming,
and a custom bound is used to prune partial solutions that cannot lead to the optimal fair tree.

FairOCT [48] formulates the optimization problem as a MIP problem, which a mathematical solver
then solves. This algorithm can incorporate fairness constraints using the above-mentioned metrics,
ensuring that the absolute difference remains within a predefined threshold 4.

LinearPost [9§] is a post-processing method to achieve fairness by linearly transforming the pre-
dictions of the base classifier. A tolerance « controls the tradeoff between accuracy and fairness.
LinearPost is model-agnostic, and we use CART and XGBoost [15] as base predictors, denoted as
PostCART and PostXGB.

We consider binary classification with binary sensitive features. The sensitive feature is not used in
training but is used for evaluation. Detailed setup is available in Appendix |D} Note that DPF is only
suitable for statistical parity, whereas other methods can be applied to all three fairness metrics.

4 Experimental Results

Our evaluation aims to answer the following questions: Q1. How do models in the Rashomon set
compare to baselines optimized for specific trustworthiness criteria, such as robustness, privacy, and
fairness (Section[4.1)? Q2. What proportion of models in the Rashomon set outperforms baseline
models on key metrics, and how consistently does this occur across datasets (Section [4.2)? Q3.
What connections, if any, exist between model sparsity and trustworthy properties, and how do these



insights inform model selection (Section[4.3)? Q4. How does the computational cost of computing
the Rashomon set compare to training separate models optimized for individual criteria (Section [{.4)?
Q5. Are there observable interactions between different trustworthiness criteria (e.g., do fair models
also tend to be robust) (Section @)?

To address these questions, we conducted a comprehensive empirical analysis of sparse decision trees
in the Rashomon set and compared them to baselines using our evaluation frameworks described in
Section[3] We use a total of 21 datasets (see Table[5). We also provide results for other hypothesis
spaces in Appendix

4.1 Q1. The Rashomon Set of Sparse Decision Trees Contains Trustworthy Models

Adversarial Robustness. Figure[Ta]compares the adversarial accuracy of trees within the Rashomon
set to various baseline models on the test set. The light blue density plot represents the distribution of
adversarial accuracy for all trees in the Rashomon set. Vertical lines indicate the accuracy of baseline
models, including CART, FPRDT, GROOT, and ROCT, as well as some trees from the Rashomon set,
such as the optimal tree, the tree with the fewest leaves, the tree with the most leaves, and RSET_kan,
a tree chosen from the held-out selection set. Many trees within the Rashomon set achieve higher
accuracy than the baselines, indicating their robustness against adversarial attacks. Also, the selected
tree, RSET_kan, can perform comparably to or even better than baselines on the test set.

Stability. Figure [Ib]compares the stability of tree models when random perturbations are added to
the data. Note that only ROCT-N explicitly accounts for these perturbations during training, while all
other methods are trained normally or for robustness and evaluated for stability on perturbed test data.
As we can see, different representative trees from the Rashomon set (bars colored in blue palette) and
CART generally perform better than other methods. Although ROCT-N is designed to optimize for
robustness against perturbations, its performance on the test set does not dominate other methods.
This suggests that while the Rashomon set is not explicitly designed for stability, it contains trees that
perform well under perturbations. More results are in Appendix [B]

|

2346 banknote

EhitH
§ 586
0

‘ ‘ 1.00 banknote

05 0.6 07 0.8 09 2 A El osozaEz WD PP
Accuracy 0.75 r 1;‘1‘1 I-'L ' f
2324 fico 0.50 | I | B | B | 3l |
21743 1.00
31162 > fico
O 581 5075
%2 03 0.4 0.5 0.6 0.7 3> - _ - -
Jearaey S5 oM Lapm Lot Labl Ll
2072
21554 1.00 spambase _
51036 PR N - - e
§ 518 075 T | o s - | ( !
0 00 02 04 0.6 08 050 I xi
Accuracy ' default shift —0.2 shift —0.1 shift +0.1  resamp +0.05
—— CART FPRDT GROOT Noise Type
ROCT-V —— ROCT-N —— RSET_kan B CART FPRDT s GROOT ROCT-N ROCT-V
—— RSET_opt RSET_min —— RSET_max BN RSET_opt s RSET_min B RSET_max RSET_kan
(a) (b)

Figure 1: (a) Comparison of adversarial accuracy between trees in the Rashomon set (light blue
histogram) and baseline models (vertical lines) on the test set. Most Rashomon set trees achieve higher
robustness than baselines. (b) Stability comparison of different methods under random perturbations.
Trees in the Rashomon set (colored in a blue palette) generally perform better than baselines.

Membership Inference Attacks (MIAs). Table[T]shows the attack success rate when two different
MIAs are applied to various methods. A lower value indicates that the method is more resistant to
attacks. Overall, these attacks are not successful as the highest observed accuracy remains close
to 0.5, meaning the attacker does not significantly outperform random guessing. Compared to 3
differential private tree methods, trees from the Rashomon set with the fewest leaves (RSET_min)
achieve comparable or even better resistance against both attacks, despite the fact that the TreeFARMS
algorithm does not incorporate any explicit randomness for privacy protection. Results for more
attacks are in Appendix [C.1]

Machine Unlearning. Table [2] shows the proportion of test data with different predicted labels
between the unlearned and retrained models for the Rashomon set, G-DaRE, and G-Boosting after



Table 1: Membership inference attack success rates for baselines.
resistance to attacks.

Lower values indicate better

Data BDPT DPLDT PRIVA RSET_min
. adult | Attk Failed 50.1% +1.6% 50.2% +1.6% 50.1% +1 %
€| bank | Attk Failed 50.9% +0.8% 50.5% +1.0%  Attk Failed
3 | fico | 49.7% £0.4% 49.2% +0.6% 50.9% +0.6% 48.5% +1.8%
5 | mimic | 50.2% +0.1% 50.3% +0.9% 49.8% +0.9%  Attk Failed
oulad | Attk Failed 50.1% *0.8% 50.0% +1.1%  Attk Failed
adult [49.1% +1.2% 493% +1.2% 49.2% +1.1% 50.0% * 1.0%
g | bank | 50.0% £0.8% 49.9% +1.0% 49.8% +1.1% 50.6% +1.1%
| fico | 49.7% £0.5% 50.2% +0.4% 50.5% +0.7% 49.4% +1.3%
“ | mimic | 49.8% £ 1.0% 49.8% +1.1% 49.6% +1.0% 49.8% +1.2%
oulad | 50.4% +0.8% 50.4% +0.8% 50.4% +0.8% 49.9% +1.4%

Table 2: Proportion of test data with different predicted labels between the unlearned and retrained
models (i.e., Junlearn 7 Yretrain) after 1% of the training data are randomly removed.

Data RSET G-DaRE G-Boosting

carryout 0 1.294% + 0.465% | 5.548% + 0.741%
restaurant 0 1.902% 4 0.433% | 4.746% =+ 0.623%
adult 0 0.018% £+ 0.013% | 0.064% =+ 0.027%
compas 0 0.000% =+ 0.000% | 0.478% =+ 0.543%
bank 0 0.607% £+ 0.103% | 0.888% =+ 0.096%

1% of the original training data are randomly removed. Since the optimal tree after data deletion is
guaranteed to be within the Rashomon set if € is set appropriately, the RSET column always reports 0.
In contrast, such a guarantee does not hold for other methods. More results are in Appendix [C.2}

Fairness. Figure |2 compares the test accuracy and fairness of trees within the Rashomon set to
baseline models at depth 4, with each row representing a different fairness metric. A higher value on
both axes (top-right corner) indicates better performance. The blue density contours represent the
distribution of trees in the Rashomon set. The count of trees at each grid is averaged over five folds.
Baseline models and a selected Rashomon set tree are shown as dots with error bars, where the error
bars indicate standard deviation. The results show that the contours usually overlap with the baseline
points and cover the region close to the top-right corner, indicating that the Rashomon set contains
trees with performance comparable to the baselines. Since DPF is specifically designed to optimize
for statistical parity, it appears only in the top row of the figure. Appendix [D]displays results on 7
datasets at more depths.

4.2 Q2. Many Near-Optimal Trees are Trustworthy

Figure [1a| and [2| have shown that many trees in the Rashomon set have comparable performance
in adversarial robustness and fairness to baseline models. Table 3| reports the percentage of trees
within the Rashomon set that outperforms baselines. In certain datasets, more than 50% of trees in
the Rashomon set achieve higher test adversarial accuracy than FPRDT and ROCT-V. Similarly, the
Rashomon set contains trees that have greater fairness than all baselines, except for the adult and
compas, where DPF achieves lower disparity in statistical parity at the cost of reduced accuracy.

4.3 Q3. The Importance of Tree Sparsity for Trustworthy Properties

Larger Rashomon sets can contain models with different complexity [79,[100]]. In the case of sparse
decision trees, we can measure complexity by the number of leaves, and indeed our computed
Rashomon sets often contain trees with different numbers of leaves (for example, the Rashomon
set of the German Credit dataset includes trees with leaves in the range from 1 to 7, Appendix [D.4).
Sparsity is important for trustworthy metrics, such as robustness or privacy, as it reduces the amount
of information encoded in a model, limiting the risk of revealing sensitive data [60]. Our results also
support this. Sparser Rashomon set trees (RSET_min) tend to perform better than more complex
counterparts (RSET_max) for adversarial robustness (Figure[laland Appendix |B.1) and under the
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Figure 2: Test accuracy vs. fairness for trees in the Rashomon set (blue density contours) and
baselines (dots) at depth 4. Higher values on both axes indicate better performance.

Table 3: Percentage of models in Rashomon set that perform better than baselines for adversarial
robustness (left) and outperform all baselines for fairness (right) on the test set.

Robustness FPRDT ROCT-V Fairness SP EODDS
banknote 94.66 + 4.48% 95.34 £3.43% adult 0.00% * 0.00% 15.03% + 15.99%
blood 491 £4.79% 5.26 £ 6.64% bank 65.28% £21.96% 39.49% + 16.71%
breast 56.09 £ 11.98%  75.58 + 8.36% german-credit | 28.85% £39.49%  31.55% + 36.20%
compas 23.96 £10.73%  28.15+8.61% compas 0.00% % 0.00% 26.47% + 35.93%
diabetes 46.59 £40.54% 62.34 + 17.76% oulad 84.22% + 8.37% 89.21% + 6.75%
spambase 4437 +£4.00%  78.93 £11.49% student-mat 40.00% £ 48.99%  32.89% * 33.12%

membership inference attack (Appendix [C.T). Notably, we did not observe a connection between the
sparsity of our models and fairness (Appendix [D.4) and stability (Figure[Tb]and Appendix [B.2).

4.4 Q4. TreeFARMS Training Time is Comparable to Optimal Baselines

TreeFARMS effectively optimizes the search space of trees, allowing us to find thousands or millions
of near-optimal trees in seconds or minutes. Table ] (and Appendices [B] [D.T)) supports this with a
summary of the training time compared to the robustness and fairness baselines that optimize for the
best model averaged over datasets. Although TreeFARMS might require more time to run for deep
depth, it finds significantly more trees (Appendix [D.T)).

Once the Rashomon set is constructed, model selection becomes a lightweight post-hoc step. Rather
than retraining from scratch for each trustworthiness criterion, as required by optimization-based
methods (e.g., robust or fair optimal trees), TreeFARMS allows users to evaluate and filter precom-
puted models according to desired constraints. Evaluating the entire set scales linearly with its size,
is trivially parallelizable, and remains far cheaper than repeated retraining. In practice, enumerating
and screening Rashomon sets with TreeFARMS is typically the more efficient and flexible option
within an ML workflow.

4.5 QS. Trees in the Rashomon Set Often Satisfy Multiple Trustworthy Properties

For different trustworthy metrics in Section .1} we selected trees that performed well based on the
selection set. Here, in Figure 3] we further compare how these trees perform on other metrics. First
of all, the accuracy of the trees is approximately the same since they all are from the same Rashomon
set. All selected trees tend to be stable and perform well under membership inference attack, while
the minimum complexity tree (RSET_min) is still preferred sometimes (e.g. bank). Similarly, trees
selected specifically for statistical parity (e.g., german credit and bank datasets) seem to be preferable
to other models, especially optimal trees. Overall our results highlight the importance of considering
multiple trustworthy metrics when selecting models, as no single tree consistently outperforms others
across all criteria. Please see Appendix [F]for more datasets.

5 Conclusion, Limitations and Implications

We introduced a framework for evaluating trustworthy properties of models inside the Rashomon set
of sparse decision trees. By benchmarking the Rashomon set against state-of-the-art tree baselines



Table 4: Mean training time, in seconds, for TreeFarms and baselines averaged over thirteen robustness
datasets (left) and seven fairness datasets (right) for depth 2.

| ROCT-N  ROCT-V  RSET | DPF  FairOCT RSET
Mean Fit Time | 172523 164430 25248 || 0.06  9099.23  0.46
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Figure 3: Evaluation of trees selected from the Rashomon set in Sectionon different metrics.

targeted to individual trustworthiness criteria and analyzing fairness, stability, robustness, and privacy,
we provide a systematic methodology for understanding and intentionally navigating trade-offs in
high-stakes settings. Empirically, we find that Rashomon sets often contain models that are robust,
stable, privacy-preserving, and fair even without explicit optimization for these properties. This
reframes the Rashomon set as a resource: rather than retraining for every criterion, one can search
within the set to identify models that meet desired constraints.

Our results suggest a simple selection protocol that mirrors the experiments: (i) enumerate or
approximate the Rashomon set for a target loss tolerance and model class; (ii) evaluate trustworthiness
metrics (fairness, stability, robustness, membership-inference privacy, and/or unlearning) for each
model; (iii) filter by hard constraints (e.g., max disparity, min stability); (iv) choose model on the
empirical Pareto frontier (e.g., fairness-accuracy or privacy-simplicity), or aggregate via a weighted
objective when priorities are known. This procedure produces models that satisfy multiple criteria
without retraining and exposes transparent trade-offs when criteria conflict.

One limitation of our approach is that we focus on the hypothesis space of decision trees, though our
methodology can be extended to other model classes (see Appendix [E). Another limitation is that we
evaluate membership inference using a limited number of membership inference attack algorithms
for trees, as few such methods have been proposed in the literature. Nonetheless, the diversity of
near-optimal trees within the Rashomon set already offers benefits: it can be leveraged for robustness
via moving-target defenses, for fairness by covering different subpopulations, and for exploring
explicit Pareto trade-offs between properties such as privacy and simplicity.

Our findings motivate concrete questions for future work: When does model diversity most improve
trustworthiness? Under what data/model conditions do multiple properties co-occur? How should
we quantify diversity to predict trust gains? And to what extent do these effects transfer to richer
model families? We hope that our evaluation frameworks can be used by data and machine learning
scientists, as well as policymakers, to assess model performance across multiple trustworthiness
criteria in a systematic and scalable way as well as inspire further research on model selection under
larger Rashomon sets.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are consistent with the paper’s
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we have discussed the limitation of the work in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper is a benchmark study and does not include theoretical results or
formal proofs. The focus is on empirical evaluation.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental setups are detailed in Appendix B-F. Code is available in
supplement.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Datasets used in this paper are publicly available. Code is available in
supplement. We have detailed experimental setup in Appendix B-F.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please see Appendix C-F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean and standard deviation over multiple runs for evaluation
metrics. We explain the computation of reported statistics.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute details are available in Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work adheres to the NeurIPS Code of Ethics.
Guidelines:
» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have mentioned the social impact in the conclusion.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper doesn’t release models that have the potential to cause harm.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open access datasets and baselines and cite the sources of all the
datasets and baselines we used in the paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the code for this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We used LLM only for editing and improving the clarity of wording.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Datasets

Table [3]lists all the datasets we considered in this paper. We report the number of samples, features,
class imbalance, and also for which trustworthy metrics we used the datasets. Some datasets we
collected based on the baseline papers (e.g., oulad, german credit). In other cases (e.g., fico and
mimic), we select important datasets from high-stakes domains where trustworthiness is highly
valued.

Table 5: Summary of datasets. In the metrics column, R represents Robustness, P represents Privacy
(Membership inference attack), U represents Machine unlearning, and F represents Fairness. *
indicates the dataset has been binarized according to [S7].

Dataset #Inst. # Feat. % Pos. | Metrics
adult*® [24]] 45222 17 24.78% | P/U/F
bank* [[71]] 45211 46 11.70% | P/U/F
banknote [66]] 1372 4 44.46% R
blood [101]] 748 4 23.80% R
breast [96] 683 9 34.99% R
carryout [91]] 2280 22 73.77% P/U
compas-orig [54] 6907 7 46.27% R/F
compas™ [54] 6907 9 46.27% P/U/F
diabetes [82] 768 8 34.90% R
fico [28] 10459 23 52.19% R
haberman [39] 306 3 26.47% R
german-credit® [24]] | 1000 69 69.97 % P/F
mimic [[77]] 24508 17 12.25% R/P
oulad* [53]] 21562 45 67.97% P/F
parkinsons [63]] 195 22 75.38% R
restaurant [91] 2653 22 70.90 % P/U
sonar [35]] 208 60 53.37% R
spectf [52] 267 44 79.40% R
spambase [44] 4601 57 39.40% R
stud-mat* [17]] 649 55 32.89% F
stud-por* [17] 649 55 15.41% F
wine-q [18]] 6497 11 63.31% R

B Experiments: Robustness

For both robustness and stability, we evaluate CART, FPRDT, GROOT, ROCT-N, ROCT-V, and
TreeFARMS across thirteen datasets (Table[5) with standard five-fold nested cross-validation. We
configure each method as follows:

» TreeFARMS: We tune the depth={1,2, 3,4} and A = {0.02,0.015,0.01,0.005}. Since it is
infeasible to target every model in the Rashomon set at inference time, we use the optimal tree as
areference to generate adversarial examples. We then select a tree within the Rashomon set that
exhibits robustness against adversarial attacks on the held-out selection set. We denote this tree as
RSET_kan. We also report the performance of the optimal tree in the Rashomon set (RSET_opt), a
tree with the minimum and maximum number of leaves (RSET_min and RSET_max, respectively).
If multiple such trees exist, we choose one randomly.

* GROOT: We tune the depth= {1, 2, 3, 4}, fix the minimum number of samples required to split an
internal node (min sample split) to 10 and the minimum number of samples required to be at a leaf
node (min sample leaf) to 5.

* FPRDT We tune the depth= {1, 2, 3,4}, fix min sample split to 10 and min sample leaf to 5.

* ROCT-V: We set fixed depth 2 and 1800 seconds time limit.

* ROCT-N: We set fixed depth 2 and 1800 seconds time limit.

» CART: We tune the depth= {1, 2, 3,4}, fix min_sample_split to 10 and min_sample_leaf to 5.

For adversarial robustness attack, we set the attack strength 6 to 0.1, adjusting it for some datasets to
reproduce results in [88] (see more in Appendix [B.1I)). For stability perturbations, we set the normal

25



distribution parameters that determine the confidence level to p = 0.9 and o = 0.1. During the
evaluation, we consider the regular setting as described above, apply a shift of [-0.2, —0.1,0.1] to ¢/,

and resample qg uniformly in the range of +0.05. By evaluating based on the stronger perturbations,
we are testing the out-of-distribution performance of the different methods. For each of the five
settings, 5000 trials are performed to compute meaningful statistics.

B.1 Adversarial Robustness

Setup: We ran adversarial robustness experiment on 13 datasets: banknote, blood(-transfusion),
breast(-cancer), compas(-orig), diabetes, fico, haberman, mimic, parkinsons, sonar, spambase, spectf,
wine-q(uality), as shown in table 5} Both TreeFARMS and ROCT-N solve NP-hard optimization
problems, requiring preprocessing (binarization) for real-valued features. We applied GOSDT
threshold guessing with n_estimator=30, max_depth=2, learning_rate=0.1, backselect=True [68]].
The resulting tree is converted into a standard tree structure with appropriate features and thresholds
by replacing binary splits with their corresponding threshold values. This step is necessary for
adversarial attacks to generate meaningful perturbation.

Result: Table[6shows the test accuracy of all models on 13 datasets we used in adversarial robustness
experiments. Trees within the Rashomon set (e.g., RSET_opt and RSET_max) perform competi-
tively and often achieve the highest test accuracy (bolded). In contrast, robust tree models such as
GROOT, ROCT-N, and ROCT-V generally have lower accuracy, suggesting that robustness-focused
optimization may come at the cost of predictive performance.

Table[7]shows accuracy on adversarial samples generated from the test dataset. The highest adversarial
accuracy for each dataset is in bold. In our setup, the attack targets the optimal tree in the Rashomon
set, so it often has lower adversarial accuracy. However, many other trees within the Rashomon set
remain robust. RSET_kan achieves the highest accuracy on most datasets, indicating that the selected
trees can provide both robustness and accurate predictions.

We also investigate how different representative trees within the Rashomon set perform when the
attack targets a randomly selected tree rather than the optimal tree. Table [§] shows that attacking
different random trees from the Rashomon set leads to different robustness performances of represen-
tative trees. In some cases, RSET_kan, the model chosen from the selection set, achieves the highest
accuracy. However, in most cases, RSET_min, the tree with the fewest leaves, outperforms the others.
This finding suggests that sparser trees tend to be more robust against adversarial attacks compared to
their more complex counterparts, such as RSET_max, as we discussed in Section @

Figure [4 compares the adversarial accuracy of trees within the Rashomon set to various baseline
models on the test set. This figure expands on the discussion in Section .| The light blue density
plot represents the distribution of adversarial accuracy for all trees in the Rashomon set or a random
subsample of 100,000 trees of the Rashomon set, whichever is smaller. Vertical lines indicate the
accuracy of baseline models, including CART, FPRDT, GROOT, and ROCT, as well as specific
Rashomon set trees such as the optimal tree (RSET_opt), the sparsest tree (RSET_min), the most
complex tree (RSET_max), and RSET_kan, a tree selected from the held-out validation set. As we
can see, many trees within the Rashomon set achieve higher accuracy than the baselines, indicating
their robustness against adversarial attacks. This suggests that careful selection within the Rashomon
set can yield robust models for critical tasks facing adversarial attacks, as attackers can not possibly
generate 100,000 distinct adversarial examples. Additionally, these density plots highlight areas for
improving our selection metric. For instance, while the selected Rashomon set tree performs best on
certain datasets, it does not always achieve the best performance in others (e.g., breast cancer). This
finding might inspire future research on developing better selection criteria.

Table [9]extends Table[3]in Section 4.2} reporting the percentage of trees within the Rashomon set that
outperforms the baseline models on the test set. Across all datasets, the Rashomon set includes trees
that achieve higher adversarial accuracy than the baselines. In certain cases, such as banknote and
fico datasets, nearly 80% of trees in the Rashomon set achieve higher test adversarial accuracy than
FPRDT and ROCT-V.
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Table 8: Adversarial accuracy of different Rashomon set trees when the attack targets a randomly

selected tree instead of the optimal tree.

Table 9: Percentage of trees in Rashomon set that have better test adversarial accuracy than the

Dataset RSET _opt RSET_min RSET_max RSET_kan
banknote | 0.772+£0.066  0.767 + 0.076 0.794 £0.08  0.812 + 0.046
blood 0.71£0.089  0.762 £0.003  0.485+0.076  0.639 £ 0.085
breast 0.726 £0.266 0918 £0.027  0.946 +£0.018 0.911 £0.034
compas 0.529 +0.081 0.389+0.152  0.503 £0.052 0.472 +0.087
diabetes 0.71 £ 0.037 0.716 £ 0.054  0.693 +£0.063 0.706 = 0.061
fico 0.564 £0.054 0.547£0.044 0.576 £0.079  0.64 + 0.043
haberman | 0.601 £0.192  0.735+£0.005 0.503+0.117 0.578 £0.15
mimic 0.878 £ 0.0 0.878 £ 0.0 0.849 £ 0.039 0.827 £0.107

parkinsons | 0.831+£0.029  0.856 £ 0.064  0.703 £ 0.142 0.8 +0.103
sonar 0.616 £0.084  0.625+£0.039  0.606 +0.066  0.65 £ 0.101
spambase | 0.764 £0.119 0.853+0.013 0.708 £0.112 0.665 +0.121
SPECTF | 0.636+0.109 0.772+£0.047 0.697 +£0.109 0.618 £0.105
wine-q 0.604 £0.059  0.609 £0.056 0.583 £0.078  0.57 £0.072

baselines.
Dataset FPRDT ROCT-V
banknote | 94.66 + 4.48% 95.34 + 3.43%
blood 491 +4.79% 5.26 + 6.64%
breast 56.09+11.98%  75.58 £ 8.36%
compas 2396 £10.73%  28.15+8.61%
diabetes | 46.59 £40.54%  62.34 +17.76%
fico 79.35 + 7.06 % 79.58 + 6.93%
haberman | 18.61 £27.94%  18.13 £28.02%
mimic 68.16 + 8.51% 68.42 + 6.45%
parkinsons | 45.19 + 18.39%  55.87 £ 34.06%
sonar 70.06 +15.72%  81.93 + 14.15%
spambase | 44.37+4.00%  78.93 + 11.49%
SPECTF 3.16 £3.18% 3.16 £3.18%
wine-q 24.65 £3.57% 23.79 £2.79%

B.2 Stability

Setup: To ensure stability, we evaluate our models on the same 13 datasets used in the adversarial
robustness experiments. We consider five different noise perturbations, briefly introduced in Section
Additionally, threshold guessing is applied to ROCT-N and TreeFARMS using the same
parameters described in Section[B.T]

For baselines that require an attack strength specification, we set the budget to 10% by default. This
choice is justified by the expected perturbation value for noise, which is approximately 11%. This

value is derived from the expectation of a geometric distribution, %, where the expected value of qg

t
corresponds to the mean of our normal distribution, which is 0.9. Thus, using a 10% budget ensures
consistency with the setup used in other sections.

For each perturbation, we conduct 5000 repeated trials, resampling the noise in each iteration while
maintaining the fixed confidence level. We compute the average and worst-case scores and record the
standard deviation of the results. This process is repeated across five folds.

Results: Figure 3] visualizes the stability performance of trees across 13 datasets under five different
types of noise perturbations. Note that only ROCT-N explicitly accounts for these perturbations
during training, while all other methods are trained for accuracy or for accuracy and robustness and
evaluated for stability on perturbed test data. As shown in the figure, different representative trees
from the Rashomon set (bars colored in blue palette) are generally comparable to ROCT-N, indicating
that while the Rashomon set is not explicitly designed for stability, it contains trees that perform well
under perturbations. Interestingly, CART also performs well for stability.
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Figure 4: Comparison of adversarial accuracy between trees in the Rashomon set (light blue his-
togram) and baseline models (vertical lines) on the test set. Most Rashomon set trees achieve higher

robustness than baselines.

Training Time:Time consumption is an important metric to consider when evaluating model per-
formance. We investigate whether TreeFARMS’ consistently strong results come at the cost of
significantly longer training times. Table[T0[reports the training time (in seconds) for each method.
Greedy methods such as CART, FPRDT, and GROOT complete training quickly due to their heuristic-
based construction. In contrast, ROCT-N, ROCT-V, and TreeFARMS aim to find globally optimal
solutions, which are NP-hard problems. As a result, ROCT-N and ROCT-V often reach or nearly
approach the 1,800-second time limit. TreeFARMS (RSET) usually completes training within a
reasonable time frame. Note that the table shows training latency — for example, ROCT-N continues
processing beyond the time limit before terminating.

29



banknote blood-transfusion

1.0 1.0
>0.9 5.0.9
808 508 } .
go7 go7 i
<06 <06
05 default shift =0.2 shift =0.1 shift +0.1 resample +0.05 0.5 default shift =0.2 shift 0.1 shift +0.1 resample +0.05
Noise Type Noise Type
= CART s FPRDT = GROOT m=s ROCT-N ROCTV ~ mmm CART s FPRDT = GROOT = ROCT-N ROCTV
mEm RSET opt  WeW RSET_min  WmW RSET_max  mws RSET _kan N RSET opt s RSET_min M RSET_max s RSET_kan
breast-cancer 10 compas
509
mOB £0.8
go.7 . go7
< 0 e <06 -
05 u‘ l-l- I-I- - 3
default shift 0.2 shift —0.1 shift +0.1 resample £0.05 - default shift =0.2 shift —0.1 shift +0.1 resample £0.05
Noise Type Noise Type
W CART s FPRDT e GROOT e ROCT-N ROCTV ~ mmm CART s FPRDT m GROOT s ROCT-N ROCT-V
WEN RSET opt  WeW RSET_min  WEW RSET_max  W&% RSET_kan N RSET opt W RSET_min M RSET_max M RSET_kan
1o diabetes 1o fico
>0.9 5.0.9
808 . 508
go7 " . 1 L go7
<06 I i 1 <06
L default shift ~0.2 shift 0.1 shift +0.1  resample +0.05 L default shift ~0.2 shift ~0.1 shift +0.1  resample £0.05
Noise Type Noise Type
. CART s FPRDT = GROOT = ROCT-N ROCTV ~ mmm CART = FPRDT = GROOT m=s ROCT-N ROCTV
mEm RSET opt  WeW RSET_min WM RSET_max  m=% RSET_kan N RSET opt s RSET_min MM RSET_max  ®ws RSET kan
1o haberman mimic
>09 >09
m 0.8
u o 7 3o. 7
Sl e e DN e <
default shift ~0.2 shift ~0.1 shift +0.1 resammewos default shift =0.2 shift ~0.1 shift 0.1 resample +0.05
Noise Type Noise Type
. CART s FPRDT mmm GROOT e ROCT-N ROCTV ~ mmm CART s FPRDT ms GROOT s ROCT-N ROCT-V
WEN RSET opt  WeW RSET_min WM RSET_max  W=m RSET_kan N RSET opt W RSET_min WS RSET_max  #ws RSET_kan
1o parkinsons 1o sonar
aU.Q N 3’0'9
808 | I 1 e 808 .
5 I 5 N N
g 0.7 g 0.7 I
<06 <06 I i I I
05 default shift -0.2 shift —0.1 shift +0.1 resample +0.05 05 default shift -0.2 shift 0.1 shift +0.1 resample +0.05
Noise Type Noise Type
. CART s FPRDT = GROOT m=s ROCT-N ROCTV ~ mmm CART s FPRDT = GROOT = ROCT-N ROCTV
N RSET opt s RSET_min MM RSET_max  ®ws RSET_kan N RSET opt W RSET_min M RSET_max % RSET_kan
spambase SPECTF
m o a -u o a
u o 7 go7
default shift ~0.2 shift ~0.1 shift +0.1 resarnple +0.05 default shift =0.2 shift ~0.1 shift +0.1  resample +0.05
Noise Type Noise Type
W CART s FPRDT s GROOT W ROCT-N ROCTV ~ mmm CART s FPRDT s GROOT s ROCT-N ROCT-V
WEN RSET opt  WeW RSET_min WM RSET_max  W=m RSET_kan N RSET opt s RSET_min MMM RSET_max W RSET_kan
1o wine-quality
5.0.9
308
307 .
<06 i x
0.5 default shift -0.2 shift —0.1 shift +0.1 resample £0.05
Noise Type
s CART s FPRDT = GROOT m=s ROCT-N ROCT-V

mEm RSET opt  We RSET_min  WEW RSET_max  mws RSET kan

Figure 5: Comparison of stability accuracy across different methods under 5 perturbation types. Error
bars represent the average standard deviation across 5000 trials over five folds.

C Experiments: Privacy

C.1 Membership Inference Attack

Configuration: We perform five-fold cross-validation for all methods with a fixed tree depth of four
and further configure our methods as follows:

* TreeFARMS: We set A = 0.01. We evaluate trees with the minimum and maximum number of
leaves within the Rashomon set (RSET_min and RSET_max respectively) and also evaluate the
optimal model (RSET_opt).

* PRIVA: We set min sample split to 10 and min sample leaf to 5. We further set the privacy threshold
71 to 0.1.

* BDPT: We set min sample split to 10 and min sample leaf to 5. We further set the privacy threshold
11 to 0.1.

* DPLDT: We set the privacy 7; threshold to 0.1.

Both DPLDT and BDPT were designed as base estimators for Random Forest, but we evaluate
whether a single estimator can provide sufficient privacy against membership inference attacks.
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Table 10: Training time (in seconds) for each method across different datasets in the robustness

evaluation. Greedy methods (CART, FPRDT, and GROOT) complete training quickly, while ROCT-N,

ROCT-V, and TreeFARMS (RSET) aim to find globally optimal solutions.

Dataset CART FPRDT GROOT ROCT-N ROCT-V RSET
banknote 0.002563  0.022296  0.005495 1595.718707  1801.358524 12.700638
blood-transfusion | 0.001143  0.004410 0.001120 1818.296185 1611.371671 5.452538
breast-cancer 0.001125  0.010057 0.003129  1808.178998 462.495866 0.034354
compas 0.002892  0.069576  0.010519  1831.967454  1803.826331 26.162563
diabetes 0.001703  0.005114  0.001367  1815.053041 1800.516992 2.381064
fico 0.018382 0.106858 0.054123  1829.859036  1809.198182 287.172908
haberman 0.000886 0.001329 0.001058 1261.664404  1250.347395 2.144632
mimic 0.032952  0.104270 0.100324  1913.298006  1821.218696 546.053602
parkinsons 0.001485 0.004239 0.002995 1199.133712  1800.299358 0.035118
sonar 0.002356  0.015405 0.008226  1812.106851  1800.470384 784.626750
spambase 0.015867 0.154811 0.054068  1871.833115  1809.663264 213.106217
spectf 0.001426  0.002304 0.005296  1781.597735 1800.519040 1186.967646
wine-quality 0.008854  0.108675 0.012904  1889.285067  1804.638895 215.480192

Table 11: Comparison of test accuracy between differentially private tree models and trees within the
Rashomon set across seven datasets.

Dataset CART BDPT DPLDT PRIVA RSET _opt RSET_min RSET_max
adult 0.836 £0.005  0.752+0.000  0.752+0.001  0.752+0.000  0.836 + 0.005 0.793 + 0.002 0.839 + 0.006
bank 0.897 £0.002  0.883£0.000  0.883 +0.001 0.883 £0.000  0.884 +0.003 0.883 + 0.000 0.895 + 0.002

compas  0.664 £0.009  0.545+0.000  0.641 +0.011 0.600 +0.010  0.663 £ 0.006 0.630 £ 0.011 0.663 + 0.009

fico 0.707 £0.003  0.510£0.006  0.521 £0.001  0.629 £0.088  0.698 + 0.008 0.698 + 0.008 0.713 + 0.012

german  0.684 +0.019  0.700 £0.000  0.683+0.014  0.711£0.032  0.694+0.024  0.719 £ 0.017 0.707 + 0.026

mimic 0.880+0.001  0.876 £0.000  0.876 +0.001  0.877+0.001  0.878 £0.000  0.878 +0.000 0.882 + 0.002
oulad 0.686 £ 0.002  0.680+0.000  0.680+0.000  0.680+0.000  0.680+0.000  0.680 + 0.000 0.686 + 0.002

Setup: We evaluate the membership inference attack on seven datasets: adult, bank, compas, fico,
german-credit, mimic, and oulad. Among these, adult, bank, compas, german-credit (german), and
oulad are binarized datasets. As before, we apply GOSDT threshold guessing for TreeFARMS on the
fico and mimic datasets using n_estimator=30, max_depth=2, and learning_rate=0.1.

Result: Table 11| presents the standard test accuracy of different methods, including greedy tree
CART, differentially private trees BDPT, DPLDT, and PRIVA, and representative trees within the
Rashomon set. The highest accuracy for each dataset is bolded. The results show that trees within
the Rashomon set (RSET_min and RSET_max) usually achieve higher test accuracy compared to
all baselines. Differentially private trees often underperform. This is likely due to their reliance on
randomized splitting or noise injection during training, which introduces additional variability and
reduces accuracy.

Tables[12} [I5]report the accuracy of four different attacks, ordered from weakest to strongest: baseline
attack, label-only inference attacks, label-sup inference attack, and shadow model attack. A lower
value indicates that the method is more resistant to attacks.

Overall, these attacks are not successful as the highest observed accuracy remains close to 0.5 in all
four tables, meaning the attacker does not significantly outperform random guessing. Compared to 3
differential private tree methods, trees from the Rashomon set with the fewest leaves (RSET_min)
achieve comparable or even better resistance against both attacks, despite the fact that the TreeFARMS
algorithm does not incorporate any explicit randomness for privacy protection.

Table 12: Baseline membership inference attack success rates for different methods. Lower values
indicate better resistance to attacks.

Dataset CART BDPT DPLDT PRIVA RSET _opt RSET_min RSET_max
adult 0.497 £ 0.011 0.497+0.017  0.496 £0.016  0.497+0.017  0.497 +0.011 0.501 +0.01 0.501 + 0.009
bank 0.503 + 0.006 0.504 = 0.01 0.504 £0.008  0.503 £ 0.008 0.503 £ 0.01 0.507 £ 0.01 0.502 + 0.012

compas  0.484+0.016  0.491 +0.019 0.48 + 0.025 0.489+0.014  0.484+£0.014 0.515 +0.032 0.516 +0.025

fico 0.505+0.015  0.493£0.006  0.492+0.005 0.501+0.006  0.496 + 0.009 0.485 + 0.018 0.508 + 0.009

german  0.590 + 0.066 0.503 +0.03 0.505+0.033  0.528 £0.048 0.52 +0.047 0.542 +0.026 0.532 £ 0.058

mimic 0.503+0.013  0.502+0.011 0.502+0.012  0.502+0.011  0.502 £ 0.011 0.506 + 0.011 0.504 + 0.007
oulad 0.504 +0.014 0.500 = 0.01 0.500 = 0.01 0.500 + 0.01 0.500 = 0.01 0.497 + 0.013 0.509 £ 0.014
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Table 13: Label-only unsupervised MIA success rates for different methods. * means only one fold
has successful attacks.

Dataset CART BDPT DPLDT PRIVA RSET _opt RSET_min RSET_max
adult 0.497 +0.011  Attack Failed  0.501 +£0.016 ~ 0.502 +0.016 0.497 +£0.011 0.501 +0.01 0.501 +0.009
bank 0.503 £0.006  Attack Failed  0.509 + 0.008 0.505 +0.01 0.5 (1/5)* Attack Failed  0.502 +0.012

compas  0.484+0.016  Attack Failed 0.479+0.023  0.484 +£0.016 0.484 +0.014 0.515+0.032 0.516 + 0.025
fico 0.5+0.011 0.497 £0.004  0.492£0.006  0.509 +0.006 0.496 = 0.009 0.485+0.018  0.508 +0.009

german 0.59 + 0.066 Attack Failed  0.495+0.042  0.528 £ 0.048 0.52 +£0.047 0.542 + 0.026 0.532 £ 0.058
mimic 0.506 +0.014 0.502 + 0.001 0.503 +£0.009  0.498 £0.009  Attack Failed  Attack Failed  0.504 +0.007
oulad 0.504 +0.014  Attack Failed  0.501 + 0.008 0.5+0.011 Attack Failed  Attack Failed  0.509 +0.014

Table 14: Label-only supervised MIA success rates for different methods.

Dataset CART BDPT DPLDT PRIVA RSET _opt RSET_min RSET_max
adult 0.488 + 0.012 0.5+0.0 0.496 + 0.006 0.492 £0.012 0.494 + 0.007 0.501 +£0.01 0.506 + 0.009
bank 0.498 + 0.007 0.5+0.0 0.508 +0.017 0.488 + 0.013 0.5+0.0 0.5+0.0 0.502 £ 0.02

compas  0.484 £0.016 0.5+0.0 0.481 + 0.022 0.489 +0.014 0484 +0.014 0.515+0.032  0.515+0.026
fico 0.499 +0.024  0.498 +0.003 0.497 +£0.01 0.501 +0.009 0.496 £ 0.009  0.485+0.018  0.508 + 0.006

german 0.59 + 0.066 0.5+0.0 0.495 + 0.043 0.528 +0.048 0.52 +0.047 0.542+0.026  0.532 +0.058

mimic 0.503 +0.011 0.503 £0.008  0.507 £ 0.004 0.508 + 0.005 0.5+0.0 0.5+0.0 0.504 £ 0.012
oulad 0.5 +0.003 0.5+0.0 0.499 + 0.008 0.496 + 0.005 0.5+0.0 0.5+0.0 0.504 £ 0.018

C.2 Machine Unlearning

Configuration: We evaluate TreeFARMS, DaRE, and GBDT unlearning on 5 datasets. Five-fold
cross validation is used to tune hyperparameters:

* TreeFARMS: We tune depth=[2,3,4] and A = [0.01,0.005, 0.001].

* DaRE: We first fix the number of random layers to 0 and tune G-DaRE, considering the maximum
tree depth [1,3,5,10,20], the number of trees [10,25,50,100,250], and the number of threshold
values per attribute [5,10,25,50]. After identifying the best configuration for G-DaRE, we tune the
number of random layers from 1 to 10, stopping when the cross-validation score exceeds a 0.5%
tolerance compared to the greedy model for R-DaRE.

* GBDT unlearning: Similar to DaRE, we first ignore random layers and tune the maximum number
of leaves [5,10,15,20] and feature sampling rate [0.05, 0.1, 0.5, 1] for G-Bossting. We then tune
the number of random layers from 1 to 4.

We randomly remove 0.5%, 1%, and 2% of training samples 10 times and compare the results
of unlearning with those of retraining for each method. Note that we only need to construct one
Rashomon set from TreeFARMS by setting ¢ = 0.04.

Setup: We ran machine unlearning experiments on 5 datasets: carryout, restaurant, adult, compas,
and bank. Details are shown in Table@ Note that adult, compas, and bank datasets are binarized,
while carryout and restaurant are real-valued. The datasets are split into training and test sets using
an 80-20 split. All methods are fitted on the training set after hyperparameters have been tuned based
on the configurations described in Section[3.3.2] Note that constructing the Rashomon set is NP-hard,
so we apply GOSDT threshold guessing with n_estimator=30, max_depth=2, learning_rate=0.1,
backselect=True [68] when fitting TreeFARMS on carryout and restaurant datasets.

Once models and the Rashomon set are constructed, we randomly remove 0.5%, 1%, and 2% of
the original training data and repeat the process 10 times to evaluate the test performance of the
unlearned and retrained model.

Results: Table[16]is a complete version of Table[2] It shows the proportion of test data with different
predicted labels between the unlearned and retrained models for the Rashomon set, G-DaRE, R-DaRE,

Table 15: Shadow model MIA success rates for different methods.

Dataset CART BDPT DPLDT PRIVA RSET_opt RSET_min RSET_max
adult 0.496+0.015  0491£0.012 0.493+£0.012 0492+0.012  0.496 £ 0.017 0.5+0.01 0.499 +0.014
bank 0.498 + 0.007 0.5 +£0.008 0.499 +0.01 0.498 £ 0.011 0.499 £0.007  0.506 £0.011 0.495 + 0.008

compas 0.5+0.0 0.5+0.0 0.5+0.0 0.5+0.0 0.5+0.0 0.5+0.0 0.5+0.0
fico 0.506 +£0.016  0.497 £0.005  0.502+0.004  0.505 +0.007 0.5 +0.005 0.494 £ 0.013  0.499 £ 0.012

german 0.5+0.0 0.5+0.0 0.5+0.0 0.5+0.0 0.5+0.0 0.5+0.0 0.5+0.0

mimic 0.492 + 0.008 0.498 + 0.01 0.498 £ 0.011 0.496 + 0.01 0.497 £0.007 0498 £0.012  0.497 £ 0.007
oulad 0.502 +0.008  0.504 £0.008  0.504 +0.008  0.504 +0.008 0.502 +0.01 0.499 +0.014  0.508 £0.016

32



Table 16: Proportion of test data with different predicted labels between the unlearned and retrained
models (i.e., Junlearn 7 Yretrain) after a subset of the original data is randomly removed. The Rashomon
set achieves the lowest mismatch loss, as it is guaranteed to contain the optimal tree trained after a
certain proportion of samples are removed.

Dataset fi';l:arn RSET | G-DARE R-DARE G-Boosting R-Boosting
05% | 0 1272% £ 0.611% | 1.601% £ 0.529% | 5.680% & 0.385% | 2.961% £ 0.660%
carryout | 1% 0 [.294% £ 0.465% | 1.601% £ 0.510% | 5.548% £ 0.741% | 3.224% & 0.844%
2% 0 T.469% £ 0.501% | 1.689% £ 0.393% | 4.978% £ 1.334% | 3.662% £ 1.233%
05% |0 2.015% £ 0.267% | 1.620% = 0.388% | 4.708% £ 0.834% | 4.087% £ 0.513%
restaurant | 1% 0 1.902% £ 0.433% | 1.808% £ 0493% | 4.746% £ 0.623% | 3.691% £ 0.847%
2% 0 2.147% £ 0.349% | 1.846% £ 0.582% | 4.501% £ 0.755% | 3.974% £ 0.865%
05% | 0 0.008% £ 0.007% | 0.066% £ 0.037% | 0.052% £ 0.019% | 0.170% £ 0.170%
adult % 0 0.018% £ 0.013% | 0.067% £ 0.047% | 0.064% £ 0.027% | 0.175% £ 0.165%
2% 0 0.010% £ 0.014% | 0.060% £ 0.036% | 0.051% £ 0.024% | 0.238% £ 0.166%
05% | 0 0.000% & 0.000% | 0.000% £ 0.000% | 0.470% £ 0.198% | 1.741% % 1.599%
compas | 1% 0 0.000% £ 0.000% | 0.000% £ 0.000% | 0.478% £ 0.543% | 1.895% & 1.422%
2% 0 0.000% £ 0.000% | 0.000% £ 0.000% | 0.810% £ 0.871% | 1.879% £ 1.608%
05% | 0 0.587% £ 0.117% | 0.201% £ 0.040% | 0.911% £ 0.09% | 1.081% % 0.157%
bank 1% 0 0.607% £ 0.103% | 0.248% £ 0.033% | 0.888% £ 0.096% | 1.006% £ 0.105%
2% 0 0.631% £ 0.077% | 0.289% £ 0.055% | 0.850% £ 0.139% | 1.066% £ 0.124%

G-Boosting, and R-Boosting. Since the Rashomon set has a theoretical guarantee that the optimal
tree for the reduced dataset remains within the set after a subset of the training data is removed, the
RSET column always reports 0. However, other methods do not have this guarantee.

Another important metric in machine unlearning experiments is time consumption. Table[I7|compares
the unlearning time and retraining time for each method after different proportions of the training
data are removed in seconds. In general, unlearning is faster than retraining for all methods, and the
timing is fairly comparable across different methods. Additionally, removing fewer samples results in
faster unlearning times. In some cases, retraining may be faster than unlearning for the Rashomon set.
This is because unlearning in the Rashomon set is actually a search process. When the Rashomon
set is large, and the proportion of removed data is high, more models within the set may need to be
evaluated to identify the optimal one, leading to a longer learning time.

D Experiments: Fairness

Setup: We ran fairness experiments on 7 datasets: adult, bank, compas, german-credit, oulad, student-
mat, and student-por. Details are shown in Table[5] They are all binarized datasets. The datasets
are split into training, selection, and test sets using a 70-10-20 split. One note is that we follow the
convention of dropping the sensitive feature before training on TreeFARMS. All methods are fitted on
the training set based on the configurations described in Section[3.4] The selection set is used to (1)
find the best tree within the Rashomon set that minimizes the misclassification loss with a penalty on
fairness disparity controlled by « and (2) apply the post-processing step for PostCART and PostXGB.

Note that TreeFARMS, FairOCT, PostCART, and PostXGB can handle all three fairness metrics,
while DPF works only with statistical parity. We ran experiments 5 times and reported the mean and
standard deviation for every method and dataset.

Following the setting in [84], we configure each method as follows:

* TreeFARMS: We construct the Rashomon set with depth=[2,3,4], A = 0.01, ¢ = 0.05 and select
the best tree that minimizes 0-1 loss plus « times fairness disparity on the selection set. We set
a=1{0.1,0.2,0.3,0.4,0.5,1}.

* DPF: We train trees with depth=[2,3,4] and set § = 0.01.

» FairOCT: We train trees with depth=[2,3,4] and set 6 = 0.01.

* PostCART: We train CART with depth=[2,3,4] and the minimum sample per leaf 1% of the
training sample size. We set a = 0.03 for post-processing.

* PostXGB: We use default setting of XGBoost and set o = 0.03.

Results: For trees computed by baselines and selected from the Rashomon set, we show the disparity
in statistical parity and accuracy on the test set in Table[I8]for depth 2 and Table [I9]for depth 3 and 4.
Here, the better results have lower disparity and higher accuracy.
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Across all depths, the selected tree from the Rashomon set often achieves fairness and accuracy
comparable to that of baseline methods. At depth 3, for instance, the Rashomon tree outperforms
all baselines on the bank and stud-por datasets (Table [T9) by achieving fairness scores of 0.006
and 0.028, respectively (which are lower than those of the baselines), while still maintaining high
accuracy. In cases where the tree selected from the Rashomon set does not outperform the baselines,
its fairness score remains within +0.1 of the best score. This is also observed at depths 2 (Table[I8)
and 4 (Table [I9), where the Rashomon Set representative matches baseline performance in statistical
parity, even if it does not always lead on every dataset.

It is also worth noting that when the Rashomon tree exhibits a slightly higher (i.e., less fair) disparity in
statistical parity score compared to another baseline, it usually compensates with improved accuracy.
For example, at depth 4, the RSET representative has a statistical parity score of 0.135 compared to
DPF’s 0.011, yet its accuracy is higher (0.825 versus 0.787). This pattern often occurs across datasets
and suggests that our selection method could be further refined to better balance the trade-off between
fairness and accuracy. In Section[3.4] we introduced the a parameter to control such trade-off. When
a = 1, the fairness is valued as much as accuracy. However, this value of « usually leads to a
significant reduction in accuracy as 1 — fairness generally has a higher magnitude than accuracy.
During our experiment, we arbitrarily chose o = 0.3 to demonstrate that a representative from the
Rashomon Set can compete with baselines that optimize fairness, but we don’t claim o = 0.3 to be
the optimal value. The results of adjusting « are shown in Section[D.3]

Similar trends can be found when the models are optimized and evaluated for equalized odds and
equal opportunity metrics. Tables 20} 21| 2] 23] have similar results to those that discussed for
statistical parity above. At depth = 2, while FairOCT beats RSET in terms of fairness in most datasets,
it comes at a cost to accuracy. For example, for compas dataset, while FairOCT’s tree has a disparity
in Equalized Odds score of 0.008, which is lower than RSET’s 0.18, its accuracy of 0.551 is much
worse than RSET’s 0.643. This again shows that for these datasets at depth 2, o = 0.3 might not be
capturing the most competitive tree from the RSET to compare with the baseline that optimizes over
fairness.

As we increase the depth of decision tree classifiers, FairOCT becomes incredibly inefficient, timing
out for all datasets. The training time of RSET and baselines can be found in Appendix Within
the efficient methods, the Rashomon set begins to outperform other baseline methods at depth 4. As
shown in Table @ for compas, german, and oulad, the RSET found the fairest tree with a = 0.3,
while maintaining high levels of accuracy. Another important note here is that at depth 4, DPF timed
out on both the bank and oulad datasets, showing potential inefficiencies when growing deep trees.

Table 24] displays the percentage of trees in the Rashomon set that outperforms all baselines on the
test data. We notice that the majority of trees within the Rashomon sets outperform all baselines
across multiple datasets at depth 3. From datasets bank, german credit, and oulad, 78%, 56%, and
77% of trees from their respective Rashomon sets perform better than baselines in statistical parity.
We also bolded instances in the table where more than 30% of the trees from the Rashomon Set
outperform the baselines. We observe that as we increase the depth of trees, the Rashomon set is able
to generate superior trees more consistently, with 15/21 evaluations having 30% of the Rashomon set
being superior. However note that some of these performances have high variance, therefore limiting
statistical significance. Nevertheless, for many datasets the Rashomon set contains trees that are fairer
than baselines.

Density plots: For each dataset, depth, and fairness metric, we display the performance of the entire
Rashomon set and baseline trees evaluated on the test set (Figures [6}f§). On the x-axis, we plot
1 — fairness disparity, and on the y-axis, we plot accuracy. The blue regions represent the density
of the Rashomon set, averaged over 5 folds, with the number of trees shown on the color bar. The
most optimal and fair tree should be located towards the top right of the graph, where we have high
accuracy and low disparity.

While for the majority of the density plots, the Rashomon set often encapsulates trees generated by
baseline methods, we observe that sometimes the Rashomon set cannot capture the DPF or FairOCT
tree. For example, in Figure[6] both adult and compas datasets have DPF and FairOCT trees outside
of the blue region.However, these trees also exhibit sacrifice in accuracy, as they perform significantly
worse than other baselines. The FairOCT tree on compas dataset has an accuracy of only 0.55, while
other trees and the Rashomon set have an accuracy of around 0.65. However, as we mentioned, the
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Table 21: Test disparity in equalized odds (EODDS) and accuracy for the sparse decision trees with
the depth limits 3 and 4. FairOCT is omitted as it exceeds the time limit.

POST_XGB POST_CART CART RSET

Dataset eodds Accuracy eodds Accuracy eodds Accuracy eodds Accuracy
Depth 3

adult 0.074 £0.034 0.831+0.013 0.072 +0.055 0.799 £0.014 0.132+0.025 0.817 £0.003 0.073 £0.008 0.825+0.010
bank 0.021 + 0.006 0.898 +0.004 0.024 +0.014 0.892 +0.002 0.038 £0.019 0.896 +0.002 0.032+0.017 0.895 + 0.002
compas-recid 0.192 £ 0.028 0.657 £0.010 0.169 + 0.046 0.642 +0.015 0.199 +0.034 0.661 £0.007 0.193 £0.043 0.649 +0.012
german-credit 0.116 £ 0.068 0.722 +0.029 0.030 + 0.037 0.692 +0.024 0.116 £0.052 0.703 £0.040 0.122 +0.085 0.724 + 0.005
oulad 0.024 £0.014 0.689 +0.004 0.000 = 0.000 0.675 +0.004 0.028 £0.016 0.682+0.003 0.018 £0.010 0.685 + 0.003
student-mat  0.137 £0.059 0.881 +0.031 0.109 + 0.075 0.906 +0.036 0.147 £0.073 0.894 £0.021 0.160 +0.065 0.899 + 0.036
student-por  0.252+0.134 0.883 +0.017 0.204 + 0.148 0.908 +£0.026 0.246 +0.132 0.911 £0.024 0.250 £ 0.153 0.915 + 0.030
Depth 4

adult 0.073 £0.035 0.831+0.013 0.092+0.039 0.829 +£0.002 0.074 +£0.008 0.833 £0.004 0.075+0.007 0.831 +0.004
bank 0.021 £0.006 0.898 +0.004 0.013 + 0.009 0.891 +0.004 0.024 £0.011 0.896 £ 0.002 0.030 £ 0.010 0.894 + 0.001
compas-recid 0.192 +0.028 0.656 +0.010 0.183 +0.037 0.656 +£0.014 0.193 £0.026 0.660 £ 0.006 0.183 +£0.037 0.649 +0.011
german-credit 0.228 +0.126 0.739 +0.029 0.096 + 0.045 0.678 +£0.020 0.084 +0.035 0.680 +0.028 0.074 +0.039 0.718 + 0.022
oulad 0.025+£0.014 0.689 +0.004 0.029 +0.014 0.673 £0.006 0.032+0.018 0.683 £0.004 0.019 +0.011 0.684 + 0.002
student-mat  0.132+0.059 0.894+0.017 0.081 +0.037 0.881 £0.058 0.161 £0.058 0.861£0.018 0.118 £0.055 0.906 + 0.033
student-por ~ 0.286 +0.111 0.889 +0.030 0.171 £0.096 0.892+0.011 0.111 +0.088 0.886 +0.023 0.169 +0.146 0.909 + 0.018

Table 22: Test disparity in equalized opportunities (EOPP) and accuracy for the sparse decision trees
with the depth limit 2.

FAIROCT

POST_XGB

POST_CART

CART

RSET

Dataset eopp

Accuracy

eopp

Accuracy

eopp

Accuracy

eopp

Accuracy

eopp

Accuracy

adult 0.003 £ 0.002
bank 0.000 £ 0.000
compas  0.017 + 0.007
german  0.102 +0.046
oulad 0.000 £ 0.000
stud-mat  0.125 +0.051
stud-por  0.205 + 0.096

0.749 + 0.003
0.882 + 0.002
0.604 + 0.023
0.690 + 0.027
0.675 + 0.005
0.886 + 0.049
0.902 + 0.034

0.033+£0.015
0.018 + 0.009
0.074 £ 0.027
0.052 + 0.042
0.006 + 0.005
0.081 £ 0.044
0.045 + 0.007

0.833 +0.004
0.900 + 0.002
0.657 +0.009
0.731 £0.031
0.690 + 0.003
0.876 + 0.026
0.878 +0.015

0.076 + 0.039
0.035+0.016
0.074 £ 0.032
0.000 + 0.000
0.000 = 0.000
0.108 + 0.050
0.029 + 0.025

0.791 £ 0.023
0.893 £ 0.002
0.627 + 0.009
0.692 £ 0.024
0.675 £ 0.004
0.904 £ 0.021
0.900 + 0.032

0.060 + 0.058
0.037 £0.014
0.107 £ 0.042
0.002 + 0.003
0.010 + 0.004
0.073 + 0.066
0.027 + 0.022

0.809 + 0.002
0.893 + 0.002
0.638 +0.012
0.681 + 0.023
0.683 + 0.003
0.916 £ 0.030
0.914 +£0.018

0.042 +0.031
0.019+£0.014
0.091 +0.035
0.042 +0.034
0.009 + 0.005
0.079 + 0.069
0.027 + 0.022

0.810 + 0.006
0.890 + 0.003
0.651 +0.013
0.683 + 0.022
0.682 + 0.005
0.906 + 0.034
0.914 +£0.018

Rashomon set contains fair models for the majority of the datasets. For example, in Figure[/| across
all three metrics, all baselines are within the Rashomon set. Similar can be observed in Figure@

D.1 Training Time

Table[25]shows the average training time of TreeFARMS (REST), DPF, and FairOCT. We discover
that TreeFARMS training time is comparable to that of DPF and significantly shorter than FairOCT.
At deeper depths, training time varies significantly across datasets: sometimes DPF times out, while
other times TreeFARMS takes longer to train. In our experiment, we set a time limit of one hour, and
therefore any training that exceeds this limit is considered as timeout. Therefore, the Rashomon set
for german credit should be considered as a “time out” since the average training time is 5000 seconds.
This may be due to system latency or variations in computational load. FairOCT consistently shows
extremely long training times across all datasets. For example, on the adult dataset, FairOCT takes
over 12,500 seconds, whereas both DPF and TreeFARMS require less than a second. This huge gap
suggests that, even at shallow depths, FairOCT cannot find fair trees efficiently.

D.2 Pareto Frontier Visualization

Another way to evaluate the Rashomon set against baselines is to compare the set of optimal solutions.
We generated the Pareto frontiers of the Rashomon set on each training dataset we used in fairness
evaluations and compared them to those of DPF (see Figures[9{I0). In some cases, the two Pareto
frontiers differ. When this happens, the RSET Pareto frontier usually includes solutions that achieve
high accuracy but lower fairness. For example, on the adult dataset, the RSET Pareto frontier reaches
an accuracy of 0.82, compared to DPF’s 0.77. But, in terms of statistical parity, DPF’s Pareto frontier
includes a perfectly fair solution (score of 1), while RSET’s Pareto frontier reaches a score of 0.975.
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Table 23: Test disparity in equalized opportunities (EOPP) and accuracy for the sparse decision trees
with the depth limits 3 and 4. FairOCT is omitted as it exceeds the time limit.

POST_XGB POST_CART CART RSET

Dataset eopp Accuracy eopp Accuracy eopp Accuracy eopp Accuracy
Depth 3

adult 0.032 + 0.015 0.834 £0.004 0.076 +0.039 0.809 +£0.013 0.079 £0.049 0.817 £0.003 0.052 +0.023 0.826 + 0.004
bank 0.018 = 0.009 0.900 +0.002 0.020 +0.016 0.892 +0.002 0.038 +£0.019 0.896 +0.002 0.038 +0.008 0.895 + 0.002
compas-recid 0.074 £ 0.028 0.656 +0.011 0.110 £0.046 0.646 +=0.009 0.075 +£0.024 0.661 +0.007 0.092 +0.036 0.652 +0.012
german-credit 0.056 +0.041 0.731 £0.032 0.015 +0.016 0.690 +0.029 0.056 +0.051 0.703 £0.040 0.054 £0.038 0.721 £0.010
oulad 0.006 + 0.005 0.690 +0.003 0.003 +0.004 0.675+0.005 0.012 +0.004 0.682 +0.003 0.008 +0.008 0.686 + 0.003
student-mat  0.081 + 0.044 0.886 +0.031 0.088 +0.062 0.906 +0.036 0.094 +0.070 0.894 +0.021 0.092 +0.073 0.904 + 0.028
student-por  0.044 £ 0.011 0.889 £0.023 0.027 +0.022 0.914 £0.018 0.029 +0.027 0.911 £0.024 0.034 +0.021 0.909 + 0.023
Depth 4

adult 0.032 +0.015 0.833 £0.004 0.074 £0.053 0.828 £0.003 0.053 £0.025 0.833 £0.004 0.036 +0.030 0.825 + 0.005
bank 0.018 £0.008 0.900 +0.002 0.012 +0.010 0.893 £0.002 0.023 £0.012 0.896 £ 0.002 0.026 + 0.008 0.894 + 0.001
compas-recid 0.075 +£0.027 0.658 £0.008 0.075 +0.027 0.662 +0.006 0.074 +0.022 0.660 + 0.006 0.095 +0.033 0.653 +0.012
german-credit 0.050 = 0.020 0.741 £0.032 0.067 +0.043 0.684 +0.024 0.038 +0.022 0.680 +0.028 0.058 +0.040 0.718 +0.022
oulad 0.005 + 0.005 0.690 +0.003 0.010 +0.008 0.675+0.005 0.011 £0.007 0.683 +0.004 0.010 +0.007 0.684 + 0.002
student-mat  0.114 £0.072 0.861 £0.021 0.091 £ 0.061 0.894 +£0.046 0.096 +0.040 0.861 £0.018 0.090 + 0.061 0.906 + 0.033
student-por  0.042 £0.026 0.889 £0.022 0.035+0.022 0.898 £0.012 0.047 £ 0.040 0.886 +£0.023 0.027 £ 0.022 0.906 + 0.017

Table 24: Percentage of trees in Rashomon set that have better test fairness than the best baselines.

Depth 2

Dataset SP EOPP EODDS

adult 0.00% + 0.00% 3.43% + 3.33% 0.57% + 0.70%
bank 0.77% + 0.30% 1.66% + 0.68% 0.77% + 0.30%
compas-recid 0.00% * 0.00% 0.00% + 0.00% 0.00% + 0.00%
german-credit 9.85% +2.45% 7.48% +2.22% 3.45% +2.93%
oulad 16.68% + 6.13% 5.05% +2.67% 391% +2.47%
student-mat 41.92% +45.54% 58.01% + 42.70% 0.00% + 0.00%

student-por

11.13% + 15.65%

25.45% + 37.87%

0.00% * 0.00%

Depth 3

Dataset SP EOPP EODDS

adult 0.00% + 0.00% 14.27% + 5.51% 10.17% + 8.38%
bank 78.37% +15.83% 68.41% +15.79% 71.63% =+ 15.83%
compas-recid 0.00% + 0.00% 39.26% +£35.97%  21.29% +31.05%

german-credit
oulad
student-mat
student-por

55.56% * 25.08 %
77.07% + 8.37%
43.28% * 36.47 %
35.42% + 35.27%

23.30% + 10.61%
59.74% + 6.82%
56.92% * 36.49 %
53.74% + 35.54%

13.40% + 7.32%
7.40% = 1.23%
44.98% =+ 22.40%
57.12% + 39.21%

Depth 4

Dataset SP EOPP EODDS

adult 0.00% + 0.00% 13.13% + 10.67% 15.03% + 15.99%
bank 65.28% =21.96% 38.31% *16.34% 39.49% *16.71%
compas-recid 0.00% + 0.00% 36.95% +37.95%  26.47% + 35.93%

german-credit
oulad
student-mat
student-por

28.85% + 39.49%
84.22% + 8.37%
40.00% =+ 48.99 %
43.70% + 41.99 %

30.79% + 30.80%
75.80% + 9.33%
60.00% = 48.99 %
58.95% + 37.77 %

31.55% = 36.20%
89.21% * 6.75%
32.89% * 33.12%
41.23% + 42.31%

D.3 Fairness Selection Criteria for the Trees in the Rashomon Set

As discussed previously in Section [3.4] we introduce a parameter « as a way to control the trade-off
between accuracy and fairness, as a way to aid in selecting a tree from the Rashomon set. Depending
on the value of this parameter «, practitioners can end up with very different trees in terms of fairness
and potentially accuracy. In Figures[TI{I2] we report the performance of selected trees from the
Rashomon set of sparse decision trees of depth 4 for different values of & = {0.1,0.2,0.3,0.4, 0.5, 1}.
Overall, for some datasets we observe a negative correlation trend between accuracy and 1—fairness
score when varying the o parameter, indicating the existence of a trade-off between these two metrics.
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Figure 6: Comparison of test accuracy and fairness between trees in the Rashomon set (blue density
contours) and baselines (dots with error bars) at depth 2.

This is the most evident for adult dataset evaluated for statistical parity or for compas dataset when
evaluated on equal opportunity.
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For other datasets, this trade-off is not present. For example, in Figure the value o = 0.4 clearly
selects the most accurate and fair tree for stud-por dataset. This shows that the structure of the
dataset could potentially influence the selection method of a fair and optimal representative from
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Figure 8: Comparison of test accuracy and fairness between trees in the Rashomon set (blue density
contours) and baselines (dots with error bars) at depth 4.

the Rashomon set. As a reminder, in Section@ we presented results when o = 0.3, but this value
might not be optimal for all datasets, which we leave for future studies.
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Table 25: Training time comparison (in seconds) across datasets at different depths.

Depth 2
Dataset DPF Training Time RSET Training Time FairOCT Training Time
adult 0.058 + 0.001 0.434 £ 0.011 12542.740 £ 18.165
bank 0.129 £ 0.010 1.573 £0.015 12473.707 £ 159.017
compas-recid 0.016 £ 0.011 0.037 £ 0.001 10736.319 £ 201.201
german-credit 0.035 £ 0.001 0.274 £ 0.031 10823.109 £ 3.372
oulad 0.150 £ 0.012 0.767 + 0.005 11640.883 £ 33.762
student-mat 0.014 £ 0.002 0.059 £ 0.005 1433.153 +£417.020
student-por 0.016 £ 0.010 0.082 + 0.005 4044.723 £ 971.958
Depth 3
Dataset DPF Training Time RSET Training Time
adult 0.231 +0.009 1.496 + 0.038
bank 1.413 + 0.008 35.131 £ 1.656
compas-recid 0.018 = 0.000 0.065 = 0.000
german-credit 1.271 £ 0.258 40.188 £4.500
oulad 1.539 £ 0.018 16.117 £ 0.195
student-mat 0.205 £ 0.018 17.597 £3.811
student-por 0.250 £ 0.005 9.302 £ 0.776
Depth 4
Dataset DPF Training Time RSET Training Time
adult 653.557 £ 15.103 11.328 £ 0.079
bank Time out 918.890 + 12.836
compas-recid 3.324 £ 0.979 0.192 +0.015
german-credit  234.161 + 109.967  5328.995 + 365.490
oulad Time out 409.511 £ 11.556
student-mat 10.646 + 0.667 2428.415 + 609.305
student-por 14.715 £ 0.993 1464.381 + 185.139

D.4 Sparsity Plots

In order to check if there is a connection between sparsity and fairness, in Figure[T3] we visualize
the number of leaves (sparsity) in the trees of the Rashomon set (x-axis) and their corresponding
fairness value (y-axis). As the number of leaves increases, so does the span of possible fairness
values; however, other than that, we didn’t observe any significant trend across datasets and fairness
metrics. For example, if we consider the bank dataset evaluated on statistical parity, trees with both
fewer leaves and more leaves can achieve similar fairness performance.

E Additional Hypothesis Spaces: Random Forest, FasterRisk

To support our findings with other hypothesis spaces, we conducted additional experiments on random
forests for both fairness and robustness. To approximate the Rashomon set in this setting, we trained
100 random forests with different random seeds. As baselines, we used PostRF [98]] for fairness (a
post-hoc editing method) and GROOT-RF [88]] for robustness (also a post-hoc method). We observed
that this approximate Rashomon set tends to contain models that outperform the baselines in terms of
both fairness and robustness.

Tables [26| and [27| show fairness and robustness comparisons for the random forest model class,
respectively. "X Win Rate" refers to the proportion of models in the Rashomon set that outperform the
baseline in metric X (e.g., accuracy, fairness, or robustness). "Joint Win Rate" denotes the proportion
of models that outperform the baseline in both accuracy and the trustworthiness metric. Results are
reported over 5 folds, with mean and standard deviation.
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Figure 9: Pareto front: DPF vs. RSET for adult, compas, student-mat and student-por.

We note that in the california-houses dataset, we were unable to find a fair model in the approximated
Rashomon set. At this point, we cannot conclude whether this is due to limitations in our approxi-
mation method or because the baseline (PostRF) is a post-hoc method that may not correspond to
any near-optimal model in the Rashomon set. If this experiment had been conducted in the sparse
decision tree setting, we would have had a definitive answer due to the ability to enumerate the entire
Rashomon set and the availability of fairness-optimal algorithms.

We can also extend our framework to sparse linear models. However, to the best of our knowledge,
there is no method that can exactly enumerate the Rashomon set for linear classifiers; only approxi-
mators are available. For example, we use the FasterRisk algorithm [65]] for sparse linear models and

report the fairness results in Table[28]
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Figure 10: Pareto front: DPF vs. RSET for bank, german-credit, and oulad.

Table 26: Fairness comparison between the Random Forest Rashomon set constructed with different
random seeds and PostRF. (Avg + Std)

Dataset Joint Win Rate Accuracy Win Rate SP Win Rate
adult 0.08 £0.11 0.60 £0.21 0.36 £0.33
california-houses 0.00 + 0.00 0.99 £0.02 0.00 + 0.00
default-credit 0.19+£0.15 0.43 £0.09 0.46 £0.28
diabetes-130US 044 +£0.24 0.68 £0.18 0.59 +£0.29

We also observe that for california-houses we couldn’t outperform the baseline. The limitation of the
approximated Rashomon set makes empirical analysis less conclusive than in our current setting with
decision trees, where the Rashomon set can be exactly enumerated.

F Evaluation of Selected Trees Across Multiple Criteria

Setup: As mentioned in Section[4.5] we are interested in evaluating the performance of decision trees
across various metrics. To achieve this, we consider five datasets: adult, bank, compas, german-credit,
and oulad. These datasets are binarized following the procedure described in Section[3.4] We train
TreeFARMS after removing the sensitive feature, as required for the evaluation of fairness metrics.
For robustness and privacy considerations, these omitted features do not interact with the framework.

We highlight a few discrepancies when evaluating robustness. Specifically, for adversarial robustness,
we observe that the attack mechanism does not perform effectively on binary datasets. Since the
attack distance is computed using the infinity norm, this can only take values of 0 or 1 in the context
of binary datasets. Allowing a meaningful attack strength will result in a 0% accuracy as it can
perturb every feature freely, so we remove adversarial robustness from comparison. To assess stability,
we apply a metric with a stronger mean of 0.7, which translates to an expected perturbation rate of
ﬁ —1 ~ 43%. This allows certain perturbations to perturb binary values from 0 to 0.5, consequently
affecting the model’s predictions.

Result: Figure [14] presents a comprehensive comparison of six trees within the Rashomon set
across five datasets, evaluated using six different metrics discussed in this paper. For fairness and
privacy metrics, we compute 1 — score to provide an intuitive visualization, where taller bars indicate
better metric performance. Since all trees belong to the Rashomon set, they achieve comparable
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Figure 11: Comparison of test accuracy and fairness between selected trees in the Rashomon set at
depth 4 with different alpha values for adult, bank, and compas.

Table 27: Robustness comparison between the Random Forest Rashomon set and baseline. (Avg +

Std)
Dataset Joint Win Rate  Accuracy Win Rate Adv. Acc. Win Rate
adult 0.16 £0.10 1.00 £ 0.00 0.16 £0.10
california-houses 0.63 +£0.24 1.00 £ 0.00 0.63 +£0.24
default-credit 0.49+£0.24 0.75+0.33 0.51 £0.22
diabetes-130US 0.01 £0.02 1.00 + 0.00 0.01 £0.02

performance based on the test accuracy. However, we observe a sparsity-accuracy trade-off within the
trees with minimum and maximum number leaves on datasets such as adult and compas. In terms of
stability, trees with fewer leaves tend to be the most stable models, as expected due to their sparsity.

For statistical (demographic) parity, we find that the selected fair tree performs well on multiple
datasets (for example, see german-credit). Interestingly, the tree selected for equalized odds (EODD)
also shows strong performance on statistical parity, the opposite case is also sometime true. We
also observe that the tree with minimum leaves (RSET_min) can be fair, but this observation is not
consistent across all datasets. Finally, regarding privacy metrics, we observe that most trees perform
similarly around 50%. As discussed in Section these attacks are generally ineffective against

tree-based models.
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Figure 12: Comparison of test accuracy and fairness between selected trees in the Rashomon set at
depth 4 with different alpha values for german-credit, oulad, student-mat, and student-por.

Table 28: Fairness results using the FasterRisk Algorithm. (Avg + Std)
Dataset Joint Win Rate Accuracy Win Rate SP Win Rate
california-houses 0.00 £ 0.00 0.75£0.00 0.00 £ 0.00
default-credit 0.07 £0.12 0.12+£0.18 0.75+£0.26
diabetes-130US 0.08 £0.16 0.13+0.15 0.48 £0.27
german-credit 0.01 £0.02 0.04 +£0.06 0.51 +£0.38

46



..Sparsity vs Faimess (Dataset: adult, Depth: 5) parsity vs Fairness (Dataset: adult, Depth: 5! Sparsity vs Fairness (Dataset: adult, Depth: 5

: = s H —on H momene
. I wv
5> | 5. ! g. :
o H o
@ o L. H ' L. H !
S H w T
EN ‘ ' 1 g ' PR i
@ H > ] s []
@ oy . a ! @ H
£ Qe 1 @ : |
E 1 € L | € .
[ + 1 L B ® oo ! . .
it c. ' e [
§parsit§ (Num’ber of Leaves’) : §parsit§' (Num’her of leaves‘) : ! S!parsit)./ (Num’ber of Leave53
parsity vs Fairness (Dataset: bank, Depth: 5 parsity vs Fairness (Dataset: bank, Depth: 5! parsity vs Fairness (Dataset: bank, Depth: 5
1 = 4 H o ' H
B . + | %mu | 1 g aon l 1
B 1 S i 8 i
o e H L. H
S oo o
5. ! 3 2
@ i S. 3.
& 001, ¥ 4 ? a ?
£ v : S H S, H
s £ E
oo I 3 K I 3 I
oo oo . ot
'S)parsit; (Nun':i)er of‘lieaves‘i . - gparsit; (Nurr;Ber of‘ln‘eaves.i -’ - xS’parsit; (Nunrii)er of‘lieaves‘i "
Sparsity vs Fairness (Dataset: compas-recid, Depth: 5) Sparsity vs Fairness (Dataset: compas-recid, Depth: 5) Sparsity vs Fairness (Dataset: compas-recid, Depth: 5)
; =0 . e e 1 f ="
V . — =
' i @ oo e
S ! i | 8. : 3 H i
a . 1 S ¥ ¢ S o + 1
o I < H s : '
S e Qo :
s i B H 3 l
> o + i s.. . o +
2 : . »
o, b . a ] B o i s
T o B g ;
[ . I I = { Eoun . i i :
[ 1 ] . 'y e, 1
Sﬁarslty (Number )of Leavés) ' : Sp’arsity (l:lumber Bf Leavés) ’ S;;arslty (l(lumber )of Leavés)
Sparsity vs Fairness (Dataset: german-credit, Depth: 5)  Sparsity vs Fairness (Dataset: german-credit, Depth: 5)  Sparsity vs Fairness (Dataset: german-credit, Depth: 5)
" ! Fov : g.
B 3 s, H Bl I
PR ' L. 3 D
E] w .
o 1 2w S
@l ! s.. ! 2l
8 ) 2. I} . @
€ o @ e 8 s
F 1 £ E +
& on K o t T B o .
" “sparsity (Number of Leaves) ™ “sparsity (Number of Leaves) " “sparsity (Number of Leaves)
Sparsity vs Fairness (Dataset: oulad, Depth: 5) Sparsity vs Fairness (Dataset: oulad, Depth: 5) Sparsity vs Fairness (Dataset: oulad, Depth: 5)

g E
g 8

| - |

IS‘l:larsit‘); (Nurr;f)er of’lv.eaves”) h b ‘S’parsit/yu (Nurr;i:er of’lv_eavesji

Fairness Value (sp)

‘S’parsit:/u (Nurr;E)er of’lv_eavesji

Fairness Value (eopp)
Fairness Value (eodds)

g : s
H

Sparsity vs Fairness (Datast tudent-mat, Depth: 5) Sparsity vs Fairness (Dataset: student-mat, Depth: 5) Sparsity vs Fairness (Dataset: student-mat, Depth: 5)

a B

3 S S

B o S B o

[ o 2

s B 1 s

o . 3"

& ow s a @

€ 4] 8 oors

= £ o g 1
s B o

™ sparsity (Number of Leaves) " sparsity (Number of Leaves) ™ "Sparsity (Number of Leaves)
Sparsity vs Fairness (Dataset: student-por, Depth: 5) Sparsity vs Fairness (Dataset: student-por, Depth: 5) Sparsity vs Fairness (Dataset: student-por, Depth: 5)
I~ o

e g .
- . 8 8

] e + L)
3 3 FES

7 + S oo 2

@ oo 2 oo

£ 14 14
L. Ewm £
- & &

’ S;arsity (ﬁumber"of Leavé’s) * ” SSarsity (ﬁumber’t‘:f Leavéls) ’ S;;arsity (Number!‘of Leavé’s)

Figure 13: Sparsity plots for sparse decision trees with depth limit 4 evaluated on different fairness
metrics.
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