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ABSTRACT

In recent years, significant advancements have been made in offline reinforce-
ment learning, with a growing number of novel algorithms of varying degrees of
complexity. Despite this progress, the significance of specific design choices and
the application of common deep learning techniques remains unexplored. In this
work, we demonstrate that it is possible to achieve state-of-the-art performance
on the D4RL benchmark through a simple set of modifications to the minimalist
offline RL approach and careful hyperparameter search. Furthermore, our ablations
emphasize the importance of minor design choices and hyperparameter tuning
while highlighting the untapped potential of using deep learning techniques in
offline reinforcement learning.

1 INTRODUCTION

Offline reinforcement learning has seen remarkable progress in recent years, particularly in the
domains of robotics (Smith et al., 2022; Kumar et al., 2021) and recommender systems (Chen et al.,
2022a). The vast number of potential applications and tasks has led to the frequent release of new
offline RL algorithms, as reported in various studies (Levine et al., 2020; Prudencio et al., 2022). This
rapid pace of development is both exciting and challenging, as it shows the need for novel approaches
but also requires a careful evaluation of the seemingly minor design choices made in the introduced
algorithms.

To be more precise, there are at least three branches of research that are relevant to this question.
First, the usage of deeper networks, which were initially introduced in CQL (Kumar et al., 2020),
has gained widespread acceptance and has been implemented in various other offline RL techniques
(An et al., 2021; Yang et al., 2022; Zhuang et al., 2023). Second, Layer Normalization, which was
initially used in online RL studies (Hiraoka et al., 2021), has now become a common practice in
offline settings as well (Nikulin et al., 2022; Kumar et al., 2022; Ball et al., 2023). Third, recent
advancements in ensemble-based methods (An et al., 2021; Yang et al., 2022; Ghasemipour et al.,
2022) have given rise to the development of large-batch offline RL, which has yet to be applied
beyond the SAC-N method (An et al., 2021; Nikulin et al., 2022). These design choices become
even more intricate with the advent of more advanced transformer-based offline RL methods (Chen
et al., 2021; Janner et al., 2021), which bring together deeper networks, layer normalization, and
other modifications at the same time. Overall, it remains an open question whether these small
improvements represent only a minor gain in performance, or if they hold the key to the success of
new algorithms.

In order to answer this question, we re-assess the impact of these ostensibly minor design choices
by taking a simpler approach. Our findings demonstrate that by incorporating a certain set of these
into the BRAC algorithm (Wu et al., 2019), and conducting a thorough hyperparameter search, it is
possible to attain performance that rivals or surpasses state-of-the-art results on the AntMaze and
locomotion tasks as evaluated by the D4RL benchmark. Our experiments utilize an ensemble-free
TD3 algorithm (Fujimoto et al., 2018), but the principles and techniques can be easily extended to
other actor-critic RL methods.
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2 PRELIMINARIES

2.1 OFFLINE REINFORCEMENT LEARNING

Reinforcement Learning problem is usually defined as a Markov Decision Process (MDP) with the
tuple {S,A, P,R, γ}, where S ⊂ Rn is a state space, A ⊂ Rm is an action space, P : S ×A → S
is a transition function, R : S × A → R is a reward function, and γ ∈ (0, 1) is a discount factor.
The ultimate objective is to find a policy π(a|s) that maximizes a cumulative discounted return
Eπ

∑∞
t=0 γ

tR(st, at). Policy is supposed to improve while interacting with the environment by
observing states and committing actions which provide some rewards.

Policies in the offline RL mode are not permitted to interact with the environment and can only access
the static transactions dataset D collected by one or more other policies. Such a setting brings new
challenges, for example, the estimation of values for state-action pairs that are not presented in the
dataset while exploration is not available (Levine et al., 2020).

2.2 BEHAVIOR REGULARIZED ACTOR-CRITIC

Behavior Regularized Actor-Critic (BRAC) is an offline RL framework introduced in Wu et al. (2019).
The core idea behind BRAC is that actor-critic algorithms can be penalized in two ways to solve
offline RL tasks: actor penalization and critic penalization. In this framework, the actor objective
is represented as in Equation 1, and the critic objective as in Equation 2, where F is a divergence
function between dataset actions and policy actions distributions. The differences from a vanilla
actor-critic are highlighted in blue.

π = argmax
π

E(s,a)∼D [Qθ(s, π(s))−α · F (π(s), a)] (1)

θ = argmin
θ

E(s,a,r,s′,â′)∼D
a′∼π(s′)

[
(Qθ(s, a)− (r + γ(Qθ(s

′, a′)−α · F (a′, â′))))2
]

(2)

In the original work, various choices of F were evaluated when used as the regularization term for
the actor or critic. The authors tested KL divergence, Kernel MMD, and Wasserstein distance but did
not observe any consistent advantage. Finally, it is important to note that, originally, only one of the
regularizations was enabled during experiments, resulting in only one of the α’s being non-zero.

Subsequently, TD3 + BC (Fujimoto & Gu, 2021) was introduced, utilizing Mean Squared Error
(MSE) as the regularization term F for the actor.

3 REBRAC: A RECIPE

Our proposed method is a modified version of the BRAC algorithm, built upon the TD3 method
(Fujimoto et al., 2018). There are three key differences from the original BRAC approach. First, we
use mean squared error as the measure of divergence between the actor and dataset action distributions,
which we found to be both simple and effective. Second, we separate the hyperparameter that governs
the penalty strength into two separate components, one for the actor and one for the critic. This
decoupling of penalties was shown to be useful in previous work (Rezaeifar et al., 2022). We refer to
our approach as Revisited BRAC. The objective for the actor is outlined in Equation 3, and that for
the critic is presented in Equation 4.

π = argmax
π

E(s,a)∼D

[
Qθ(s, π(s))−β1 · (π(s)− a)2

]
(3)

θ = argmin
θ

E(s,a,r,s′,â′)∼D
a′∼π(s′)

[
(Qθ(s, a)− (r + γ(Qθ(s

′, a′)−β2 · (a′ − â′)2)))2
]

(4)

We also adopt the normalization of the Q function when calculating the actor loss, following the
methodology outlined in Fujimoto & Gu (2021). This modification enhances the algorithm’s robust-
ness to the choice of the β1 hyperparameter across varying environments. It is worth noting that when
β2 = 0, our approach is equivalent to TD3 + BC.

2



Reincarnating Reinforcement Learning Workshop at ICLR 2023

Finally, we revisited commonly utilized techniques in both deep learning, reinforcement learning, and
offline reinforcement learning algorithms. To the best of our knowledge, there has been no extensive
analysis of the impact of these techniques on proposed methods in offline RL to date.

Deeper Networks. Some of the previous offline RL algorithms, such as BRAC and TD3 + BC,
utilized three-layer networks for both actor and critic. Recent research in the field, however, has
shown that using four-layer networks, as seen in Kumar et al. (2020); An et al. (2021); Yang et al.
(2022), can lead to better results. As such, we have taken the approach of increasing the depth of the
actor and critic networks to four layers each in our study.

Layer Normalization. Layer Normalization, or LayerNorm (Ba et al., 2016), is a well-established
technique in deep learning and online RL (Hiraoka et al., 2021). The application of normalization
generally results in faster convergence and more stable training processes. While some promising
results in offline RL have been obtained (Nikulin et al., 2022; Kumar et al., 2022; Ball et al., 2023),
its application is still limited. In our work, we integrate LayerNorm into the critic networks by adding
normalization between each layer.

Large Batches. Large batch optimization, a technique commonly used in deep learning, is another
procedure we examine in our work. This approach typically results in faster convergence (You et al.,
2017; 2019). In line with the findings in Nikulin et al. (2022), we adjust the batch size and increase
the learning rate to improve convergence in offline RL tasks. Specifically, we increase the batch size
from the default value of 256 to 1024.

These modifications are straightforward to implement, requiring only a few lines of code, and do
not result in significant computational overhead. Despite being expected to produce only a minor
performance improvement, we will further demonstrate that they have a significant impact on the
final result in Section 4.2.

4 EXPERIMENTS

4.1 EVALUATION ON D4RL

Table 1: ReBRAC evaluation on the locomotion tasks. We report final normalized score averaged
over 4 random seeds on v2 datasets. We highlight best scores over all algorithms with bold and best
scores among ensemble-free algorithms with red. TD3 + BC and IQL scores are taken from Lyu et al.
(2022). CQL, SAC-N and EDAC scores are taken from An et al. (2021). BRAC scores are taken from
Chen et al. (2021). CNF scores are taken from Akimov et al. (2022). BPPO scores are taken from
Zhuang et al. (2023). RORL scores are taken from Yang et al. (2022).

Ensemble-based Ensemble-free

Task SAC-N EDAC RORL BRAC-v TD3+BC IQL CQL CNF BPPO ReBRAC, our

halfcheetah-medium 67.5 ± 1.2 65.9 ± 0.6 66.8 ± 0.7 46.3 48.3 ± 0.3 47.4 ± 0.2 46.9 ± 0.4 50.5 ± 0.5 44.0 ± 0.2 65.9 ± 1.1
halfcheetah-medium-expert 107.1 ± 2.0 106.3 ± 1.9 107.8 ± 1.1 41.9 90.7 ± 4.3 86.7 ± 5.3 95.0 ± 1.4 96.2 ± 0.2 92.5±1.9 105.6 ± 1.4
halfcheetah-medium-replay 63.9 ± 0.8 61.3 ± 1.9 61.9 ± 1.5 47.7 44.6 ± 0.5 44.2 ± 1.2 45.84 ± 0.31 45.3 ± 0.3 41.0 ± 0.6 52.2 ± 4.6

hopper-medium 100.3 ± 0.3 101.6 ± 0.6 104.8 ± 0.1 31.1 59.3 ± 4.2 66.2 ± 5.7 61.9 ± 6.4 69.3 ± 1.0 93.9±3.9 102.5 ± 0.3
hopper-medium-expert 110.1 ± 0.3 110.7 ± 0.1 112.7 ± 0.2 0.8 98.0 ± 9.4 91.5 ± 14.3 96.9 ± 15.1 108.6 ± 5.4 112.8±1.7 110.6 ± 2.0
hopper-medium-replay 101.8 ± 0.5 101.0 ± 0.5 102.8 ± 0.5 0.6 60.9 ± 18.8 94.7 ± 8.6 86.3 ± 7.3 89.0 ± 10.3 92.5 ± 3.4 99.9 ± 1.1

walker2d-medium 87.9 ± 0.2 92.5 ± 0.8 102.4 ± 1.4 81.1 83.7 ± 2.1 78.3 ± 8.7 79.5 ± 3.2 83.6 ± 3.0 83.6 ± 0.9 86.1 ± 0.2
walker2d-medium-expert 116.7 ± 0.4 114.7 ± 0.9 121.2 ± 1.5 81.6 110.1 ± 0.5 109.6 ± 1.0 109.1 ± 0.2 112.3 ± 0.2 113.1 ± 2.4 111.9 ± 0.4
walker2d-medium-replay 78.7 ± 0.7 87.1 ± 2.4 90.4 ± 0.5 0.9 81.8 ± 5.5 73.8 ± 7.1 76.8 ± 10.0 81.9 ± 1.98 77.6 ± 7.8 83.2 ± 10.3

Average 92.6 93.4 96.7 36.8 75.2 76.9 77.5 81.8 83.4 90.9

We evaluate the proposed approach on two commonly used D4RL benchmarks, the locomotion and
AntMaze tasks. For the locomotion tasks, we select medium, medium-replay, and medium-expert
datasets for HalfCheetah, Hopper, and Walker2d environments. For AntMaze, we consider all of the
available datasets. We compare our results to several ensemble-free baselines, including TD3 + BC
(Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2021), CQL (Kumar et al., 2020), and BPPO (Zhuang
et al., 2023), as well as to an ensemble-based baseline, RORL (Yang et al., 2022). BRAC (Wu et al.,
2019) and CNF (Akimov et al., 2022) scores are reported for the locomotion tasks1.We also compare

1BRAC and CNF scores are not available for AntMaze tasks.
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Table 2: ReBRAC evaluation on AntMaze tasks. We report the final normalized score averaged over
4 random seeds on v1 datasets. We highlight the best scores overall algorithms with bold and the
best scores among ensemble-free algorithms with red. IQL, CQL, and MSG scores are taken from
Ghasemipour et al. (2022). TD3+BC, RORL scores are taken from Yang et al. (2022).

Ensemble-based Ensemble-free

Task Name RORL MSG TD3+BC IQL CQL BPPO ReBRAC, our

antmaze-umaze 97.7 ± 1.9 97.8 ± 1.2 78.6 87.5 74.0 95.0 ± 5.5 99.2 ± 0.9
antmaze-umaze-diverse 90.7 ± 2.9 81.8 ± 3.0 71.4 62.2 84.0 91.7 ± 4.1 98.0 ± 2.1
antmaze-medium-play 76.3 ± 2.5 89.6 ± 2.2 10.6 71.2 61.2 51.7 ± 7.5 84.5 ± 4.7
antmaze-medium-diverse 69.3 ± 3.3 88.6 ± 2.6 3.0 70.0 53.7 70.0 ± 6.3 82.5 ± 7.5
antmaze-large-play 16.3 ± 11.1 72.6 ± 7.0 0.2 39.6 15.8 86.7 ± 8.2 88.2 ± 3.7
antmaze-large-diverse 41.0 ± 10.7 71.4 ± 12.2 0.0 47.5 14.9 88.3 ± 4.1 90.7 ± 4.8

Average 65.2 83.6 27.3 63.0 50.6 80.5 90.5

to ensemble-based methods, SAC-N/EDAC (An et al., 2021) for the locomotion tasks2 and MSG
(Ghasemipour et al., 2022) for AntMaze tasks3.

The majority of the hyperparameters are adopted from TD3 + BC, and β1 and β2 parameters from
Equations 3 and 4 are carefully tuned. We examine the sensitivity to these parameters of the proposed
approach in Appendix C. For a complete overview of the experimental setup and details, see
Appendix A.

The results of our tests on the D4RL locomotion and AntMaze benchmarks are available in Table 1
and Table 2, respectively. Our approach, ReBRAC, shows a notable improvement in performance
compared to the ensemble-free algorithms on the locomotion datasets. Moreover, on AntMaze tasks,
ReBRAC achieves state-of-the-art results, outperforming both ensemble-free and ensemble-based
algorithms on average. An important finding in our experiments was the need to change the γ value
from the default of 0.99 to 0.999 for all AntMaze tasks, as well as the careful tuning of learning
rate parameters for the actor and critic networks. These adjustments contributed to the improved
performance of ReBRAC, see Appendix A for more details.

4.2 ABLATIONS

To better understand the source of improved performance, we conducted an ablation study on the
modifications made to the algorithm. Results can be found in Table 3. Additional ablation studies
for all datasets can be found in Appendix D. One modification at a time was disabled, while all
other modifications were retained, including: layer normalization in the critic network, additional
linear layers in the actor and critic networks, adding an MSE penalty to the critic and actor loss,
and large batches usage. In the case of AntMaze, we also attempted to use the default γ value
instead of the increased one. To further demonstrate the efficacy of our modifications, we also ran
our implementation as equivalent to the original TD3 + BC, with all modifications disabled and
hyperparameters taken from the original paper. This serves to show that the improved scores are
due to the proposed changes in the algorithm and not just different implementations. Furthermore,
we performed a search for the regularization parameter for our TD3 + BC to show that tuning this
parameter is not the sole source of improvement.

As a result of our experiments, we can draw several conclusions. First, the improvement in perfor-
mance is not due to differences in the implementation, as shown by the results of "TD3 + BC, our".
Second, while tuning the regularization parameter in TD3 + BC results in better performance, it still
falls short of the results achieved by ReBRAC, as demonstrated by "TD3 + BC, tuned". Our findings
also suggest that changes to the γ value have a significant impact on the ability to solve AntMaze
tasks. Furthermore, disabling layer normalization results in poor scores that are worse than disabling
any other modification except actor penalty, resulting in performance worse than "TD3 + BC, tuned".
Similarly, removing additional layers lowers performance to that of tuned TD3 + BC. The actor
penalty plays a crucial role, and its absence results in a noticeable drop in performance. Disabling
both the critic penalty or large batches also has a negative impact on performance, albeit to a lesser

2SAC-N and EDAC score 0 on medium and large AntMaze tasks (Tarasov et al., 2022).
3MSG numerical results are not available for locomotion tasks.
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Table 3: ReBRAC ablations results averaged over domains. Each modification was disabled for
ReBRAC while keeping all the other.

Ablation Locomotion AntMaze All

TD3 + BC, paper 75.2 27.3 56.0
TD3 + BC, our 62.9 22.7 46.8
TD3 + BC, tuned 78.6 (-13%) 47.2 (-47%) 66.1 (-27%)

ReBRAC w/o γ change - 46.2 (-48%) -
ReBRAC w/o LN 57.3 (-36%) 0.0 (-100%) 52.9 (-41%)
ReBRAC w/o layer 85.8 (-5%) 17.6 (-80%) 51.5 (-43%)
ReBRAC w/o actor penalty 21.7 (-76%) 13.9 (-84%) 18.6 (-79%)
ReBRAC w/o critic penalty 88.1 (-2%) 62.3 (-31%) 77.8 (-14%)
ReBRAC w/o large batch 86.9 (-4%) 60.5 (-33%) 76.4 (-15%)

ReBRAC 90.8 90.5 90.7

extent. Overall, disabling any single modification leads to a decline in performance on average, which
highlights the essential role each change plays in achieving state-of-the-art performance.

5 RELATED WORK

Ensemble-free offline RL methods. In recent years, many offline reinforcement learning algorithms
were developed. TD3 + BC (Fujimoto & Gu, 2021) represents a minimalist approach to offline
RL, which incorporates a Behavioral Cloning component into the actor network loss, enabling
online actor-critic algorithms to operate in an offline setting. CQL (Kumar et al., 2020) drives the
critic network to assign lower values to out-of-distribution state-action pairs and higher values to
in-distribution pairs. IQL (Kostrikov et al., 2021) proposes a method for learning a policy without the
need for sampling out-of-distribution actions.

Despite this, in order to achieve state-of-the-art results in an ensemble-free setup, more sophisticated
methods may be necessary. For instance, CNF (Akimov et al., 2022) pre-trains a normalizing flow
encoder for actions, then trains the actor to predict actions in the latent space. BPPO (Zhuang et al.,
2023), on the other hand, pre-trains the policy using Behavior Cloning, estimates the behavior policy’s
Q-function using SARSA, and executes PPO (Schulman et al., 2017) using the obtained estimations.

Ensemble-based offline RL methods. A significant number of works in offline reinforcement
learning have also leveraged ensemble methods for uncertainty estimation. The recently introduced
SAC-N (An et al., 2021) algorithm outperformed all previous approaches on the D4RL locomotion
tasks; however, it necessitated large ensembles for some tasks, such as the hopper task, which required
an ensemble size of 500 and imposed a significant computational burden. To mitigate this, the EDAC
algorithm was introduced in the same work, which utilized ensemble diversification to reduce the
ensemble size from 500 to 50. Despite the reduction, the ensemble size remains substantial compared
to ensemble-free alternatives. It is worth mentioning that neither SAC-N nor EDAC are capable of
solving the AntMaze tasks (Tarasov et al., 2022).

Another state-of-the-art algorithm in the locomotion tasks is RORL (Yang et al., 2022), which is a
modification of SAC-N that makes the Q function more robust and smooth by perturbing state-action
pairs with the use of out-of-distribution actions. RORL also requires an ensemble size of up to 20.
On the other hand, MSG (Ghasemipour et al., 2022) utilizes independent targets for each ensemble
member and achieves good performance on the locomotion tasks with an ensemble size of 4, but
requires 64 ensemble members to achieve state-of-the-art performance on the AntMaze tasks.

Layer Normalization. Normalization techniques in reinforcement learning have gained some
traction, despite not being as widely studied as they are in deep learning. Hiraoka et al. (2021)
boosted the computation efficiency of state-of-the-art RL algorithms by adding dropout and layer
normalization to critic networks. Smith et al. (2022) built upon these modifications and discovered
that the majority of the improvement was due to the implementation of layer normalization. Bhatt
et al. (2019); Kumar et al. (2022); Nikulin et al. (2022) also tested normalization in the offline RL
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setting and showed that normalization techniques are also beneficial. A parallel study Ball et al.
(2023) empirically shows that LayerNorm helps to prevent catastrophic value extrapolation for the Q
function when using offline datasets in RL.

Deeper Networks. In natural language processing, it has been established that, with a sufficient
amount of data, model performance scales with the model size (Kaplan et al., 2020). Similar trends
have been observed in reinforcement learning (Sinha et al., 2020; Neumann & Gros, 2022) and offline
reinforcement learning (Lee et al., 2022a; Kumar et al., 2022), however, more research is needed in
this area. For instance, Fujimoto & Gu (2021) have shown that reducing the number of layers in CQL
(Kumar et al., 2020) may result in a significant decline in performance. On the other hand, Zhuang
et al. (2023) offer an alternative approach to increasing network size by expanding the width of the
network instead of its depth.

Large Batch Optimization. The concept of large batch optimization (You et al., 2017; 2019) in the
context of offline RL was first introduced in Nikulin et al. (2022). While this area of research holds
promise, to date it has only been tested on the SAC-N Nikulin et al. (2022) and CNF Akimov et al.
(2022) algorithms and has yet to be explored with other offline RL algorithms.

γ value change. The discount factor γ is well established as a critical hyperparameter in reinforcement
learning (Jiang et al., 2015). A recent study Hu et al. (2022) highlights the utility of decreasing γ for
offline RL; however, the authors only consider values below 0.99, which is the standard setting for
most tasks. In our research, we have observed evidence that increasing the γ value for AntMaze tasks
may lead to improved results, and further investigation in this direction is required.

6 OUTLOOK

In this work, we revisit recent advancements in the offline RL field over the last two years and
incorporate a modest set of improvements to a previously established minimalistic TD3 + BC
approach. Our experiments demonstrate that even with these limited updates, we are able to achieve
state-of-the-art performance on the D4RL benchmark for the AntMaze and locomotion tasks, or come
close.

Despite the noteworthy achievements, it is imperative to explore the potential impact of other offline
RL methods with the techniques we employed. Although we eagerly anticipate a positive outcome, it
is also our belief that the offline RL community requires an additional benchmark, as one of the most
challenging D4RL tasks, AntMaze, is almost solved.

An alternative research direction for the ReBRAC method would be to assess its performance in
an offline-to-online setting. This direction appears promising due to several factors. First, the
algorithm exhibits a high degree of proficiency following offline pre-training. Second, our algorithm
shares similarities with TD3 + BC, which has proven effective for online fine-tuning (Beeson &
Montana, 2022). Lastly, we have incorporated pessimism into the Q function, a crucial component
for transitioning from offline to online environments (Lee et al., 2022b) .
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A EXPERIMENTAL DETAILS

In order to generate the results presented in Table 1 and Table 2, we conducted a hyperparameter
search and selected the best results from the final evaluations for each dataset. Our algorithm was
implemented using JAX and the experiments were conducted on V100 and A100 GPUs.

Locomotion tasks. In our study, we utilized the latest version of the datasets – v2. The agents were
trained for a total of one million steps and evaluated over 10 episodes.

We fine-tuned the β1 parameter for the actor, which was selected from a range of 0.001, 0.01, 0.05, 0.1.
Similarly, the β2 parameter for the critic was selected from a range of 0, 0.001, 0.01, 0.1, 0.5. The
selected best parameters for each dataset are reported in the appendix, in Table 6. Furthermore, the
sensitivity analysis of these parameters is also presented in Appendix C.

AntMaze tasks. In our work, we utilized v1 of the datasets. It’s worth noting that previous studies
have reported results using v0 datasets, which were found to contain numerous issues4. Each agent
was trained for 1 million steps and evaluated over 100 episodes. In accordance with Chen et al.
(2022b), we modified the reward function by multiplying it by 100. We also tuned learning rate
hyperparameters as it appeared to be essential for stable convergence.

The β1 (actor) and β2 (critic) hyperparameters were carefully selected from the respective
ranges of 0.0003, 0.0005, 0.001, 0.002, 0.003 and 0, 0.0001, 0.0005, 0.001. In addition, the actor
and critic learning rates were optimized from the ranges of 0.0001, 0.0002, 0.0003, 0.0005 and
0.0003, 0.0005, 0.001, respectively. The optimal hyperparameters for each dataset are presented in
the appendix in Table 5.

We also modified the γ value when addressing these tasks, driven by the following motivation. The
length of the episodes in AntMaze can be as long as 1000 steps, while the reward is sparse and can
only be obtained at the end of the episode. As a result, the discount for the reward with the default
γ can be as low as 0.991000 = 4 · 10−5, which is extremely low for signal propagation, even when
multiplying the reward by 100. By increasing γ to 0.999, the minimum discount value becomes
0.9991000 = 0.36, which is more favorable for signal propagation.

B HYPERPARAMETERS

Table 4: ReBRAC general hyperparameters.

Parameter Value

optimizer Adam (Kingma & Ba, 2014)
batch size 1024
learning rate (all networks) 1e-3 (on locomotion, tuned for each AntMaze task)
tau (τ ) 5e-3
hidden dim (all networks) 256
num layers (all networks) 4
gamma (γ) 0.99 (0.999 on AntMaze)
nonlinearity ReLU

Table 5: ReBRAC best hyperparameters used in D4RL AntMaze domain.

Task Name β1 (actor) β2 (critic) actor lr critic lr

antmaze-umaze 0.0005 0.0005 0.0005 0.0005
antmaze-umaze-diverse 0.0005 0.0005 0.0005 0.0005
antmaze-medium-play 0.0005 0.0005 0.0005 0.001
antmaze-medium-diverse 0.001 0.0001 0.0005 0.0005
antmaze-large-play 0.002 0.0001 0.0005 0.0003
antmaze-large-diverse 0.003 0.0005 0.0005 0.0005

4https://github.com/Farama-Foundation/D4RL/issues/77
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Table 6: ReBRAC best hyperparameters used in D4RL locomotion domain.

Task Name β1 (actor) β2 (critic)

halfcheetah-medium 0.001 0.01
halfcheetah-medium-expert 0.01 0.1
halfcheetah-medium-replay 0.001 0.001

hopper-medium 0.01 0.001
hopper-medium-expert 0.1 0.1
hopper-medium-replay 0.05 0.01

walker2d-medium 0.05 0.1
walker2d-medium-expert 0.01 0.5
walker2d-medium-replay 0.05 0.01

C SENSITIVITY TO HYPERPARAMETERS

Following Kurenkov & Kolesnikov (2022), we demonstrate the sensitivity of ReBRAC to the choice
of β1 and β2 hyperparameters under uniform policy selection on locomotion tasks in Figure 1. As one
can see, approximately 10 policies are required to attain ensemble-free state-of-the-art performance.
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Figure 1: ReBRAC Expected Online Performance under uniform policy selection on D4RL
locomotion tasks.

D ALL TASKS ABLATION
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Table 7: ReBRAC ablations for halfcheetah tasks. We report final normalized score averaged over 4
random seeds.

Ablation halfcheetah-medium halfcheetah-medium-expert halfcheetah-medium-replay Average

TD3 + BC, paper 48.3 ± 0.3 90.7 ± 4.3 44.6±0.5 61.2
TD3 + BC, our 44.4 ± 0.1 93.5 ± 0.4 40.7 ± 0.8 59.5
TD3 + BC, tuned 59.1 ± 1.4 (-10%) 91.3 ± 3.7 (-13%) 49.8 ± 0.5 (-4%) 66.7 (-10%)

ReBRAC w/o LN 38.5 ± 36.9 (-41%) 79.8 ± 10.2(-24%) 2.7 ± 6.0 (-94%) 40.3 (-45%)
ReBRAC w/o layer 56.7 ± 10.7 (-13%) 86.7 ± 7.3 (-17%) 42.5 ± 3.9 (-18%) 61.9 (-16%)
ReBRAC w/o actor penalty 63.9 ± 1.3 (-3%) 79.1 ± 13.5 (-25%) 37.9 ± 4.3 (-27%) 60.3 (-19%)
ReBRAC w/o critic penalty 65.5 ± 4.3 (-0%) 100.1 ± 4.5 (-5%) 45.7 ± 4.5 (-12%) 70.4 (-5%)
ReBRAC w/o large batch 61.8 ± 0.8 (-6%) 92.7 ± 0.9 (-12%) 52.0 ± 3.2 (-0%) 68.8 (-7%)

ReBRAC 65.9 ± 1.1 105.6 ± 1.4 52.2±4.6 74.5

Table 8: ReBRAC ablations for hopper tasks. We report final normalized score averaged over 4
random seeds.

Ablation hopper-medium hopper-medium-expert hopper-medium-replay Average

TD3 + BC, paper 59.3 ± 4.2 98.0 ± 9.4 60.9 ± 18.8 72.7
TD3 + BC, our 49.2 ± 4.3 65.4 ± 23.6 42.3 ± 10.7 52.3
TD3 + BC, tuned 57.8 ± 4.6 (-43%) 97.8 ± 12.7 (-11%) 81.3 ± 22.7 (-18%) 78.9 (-24%)

ReBRAC w/o LN 9.8 ± 14.1 (-90%) 104.0 ± 5.2 (-5%) 76.4 ± 24.3 (-23%) 63.4 (-39%)
ReBRAC w/o layer 102.6 ± 0.7 (+0%) 102.7 ± 9.2 (-7%) 98.4 ± 2.3 (-1%) 101.2 (-2%)
ReBRAC w/o actor penalty 2.2 ± 1.8 (-97%) 1.8 ± 1.3 (-98%) 5.0 ± 4.3 (-94%) 3.0 (-97%)
ReBRAC w/o critic penalty 97.0 ± 6.4 (-5%) 110.6 ± 1.7 (-0%) 98.8 ± 1.6 (-1%) 102.1 (-2%)
ReBRAC w/o large batch 96.9 ± 6.4 (-5%) 106.2 ± 3.1 (-3%) 98.1 ± 4.1 (-1%) 100.4 (-3%)

ReBRAC 102.5 ± 0.3 110.6 ± 2.0 99.9 ± 1.1 104.3

Table 9: ReBRAC ablations for walker2d tasks. We report final normalized score averaged over 4
random seeds.

Ablation walker2d-medium walker2d-medium-expert walker2d-medium-replay Average

TD3 + BC, paper 83.7 ± 2.1 110.1 ± 0.5 81.8 ± 5.5 91.8
TD3 + BC, our 109.1 ± 0.4 74.8 ± 2.7 46.8 ± 17.6 76.9
TD3 + BC, tuned 77.7 ± 4.3 (-43%) 110.8 ± 0.6 (-9%) 82.9 ± 5.7 (-0%) 90.4 (-3%)

ReBRAC w/o LN 84.1 ± 2.8 (-2%) 53.1 ± 55.7 (-52%) 68.1 ± 7.5 (-18%) 68.4(-27%)
ReBRAC w/o layer 85.4 ± 0.5 (-0%) 112.8 ± 0.6 (+0%) 84.8 ± 3.2 (+1%) 94.3(+0%)
ReBRAC w/o actor penalty 1.3 ± 1.5 (-98%) 0.1 ± 0.2 (-99%) 4.4 ± 0.5 (-94%) 1.9 (-97%)
ReBRAC w/o critic penalty 84.8 ± 4.0 (-1%) 111.9 ± 0.3 (+0%) 78.8 ± 5.6 (-5%) 91.8 (-2%)
ReBRAC w/o large batch 82.6 ± 3.0 (-4%) 111.9 ± 0.2 (0%) 80.5 ± 6.1 (-3%) 91.6 (-2%)

ReBRAC 86.1 ± 0.2 111.9 ± 0.4 83.2 ± 10.3 93.7

Table 10: ReBRAC ablations for antmaze tasks. We report final normalized score averaged over 4
random seeds.

Ablation antmaze-umaze antmaze-umaze-diverse antmaze-medium-play antmaze-medium-diverse antmaze-large-play antmaze-large-diverse Average

TD3 + BC, paper 78.6 71.4 10.6 3.0 0.2 0.0 27.3
TD3 + BC, our 70.2 ± 3.5 65.2 ± 2.8 0.7 ± 0.9 0.5 ± 1 0.0 ± 0.0 0.0 ± 0.0 22.7
TD3 + BC, tuned 88.0 ± 1.4 (-11%) 79.5 ± 5.5 (-18%) 38.5 ± 44.4 (-54%) 28.0 ± 31.9 (-66%) 46.2 ± 19.7 (-47%) 3.5 ± 5.7 (-96%) 47.2 (-47%)

ReBRAC w/o γ change 82.7 ± 2.9 (-16%) 76.5 ± 8.2 (-21%) 37.5 ± 31.6 (-55%) 19.5 ± 31.3 (-76%) 13.7 ± 23.0 (-78%) 47.5 ± 32.9 (-47%) 46.2 (-48%)
ReBRAC w/o LN 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 (-100%)
ReBRAC w/o layer 11.7 ± 23.5 (-88%) 94.0 ± 2.8 (-4%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 17.6 (-80%)
ReBRAC w/o actor penalty 62.5 ± 19.0 (-36%) 18.0 ± 11.5 (-81%) 0.5 ± 0.5 (-99%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 2.7 ± 5.5 (-97%) 13.9 (-84%)
ReBRAC w/o critic penalty 84.7 ± 15.3 (-14%) 97.5 ± 1 (-0%) 36.2 ± 40.0 (-57%) 53.5 ± 39.4 (-35%) 81.2 ± 22.3 (-7%) 20.7 ± 41.5 (-77%) 62.3 (-31%)
ReBRAC w/o large batch 96.2 ± 2.0 (-3%) 95.7 ± 2.0 (-2%) 43.5 ± 20.9 (-48%) 38.5 ± 29.3 (-53%) 89.5 ± 2.38 (+1%) 0.0 ± 0.0 (-100%) 60.5 (-33%)

ReBRAC 99.2 ± 0.9 98.0 ± 2.1 84.5 ± 4.7 82.5 ± 7.5 88.2 ± 3.7 90.7 ± 4.8 90.5

11


	Introduction
	Preliminaries
	Offline Reinforcement Learning
	Behavior Regularized Actor-Critic

	ReBRAC: A Recipe
	Experiments
	Evaluation on D4RL
	Ablations

	Related work
	Outlook
	Experimental Details
	Hyperparameters
	Sensitivity to Hyperparameters
	All tasks ablation

