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Abstract

Diffusion models generate new samples by progressively decreasing the noise
from the initially provided random distribution. This inference procedure generally
utilizes a trained neural network numerous times to obtain the final output, creating
significant latency and energy consumption on digital electronic hardware such as
GPUs. In this study, we demonstrate that the propagation of a light beam through a
semi-transparent medium can be programmed to implement a denoising diffusion
model on image samples. This framework projects noisy image patterns through
passive diffractive optical layers, which collectively only transmit the predicted
noise term in the image. The optical transparent layers, which are trained with
an online training approach, backpropagating the error to the analytical model
of the system, are passive and kept the same across different steps of denoising.
Hence this method enables high-speed image generation with minimal power
consumption, benefiting from the bandwidth and energy efficiency of optical
information processing.

1 Introduction

Diffusion models create new samples that resemble their training sets by gradually undoing the
diffusion process, which requires the learned reverse process to be applied numerous times [1]. While
this method demonstrated unprecedented capabilities by producing highly realistic samples [2–8], it is
also highly time-consuming and expensive in terms of energy consumption and computing resources
since a large number of steps are required for generating each sample [2]. This prolonged processing
time not only limits accessibility but also contributes to a significant environmental footprint.

Currently, generating new samples with diffusion models relies on electronic, general-purpose
computing hardware such as GPUs or TPUs. However, due to the repetitive nature of the reversal
process required in this task, deploying specialized hardware instead of general-purpose ones could
significantly enhance the efficiency of sampling. For instance, the use of ASICs in cryptocurrency
mining for hashing algorithms has demonstrated substantial improvements in computational speed and
energy efficiency [9]. However, both GPUs and ASICs, among other electronic digital computers, face
the same challenges like heat dissipation, energy consumption, and the diminishing returns of Moore’s
Law, as transistors shrink and encounter quantum effects and physical limits that hinder further gains
[10]. Therefore, exploring alternative computing modalities, such as optical computing—which
offers high bandwidth and low loss—is increasingly important [11]. Optical computing has already
shown promise in various applications, including high-speed data transmission and real-time signal
processing. Optical computing addresses the inefficiencies of electronic hardware by leveraging
the inherent parallelism that light allows for the simultaneous processing of multiple data channels,
significantly speeding up the computational process. Several optical neural networks have been
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reported to perform complex calculations at reduced latency and energy consumption compared to
traditional electronic systems [12].

In this study, we demonstrate that optical wave propagation can be programmed to act as a computing
engine specifically designed for implementing denoising diffusion models. As light passes through
specially engineered transparent layers, features related to the original distribution are filtered out
without any additional power consumption or computing latency, as depicted in Figure 1. This
is due to the passive nature of the transparent layers, which are minimally absorptive and do not
require active components or external power to function. These layers are designed to manipulate the
light solely through their physical structure, which allows for the noise prediction to exit the system
efficiently. Near zero energy consumption of passive optical components reduces the overall power
requirements, making the system more energy-efficient.

Through iterative noise prediction and removal, the Optical Denoising Unit (ODU) can generate new
images using a minimal number of these passive optical modulation layers. Since these layers do
not need power or active control, they do not introduce any latency or energy overhead. Constrained
only by optoelectronic input and readout hardware, this approach has the potential to significantly
reduce the computational time and energy consumption of diffusion models, specifically performing
inference in more sustainable and scalable ways.

Figure 1: Comparison between conventional and proposed methods of image generation based on
diffusion models. The conventional method runs on digital electronics based computing units such as
GPUs or TPUs. The proposed method utilizes an optical denoising unit that is formed by passive
optical layers. The image to be denoised is sent to the system with a modulator and the output is read
out with a detector.

The main contributions of this study are:

• The propagation of light through multiple modulation layers is programmed to perform
denoising diffusion image generation by predicting and transmitting the noise term in the
input images. The system uses only a single modulation plane and multiple reflections.

• A time-aware denoising policy is specifically designed for analog optical computing hard-
ware. This policy facilitates the use of passive building blocks to achieve multi-step comput-
ing at low power, translating the time-embedding in digital Denoising Diffusion Probabilistic
Models (DDPMs) into optical hardware.

• An online learning algorithm is introduced for training ODUs in real-life scenarios, where
alignment and calibration errors exist. The algorithm tracks and alleviates experimental
discrepancies with constant updates to a digital twin (DT) during training time.

2 Related Work

Diffusion models have become popular, with their superior image generation performance compared
to Generative Adversarial Networks (GANs) [13]. High-resolution, guided diffusion process is
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currently widely utilized for on-demand image generation [6, 7, 14]. One of the main concerns
with these highly capable models is the significant time taken for generating new samples, which
can exceed 10 seconds for each high-resolution image [6]. Different methods have been proposed
to alleviate this condition and improve the efficiency of diffusion models. While Latent Diffusion
Models [6] work on a lower dimensional representation of images to decrease the computational load,
Denoising Diffusion Implicit Models [15] introduce a deterministic and non-Markovian sampling
process to reduce the number of required steps. Similarly, FastDPM [16], uses domain-specific
conditional information for faster sampling with diffusion models. Another approach is to distill
multiple denoising steps to a single one with a teacher-student setting [17]. As these methods aim to
decrease iterative denoising steps required for sampling through algorithmic innovations, the potential
improvements obtained by exploiting the repetitive nature of these models on the computing hardware
side remain to be seen.

Optical processors have shown substantial energy efficiency improvements, particularly with larger
model sizes, potentially outperforming current digital systems [18]. They can be implemented
through various architectures, each leveraging different aspects of optical technology to perform
computations. Free-space optical networks use spatial light modulators or fixed modulation layers
for performing matrix multiplications and convolutions as light propagates [19–21], making them
highly efficient for image processing tasks. These applications include super-resolution [22], noise
removal [23], and implementation of convolutional neural network layers [24], which are shown to
competitively perform different downstream tasks such as segmentation [25]. On the other hand,
photonic integrated circuits utilize optical components like Mach-Zehnder interferometers, microring
resonators, and waveguides on a single chip, enabling compact vector-matrix multipliers [26, 27].
Together, these developments highlight the transformative potential of optical computing in enhancing
the performance and efficiency of computationally intensive tasks.

Considering the significant computational demands of denoising tasks, there is a clear need for
specialized hardware to scale these operations effectively. Despite the advancements in optics, deep
learning, and optical image processing, the realization of an optical diffusion denoiser remains a gap
in current research. Bridging this gap could leverage the synergy between these fields to develop
highly efficient and scalable solutions for denoising diffusion models.

In addition to their wide range of advantages, optical computing systems also have disadvantages
related to the energy cost of modulation and detection of light, its limited programmability, and
experimental precision. Calculating the gradients of the experimental loss through the optical wave
propagation model allows for a close match between optical experiments and computational models
[19]. Similarly, a pre-trained neural network-based emulator of a physical system can also be used
for the same purpose [28]. Moreover, it is crucial to perform as many computations as possible with
the data while in the optical domain to avoid energy and time expenditure of optoelectronic devices.

3 Description of the Study

3.1 Denoising Diffusion Models

DDPMs progressively corrupt data with Gaussian noise in a forward process and subsequently learn to
reverse this corruption through a denoising process. This way they can generate new data samples that
closely resemble the training data distribution. The forward diffusion process involves the sequential
corruption of a data sample r0 ∼ q(r0) through the addition of Gaussian noise over T timesteps. At
each timestep t, the data sample rt−1 is perturbed to produce rt, rt =

√
1− βtrt−1 +

√
βtϵt, where

βt ∈ (0, 1) is a variance schedule that determines the amount of noise added and ϵt ∼ N (0, I) is
standard Gaussian noise. This process transforms the original data into nearly pure noise by timestep
T .

The reverse denoising process in DDPMs aims to reconstruct the original data from a highly noisy
sample. Starting from completely Gaussian noise rT ∼ N (0, I), the sample is iteratively denoised by
removing the prediction of ϵt in the image, ϵθ(rt, t), which is provided by a trained neural network:

rt−1 =
1√

1− βt
(rt − βtϵθ(rt, t)), (1)

The training objective of the neural network can be simplified to minimize the mean squared error
(MSE) between the true noise ϵt and the predicted noise ϵθ(rt, t),L = Et,r0,ϵt

[
∥ϵt − ϵθ(rt, t)∥2

]
3



where t is uniformly sampled from {1, . . . , T}. Finally, to generate new data samples, the model
starts with a sample rT ∼ N (0, I) and applies the learned reverse transitions iteratively.

3.2 Propagation of Modulated Light Beams

Figure 2: The main operation principle of ODU. Consequent modulation and free space propagation
events can be represented with multiplication and convolution operations. When the input beam
U0(x, y), which is patterned with noisy input images, rt, is introduced to the ODU, the output
intensity pattern ∥Uf (x, y)∥2 corresponds to the trained optical system’s prediction of the noise
component in the input pattern, ϵθ(rt).

In this study, a denoising framework is presented by combining the modulation of a light beam with
consequent transparent or reflective patterns and its propagation in free space (environments such as
vacuum or air, where the refractive index of light is approximately 1), as shown in Figure 2. This
process can be explained by the Fresnel diffraction theory since the features on the layers are not only
larger than the optical wavelengths but only sufficiently smaller than the distance between different
modulation layers [29]. According to this formalism, the electromagnetic field after propagating a
distance z in free space, U(x, y, z), can be calculated from its distribution at z = 0 by convolution
with "the impulse response of free space", h(x, y):

U(x, y, z) = U(x, y, 0) ∗ h(x, y), where h(x, y) =
ejkz

jλz
exp

[
jk

2z

(
x2 + y2

)]
(2)

Here, k denotes the wavenumber of the field, and λ is the wavelength. In other words, the field’s value
at the plane of z = z0, at a given location (x, y), is the weighted sum of the values at z = 0, where
the weight of each location is determined by the response function. Being complex numbers, all of
these weights have the same magnitude but their phase depends on the location. In the frequency
domain, the transfer function of free space becomes

H (fX , fY ) = exp

[
j2π

z

λ

√
1− (λfX)

2 − (λfY )
2

]
. (3)

This indicates that for spatial frequencies larger than 1/λ, the magnitude of the transfer function
decays to zero exponentially. Hence, only features that are larger than the wavelength of the light can
propagate to the far field. Moreover, frequency domain expression of diffraction, Eqn. 3, allows for
also the efficient digital simulation of the propagation of light in free space with the utilization of
Fast Fourier Transforms (FFTs) in a parallelized manner. Later on, we will benefit from this fact for
GPU accelerated training of the diffractive modulation layers.

The proposed method applies trainable weights to the light beam at consequent planes with thin
modulation layers. The interaction between layers and light can be represented as a point-wise
multiplication between the incident field and the layer, which is followed by the propagation of the
field in free space until the next layer,
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Un(x, y) = [Un−1(x, y) ∗ h(x, y)]Ln(x, y), (4)

where Un(x, y) is the field distribution right before reaching the modulation layer n, and Ln(x, y) is
the complex modulation coefficient distribution of the trained modulation layers or the weights of
the optical diffusion model. L(x, y) = |L(x, y)|eiϕ(x,y) can be only a real number(ϕ(x, y) = 0), just
phase modulation (|L(x, y)| = 1) or an arbitrary complex number depending on the implemented
modulation principle. In this paper, we demonstrate our approach with a phase-only liquid crystal
spatial light modulator (SLM), which can set ϕ(x, y) to any value in the range of [0, 2π] electronically,
and |L(x, y)| ≈ 1 everywhere.

3.3 Training of Optical Modulation Layers

As described in section 3.2, propagation of light can be analytically explained in a succinct manner
for the scale considered in this study (zlayer >> dpixel > λ). This allows for defining some free
variables in this representation, such as refractive index distribution L(x, y) or input wavefront
distribution U0(x, y), and optimizing these variables for minimizing a cost function. The gradients of
these variables can be found with either manual calculation [30] or automatic differentiation packages
[20]. In this study, our first goal is to find optimal modulation layers, or refractive index distributions,
such that after the light beam encoded with the noisy images propagates through them only the
predicted noise term reaches the detector, as shown in Figure 2. Moreover, the denoising network
should be aware of the given timestep in the diffusion process while predicting the noise, ϵθ(xt, t),
so that it would have a priori information about the variance of the noise term. Since noise level
awareness is a crucial aspect of successful sample generation, most of the current implementations of
diffusion models utilize time-embedding layers to modify activations of the neural network across
different layers depending on the diffusion time step. Instead, the proposed method divides the
diffusion timeline consisting of T timesteps into M subsets, and for each subset of time frames
{Sm}Mm=1, trains a separate set of modulation layers {Lm

n }Nn=1 each containing N layers. Then,
for t ∈ Sm, the noise prediction,ϵθm(x) becomes only a function of x. In this scheme, the training
objective for each time step is

Lt = Ex0,ϵ

[
∥ϵ− ϵθm(xt)∥2

]
(5)

where total loss is the sum over all ranges:

L =

M∑
i=m

∑
t∈Sm

Lt. (6)

This decoupling of denoising at different timesteps by removing time-embedding layers also elimi-
nates the necessity for digital computations to modifications at different layers. By circumventing
this problem we perform denoising all-optically. Moreover, a fixed optical modulation pattern
performs denoising at multiple consequent timesteps. For instance, we later demonstrate that for
T = 1000,M = 10 creates optimal results. So, a single layer set can process 100 timesteps and the
entire sampling workflow can be operated with only 10 fixed parallel devices, or with only 10 updates
to the SLM.

After defining the forward calculation of the system with the analytical explanation of light prop-
agation and the loss function as the mean square error of noise prediction (Eqn. 6), the trainable
parameters of the system {Lm

n }Nn=1(x, y) are optimized by automatic differentiation [31].

4 Results

4.1 All-Optical Denoising based Image Generation

Following the same experimental settings with the initial DDPM study [2], we set T = 1000 and
β values to be in the linear range between β1 = 10−4 to βT = 0.02. The results in Figure 3
are reported with the beam propagation model (Eqn. 3) of the optical system designed to have
300× 300 pixels per layer and four modulation layers. The number of layer sets (M ) is 10. Several
intermediate results alongside final outputs at T = 1000 are reported in Figure 3 for 3 classes of the
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Figure 3: Images generated by the Optical Diffusion Model at different timesteps and when trained
with various datasets. The generated images and their corresponding Inception and FID scores are
calculated between timesteps T = 10 to T = 950 are acquired after training with the MNIST digits
dataset. Final outputs at time T = 1000, acquired from ODUs trained for the MNIST digits samples
have FID = 206.6, for Fashion MNIST, FID = 227.7 and for Quick, Draw!, FID = 131.4

MNIST digits [32], Fashion-MNIST [33] and the clock category of the Quick, Draw! datasets [34].
Furthermore, the evaluation of image generation quality metrics, Inception Score (IS) and Fréchet
Inception Distance (FID), which are detailed in Appendix A.6, across different generation timesteps
captures the improved realism of images with the optical diffusion procedure.

4.2 Effects of Optical Model’s Dimensionality on the Image Denoising and Generation
Performance

Figure 4: Scaling of the denoising capabilities (left) and generation performance (right) of Optical
Diffusion, and pure digital convolutional U-Net and fully connected networks with the output image
resolution.

This section provides further analysis with different output dimensions and parameter counts along
with the comparisons with purely digital implementations to quantify Optical Diffusion’s scalability to
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large-scale diffusion problems. The first investigation is into the performance with higher resolution
datasets; two digital architectures of similar performance with the ODU, one being fully connected
and the other convolutional U-Net [35], are trained for the same tasks with the ODU, generating
images with the MNIST digits dataset at different resolutions. Their architecture is detailed in
Appendix Table 1. The results shown in Figure 4 indicate that ODU consistently outperforms the
two digital neural networks, and all three scale in a similar manner both in terms of denoising and
generation performances when the generated image dimension is increased while the model sizes are
kept constant.

Figure 5: The dependency of denoising performance (MSE) and generation quality scores(FID, KID
and Inception score), on the hyperparameters of the ODUs (number of pixels of optical modulation
layers, number of modulation layers and number of denoising layer sets (M )).

Secondly, the scaling of Optical Diffusion’s performance with respect to the number of total parame-
ters is probed through three hyperparameters: layer resolution, layer count, and timestep sets. The
effects are tracked with different metrics, MSE for denoising, FID, IS and Kernel Inception Distance
(KID) for the generation quality. In Figure 5, we observe that, as in digital neural networks, there is a
clear tendency to perform better with a larger number of trainable parameters when layer resolution
and layer count are increased.

On the other hand, having a larger number of denoising layer/timestep sets improves the results only
until they reach a certain level. Afterward, increasing the number of sets is detrimental as shown in
Figure 5. As the total number of training steps is fixed in this experiment, increasing the number of
timestep sets decreases the training sample count per layer set, hence potentially deteriorating the
performance after a particular threshold, which is found to be M = 10.

Through the aggregation of data points acquired with different layer resolutions and counts in
Figure 5, the relationship between the total trainable parameter count of ODUs and their image
generation performance is depicted in Figure 6. This relationship remarkably follows the same
widely accepted, power-law trend of digital generative models [36]. Most significantly, when the
optical implementation is fitted to a power-law equation, the exponential of the power law (−0.15)
is approximately the same as the reported value (−0.16) for large-scale image generation networks
in [36]. This fit parameter gives the slope of the line in the logarithmic plot, indicating how fast
the generation performance scales with the number of parameters, in this case showing that ODU
improves its performance at a similar speed with large-scale digital image generation networks while
its parameter count is increased. The single outlier in this trend is the case where there is only a
single modulation layer, which does not benefit from the multiple optical modulations aspect of the
proposed architecture.
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Figure 6: The relationship between the total number of parameters in an ODU and its generation
performance in terms of FID scores.

4.3 Higher Experimental Fidelity with the Online Learning Algorithm

To address the challenge of training an optical system with imperfect calibration, as faced in many
other analog computing paradigms, we propose an online learning algorithm that updates and
leverages a DT during training. During inference, the DT does not incur any additional overhead.
The DT (f̃θlayers,θalignment ) again utilizes Fresnel diffraction based model of light propagation, as a
surrogate to compute gradients and guide the optimization of the system’s trainable parameters.
However, matching the DT’s parameters (θalignment), for instance, input beam angle, precise locations
of the layers, and their angles, perfectly to the experimental conditions of the physical system is a
challenging task. Therefore, during each iteration of training, the output of the experiment (fθlayers )
and DT (f̃θlayers,θalignment ) is compared and the DT’s parameters are updated accordingly, as shown in
Algorithm 1.

Algorithm 1 Online Learning Algorithm
Initialize physical system fθlayers with parameters θlayers

Initialize DT f̃θlayers,θalignment with parameters θlayers, θalignment
while not converged do

Forward Pass:
Input data x into the physical system fθlayers

Obtain physical system output yf = fθlayers(x)
Compute error E = loss(yf ,ytarget)
Backward Pass:
Compute Jacobian of DT at x,J =

∂yf̃

∂θlayers

Compute gradients ∇θlayers = JT · ∂E
∂yf

Update physical system parameters θlayers ← θlayers − η∇θlayers

DT Refinement:
Obtain DT output yf̃

Compute MSE between DT and physical system outputs L = MSE(yf̃ ,yf )

Compute gradients ∇θalignment =
∂L

∂θalignment

Update DT alignment parameters θalignment ← θalignment − α∇θalignment

end while

In parallel, the DT is also employed to compute the gradients of the trainable parameters of the
experiment, with respect to the output(

∂yf̃

∂θlayers
). These gradients are then utilized to update the physical

system’s parameters through backpropagation, informed by the error obtained from the physical
system. Concurrently, the DT is refined using the latest inputs and outputs from the physical system
to better approximate its behavior, despite the initial parameter mismatches. This iterative process of
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forward and backward passes, coupled with the continuous refinement of the DT, enables the physical
system to progressively improve its performance and align more closely with the desired outcomes.

Figure 7: The upper block illustrates the online training scheme. The forward pass is calculated with
the experiment (blue), while the gradients of the prediction error are backpropagated using a DT
of the experiment (green) and updating the physical trainable parameters. The difference between
the outputs of the experimental setup and the DT continuously refines the DT (red). The lower
graph block compares offline and online training methods. Offline training relies on a pre-trained
DT for both the forward and backward passes, with the experimental performance of this method
indicated by the star. Experimental backpropagation executes the physical forward pass but does not
incorporate DT refinement.

In Figure 7, we explore the efficiency of the proposed algorithm by modeling a possible experiment
scenario. In this scenario, we define two different optical models, while actually both of them are
simulations of the optical wave propagation for an exact insight into the algorithm, we designate the
first one as the “optical experiment” by configuring it with the calibration angles obtained from the
physical experiment. These four angles account for the slight misalignment of the experiment and
define the input angle of the beam to the cavity and the angle between the mirror and the SLM, in x
and y axes, all being in the range of a few milliradians and their measurement details being provided
in Appendix A.1. The second model, considered as the DT, is initialized with their calibration angles
20% higher. We used 3 different algorithms, offline, experimental error backpropagation [28], and
the proposed online training schemes. During training, MSE (training loss), and the discrepancy
between the DT and the experiment’s outputs are tracked. The discrepancy, D, is inversely related to
cross-correlation, C, of the experimental and the DT’s normalized outputs, Oexp and Odt respectively,
D = 1− C, where C =

∑
x

∑
y Oexp(x, y)Odt(x, y).

Offline training improves the loss function when evaluated with the DT, but when evaluated in
the experimental setting, it has a higher MSE, as shown with a star in Figure 7. When the online
training method is used, the DT is aligned with the actual experiment swiftly and the experimental
loss approximates the MSE of perfect calibration case, the results of this approach with the optical
experiment are also provided in Appendix Figure 10. Backpropagating the experimental loss,
MSE does not decrease significantly. However, for smaller misalignment, this method was also
demonstrated to converge. This experiment implements multiple modulation layers on a single device,
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with a single phase-only SLM and a mirror in parallel to resource-efficiently prototype the proposed
computing method, as shown in Figure 7 and detailed in Appendix A.3.

5 Conclusion

In this study, we introduced an optical diffusion denoising framework for image generation, utilizing
a time-aware denoising strategy that enables optical low-power realization. By exploiting light
propagation through transparent media, ODU effectively reduces noise in images, with a much
smaller energy budget compared to electronics since optical wave propagation has a very small
intrinsic loss while acquiring comparable, or better quality. This is especially interesting because
diffusion models are currently one of the most costly generative artificial intelligence models due to
their repetitive denoising process, with a correspondingly large environmental impact [37].

The integration of a time-aware policy enables Optical Diffusion to adjust light modulation dynam-
ically according to different stages of the denoising process, thus improving image quality with a
minimal number of changes to the modulation layers or parallel optical processing units. Looking
ahead, the incorporation of larger modulation layers with more parameters and the exploration of
nonlinear optical effects could enhance the functionality of the system. Scaling analyses also show
evidence for the ODU to improve its performance at the same rate as digital models while increasing
its size. These potential improvements suggest promising directions for future research in expanding
the range of applications for this technique.

The proposed method can utilize off-the-shelf consumer electronics such as digital micromirror
devices that can be found in portable projectors for input modulation and CMOS cameras for
recording output prediction. The online learning algorithm accounts for variations between these
devices and closes the gap between the analytical and experimental realization of the ODU. On the
other hand, as analyzed in detail in Appendix A.4, these devices have the potential of implementing
denoising steps on the order of microsecond latencies while consuming a few Watts only. With the
utilization of high-speed light modulation technologies, million-frames-per-second-level denoising
can be achieved again with Watt level energy consumption, while still utilizing the proposed approach
for predicting noise in provided images [38].
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A Appendix

A.1 Differentiable Modelling of Light Propagation in ODUs

To benefit from parallelized and optimized FFT algorithm and automatic differentiation, the wave
propagation in the proposed system is modeled in PyTorch environment with a Split-Step Fourier
formalism which is derived from Eqn. 2. The diffraction step of the propagation is calculated with a
nonparaxial diffraction kernel [1] in Fourier domain and effects such as reflection or modulation of
the light beam with layer parameters are applied in the spatial domain. Such that the electric field
after propagating a distance ∆z becomes:

E(x, y, z +∆z) = F−1{F{E(x, y, z)R(x, y)}e
−

j∆z(k2
x+k2

y)
k+
√

k2−k2
x−k2

y } (7)

In addition to the parameters of layers Lm
n (x, y) (or simply θlayers), the spatial term R(x, y) can

include the angle changes of the beam. For instance, if the beam is not perpendicular to the SLM or
the mirror, the reflection creates a change in the angle of the beam, ∆α = (αx, αy). Then, on the
SLM plane Rm(x, y) = Lm(x, y)e−jk(x sinαx+y sinαy), where Rm(x, y) is the compound spatial
term, Lm(x, y) is the modulation parameters at layer m, and e−jk(x sinαx+y sinαy) is the operator
that changes the direction of the wave propagation vector. Similarly to the SLM, also the angle of
the mirror determines the propagation direction of the beam, which can be included in the model
as Rmirror (x, y) = e−jk(x sinαx+y sinαy). To calibrate the model of the experiment with the actual
experiment, we define three trainable alignment parameters, zgap (distance between the mirror and
the SLM), ∆αmirror (twice the angle between the mirror and the SLM), and ∆αbeam (twice the
angle between the input beam and the SLM). This group of trainable model parameters is called
θalignment and as its constituents appear in the forward model within differentiable functions, the
auto-differentiation algorithm [2] can calculate their derivatives with respect to the error between the
predicted camera images and the acquired ones. θalignment is initially pre-trained with experiments
placing square shaped π phase differences randomly on the SLM. During the online training procedure,
it is further trained with the data from denoising experiments.

A.2 Details of Scaling Studies

A.2.1 Scaling with Output Image Resolution

Table 1: Properties of Optical, Convolutional U-Net and Fully Connected Denoising Networks, the
same training settings with the main text are used in all experiments with the MNIST digits dataset.

Architecture Parameters FLOPS/Step Energy/Image [J] Images/s
Fully Connected 19.6 M 39.0 M 1.74 41.3
Convolutional U-Net 220 K 3.11 M 5.37 13.9
ODU 3.6 M Not Applicable 0.23 23.0

We investigated the change in the performance of Optical Diffusion when the image resolution
changed while the model size was kept the same. This scaling behavior is also compared with
well-established digital neural network architectures under the same diffusion settings on the MNIST
digits dataset. The energy consumption and speed of the ODU in Appendix Table 1 are indicated
for the simple laboratory implementation where the efficiency is not optimized, while the digital
benchmarks are run on an Nvidia L4 GPU, one of the state-of-the-art devices available today.

Fully Connected Denoising Neural Network. This fully connected architecture consists of 4 fully
connected layers with 1200 neurons, SiLU nonlinearity, and one-dimensional batch normalization
layers following each fully connected layer. The outputs of the first and third layers are summed with
time-embedding representations. Inputs are interpolated to 76× 76 and flattened to vectors of 5776
elements, while the last layer outputs a same-sized vector which is again reshaped to 76× 76 and
scaled to the target resolution. During inference time, this network generated a batch of 64 images
in 1.55 s, on an NVIDIA L4 GPU utilized 100% at 72W. This amounts to 41.3 images/s at 1.74
J/image.

14



Convolutional U-Net Denoising Neural Network. This U-Net architecture [3] has 2 downsampling,
1 bottleneck, and 2 upsampling blocks, featuring a total of 32 convolutional layers with 3× 3 kernels
and SiLU nonlinearity. Every block also includes time embedding and batch normalization. Similarly,
inputs are interpolated to 76× 76 pixels and the same-sized outputs are scaled to the target resolution.
During inference time, this network generated a batch of 64 images in 4.60 s, on an NVIDIA L4 GPU
utilized 100% at 72W. This amounts to 13.9 images/s at 5.37 J/image.

ODU. The ODUs consist of 10 sets of 4 optical layers, each with 300× 300 modulation parameters,
as detailed in Section 4.1. At an image rate of 23 kfps and total energy consumption of 5.3W between
the DMD and the camera, the generation can be operated at 23.0 images/s at 0.23 J/image. In this
scenario, the SLM is assumed to be a passive device due to the very small number of updates.

In addition to the comparison in Figure 4 using the MNIST digits dataset up to a resolution of 28×28,
we studied further the generation quality by training with the AFHQ dataset’s cat class [4] at 40× 40
resolution. The results in Appendix Figure 8 confirm the same successful scaling trend with the ODU
overperforming the digital networks. Even though this relatively more complex problem necessitates
larger and more capable denoising networks, similarly with the smaller scale experiments, Optical
Diffusion obtained the best FID.

Figure 8: Comparison of image generation performances on the AFHQ dataset’s cat class [4] at
40-by-40 resolution.

A.3 Details of the Experimental System and Online Learning

In the ODU, the trainable parameters are the pixel values on the modulation layers and are digitally
adjusted using a computer model, as outlined in Appendix A.1. After optimizing these parameters on
the computer, they are implemented across various layers in the experimental setup, utilizing the SLM.
The beam generated by a continuous-wave dye laser (M-Squared Solstis 2000) at λ = 850 nm reaches
the phase-only SLM (Meadowlark HSP 1920-500-1200) after reflecting from a digital micromirror
device (DMD), which can be used for spatial amplitude modulation. After 4 reflections on the
modulating area SLM, the beam is imaged onto a CMOS camera (FLIR BFS-U3-04S2M-CS). An
11.6mm mirror, placed 17.1mm from the SLM display, captures four reflections. To direct the input
beam toward the SLM, 4F imaging was employed, transferring the beam from the DMD, which
serves as a programmable aperture ensuring the beam’s alignment with the first modulation layer of
the SLM. We assigned 260× 260 pixel patches for the modulation layers on the SLM, which has a
pixel pitch of 9.2µm. After the fourth reflection, the beam is imaged with another 4F imaging system
onto a CMOS camera that records the output intensity as a 130×130 pixel image, where the camera’s
pixel pitch is 3.45µm. The examples of input patterns to the optical system, the corresponding output
intensities at the camera plane and the resulting noise pattern predictions are provided in Appendix
Figure 9. The noise predictions are obtained by the downsampling and normalization of the pixel
values in the output intensity recordings.
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Figure 9: Some input patterns, output intensities at the camera plane, and the corresponding noise
prediction for Fashion MNIST. The intensities on the camera plane are converted to noise predictions
by downsampling and normalization.

Figure 10: Schematic representation and photograph of the experimental system. Denoising error
(MSE) and the decorrelation between the experimental system and the DT are plotted for online and
only experimental backpropagation based trainings of the experimental system.

A.4 Scalability and Efficiency Outlook on Optical Diffusion Models

In this section, we investigate the potential improvement in the proposed method’s performance by
using the same type of commercially available hardware and optimally scaling images onto the DMD
and the camera. The widespread availability of newer optoelectronic technologies would enhance
calculated accuracies further.
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Considering fixed and passive modulation layers, the main energy and time consumption of the
optical system stems from the input optical modulator, DMD and output array detector, CMOS
camera. The DMD unit, Texas Instruments’ DLP9500, can display 23,148 patterns per second at a
resolution of 1920× 1080, with an electrical consumption of 4.5 W at board level, including data
transfer (i.e. looping back from the detector). When representing 8-bit images with the aggregation of
256 binary pixels as a superpixel, this device is capable of displaying 8-bit images with 24 nJ/px. On
the detection side, the CMOS camera (FLIR BFS-U3-04S2M-CS) can obtain 8-bit, 0.4 MP images
at 522 fps rate with 3W power consumption, acquiring images at 14 nJ/px. If we consider 1000
timesteps with 20× 20 pixels images as in the rest of this study, the consumption due to optoelectric
conversion and transfer would amount to 15mJ/image.

Another potential energy expense item could be the light intensity required to provide a sufficient
signal-to-noise ratio (SNR) at the detector. The SNR, especially in the context of a digital device
like a detector or an ADC (analog-to-digital converter), is typically calculated as SNR(dB) =
6.02×n+1.76 where n represents the number of bits. Considering the shot-noise-limited scenario, the
required number of photons can be calculated using Ninput =

SNR2

ηmodulation layers·ηdetector
where ηmodulation layers

accounts for a portion of light scattered out in passive layers and ηdetector accounts for the conversion
efficiency of the detector. Assuming 90% transmittance for each modulation layer and 50% efficiency
for the detector, and using an 850 nm wavelength to calculate the energy of each photon: E = hc

λ ,
the required energy for light is only a few picojoules, which is negligible compared to the energy
consumption of optoelectronic devices.

With the optimal configuration of the ODU, where each pixel on the analytical model is precisely
mapped one-to-one to the optoelectronic devices, the same set of hardware can generate images
with a consumption of approximately 15mJ/image which is significantly lower than the 1.7 J
required by conventional methods (see Appendix A.2.1, making the ODU more than 100 times more
energy-efficient.

A.5 Training of Modulation Layers

As shown in Figure3, we utilized 3 different datasets to demonstrate the proposed approach.

• First 3 digits from MNIST-digits
• First 3 classes from Fashion-MNIST
• 20000 "Clock" images from Quick, Draw! dataset

After being downsampled to 20× 20, the images are used for 250 epochs to train the ODUs, using
Adam optimizer with a learning rate of 0.006, which took ∼ 10 hours on an A100 GPU.

A.6 Definition of Performance Metrics

Mean Squared Error (MSE)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (8)

where yi are the true values and ŷi are the predicted values.

Fréchet Inception Distance (FID)

FID(x, g) = ∥µx − µg∥2 + Tr(Σx +Σg − 2(ΣxΣg)
1
2 ) (9)

where (µx,Σx) and (µg,Σg) are the mean and covariance of the feature vectors of the real and
generated data, respectively.

Kernel Inception Distance (KID)

KID(x, g) =
1

n(n− 1)

∑
i̸=j

k(f(xi), f(xj))+
1

m(m− 1)

∑
i̸=j

k(f(gi), f(gj))−
2

nm

∑
i,j

k(f(xi), f(gj))

(10)
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where k is a polynomial kernel and f is the Inception network function that extracts features.

Inception Score

IS(G) = exp
(
Ex∼pg

[DKL(p(y|x)∥p(y))]
)

(11)

where p(y|x) is the conditional label distribution given generated image x and p(y) is the marginal
distribution over all generated images.

A.7 Code Availability

The source code is available at https://ioguz.github.io/opticaldiffusion/.
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paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 3
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made in the paper.
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much the results can be expected to generalize to other settings.
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Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: See Section 4.2
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The access link is provided in Appendix A.7.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix A.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Figure 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix A.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There is no release of new data or model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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