Under review as a conference paper at ICLR 2026

GROUP VERIFICATION-BASED PoLICY OPTIMIZATION
FOR INTERACTIVE CODING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in reinforcement learning from verifiable rewards (RLVR),
particularly through Group Relative Policy Optimization (GRPO), have signifi-
cantly improved the capabilities of large language models (LLMs) for interactive
coding agents. However, these methods overlook process-verifiable environment
feedback (e.g., code execution failures), leading to inaccurate advantage estima-
tion at each reasoning step and insufficient learning. To address this issue, we
propose Group Verification-based Policy Optimization (GVPO), a novel RL algo-
rithm that introduces an advantage shaping framework integrating both outcome-
verifiable and process-verifiable signals. While outcome-verifiable rewards en-
sure alignment with long-term task objectives, process-verifiable feedback derived
from intermediate execution traces (e.g., syntax errors, runtime exceptions) serves
as corrective shaping terms at the step level. By jointly leveraging these two forms
of verifiability, GVPO achieves more accurate credit assignment, balancing short-
term process guidance with long-term outcome alignment. This unified formula-
tion yields more stable optimization, faster convergence, and stronger generaliza-
tion in complex interactive environments. A 32B-parameter agent trained with
GVPO in the AppWorld environment outperforms OpenAl’s ol agent by 12.6%s
on the more challenging Test-C split and surpasses the strongest 32B RL-trained
state-of-the-art baseline by 3.6%.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated remarkable progress in understanding,
reasoning, and code generation, positioning them as promising candidates for interactive coding
agents (Chen et al.,[2025). A key challenge, however, lies in training these agents to operate reliably
in complex environments where they must engage in multi-turn interactions, plan dynamically, and
execute executable code to achieve user-specified goals. Reinforcement learning from verifiable
rewards (RLVR) has emerged as a powerful paradigm to address this challenge (Guo et al.| 2025)),
as it enables scalable supervision without costly human annotations by leveraging deterministic
signals. Among RLVR approaches, Group Relative Policy Optimization (GRPO) (Shao et al.| 2024)
has proven particularly effective, significantly advancing the performance of LLM-based agents (L1
et al.| 2025 |Yu et al.| [2025)).

Despite these successes, current RLVR methods still exhibit critical limitations. Most notably, they
rely almost exclusively on outcome-verifiable rewards, such as exact answer matching. While such
rewards faithfully capture task-level correctness, they are inherently sparse and delayed, offering
little guidance during the intermediate steps of reasoning. As a result, credit assignment becomes
inaccurate: early-stage errors may still receive positive reinforcement if the final outcome succeeds,
while partially correct reasoning may be discarded if the trajectory ultimately fails. This issue leads
to unstable optimization, slow convergence, and underutilization of valuable environment feedback.

One underexplored direction is the integration of process-verifiable signals—intermediate feedback
derived from execution traces such as syntax errors, runtime exceptions, or partial unit-test results.
Unlike outcome-based signals, process feedback is dense, fine-grained, and deterministic, provid-
ing rich supervision at the token or step level. However, existing RLVR methods (Yu et al., |[2025),
including GRPO and its variants (Liu et al.,2025), do not incorporate such signals into their learning
framework, thereby missing opportunities for more precise credit assignment and error correction.

Under review as a conference paper at ICLR 2026

Advantage Function
Calcu. Traj. Step Unbias. Out. Proc.

Method Clip Aggr.

RLOO (Ahmadian et al.,|2024) Sym. smtm GR v X v v X
GRPO (Shao et al.;|2024) Sym. smtm GR v X v v X
Dr.GRPO (Liu et al.} [2025) Sym. smts GR v X v v X
DAPO (Yu et al.,[2025) Asy. tm GR v X v v X
LOORP (Chen et al.,[2025) Sym. smtm GR v X v v X
GVPO (Ours) Asy. smtm Shaping v v X v v

Table 1: Comparison of RLVR methods in LLMs. Clip: Sym. = symmetric clipping (single € for both
sides); Asy. = asymmetric clipping (separate high/low bounds, with explicit “clip-high” control).
Aggr.: loss aggregation scheme, where smtm = sequence-mean-token-mean, smts = sequence-mean-
token-sum, and fm = token-mean. Calcu. (Calculation): GR = group-relative advantage; Shaping
= outcome-+process advantage shaping. Advantage Function: Traj. = trajectory-level; Step = step-
level. Unbias. = whether the estimator preserves the unbiased (zero-mean) property. Out. = whether
outcome-verifiable rewards are incorporated; Proc. = whether process-verifiable signals are incor-
porated. GVPO is the only method that integrates both outcome- and process-level rewards through
advantage shaping, achieves step-level credit assignment, and employs asymmetric clipping.

In this paper, we introduce Group Verification-based Policy Optimization (GVPO), a novel re-
inforcement learning algorithm that addresses this gap through an advantage shaping frame-
work. GVPO extends group-based policy optimization by integrating both outcome-verifiable and
process-verifiable signals into the advantage function. Specifically, outcome-verifiable rewards en-
sure that learning remains aligned with long-term task objectives, while process-verifiable signals
act as corrective shaping terms that adjust step-level credit assignment in real time. This design
mitigates the risk of reinforcing error-prone reasoning patterns and amplifies partial successes, ef-
fectively balancing short-term guidance with long-term alignment. Tab. [I] presents a comparison of
RLVR methods in LLMs.

We validate GVPO in AppWorld, a challenging benchmark environment where agents must solve
long-horizon, multi-turn tasks spanning multiple applications and APIs. Our experiments show that
a 32B-parameter agent trained with GVPO outperforms OpenAl’s ol agent by 12.6% on the
difficult Test-C split and surpasses the strongest 32B RL-trained state-of-the-art baseline by 3.6%.
These results establish GVPO as a new milestone for RLVR-based training of interactive coding
agents. In summary, this work makes the following contributions:

We identify the limitations of current RLVR approaches that rely solely on outcome-verifiable re-
wards and highlight the importance of integrating process-verifiable signals for precise credit as-
signment.

We propose GVPO, the RL algorithm that unifies outcome-verifiable and process-verifiable signals
through an advantage shaping framework.

We demonstrate through extensive experiments in AppWorld that GVPO yields substantial im-
provements in stability, convergence, and overall performance, outperforming both open-source
and closed-source baselines.

2 PRELIMINARY

2.1 GROUP RELATIVE PoLICY OPTIMIZATION (GRPO)

GRPO estimates the advantage in a group-relative manner. We denote a user request as a natural lan-
guage instruction ¢. The behavior policy 7g,,, samples a group of G individual responses {7;}< ;.
The advantage of the i-th response is then computed by normalizing its group-level reward within
the sampled set:

R; — mean({Ri}ZG:l)
Std({Ri}iGzl)

Ay =

Under review as a conference paper at ICLR 2026

Note that for a response 7;, the computation of /1“ is independent of ¢; that is, all timesteps ¢ share
the same advantage value. GRPO then optimizes a clipped objective:

‘7'1/|

G
Jarpo(0)= % Z F1| Z {min {ai’t(ﬁ)fli’h clip (a;+(0),1 —¢, 1 +¢) Alt} } ,
i=1 """t =1

70 (T: T
a;,t(0) = o{Tir | 9,7 <t) ;
TOo1a (Ti,t ‘ q, 7_i,<t)
where € is a hyperparameter. In this work, we drop the KL term; beyond reducing the computational

and memory cost of maintaining 7..¢, this choice is also supported by recent evidence that it can
enhance R1-Zero—style training (Liu et al., 2025).

2.2 INTERACTIVE CODING AGENTS

Interactive Coding Agents (ICA) represent a new paradigm of intelligent agents that accomplish
tasks through iterative interaction with external APIs by executing code snippets (e.g., Python).
Similar to ReAct (Yao et al.,|2023)), ICA decomposes the process into two components: reasoning
and action. However, unlike ReAct where actions are natural language commands, ICA employs
executable code as actions, making it more suitable for tool-rich environments (Fig. [3).

Formally, let 7y denote a language model, let I be a code interpreter that executes code written by
my to realize tool calls, and let ¢ be an input query. Let 7 denote the -th sampled trajectory; for
notational simplicity we suppress the subscript i. We construct the partial reasoning trajectory at
step k as|'}

T[k] = T1,C1,01," , Tk, Ck, Ok,
where r; denotes natural language reasoning, c¢; denotes generated code, and o; is the execution
result of ¢;. The iterative generation process for trajectory 7 follows:

(riy cx) =mo(- | q® Tk —1]), ox =1I(ck), 7[k]=7k—=1]@®rr®ck D ok.

Here, @ indicates sequence concatenation. This cycle continues until the model produces a final
answer or the maximum number of reasoning steps K ,ax i reached, with each step informed by
previous code-execution results.

Next, we clarify some notation to facilitate the subsequent exposition.

Definition 1 (Index sets over a trajectory). Given a trajectory 7;, we defineZ, = { 1, ..., |7;| }. For
each j € 1;, let T; j denote the j-th token in trajectory T;. We partition I; into two disjoint subsets:

I VIl =1;, IFNIP =0,

where IZG collects the indices of generation tokens (including both reasoning and code tokens), and
Iio collects the indices of observation tokens (execution feedback returned by the interpreter). In
addition, we introduce two index sets:

Ifucc U Iifail _ IzGa Isucc N Ifail _ @

The set T3¢ collects the indices of reasoning and code tokens whose corresponding step execution
succeeded (no error message), while Ilfa“ collects those whose execution failed (with error mes-
sages). Observation indices Iio are not included in this split. Thus, every reasoning/code token in
the trajectory belongs either to L7%°° or to Iifaﬂ, but not both.

3 APPROACH

In this section, we first present the proposed algorithm (Sec. [3.1), followed by a description of the
outcome-based reward functions (Sec. and the process-verifiable functions (Sec. within the
AppWorld environment. An overview of GVPO is illustrated in Fig. [T]

"We distinguish between fimestep t, which denotes the ¢-th generated token (token-level granularity), and
reasoning step k, which denotes the k-th reasoning cycle in ICA, consisting of reasoning, code generation, and
execution (7, i, Ok).

Under review as a conference paper at ICLR 2026

OBOROR

Stepl Env. Step2 Env. Step3 Env.

ase © ses O sms O -

see @ see Q sme @ -

sss © smm O sem O -

Figure 1: Overview of the proposed GVPO. For each question ¢, multiple trajectories are sampled
to interact with the environment and yield outcome-based rewards R;. Outcome-verifiable advan-

tages /Ali’t are derived from these rewards, while process-verifiable feedback B; ; captures step-level
successes and failures. A shaping function f(-) integrates both signals to produce the final advan-
tages A, ;, enabling outcome alignment with step-level correction.

3.1 GROUP VERIFICATION-BASED POLICY OPTIMIZATION (GVPO)

For each question g, GVPO samples a group of outputs {7;}%_,, and optimizes the policy via the
following objective:

|7i

G
1 1 . .
jGVPO(G): 6 E m E {mln [ai,t(9)Ai,t,ChP (ai,t(o)a 1 —é€ow, 1+ €high) Ai,t]}a (1
i=1 " =1

We(Ti,t | q, Ti,<t)

a; +(0) = .
l’t() T001a (Ti,t | Q7Ti,<t)

Loss Aggregation. The objective in Eq. [T] aggregates learning signals hierarchically across both
the group and sequence dimensions. GVPO adopts the sequence-mean-token-mean (smtm) scheme:
within each trajectory, token-level contributions are first averaged to obtain a token mean, and these
are then averaged across sequences to yield the final objective.

For comparison, GRPO also employs smtm, whereas Dr.GRPO (Liu et al.|[2025) uses the sequence-
mean-token-sum (smts) scheme, in which token contributions are summed within each sequence
before averaging across sequences, thereby amplifying the influence of longer trajectories. An al-
ternative variant, smtm, averages at the sequence level first and then distributes uniformly to tokens,
yielding a more length-invariant signal. By contrast, DAPO (Yu et al.| 2025) applies a simpler
token-mean (tm) strategy, directly averaging token-level signals without additional sequence-level
aggregation.

Advantage Shaping. We introduce the notion of an advantage shaping function, which integrates
both outcome-verifiable and process-verifiable signals into the advantage estimation:

Ay = f(Ai,ta B), Avt = R; —mean({R;}).

where /L-yt is the outcome-verifiable advantage, defined relative to group-based rewards without
std normalization terms (Liu et al., 2025), and B, ; denotes process-level feedback derived from
execution signals (e.g., compilation status, runtime exceptions, or partial unit-test outcomes). The
shaping function f(-) provides a general mechanism to modulate Ai,t using deterministic process
feedback, thereby calibrating the policy’s credit assignment. It is important to note that after shaping,
A no longer preserves the unbiased property (i.e., E[A] = 0 no longer holds).

Intuition. Outcome-verifiable rewards ensure alignment with final task objectives, while process-
verifiable signals serve as corrective shaping terms that guide learning at a finer granularity. When
execution feedback indicates early-stage failures, f(-) introduces negative corrections to reduce the
likelihood of reinforcing error-prone patterns. Conversely, partial successes yield positive correc-
tions, amplifying behaviors that show promising progress before final outcomes are observed.

By shaping the advantage with both outcome-level and process-level information, the policy benefits
from more accurate credit assignment across trajectories. This unified formulation ensures that
learning is not only guided by final correctness but also by intermediate execution quality, leading to

Under review as a conference paper at ICLR 2026

more stable optimization, faster convergence, and stronger performance in complex problem-solving
environments.

3.2 OUTCOME-VERIFIABLE REWARD FUNCTIONS

In AppWorld, each task is associated with a set of unit tests that check whether the agent’s generated
code correctly produces the desired state changes without introducing unintended side effects. We
leverage these unit tests to construct an outcome-based reward signal (Chen et al., 2025).

Formally, for a trajectory 7, produced in response to query g, let {u; };‘il denote the M unit tests

associated with the task. Each unit test u; returns a binary result pass(u;, 7;) € {0, 1}, indicating
whether the output passes the test. The outcome-based reward is defined as the fraction of passed

tests:
| M
R; = i Z pass(u;, 7;), 2
Jj=1
where R; € [0,1]. This scalar reward provides a direct measure of the final correctness of the
generated output. It is sparse in nature—nonzero signals are only available once execution has

completed—but it captures the ultimate task objective faithfully.

3.3 PROCESS-VERIFIABLE FUNCTIONS

While outcome-based rewards provide only sparse signals at the end of execution, process-verifiable
functions deliver dense step-level feedback by differentiating between successful and failed reason-
ing/code tokens within a trajectory 7;. Formally, let Z5 and Zf!! denote the index sets corre-
sponding to successful and failed reasoning/code tokens, respectively. Based on these index sets, we
define a process-verifiable bonus B; ; that adaptively adjusts the step-level advantage A, ;:

0 t € T3uee, Ay t € I3uee,

—b te Il A A, =0, Ay —b te IR A A, =0,
B = . . . = A= . . N

b-Ajy teIP A A <O, (1+0b)-A;y teIf A A, <O,

—fli,t otherwise. 0 otherwise.

Here, b > 0 is a fixed penalty coefficient (set to b = 0.2 in our experiments). The adjustment
mechanism can be interpreted as follows:

Successful tokens (those associated with correct reasoning or code execution) retain their outcome-

based advantage Ai,t unchanged.
Failed tokens are penalized in a manner sensitive to the trajectory’s outcome advantage:

— When /1” = 0, a fixed penalty —b is imposed.

— When Ai,t < 0, the negative outcome advantage is amplified proportionally.
— In all other cases, the advantage is set to zero.

Observation tokens represent environment feedback and are excluded from updates, hence set to
zero. (L1 et al., [2025]).

When the advantage is negative, we apply a multiplicative adjustment to penalize failed trajectories,
while also exploring an additive variant in ablations. This yields more robust credit assignment
under noisy or misleading signals.

Scalability. An important advantage of the process-verifiable paradigm is that it is inherently rule-
based and does not require training an additional reward model. This property makes it highly scal-
able: whenever the environment provides deterministic feedback signals, such as compilation status,
runtime errors, constraint checks, or state-transition validations, process-verifiable rewards can be
applied directly. While we instantiate this idea in the coding domain (AppWorld), the paradigm is
not limited to program synthesis. Any environment capable of emitting reliable process-level feed-
back can naturally support this form of supervision, enabling efficient scaling across diverse tasks
without costly human annotation or reward-model training.

Under review as a conference paper at ICLR 2026

Test-N Test-C

Para. Std. Aggr. Out. Proc. TGC SGC TGC SGC
Prompting with LLM
GPT-40 - - - - - 488 321 302 130
GPT-4 Trb - - - - - 26.8 125 175 5.8
OpenAl ol - - - - - 619 41.1 367 194
LlaMA3 70B - - - - 244 179 7.0 43
Qwen2.5 32B - - - - 345 16.1 189 7.9

Fine-tuning with RL

GRPOyq 32B v smm X 613 429 388 194
GRPO 2B v smm X 548 304 355 158
GSPO 2B v/ smm X 500 339 416 20.1
DAPO 2B/ m v X 518 286 281 122
DrGRPO 32B X smts v X 637 410 430 216
RLOOyq 32B X smm X 601 339 396 158
LOOP 32B X smtm X 713 536 457 26.6
GVPO 2B X smtm v/ 714 536 493 295

Table 2: Test performance is reported on both the normal (Test-N) and challenge (Test-C) splits
of AppWorld, using TGC (Task Goal Completion) and SGC (Scenario Goal Completion). Para.:
model parameter scale. Std.: whether std normalization is applied in advantage computation. Aggr.:
loss aggregation scheme, where smtm = sequence-mean-token-mean, smts = sequence-mean-token-
sum, and tm = token-mean. Out.: use of outcome-verifiable signals. Proc.: use of process-verifiable
signals. GRPOy,q denotes GRPO trained with KL regularization. In DAPO, we omit dynamic
sampling and overlong reward shaping. The best results are shown in bold, and the second-best
results are underlined.

4 EXPERIMENTS

Dataset. We evaluate on AppWorld (Trivedi et all [2024), a benchmark for interactive coding
agents that requires multi-turn planning and executable code generation in a stateful Python envi-
ronment. It integrates nine simulated consumer apps (e.g., email, payments, shopping, file system),
exposing 457 APIs across realistic digital activities. The benchmark defines 750 tasks from 250
scenarios, split into train (35/105), dev (20/60), test-normal (56/168), and test-challenge (139/417),
with the latter involving unseen apps and more complex planning.

Evaluation. We report results using two key metrics: Task Goal Completion (TGC), the percent-
age of tasks in which the agent passes all evaluation tests, and Scenario Goal Completion (SGC),
the percentage of scenarios in which the agent succeeds on every associated task.

Implementation. We adopt Qwen2.5-32B-Instruct as the base model and train it with the
veRL (Sheng et al [2024) framework, using vLLM (Kwon et al.l 2023) for efficient batched in-
ference. Training is restricted to difficulty-1/2 tasks in AppWorld (72 samples, 24 scenarios) with 8
rollouts per sample, a maximum of 40 interaction turns for training and 50 for evaluation, tempera-
ture 1.0 during training (exploration) and O at evaluation (deterministic execution). More details can
be found in Appendix [A.T]

Baselines. We compare GVPO against both zero-shot LLMs (GPT-40, GPT-4 Trb, Llama-3 70B,
OpenAl o1, and Qwen2.5-32B-Instruct) and RL-trained models (RLOO, GRPO, GSPO, Dr.GRPO,
and LOOP), all optimized with unit-test—based rewards R; € [0, 1]. We select the checkpoint achiev-
ing the highest TGC score on the development set. Detailed descriptions of the baselines are pro-

vided in Appendix

Under review as a conference paper at ICLR 2026

. Dev Test-N Test-C
Setting

TGC SGC TGC SGC TGC SGC

GVPO - 729 563 714 536 493 295
Aoor m 688 375 583 357 356 187
881 smts 68.8 438 654 429 462 252
Clip Sym. 646 375 595 375 407 20.1
Std. v 708 500 625 429 410 237
Other mbs + gs 688 625 643 429 434 223

additive shaping only 68.8 50.0 59.5 339 425 23.0

Table 3: Ablation study of GVPO. Performance under different design choices is reported on the
AppWorld Dev, Test-N, and Test-C splits. Variants include alternative loss aggregation schemes
(tm=token-mean, smts=sequence-mean-token-sum), symmetric vs. asymmetric clipping, std nor-
malization (Std.), and additional settings such as mismatched micro-batch/group sizes (mbs # gs),

and additive shaping only (i.e., A; s = /Lt —b, te Iifail A Alt < 0).

4.1 RESULT

Main Results. Table 2| compares zero-shot prompting models and RL fine-tuned methods on the
AppWorld benchmark. Among the zero-shot models, OpenAl ol achieves the highest performance
(61.9 TGC/41.1 SGC on Test-N), but still struggles on the more challenging Test-C split. RL fine-
tuning consistently improves performance over prompting. In particular, our method, GVPO, sets
a new state-of-the-art across both splits, achieving 71.4 TGC / 53.6 SGC on Test-N and 49.3 TGC
/29.5 SGC on Test-C. Notably, GVPO surpasses the previously strongest 32B RL baseline, LOOP,
by 3.6 points TGC and 2.9 points SGC on Test-C, demonstrating the effectiveness of incorporating
process-verifiable signals for credit assignment. While LOOP performs competitively on Test-N,
it falls short on Test-C, highlighting GVPQ’s superior generalization to unseen apps and longer
multi-step planning tasks. More analyses of the validation set results can be found in Appendix [A.3]

Entropy Trajectories. Figure[2]compares the

entropy trajectories of GRPO, DAPO, GSPO,

and GVPO during training. GSPO shows the 0375
fastest entropy decay, collapsing to a near- 0.350
deterministic policy, which indicates prema-
ture convergence and insufficient exploration.
GRPO and DAPO both maintain moderate
entropy levels, but their trajectories still de- 0275
cline steadily, suggesting exploration dimin-
ishes over time and leading to potential subop-

0.325

0.300

Entropy

0.250

timal local minima. In contrast, GVPO consis- 0.225
tently preserves higher entropy and avoids col- o0l
lapse, reflecting its ability to sustain exploration Training Steps

throughout training. This stability stems from
its integration of process-verifiable shaping and
asymmetric clipping, which penalize incorrect
trajectories without discouraging diversity. As
a result, GVPO achieves a better balance be-
tween exploration and exploitation than GRPO, DAPO, and GSPO, contributing to its superior ro-
bustness and final performance.

Figure 2: Entropy trajectories of GRPO, DAPO,
GSPO, and GVPO across training steps.

Ablation Result. Tab. 3| presents the ablation results of GVPO across the AppWorld dev, Test-
N, and Test-C splits. The full GVPO consistently achieves the strongest performance, confirming
the effectiveness of its combined design. Alternative aggregation schemes (token-mean, sequence-
mean-token-sum) lead to noticeable drops in Test-C, suggesting that GVPO’s sequence-mean-token-
mean formulation provides a better trade-off between stability and credit assignment. Symmetric

Under review as a conference paper at ICLR 2026

Task: Label all email threads in my Gmail inbox from notifications@<app>.com with the label of the respective
app. Ignore spam and archived ones.

GRPO Dr.GRPO GVPO
@‘ Read apps & api descriptions a Check account & password a Read apps & api descriptions
0 Gmail login with fake password ° Gmail login with wrong api @ Check account & password
Check account & password @‘ Read apps & api descriptions Ia Read apps & api descriptions

° Gmail login with wrong para. @s Read api docs ° Gmail login
@‘ Read api docs ° Gmail login @‘ Read api docs
° Gmail login @ Read api docs o Check email

@ Read api docs ° Check email Ii Read api docs

o Label email

Figure 3: Case study on the Gmail labeling task. Compared with GRPO and Dr.GRPO, the GVPO-
trained agent exhibits a more cautious strategy by extensively consulting API descriptions and doc-
umentation before executing concrete actions.

clipping underperforms, validating the benefit of the asymmetric “clip-higher” strategy for main-
taining exploration. Similarly, applying std normalization (Std.) degrades performance, suggesting
that removing variance scaling avoids optimization bias and better preserves the reward signal.

For mismatched micro-batch/group sizes (mbs=38, gs=6), we observe a larger performance drop here
compared to prior math-reasoning tasks, likely because AppWorld tasks involve diverse API calls
and state transitions where imbalance in batch-wise normalization amplifies variance in gradient
estimates, making training less stable.

In GVPO, for failed tokens with negative outcome advantages we apply multiplicative shaping,i.e.,
Aiy = (1+b)-A; 4 fort € TN A, , < 0. In the additive-only variant, this scaling is replaced by a
constant penalty, i.e., A; ; = A, ; — b for the same index set. This substitution weakens the balance

between outcome- and process-level signals and leads to poorer generalization, underscoring that
the choice of advantage shaping is critical; we leave a deeper investigation to future work.

4.2 ANALYSIS

Avg. interaction per task Exec. failures per step

Agent Behaviors. Figure [] summarizes 010

21.30 0.08
18.50 | 00%

the behavioral characteristics of agents
trained with GRPO, Dr.GRPO, and GVPO
across four measures: (i) average number
of interactions per task, (ii) execution fail-
ure PTObablhty per Step’ (111) frequency of GRPO Dr.GRPO GVPO) GRPO Dr.GRPO GVPO
show_api_docs calls, and (iv) frequency 'show_api_doc’ 'show_api_descriptions'
of show_api_descriptions calls. The freq. per step freq. per step

results reveal clear behavioral differences
among the methods. GVPO achieves the
lowest failure probability, while simulta-
neously exhibiting the highest frequency
of documentation queries. In fact, nearly
half of the steps taken by GVPO agents
involve consulting either show_api.docs

20 17.00

GRPO Dr.GRPO GVPO GRPO Dr.GRPO GVPO

. C . Figure 4: Aggregate changes in agent behavior
or show.apl.descriptions, suggesting between the GRPO, Dr.GRPO and GVPO, aver-
that the additional penalty on invalid steps P ’

. aged over three i.i.d. rollouts per dev task.
encourages the agent to make more cautious

Under review as a conference paper at ICLR 2026

decisions by actively seeking external guidance. Importantly, this cautious behavior does not incur
excessive interaction overhead: GVPO requires slightly more steps than Dr.GRPO but fewer than
GRPO, which often accumulates longer trajectories due to repeated corrections of earlier mistakes.
Overall, these results indicate that GVPO effectively reduces execution errors through more
deliberate decision-making, while still preserving sufficient interaction diversity and efficiency.

Case Study. Building on these quantitative findings, we next provide a qualitative case study in
Figure |3| In contrast to GRPO and Dr.GRPO, which often make invalid attempts such as logging
into Gmail with incorrect parameters or invoking the wrong API, the GVPO adopts a markedly
more cautious strategy. Nearly half of its tool invocations are devoted to querying documentation
before committing to concrete actions (e.g., Gmail login, reading, or labeling emails). This be-
havior directly aligns with the trends observed in Figure 4] offering complementary evidence that
GVPO encourages agents to act more carefully and reliably by consulting external resources prior
to execution.

5 RELATED WORK

RLVR. Since DeepSeek-R1 (Guo et al} [2025), research on the RLVR paradigm has accelerated
significantly (Wen et al.| 2025} Xie et al., | 2025)). This line of work covers diverse dimensions such as
training data curation (Wang et al, [2024), objective formulation (Liu et al., 2025)), hyperparameter
optimization (Yu et al., 2025)), base model selection (Hu et al., 2025)), and empirical insights (Yue
et al.,[2025)). Verified rewards in prior work are typically derived from deterministic outcome checks
(e.g., exact match in math (Cobbe et al.,2021)) , unit tests in coding (Austin et al.| |2021))), rule-based
verification with tools [Li et al.| (2025); |Qian et al.| (2025)), LLM-based verifiers (Wen et al.| 2025},
Chen et al.| 2024)), logic-based verifiers (Wang et al.| 2025) or domain-specific reward models (Su
et al} |2025). The related work GiGPO (Feng et al., 2025)) employs an additive shaping function to
integrate step-relative advantages but does not leverage intermediate process feedback. In contrast,
we introduce a more general advantage shaping framework that unifies both additive and multiplica-
tive formulations, and validate its effectiveness on the more challenging AppWorld benchmark.

RL for LLM agents. A complementary line of research investigates fool-use learning (Yao et al.,
2023)), where agents are trained to interact with external environments through APIs (Qin et al.,
2024])), code execution (Li et al., 2025), or multi-turn reasoning (Wei et al., 2025; | Xi et al., 2025;
Da et al, 2025; Mai et al 2025). The applications span text-based games (Narasimhan et al.,
2015} Yao et al.l |2020; (Carta et al., |2023), web navigation and shopping (Yao et al., [2022), mobile
device interaction (Bai et al., 2024), and embodied tasks (Zhai et al., [2024), yet our work focuses
on AppWorld (Trivedi et al.,[2024), a significantly more challenging benchmark that requires long-
horizon, multi-app interactions. The most related effort is LOOP (Chen et al., 2025), but unlike
LOOP, GVPO incorporates signals from intermediate execute feedback, enabling more accurate
credit assignment and improved robustness.

6 CONCLUSION

We propose Group Verification-based Policy Optimization (GVPO), a reinforcement learning algo-
rithm that unifies outcome-verifiable and process-verifiable signals through an advantage shaping
framework. By leveraging intermediate execution feedback alongside final task outcomes, GVPO
achieves more accurate credit assignment, resulting in greater training stability, accelerated conver-
gence, and improved generalization in complex interactive environments. Empirical results on the
challenging AppWorld benchmark demonstrate that GVPO not only surpasses strong RL baselines
but also closes the gap with much larger proprietary systems, highlighting its potential as a scalable
approach for training stateful, multi-turn LLM interactive agents.

Limitations. GVPO currently relies on deterministic environments with well-defined process sig-
nals, and its effectiveness on tasks with ambiguous or noisy feedback remains underexplored. Ex-
tending GVPO to broader domains and integrating it with richer supervision sources are important
directions for future work.

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learn-
ing from human feedback in llms. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 12248-12267, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. Advances in
Neural Information Processing Systems, 37:12461-12495, 2024.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning 2023, volume 202, 2023.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou,
and Benyou Wang. Huatuogpt-o1, towards medical complex reasoning with llms. arXiv preprint
arXiv:2412.18925, 2024.

Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger,
Vladlen Koltun, and Philipp Kridhenbiihl. Reinforcement learning for long-horizon interactive
llm agents. arXiv preprint arXiv:2502.01600, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jeff Da, Clinton Wang, Xiang Deng, Yuntao Ma, Nikhil Barhate, and Sean Hendryx. Agent-rlvr:
Training software engineering agents via guidance and environment rewards. arXiv preprint
arXiv:2506.11425, 2025.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611-626, 2023.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Xinji Mai, Haotian Xu, Weinong Wang, Jian Hu, Yingying Zhang, Wenqiang Zhang, et al. Agent 1l
scaling law: Agent rl with spontaneous code execution for mathematical problem solving. arXiv
preprint arXiv:2505.07773, 2025.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-based
games using deep reinforcement learning. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1-11, 2015.

10

Under review as a conference paper at ICLR 2026

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tiir, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958,
2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. In ICLR, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. arXiv
preprint arXiv:2503.23829, 2025.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 16022—
16076, 2024.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426-9439, 2024.

Xinyu Wang, Changzhi Sun, Lian Cheng, Yuanbin Wu, Dell Zhang, Xiaoling Wang, and Xuelong
Li. Logic-regularized verifier elicits reasoning from 1lms. In Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 32617—
32630, 2025.

Yuan Wei, Xiaohan Shan, Ran Miao, and Jianmin Li. Agent?: An agent-generates-agent framework
for reinforcement learning automation. arXiv preprint arXiv:2509.13368, 2025.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
incentivizes correct reasoning in base llms. arXiv preprint arXiv:2506.14245, 2025.

Zhiheng Xi, Jixuan Huang, Chenyang Liao, Baodai Huang, Honglin Guo, Jiaqi Liu, Rui Zheng, Jun-
jie Ye, Jiazheng Zhang, Wenxiang Chen, et al. Agentgym-1l: Training llm agents for long-horizon
decision making through multi-turn reinforcement learning. arXiv preprint arXiv:2509.08755,
2025.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqgian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing Ilm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep calm and explore:
Language models for action generation in text-based games. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 8736-8754, 2020.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744-20757, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

11

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via
reinforcement learning. Advances in neural information processing systems, 37:110935-110971,
2024.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 HYPERPARAMETERS AND TRAINING SETUP

Setting Value

Base setup

Base model Qwen2.5-32B-Instruct
Framework veRL + FSDP2 + vLLM (batched inference)
Training tasks AppWorld difficulty-1/2 (72 samples, 24 scenarios)
Rollouts per sample 8

Max turns (train / eval) 40/ 50

Temperature (train / eval) 1.0/0.0

GVPO hyperparameters

Group size G 8

Clipping range (€Ejow, €nigh) (0.2,0.28)

Learning rate 1 x 10~5(constant)

Batch size 4x8

Max sequence length per turn 512 tokens

Entropy coefficient 0.0

Advantage shaping penalty b 0.2

Optimizer AdamW

Training steps 144

Mirco batchsize 8

Table 4: Hyperparameters and training setup for GVPO experiments in AppWorld.

Training setup. We conduct all experiments on a single machine equipped with 8 NVIDIA H100
GPUs. Our training framework is based on ver1 with FSDP2 for efficient distributed training. For
data generation, we employ vLLM to perform rollouts. After collecting trajectories, we recompute
the per-token log-probabilities under the generating policy, rather than using the values directly
reported by vLLM.

Agent setup. All agents are prompted in a ReAct-style format, which includes one in-context
example of a successful task execution. The agent receives as input the results of code execution
(e.g., API call outputs or exception traces), together with the original task instruction. At each turn,
the agent is allowed to generate up to 512 tokens in total. This limit covers both reasoning tokens
(chain-of-thought) and code. If an API response exceeds 3K tokens, it is truncated, and the agent is
provided with a short note indicating that truncation has occurred.

AppWorld setup. During training, we launch 32 independent AppWorld backend services in ad-
vance. The training framework communicates with these AppWorld backends via a Redis message
queue, which serves as the central communication hub. Each backend service is bound to a unique
port, and port numbers are used to associate each AppWorld instance with its corresponding tra-
jectory. This design ensures that multiple trajectories can be executed in parallel while avoiding
interference across different AppWorld backends.

Training Hyperparameters. We use a constant learning rate of 1 x 10~° and clip the gradient
norm to 1 in all experiments. Each training sample produces 8 rollouts with temperature 1.0. To
accelerate training, we apply early stopping to rollout collection: rollout generation is terminated
once at least 6 rollouts have been collected for each task and 90% of the total rollouts have been
collected. Concretely, we consider two stopping conditions. First, within each group of 8 rollouts
for a given task, rollout collection ends once 6 rollouts have finished. Second, across the 32 sampled
tasks, rollout collection terminates once 30 tasks have completed. Early stopping is only applied
after the model has generated at least 30 steps of rollout, ensuring sufficient exploration before
termination. We allow up to 40 interactions between the agent and the environment during training
and up to 50 for evaluation. Any episode that does not complete within this interaction budget
is considered a failure. If the sequence reaches the model’s context window limit, the rollout is
terminated (Tab. [)).

13

Under review as a conference paper at ICLR 2026

Dev

Para. Std. Aggr. Out. Proc. TGC SGC
Fine-tuning with RL
GRPO,,q 32B v smtm v X 64.6 375
GRPO 32B v smtm v X 62.5 50.0
GSPO 32B v smtm v X 62.5 43.75
DAPO 32B v tm v X 62.5 375
Dr.GRPO 32B X smts v X 66.7 43.75
RLOOy, i 32B X smtm v X 64.6 37.5
GVPO 32B X smtm v v 72.92 56.25

Table 5: Comparison of RL fine-tuning methods on the AppWorld Dev set. Para.: model parameter
scale. Std.: whether std normalization is applied in advantage computation. Aggr.: loss aggregation
scheme, where smtm = sequence-mean-token-mean, smts = sequence-mean-token-sum, and tm =
token-mean. Out.: use of outcome-verifiable signals. Proc.: use of process-verifiable signals.
GRPO,,, i denotes GRPO trained with KL regularization. The best results are shown in bold, and
the second-best results are underlined.

A.2 BASELINES

This section provides a detailed overview of the reinforcement learning (RL) algorithms evaluated
in our experiments. Each method represents a different strategy for variance reduction, credit as-
signment, or stability enhancement in policy gradient optimization.

. RLOO (Reinforce Leave-One-Out). Builds upon the REINFORCE estimator by introducing a
leave-one-out baseline within each rollout group. This design reduces variance in advantage estima-
tion compared to vanilla REINFORCE, leading to more stable updates without requiring additional
learned value functions.

. GRPO (Group Relative Policy Optimization). Computes relative advantages by normalizing re-
wards within a rollout group, thereby stabilizing training against reward scale fluctuations. GRPO
has become a standard RLVR approach for LLM fine-tuning. Variants may additionally incorporate
KL regularization with respect to the base model to control divergence.

. GSPO (Group Sequence Policy Optimization). Moves from token-level to sequence-level opti-
mization by defining the importance ratio at the trajectory level. It applies sequence-level clipping,
which simplifies optimization and reduces variance. This approach has demonstrated strong perfor-
mance and efficiency, particularly in recent Qwen3 models.

. Dr.GRPO (GRPO Done Right). Addresses biases in GRPO by (i) removing the normalization
with group standard deviation during advantage computation, and (ii) modifying the loss aggrega-
tion scheme to smts. These changes improve token efficiency and reduce optimization bias, while
preserving the reasoning capability of the model.

. DAPO (Decoupled Clip and Dynamic sAmpling Policy Optimization). Combines clip-higher
for exploration and a token-level loss for fine-grained credit assignment; we omit dynamic sampling
and overlong reward shaping.

. LOOP (Leave-One-Out PPO). Extends RLOO by adopting a PPO-style optimization procedure,
applying multiple epochs of clipped updates per batch. This combination improves exploration and
enhances policy robustness in long-horizon interactive tasks. As the original implementation was
not open-sourced, we rely on the reported results from the publication, which are available only for
the Test set.

A.3 VALIDATION RESULT

Tab. [5] reports the validation set results from the main experiment, highlighting the performance
of RL fine-tuning methods. On the Dev split, GVPO achieves the strongest performance across
both metrics, with 72.9 TGC and 56.3 SGC, substantially outperforming all other RL fine-tuning
baselines. This mirrors the Test results, where GVPO also consistently leads. Among baselines,
Dr.GRPO achieves competitive TGC (66.7) and moderately strong SGC (43.8), aligning with its
relatively strong Test-N and Test-C performance. By contrast, standard GRPO performs reasonably

14

Under review as a conference paper at ICLR 2026

in TGC but lags in SGC (50.0), confirming that outcome-only optimization struggles to capture
scenario-level success. Similarly, GSPO and DAPO exhibit weaker results, reflecting the limita-
tions of their simpler shaping or aggregation strategies. Overall, the Dev results reinforce the trends
observed in Test evaluations: incorporating process-verifiable signals via GVPO leads to clear im-
provements in both task completion and scenario consistency. This suggests that GVPO not only
generalizes better in held-out tests but also provides a more stable and effective training signal al-
ready visible during development.

A.4 EXAMPLE OF APPWORLD

Fig. [j] illustrates a representative trajectory from the AppWorld Spotify task, showcasing how the
agent interacts with APIs in a multi-step reasoning process. The agent first queries the supervisor’s
profile and stored account passwords, then uses this information to successfully authenticate with the
Spotify API and obtain an access token. With the valid token, it proceeds to call the recommendation
API to retrieve music suggestions. This example highlights how the agent effectively integrates
intermediate signals, such as execution success, to guide subsequent actions, ensuring correctness
and reliability in a complex, stateful environment.

A.5 LLM USAGE

In accordance with the ICLR policy on the use of large language models (LLMs), we report that
LLMs were used exclusively for language polishing and grammar refinement in this paper. LLMs
were not used for designing experiments, conducting analyses, or generating research content. All
research ideas, implementations, and results are the work of the authors.

15

Under review as a conference paper at ICLR 2026

e N
M User Instruction:
@» Name the artist most recommended to me on Spotify.

Okay, let’s find the password to login Spotify.

supervisor_profile = ()
supervisor_passwords = {p["account_name"]:
p["password"] for p in

~
Ok, now we have the profile of supervisor and get the
password, we can login now.

access_token = spotify. (
username=supervisor_profile["email"],
password=supervisor_passwords["spotify"]
)["access_token"]

Next, let’s find the artist recommended to supervisor on
Spotify.

(=)
m recommendations= (access_to

ken=access_token)

Figure 5: Example trajectory from AppWorld’s Spotify task.

16

	Introduction
	Preliminary
	Group Relative Policy Optimization (GRPO)
	Interactive Coding Agents

	Approach
	Group Verification-based Policy Optimization (GVPO)
	Outcome-Verifiable Reward Functions
	Process-Verifiable Functions

	Experiments
	Result
	Analysis

	Related Work
	Conclusion
	Appendix
	Hyperparameters and Training Setup
	Baselines
	Validation Result
	Example of AppWorld
	LLM Usage

