

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GROUP VERIFICATION-BASED POLICY OPTIMIZATION FOR INTERACTIVE CODING AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advancements in reinforcement learning from verifiable rewards (RLVR), particularly through Group Relative Policy Optimization (GRPO), have significantly improved the capabilities of large language models (LLMs) for interactive coding agents. However, these methods overlook process-verifiable environment feedback (e.g., code execution failures), leading to inaccurate advantage estimation at each reasoning step and insufficient learning. To address this issue, we propose Group Verification-based Policy Optimization (GVPO), a novel RL algorithm that introduces an advantage shaping framework integrating both outcome-verifiable and process-verifiable signals. While outcome-verifiable rewards ensure alignment with long-term task objectives, process-verifiable feedback derived from intermediate execution traces (e.g., syntax errors, runtime exceptions) serves as corrective shaping terms at the step level. By jointly leveraging these two forms of verifiability, GVPO achieves more accurate credit assignment, balancing short-term process guidance with long-term outcome alignment. This unified formulation yields more stable optimization, faster convergence, and stronger generalization in complex interactive environments. A 32B-parameter agent trained with GVPO in the AppWorld environment outperforms OpenAI’s o1 agent by 12.6% on the more challenging Test-C split and surpasses the strongest 32B RL-trained state-of-the-art baseline by 3.6%.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated remarkable progress in understanding, reasoning, and code generation, positioning them as promising candidates for interactive coding agents (Chen et al., 2025). A key challenge, however, lies in training these agents to operate reliably in complex environments where they must engage in multi-turn interactions, plan dynamically, and execute executable code to achieve user-specified goals. Reinforcement learning from verifiable rewards (RLVR) has emerged as a powerful paradigm to address this challenge (Guo et al., 2025), as it enables scalable supervision without costly human annotations by leveraging deterministic signals. Among RLVR approaches, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) has proven particularly effective, significantly advancing the performance of LLM-based agents (Li et al., 2025; Yu et al., 2025).

Despite these successes, current RLVR methods still exhibit critical limitations. Most notably, they rely almost exclusively on **outcome-verifiable rewards**, such as exact answer matching. While such rewards faithfully capture task-level correctness, they are inherently sparse and delayed, offering little guidance during the intermediate steps of reasoning. As a result, *credit assignment* becomes inaccurate: early-stage errors may still receive positive reinforcement if the final outcome succeeds, while partially correct reasoning may be discarded if the trajectory ultimately fails. This issue leads to unstable optimization, slow convergence, and underutilization of valuable environment feedback.

One underexplored direction is the integration of **process-verifiable signals**—intermediate feedback derived from execution traces such as syntax errors, runtime exceptions, or partial unit-test results. Unlike outcome-based signals, process feedback is **dense, fine-grained, and deterministic**, providing rich supervision at the token or step level. However, existing RLVR methods (Yu et al., 2025), including GRPO and its variants (Liu et al., 2025), do not incorporate such signals into their learning framework, thereby missing opportunities for more precise credit assignment and error correction.

054 055 056	Method	Clip	Aggr.	Advantage Function					
				057 058 059 060 061	Calcu.	Traj.	Step	Unbias.	Out.
RLOO (Ahmadian et al., 2024)	Sym.	smtm	GR	✓	✗	✓	✓	✗	
GRPO (Shao et al., 2024)	Sym.	smtm	GR	✓	✗	✓	✓	✗	
Dr.GRPO (Liu et al., 2025)	Sym.	smts	GR	✓	✗	✓	✓	✗	
DAPO (Yu et al., 2025)	Asy.	tm	GR	✓	✗	✓	✓	✗	
LOOP (Chen et al., 2025)	Sym.	smtm	GR	✓	✗	✓	✓	✗	
GVPO (Ours)	Asy.	smtm	Shaping	✓	✓	✗	✓	✓	

Table 1: Comparison of RLVR methods in LLMs. **Clip**: Sym. = symmetric clipping (single ϵ for both sides); Asy. = asymmetric clipping (separate high/low bounds, with explicit “clip-high” control). **Aggr.**: loss aggregation scheme, where smtm = sequence-mean-token-mean, smts = sequence-mean-token-sum, and tm = token-mean. **Calcu.** (Calculation): GR = group-relative advantage; Shaping = outcome+process advantage shaping. Advantage Function: **Traj.** = trajectory-level; **Step** = step-level. **Unbias.** = whether the estimator preserves the unbiased (zero-mean) property. **Out.** = whether outcome-verifiable rewards are incorporated; **Proc.** = whether process-verifiable signals are incorporated. GVPO is the only method that integrates both outcome- and process-level rewards through advantage shaping, achieves step-level credit assignment, and employs asymmetric clipping.

In this paper, we introduce Group Verification-based Policy Optimization (GVPO), a novel reinforcement learning algorithm that addresses this gap through an **advantage shaping framework**. GVPO extends group-based policy optimization by integrating both outcome-verifiable and process-verifiable signals into the advantage function. Specifically, outcome-verifiable rewards ensure that learning remains aligned with long-term task objectives, while process-verifiable signals act as corrective shaping terms that adjust step-level credit assignment in real time. This design mitigates the risk of reinforcing error-prone reasoning patterns and amplifies partial successes, effectively balancing short-term guidance with long-term alignment. Tab. 1 presents a comparison of RLVR methods in LLMs.

We validate GVPO in AppWorld, a challenging benchmark environment where agents must solve long-horizon, multi-turn tasks spanning multiple applications and APIs. Our experiments show that a **32B-parameter agent trained with GVPO** outperforms OpenAI’s o1 agent by 12.6% on the difficult Test-C split and surpasses the strongest 32B RL-trained state-of-the-art baseline by 3.6%. These results establish GVPO as a new milestone for RLVR-based training of interactive coding agents. In summary, this work makes the following contributions:

- We identify the limitations of current RLVR approaches that rely solely on outcome-verifiable rewards and highlight the importance of integrating process-verifiable signals for precise credit assignment.
- We propose GVPO, the RL algorithm that unifies outcome-verifiable and process-verifiable signals through an advantage shaping framework.
- We demonstrate through extensive experiments in AppWorld that GVPO yields substantial improvements in stability, convergence, and overall performance, outperforming both open-source and closed-source baselines.

2 PRELIMINARY

2.1 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

GRPO estimates the advantage in a group-relative manner. We denote a user request as a natural language instruction q . The behavior policy $\pi_{\theta_{\text{old}}}$ samples a group of G individual responses $\{\tau_i\}_{i=1}^G$. The advantage of the i -th response is then computed by normalizing its group-level reward within the sampled set:

$$\hat{A}_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}$$

108 Note that for a response τ_i , the computation of $\hat{A}_{i,t}$ is independent of t ; that is, all timesteps t share
 109 the same advantage value. GRPO then optimizes a clipped objective:
 110

$$111 \quad \mathcal{J}_{\text{GRPO}}(\theta) = \frac{1}{G} \sum_{i=1}^G \frac{1}{|\tau_i|} \sum_{t=1}^{|\tau_i|} \left\{ \min \left[a_{i,t}(\theta) \hat{A}_{i,t}, \text{clip} (a_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,t} \right] \right\},$$

$$114 \quad a_{i,t}(\theta) = \frac{\pi_\theta(\tau_{i,t} \mid q, \tau_{i,<t})}{\pi_{\theta_{\text{old}}}(\tau_{i,t} \mid q, \tau_{i,<t})},$$

$$115$$

116 where ϵ is a hyperparameter. In this work, we drop the KL term; beyond reducing the computational
 117 and memory cost of maintaining π_{ref} , this choice is also supported by recent evidence that it can
 118 enhance R1-Zero-style training (Liu et al., 2025).
 119

120 2.2 INTERACTIVE CODING AGENTS

122 Interactive Coding Agents (ICA) represent a new paradigm of intelligent agents that accomplish
 123 tasks through iterative interaction with external APIs by executing code snippets (e.g., Python).
 124 Similar to ReAct (Yao et al., 2023), ICA decomposes the process into two components: *reasoning*
 125 and *action*. However, unlike ReAct where actions are natural language commands, ICA employs
 126 *executable code* as actions, making it more suitable for tool-rich environments (Fig. 5).
 127

128 Formally, let π_θ denote a language model, let I be a code interpreter that executes code written by
 129 π_θ to realize tool calls, and let q be an input query. Let τ denote the i -th sampled trajectory; for
 130 notational simplicity we suppress the subscript i . We construct the partial reasoning trajectory at
 131 step k as¹:

$$\tau[k] = r_1, c_1, o_1, \dots, r_k, c_k, o_k,$$

132 where r_j denotes natural language reasoning, c_j denotes generated code, and o_j is the execution
 133 result of c_j . The iterative generation process for trajectory τ follows:

$$134 \quad (r_k, c_k) = \pi_\theta(\cdot \mid q \oplus \tau[k-1]), \quad o_k = I(c_k), \quad \tau[k] = \tau[k-1] \oplus r_k \oplus c_k \oplus o_k.$$

$$135$$

136 Here, \oplus indicates sequence concatenation. This cycle continues until the model produces a final
 137 answer or the maximum number of reasoning steps K_{max} is reached, with each step informed by
 138 previous code-execution results.

139 Next, we clarify some notation to facilitate the subsequent exposition.

140 **Definition 1** (Index sets over a trajectory). *Given a trajectory τ_i , we define $\mathcal{I}_i = \{1, \dots, |\tau_i|\}$. For
 141 each $j \in \mathcal{I}_i$, let $\tau_{i,j}$ denote the j -th token in trajectory τ_i . We partition \mathcal{I}_i into two disjoint subsets:*

$$143 \quad \mathcal{I}_i^G \cup \mathcal{I}_i^O = \mathcal{I}_i, \quad \mathcal{I}_i^G \cap \mathcal{I}_i^O = \emptyset,$$

144 where \mathcal{I}_i^G collects the indices of generation tokens (including both reasoning and code tokens), and
 145 \mathcal{I}_i^O collects the indices of observation tokens (execution feedback returned by the interpreter). In
 146 addition, we introduce two index sets:

$$147 \quad \mathcal{I}_i^{\text{succ}} \cup \mathcal{I}_i^{\text{fail}} = \mathcal{I}_i^G, \quad \mathcal{I}_i^{\text{succ}} \cap \mathcal{I}_i^{\text{fail}} = \emptyset.$$

$$148$$

149 The set $\mathcal{I}_i^{\text{succ}}$ collects the indices of reasoning and code tokens whose corresponding step execution
 150 succeeded (no error message), while $\mathcal{I}_i^{\text{fail}}$ collects those whose execution failed (with error
 151 messages). Observation indices \mathcal{I}_i^O are not included in this split. Thus, every reasoning/code token in
 152 the trajectory belongs either to $\mathcal{I}_i^{\text{succ}}$ or to $\mathcal{I}_i^{\text{fail}}$, but not both.
 153

154 3 APPROACH

156 In this section, we first present the proposed algorithm (Sec. 3.1), followed by a description of the
 157 outcome-based reward functions (Sec. 3.2) and the process-verifiable functions (Sec. 3.3) within the
 158 AppWorld environment. An overview of GVPO is illustrated in Fig. 1.
 159

160 ¹We distinguish between *timestep* t , which denotes the t -th generated token (token-level granularity), and
 161 *reasoning step* k , which denotes the k -th reasoning cycle in ICA, consisting of reasoning, code generation, and
 162 execution (r_k, c_k, o_k) .

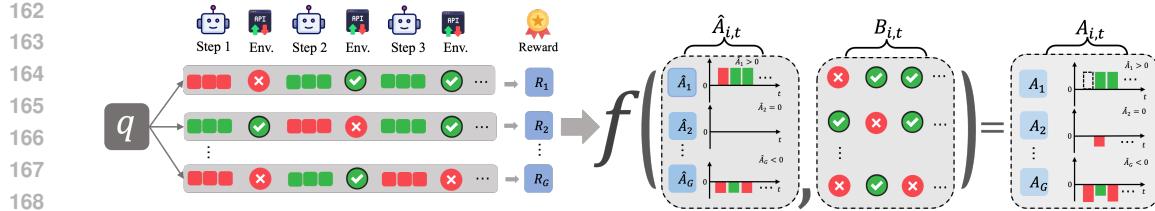


Figure 1: Overview of the proposed GVPO. For each question q , multiple trajectories are sampled to interact with the environment and yield outcome-based rewards R_i . Outcome-verifiable advantages $\hat{A}_{i,t}$ are derived from these rewards, while process-verifiable feedback $B_{i,t}$ captures step-level successes and failures. A shaping function $f(\cdot)$ integrates both signals to produce the final advantages $A_{i,t}$, enabling outcome alignment with step-level correction.

3.1 GROUP VERIFICATION-BASED POLICY OPTIMIZATION (GVPO)

For each question q , GVPO samples a group of outputs $\{\tau_i\}_{i=1}^G$, and optimizes the policy via the following objective:

$$\mathcal{J}_{\text{GVPO}}(\theta) = \frac{1}{G} \sum_{i=1}^G \frac{1}{|\tau_i|} \sum_{t=1}^{|\tau_i|} \left\{ \min \left[a_{i,t}(\theta) A_{i,t}, \text{clip} \left(a_{i,t}(\theta), 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}} \right) A_{i,t} \right] \right\}, \quad (1)$$

$$a_{i,t}(\theta) = \frac{\pi_\theta(\tau_{i,t} \mid q, \tau_{i,< t})}{\pi_{\theta_{\text{old}}}(\tau_{i,t} \mid q, \tau_{i,< t})}.$$

Loss Aggregation. The objective in Eq. 1 aggregates learning signals hierarchically across both the group and sequence dimensions. GVPO adopts the sequence-mean-token-mean (*smtm*) scheme: within each trajectory, token-level contributions are first averaged to obtain a token mean, and these are then averaged across sequences to yield the final objective.

For comparison, GRPO also employs *smtm*, whereas Dr.GRPO (Liu et al., 2025) uses the sequence-mean-token-sum (*smts*) scheme, in which token contributions are summed within each sequence before averaging across sequences, thereby amplifying the influence of longer trajectories. An alternative variant, *smtm*, averages at the sequence level first and then distributes uniformly to tokens, yielding a more length-invariant signal. By contrast, DAPO (Yu et al., 2025) applies a simpler token-mean (*tm*) strategy, directly averaging token-level signals without additional sequence-level aggregation.

Advantage Shaping. We introduce the notion of an advantage shaping function, which integrates both outcome-verifiable and process-verifiable signals into the advantage estimation:

$$A_{i,t} = f(\hat{A}_{i,t}, B_{i,t}), \quad \hat{A}_{i,t} = R_i - \text{mean}(\{R_i\}_{i=1}^G).$$

where $\hat{A}_{i,t}$ is the outcome-verifiable advantage, defined relative to group-based rewards without std normalization terms (Liu et al., 2025), and $B_{i,t}$ denotes process-level feedback derived from execution signals (e.g., compilation status, runtime exceptions, or partial unit-test outcomes). The shaping function $f(\cdot)$ provides a general mechanism to modulate $\hat{A}_{i,t}$ using deterministic process feedback, thereby calibrating the policy’s credit assignment. It is important to note that after shaping, A no longer preserves the unbiased property (i.e., $\mathbb{E}[A] = 0$ no longer holds).

Intuition. Outcome-verifiable rewards ensure alignment with final task objectives, while process-verifiable signals serve as corrective shaping terms that guide learning at a finer granularity. When execution feedback indicates early-stage failures, $f(\cdot)$ introduces negative corrections to reduce the likelihood of reinforcing error-prone patterns. Conversely, partial successes yield positive corrections, amplifying behaviors that show promising progress before final outcomes are observed.

By shaping the advantage with both outcome-level and process-level information, the policy benefits from more accurate credit assignment across trajectories. This unified formulation ensures that learning is not only guided by final correctness but also by intermediate execution quality, leading to

216 more stable optimization, faster convergence, and stronger performance in complex problem-solving
 217 environments.
 218

219 **3.2 OUTCOME-VERIFIABLE REWARD FUNCTIONS**
 220

221 In AppWorld, each task is associated with a set of unit tests that check whether the agent’s generated
 222 code correctly produces the desired state changes without introducing unintended side effects. We
 223 leverage these unit tests to construct an outcome-based reward signal (Chen et al., 2025).

224 Formally, for a trajectory τ_i produced in response to query q , let $\{u_j\}_{j=1}^M$ denote the M unit tests
 225 associated with the task. Each unit test u_j returns a binary result $\text{pass}(u_j, \tau_i) \in \{0, 1\}$, indicating
 226 whether the output passes the test. The outcome-based reward is defined as the fraction of passed
 227 tests:

$$228 \quad R_i = \frac{1}{M} \sum_{j=1}^M \text{pass}(u_j, \tau_i), \quad (2)$$

231 where $R_i \in [0, 1]$. This scalar reward provides a direct measure of the final correctness of the
 232 generated output. It is sparse in nature—nonzero signals are only available once execution has
 233 completed—but it captures the ultimate task objective faithfully.

234 **3.3 PROCESS-VERIFIABLE FUNCTIONS**
 235

236 While outcome-based rewards provide only sparse signals at the end of execution, process-verifiable
 237 functions deliver dense step-level feedback by differentiating between successful and failed reasoning/code
 238 tokens within a trajectory τ_i . Formally, let $\mathcal{I}_i^{\text{succ}}$ and $\mathcal{I}_i^{\text{fail}}$ denote the index sets corre-
 239 sponding to successful and failed reasoning/code tokens, respectively. Based on these index sets, we
 240 define a process-verifiable bonus $B_{i,t}$ that adaptively adjusts the step-level advantage $A_{i,t}$:

$$241 \quad B_{i,t} = \begin{cases} 0 & t \in \mathcal{I}_i^{\text{succ}}, \\ -b & t \in \mathcal{I}_i^{\text{fail}} \wedge \hat{A}_{i,t} = 0, \\ b \cdot \hat{A}_{i,t} & t \in \mathcal{I}_i^{\text{fail}} \wedge \hat{A}_{i,t} < 0, \\ -\hat{A}_{i,t} & \text{otherwise.} \end{cases} \iff A_{i,t} = \begin{cases} \hat{A}_{i,t} & t \in \mathcal{I}_i^{\text{succ}}, \\ \hat{A}_{i,t} - b & t \in \mathcal{I}_i^{\text{fail}} \wedge \hat{A}_{i,t} = 0, \\ (1+b) \cdot \hat{A}_{i,t} & t \in \mathcal{I}_i^{\text{fail}} \wedge \hat{A}_{i,t} < 0, \\ 0 & \text{otherwise.} \end{cases}$$

242 Here, $b > 0$ is a fixed penalty coefficient (set to $b = 0.2$ in our experiments). The adjustment
 243 mechanism can be interpreted as follows:

- 244 • **Successful tokens** (those associated with correct reasoning or code execution) retain their outcome-
 245 based advantage $\hat{A}_{i,t}$ unchanged.
- 246 • **Failed tokens** are penalized in a manner sensitive to the trajectory’s outcome advantage:
 - 247 – When $\hat{A}_{i,t} = 0$, a fixed penalty $-b$ is imposed.
 - 248 – When $\hat{A}_{i,t} < 0$, the negative outcome advantage is amplified proportionally.
 - 249 – In all other cases, the advantage is set to zero.
- 250 • **Observation tokens** represent environment feedback and are excluded from updates, hence set to
 251 zero. (Li et al., 2025).

252 When the advantage is negative, we apply a multiplicative adjustment to penalize failed trajectories,
 253 while also exploring an additive variant in ablations. This yields more robust credit assignment
 254 under noisy or misleading signals.

255 **Scalability.** An important advantage of the process-verifiable paradigm is that it is inherently rule-
 256 based and does not require training an additional reward model. This property makes it highly scal-
 257 able: whenever the environment provides deterministic feedback signals, such as compilation status,
 258 runtime errors, constraint checks, or state-transition validations, process-verifiable rewards can be
 259 applied directly. While we instantiate this idea in the coding domain (AppWorld), the paradigm is
 260 not limited to program synthesis. Any environment capable of emitting reliable process-level feed-
 261 back can naturally support this form of supervision, enabling efficient scaling across diverse tasks
 262 without costly human annotation or reward-model training.

	Para.	Std.	Aggr.	Out.	Proc.	Test-N		Test-C	
						TGC	SGC	TGC	SGC
Prompting with LLM									
GPT-4o	-	-	-	-	-	48.8	32.1	30.2	13.0
GPT-4 Trb	-	-	-	-	-	26.8	12.5	17.5	5.8
OpenAI o1	-	-	-	-	-	61.9	41.1	36.7	19.4
LlaMA3	70B	-	-	-	-	24.4	17.9	7.0	4.3
Qwen2.5	32B	-	-	-	-	34.5	16.1	18.9	7.9
Fine-tuning with RL									
GRPO _{w/kl}	32B	✓	smtm	✓	✗	61.3	<u>42.9</u>	38.8	19.4
GRPO	32B	✓	smtm	✓	✗	54.8	30.4	35.5	15.8
GSPO	32B	✓	smtm	✓	✗	50.0	33.9	41.6	20.1
DAPO	32B	✓	tm	✓	✗	51.8	28.6	28.1	12.2
Dr.GRPO	32B	✗	smts	✓	✗	63.7	41.0	43.0	21.6
RLOO _{w/kl}	32B	✗	smtm	✓	✗	60.1	33.9	39.6	15.8
LOOP	32B	✗	smtm	✓	✗	71.3	53.6	<u>45.7</u>	<u>26.6</u>
GVPO	32B	✗	smtm	✓	✓	71.4	53.6	49.3	29.5

Table 2: Test performance is reported on both the normal (Test-N) and challenge (Test-C) splits of AppWorld, using **TGC** (Task Goal Completion) and **SGC** (Scenario Goal Completion). **Para.:** model parameter scale. **Std.:** whether std normalization is applied in advantage computation. **Aggr.:** loss aggregation scheme, where *smtm* = sequence-mean-token-mean, *smts* = sequence-mean-token-sum, and *tm* = token-mean. **Out.:** use of outcome-verifiable signals. **Proc.:** use of process-verifiable signals. GRPO_{w/kl} denotes GRPO trained with KL regularization. In DAPO, we omit dynamic sampling and overlong reward shaping. The best results are shown in bold, and the second-best results are underlined.

4 EXPERIMENTS

Dataset. We evaluate on AppWorld (Trivedi et al., 2024), a benchmark for interactive coding agents that requires multi-turn planning and executable code generation in a stateful Python environment. It integrates nine simulated consumer apps (e.g., email, payments, shopping, file system), exposing 457 APIs across realistic digital activities. The benchmark defines 750 tasks from 250 scenarios, split into train (35/105), dev (20/60), test-normal (56/168), and test-challenge (139/417), with the latter involving unseen apps and more complex planning.

Evaluation. We report results using two key metrics: Task Goal Completion (TGC), the percentage of tasks in which the agent passes all evaluation tests, and Scenario Goal Completion (SGC), the percentage of scenarios in which the agent succeeds on every associated task.

Implementation. We adopt Qwen2.5-32B-Instruct as the base model and train it with the veRL (Sheng et al., 2024) framework, using vLLM (Kwon et al., 2023) for efficient batched inference. Training is restricted to difficulty-1/2 tasks in AppWorld (72 samples, 24 scenarios) with 8 rollouts per sample, a maximum of 40 interaction turns for training and 50 for evaluation, temperature 1.0 during training (exploration) and 0 at evaluation (deterministic execution). More details can be found in Appendix A.1.

Baselines. We compare GVPO against both zero-shot LLMs (GPT-4o, GPT-4 Trb, Llama-3 70B, OpenAI o1, and Qwen2.5-32B-Instruct) and RL-trained models (RLOO, GRPO, GSPO, Dr.GRPO, and LOOP), all optimized with unit-test-based rewards $R_i \in [0, 1]$. We select the checkpoint achieving the highest TGC score on the development set. Detailed descriptions of the baselines are provided in Appendix A.2.

Setting		Dev		Test-N		Test-C	
		TGC	SGC	TGC	SGC	TGC	SGC
GVPO	-	72.9	56.3	71.4	53.6	49.3	29.5
<i>Aggr.</i>	<i>tm</i>	68.8	37.5	58.3	35.7	35.6	18.7
	<i>smts</i>	68.8	43.8	65.4	42.9	46.2	25.2
<i>Clip</i>	<i>Sym.</i>	64.6	37.5	59.5	37.5	40.7	20.1
<i>Std.</i>	✓	70.8	50.0	62.5	42.9	41.0	23.7
<i>Other</i>	<i>mbs</i> ≠ <i>gs</i>	68.8	62.5	64.3	42.9	43.4	22.3
	<i>additive shaping only</i>	68.8	50.0	59.5	33.9	42.5	23.0

Table 3: Ablation study of GVPO. Performance under different design choices is reported on the AppWorld Dev, Test-N, and Test-C splits. Variants include alternative loss aggregation schemes (*tm*=token-mean, *smts*=sequence-mean-token-sum), symmetric vs. asymmetric clipping, std normalization (*Std.*), and additional settings such as mismatched micro-batch/group sizes (*mbs* ≠ *gs*), and *additive shaping only* (i.e., $A_{i,t} = \hat{A}_{i,t} - b$, $t \in \mathcal{I}_i^{\text{fail}} \wedge \hat{A}_{i,t} < 0$).

4.1 RESULT

Main Results. Table 2 compares zero-shot prompting models and RL fine-tuned methods on the AppWorld benchmark. Among the zero-shot models, OpenAI o1 achieves the highest performance (61.9 TGC / 41.1 SGC on Test-N), but still struggles on the more challenging Test-C split. RL fine-tuning consistently improves performance over prompting. In particular, our method, GVPO, sets a new state-of-the-art across both splits, achieving 71.4 TGC / 53.6 SGC on Test-N and 49.3 TGC / 29.5 SGC on Test-C. Notably, GVPO surpasses the previously strongest 32B RL baseline, LOOP, by 3.6 points TGC and 2.9 points SGC on Test-C, demonstrating the effectiveness of incorporating process-verifiable signals for credit assignment. While LOOP performs competitively on Test-N, it falls short on Test-C, highlighting GVPO’s superior generalization to unseen apps and longer multi-step planning tasks. More analyses of the validation set results can be found in Appendix A.3.

Entropy Trajectories. Figure 2 compares the entropy trajectories of GRPO, DAPO, GSPO, and GVPO during training. GSPO shows the fastest entropy decay, collapsing to a near-deterministic policy, which indicates premature convergence and insufficient exploration. GRPO and DAPO both maintain moderate entropy levels, but their trajectories still decline steadily, suggesting exploration diminishes over time and leading to potential suboptimal local minima. In contrast, GVPO consistently preserves higher entropy and avoids collapse, reflecting its ability to sustain exploration throughout training. This stability stems from its integration of process-verifiable shaping and asymmetric clipping, which penalize incorrect trajectories without discouraging diversity. As a result, GVPO achieves a better balance between exploration and exploitation than GRPO, DAPO, and GSPO, contributing to its superior robustness and final performance.

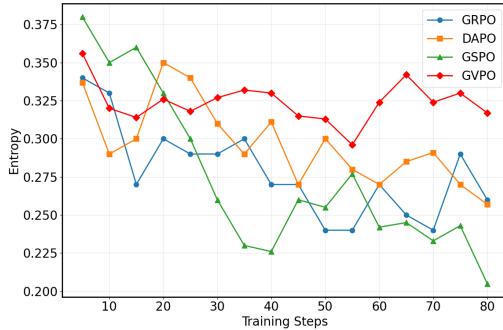


Figure 2: Entropy trajectories of GRPO, DAPO, GSPO, and GVPO across training steps.

Ablation Result. Tab. 3 presents the ablation results of GVPO across the AppWorld dev, Test-N, and Test-C splits. The full GVPO consistently achieves the strongest performance, confirming the effectiveness of its combined design. Alternative aggregation schemes (token-mean, sequence-mean-token-sum) lead to noticeable drops in Test-C, suggesting that GVPO’s sequence-mean-token-mean formulation provides a better trade-off between stability and credit assignment. Symmetric

378
379
380

Task: Label all email threads in my Gmail inbox from notifications@<app>.com with the label of the respective app. Ignore spam and archived ones.

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

GRPO	Dr.GRPO	GVPO
Read apps & api descriptions	Check account & password	Read apps & api descriptions
X Gmail login with fake password	X Gmail login with wrong api	Check account & password
Check account & password	Read apps & api descriptions	Read apps & api descriptions
X Gmail login with wrong para.	Read api docs	Gmail login
Read api docs	Gmail login	Read api docs
✓ Gmail login	Read api docs	Check email
Read api docs	✓ Check email	Read api docs
⋮	⋮	✓ Label email

Figure 3: Case study on the Gmail labeling task. Compared with GRPO and Dr.GRPO, the GVPO-trained agent exhibits a more cautious strategy by extensively consulting API descriptions and documentation before executing concrete actions.

399

clipping underperforms, validating the benefit of the asymmetric “clip-higher” strategy for maintaining exploration. Similarly, applying std normalization (*Std.*) degrades performance, suggesting that removing variance scaling avoids optimization bias and better preserves the reward signal.

400
401
402
403
404
405
406
407

For mismatched micro-batch/group sizes ($mbs=8, gs=6$), we observe a larger performance drop here compared to prior math-reasoning tasks, likely because AppWorld tasks involve diverse API calls and state transitions where imbalance in batch-wise normalization amplifies variance in gradient estimates, making training less stable.

408
409
410
411
412
413

In GVPO, for failed tokens with negative outcome advantages we apply multiplicative shaping, i.e., $A_{i,t} = (1+b) \cdot \hat{A}_{i,t}$ for $t \in \mathcal{I}_i^{\text{fail}} \wedge \hat{A}_{i,t} < 0$. In the **additive-only** variant, this scaling is replaced by a constant penalty, i.e., $A_{i,t} = \hat{A}_{i,t} - b$ for the same index set. This substitution weakens the balance between outcome- and process-level signals and leads to poorer generalization, underscoring that the choice of advantage shaping is critical; we leave a deeper investigation to future work.

414
415

4.2 ANALYSIS

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Agent Behaviors. Figure 4 summarizes the behavioral characteristics of agents trained with GRPO, Dr.GRPO, and GVPO across four measures: (i) average number of interactions per task, (ii) execution failure probability per step, (iii) frequency of `show_api_docs` calls, and (iv) frequency of `show_api_descriptions` calls. The results reveal clear behavioral differences among the methods. GVPO achieves the lowest failure probability, while simultaneously exhibiting the highest frequency of documentation queries. In fact, nearly half of the steps taken by GVPO agents involve consulting either `show_api_docs` or `show_api_descriptions`, suggesting that the additional penalty on invalid steps encourages the agent to make more cautious

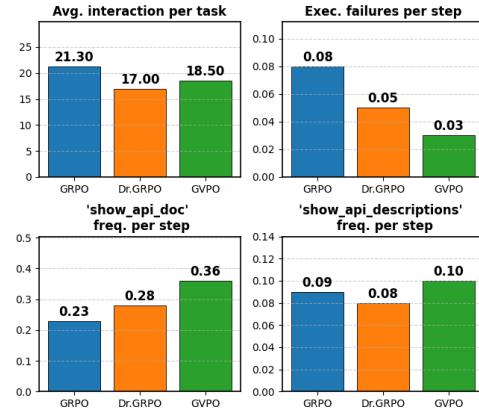


Figure 4: Aggregate changes in agent behavior between the GRPO, Dr.GRPO and GVPO, averaged over three i.i.d. rollouts per dev task.

432 decisions by actively seeking external guidance. Importantly, this cautious behavior does not incur
 433 excessive interaction overhead: GVPO requires slightly more steps than Dr.GRPO but fewer than
 434 GRPO, which often accumulates longer trajectories due to repeated corrections of earlier mistakes.
 435 Overall, these results indicate that GVPO effectively reduces execution errors through more
 436 deliberate decision-making, while still preserving sufficient interaction diversity and efficiency.
 437

438 **Case Study.** Building on these quantitative findings, we next provide a qualitative case study in
 439 Figure 3. In contrast to GRPO and Dr.GRPO, which often make invalid attempts such as logging
 440 into Gmail with incorrect parameters or invoking the wrong API, the GVPO adopts a markedly
 441 more cautious strategy. Nearly half of its tool invocations are devoted to querying documentation
 442 before committing to concrete actions (e.g., Gmail login, reading, or labeling emails). This be-
 443 havior directly aligns with the trends observed in Figure 4, offering complementary evidence that
 444 GVPO encourages agents to act more carefully and reliably by consulting external resources prior
 445 to execution.

446 5 RELATED WORK

447 **RLVR.** Since DeepSeek-R1 (Guo et al., 2025), research on the RLVR paradigm has accelerated
 448 significantly (Wen et al., 2025; Xie et al., 2025). This line of work covers diverse dimensions such as
 449 training data curation (Wang et al., 2024), objective formulation (Liu et al., 2025), hyperparameter
 450 optimization (Yu et al., 2025), base model selection (Hu et al., 2025), and empirical insights (Yue
 451 et al., 2025). Verified rewards in prior work are typically derived from deterministic outcome checks
 452 (e.g., exact match in math (Cobbe et al., 2021), unit tests in coding (Austin et al., 2021)), rule-based
 453 verification with tools Li et al. (2025); Qian et al. (2025), LLM-based verifiers (Wen et al., 2025;
 454 Chen et al., 2024), logic-based verifiers (Wang et al., 2025) or domain-specific reward models (Su
 455 et al., 2025). The related work GiGPO (Feng et al., 2025) employs an additive shaping function to
 456 integrate step-relative advantages but does not leverage intermediate process feedback. In contrast,
 457 we introduce a more general advantage shaping framework that unifies both additive and multiplica-
 458 tive formulations, and validate its effectiveness on the more challenging AppWorld benchmark.
 459

460 **RL for LLM agents.** A complementary line of research investigates *tool-use learning* (Yao et al.,
 461 2023), where agents are trained to interact with external environments through APIs (Qin et al.,
 462 2024), code execution (Li et al., 2025), or multi-turn reasoning (Wei et al., 2025; Xi et al., 2025;
 463 Da et al., 2025; Mai et al., 2025). The applications span text-based games (Narasimhan et al.,
 464 2015; Yao et al., 2020; Carta et al., 2023), web navigation and shopping (Yao et al., 2022), mobile
 465 device interaction (Bai et al., 2024), and embodied tasks (Zhai et al., 2024), yet our work focuses
 466 on AppWorld (Trivedi et al., 2024), a significantly more challenging benchmark that requires long-
 467 horizon, multi-app interactions. The most related effort is LOOP (Chen et al., 2025), but unlike
 468 LOOP, GVPO incorporates signals from intermediate execute feedback, enabling more accurate
 469 credit assignment and improved robustness.
 470

471 6 CONCLUSION

472 We propose Group Verification-based Policy Optimization (GVPO), a reinforcement learning algo-
 473 rithm that unifies outcome-verifiable and process-verifiable signals through an advantage shaping
 474 framework. By leveraging intermediate execution feedback alongside final task outcomes, GVPO
 475 achieves more accurate credit assignment, resulting in greater training stability, accelerated conver-
 476 gence, and improved generalization in complex interactive environments. Empirical results on the
 477 challenging AppWorld benchmark demonstrate that GVPO not only surpasses strong RL baselines
 478 but also closes the gap with much larger proprietary systems, highlighting its potential as a scalable
 479 approach for training stateful, multi-turn LLM interactive agents.
 480

481 **Limitations.** GVPO currently relies on deterministic environments with well-defined process sig-
 482 nals, and its effectiveness on tasks with ambiguous or noisy feedback remains underexplored. Ex-
 483 tending GVPO to broader domains and integrating it with richer supervision sources are important
 484 directions for future work.
 485

486 REFERENCES
487

488 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
489 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learning
490 from human feedback in llms. In *Proceedings of the 62nd Annual Meeting of the Association
491 for Computational Linguistics (Volume 1: Long Papers)*, pp. 12248–12267, 2024.

492 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
493 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
494 models. *arXiv preprint arXiv:2108.07732*, 2021.

495 Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
496 Training in-the-wild device-control agents with autonomous reinforcement learning. *Advances in
497 Neural Information Processing Systems*, 37:12461–12495, 2024.

498 Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
499 Oudeyer. Grounding large language models in interactive environments with online reinforcement
500 learning. In *International Conference on Machine Learning 2023*, volume 202, 2023.

501 Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou,
502 and Benyou Wang. Huatuogpt-01, towards medical complex reasoning with llms. *arXiv preprint
503 arXiv:2412.18925*, 2024.

504 Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger,
505 Vladlen Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive
506 llm agents. *arXiv preprint arXiv:2502.01600*, 2025.

507 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
508 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
509 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

510 Jeff Da, Clinton Wang, Xiang Deng, Yuntao Ma, Nikhil Barhate, and Sean Hendryx. Agent-rlvr:
511 Training software engineering agents via guidance and environment rewards. *arXiv preprint
512 arXiv:2506.11425*, 2025.

513 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
514 agent training. *arXiv preprint arXiv:2505.10978*, 2025.

515 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
516 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
517 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

518 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
519 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
520 model. *arXiv preprint arXiv:2503.24290*, 2025.

521 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
522 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
523 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*, pp. 611–626, 2023.

524 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. *arXiv preprint
525 arXiv:2503.23383*, 2025.

526 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
527 and Min Lin. Understanding rl-zero-like training: A critical perspective. *arXiv preprint
528 arXiv:2503.20783*, 2025.

529 Xinji Mai, Haotian Xu, Weinong Wang, Jian Hu, Yingying Zhang, Wenqiang Zhang, et al. Agent rl
530 scaling law: Agent rl with spontaneous code execution for mathematical problem solving. *arXiv
531 preprint arXiv:2505.07773*, 2025.

532 Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-based
533 games using deep reinforcement learning. In *Proceedings of the 2015 Conference on Empirical
534 Methods in Natural Language Processing*, pp. 1–11, 2015.

540 Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
 541 Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. *arXiv preprint arXiv:2504.13958*,
 542 2025.

543 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
 544 Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
 545 apis. In *ICLR*, 2024.

546 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 547 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 548 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

549 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 550 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 551 *arXiv: 2409.19256*, 2024.

552 Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
 553 Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. *arXiv*
 554 *preprint arXiv:2503.23829*, 2025.

555 Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
 556 Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
 557 apps and people for benchmarking interactive coding agents. In *Proceedings of the 62nd Annual*
 558 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 16022–
 559 16076, 2024.

560 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 561 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In *Pro-
 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
 562 *1: Long Papers)*, pp. 9426–9439, 2024.

563 Xinyu Wang, Changzhi Sun, Lian Cheng, Yuanbin Wu, Dell Zhang, Xiaoling Wang, and Xuelong
 564 Li. Logic-regularized verifier elicits reasoning from llms. In *Proceedings of the 63rd Annual*
 565 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 32617–
 566 32630, 2025.

567 Yuan Wei, Xiaohan Shan, Ran Miao, and Jianmin Li. Agent²: An agent-generates-agent framework
 568 for reinforcement learning automation. *arXiv preprint arXiv:2509.13368*, 2025.

569 Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
 570 Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
 571 incentivizes correct reasoning in base llms. *arXiv preprint arXiv:2506.14245*, 2025.

572 Zhiheng Xi, Jixuan Huang, Chenyang Liao, Baodai Huang, Honglin Guo, Jiaqi Liu, Rui Zheng, Jun-
 573 jie Ye, Jiazheng Zhang, Wenxiang Chen, et al. Agentgym-rl: Training llm agents for long-horizon
 574 decision making through multi-turn reinforcement learning. *arXiv preprint arXiv:2509.08755*,
 575 2025.

576 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 577 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 578 learning. *arXiv preprint arXiv:2502.14768*, 2025.

579 Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep calm and explore:
 580 Language models for action generation in text-based games. In *Proceedings of the 2020 Confer-
 581 ence on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 8736–8754, 2020.

582 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
 583 real-world web interaction with grounded language agents. *Advances in Neural Information Pro-
 584 cessing Systems*, 35:20744–20757, 2022.

585 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 586 React: Synergizing reasoning and acting in language models. In *International Conference on*
 587 *Learning Representations (ICLR)*, 2023.

594 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
595 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
596 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

597

598 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
599 inforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
600 *preprint arXiv:2504.13837*, 2025.

601 Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
602 LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via
603 reinforcement learning. *Advances in neural information processing systems*, 37:110935–110971,
604 2024.

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A APPENDIX**
649650 **A.1 HYPERPARAMETERS AND TRAINING SETUP**
651

652 Setting	653 Value
<i>654 Base setup</i>	
655 Base model	Qwen2.5-32B-Instruct
656 Framework	veRL + FSDP2 + vLLM (batched inference)
657 Training tasks	AppWorld difficulty-1/2 (72 samples, 24 scenarios)
658 Rollouts per sample	8
659 Max turns (train / eval)	40 / 50
Temperature (train / eval)	1.0 / 0.0
<i>660 GVPO hyperparameters</i>	
661 Group size G	8
662 Clipping range $(\epsilon_{\text{low}}, \epsilon_{\text{high}})$	(0.2, 0.28)
663 Learning rate	1×10^{-5} (constant)
664 Batch size	4×8
665 Max sequence length per turn	512 tokens
666 Entropy coefficient	0.0
667 Advantage shaping penalty b	0.2
668 Optimizer	AdamW
669 Training steps	144
Mirco batchsize	8

670 Table 4: Hyperparameters and training setup for GVPO experiments in AppWorld.
671672 **Training setup.** We conduct all experiments on a single machine equipped with 8 NVIDIA H100
673 GPUs. Our training framework is based on `veRL` with `FSDP2` for efficient distributed training. For
674 data generation, we employ `vLLM` to perform rollouts. After collecting trajectories, we recompute
675 the per-token log-probabilities under the generating policy, rather than using the values directly
676 reported by `vLLM`.
677678 **Agent setup.** All agents are prompted in a ReAct-style format, which includes one in-context
679 example of a successful task execution. The agent receives as input the results of code execution
680 (e.g., API call outputs or exception traces), together with the original task instruction. At each turn,
681 the agent is allowed to generate up to 512 tokens in total. This limit covers both reasoning tokens
682 (chain-of-thought) and code. If an API response exceeds 3K tokens, it is truncated, and the agent is
683 provided with a short note indicating that truncation has occurred.
684685 **AppWorld setup.** During training, we launch 32 independent AppWorld backend services in
686 advance. The training framework communicates with these AppWorld backends via a Redis message
687 queue, which serves as the central communication hub. Each backend service is bound to a unique
688 port, and port numbers are used to associate each AppWorld instance with its corresponding tra-
689 jectory. This design ensures that multiple trajectories can be executed in parallel while avoiding
690 interference across different AppWorld backends.
691692 **Training Hyperparameters.** We use a constant learning rate of 1×10^{-5} and clip the gradient
693 norm to 1 in all experiments. Each training sample produces 8 rollouts with temperature 1.0. To
694 accelerate training, we apply early stopping to rollout collection: rollout generation is terminated
695 once at least 6 rollouts have been collected for each task and 90% of the total rollouts have been
696 collected. Concretely, we consider two stopping conditions. First, within each group of 8 rollouts
697 for a given task, rollout collection ends once 6 rollouts have finished. Second, across the 32 sampled
698 tasks, rollout collection terminates once 30 tasks have completed. Early stopping is only applied
699 after the model has generated at least 30 steps of rollout, ensuring sufficient exploration before
700 termination. We allow up to 40 interactions between the agent and the environment during training
701 and up to 50 for evaluation. Any episode that does not complete within this interaction budget
is considered a failure. If the sequence reaches the model’s context window limit, the rollout is
terminated (Tab. 4).
702

	Para.	Std.	Aggr.	Out.	Proc.	Dev	
						TGC	SGC
Fine-tuning with RL							
GRPO _{w/ kl}	32B	✓	smtm	✓	✗	64.6	37.5
GRPO	32B	✓	smtm	✓	✗	62.5	50.0
GSPO	32B	✓	smtm	✓	✗	62.5	43.75
DAPO	32B	✓	tm	✓	✗	62.5	37.5
Dr.GRPO	32B	✗	smts	✓	✗	66.7	43.75
RLOO _{w/ kl}	32B	✗	smtm	✓	✗	64.6	37.5
GVPO	32B	✗	smtm	✓	✓	72.92	56.25

Table 5: Comparison of RL fine-tuning methods on the AppWorld Dev set. **Para.**: model parameter scale. **Std.**: whether std normalization is applied in advantage computation. **Aggr.**: loss aggregation scheme, where *smtm* = sequence-mean-token-mean, *smts* = sequence-mean-token-sum, and *tm* = token-mean. **Out.**: use of outcome-verifiable signals. **Proc.**: use of process-verifiable signals. GRPO_{w/ kl} denotes GRPO trained with KL regularization. The best results are shown in bold, and the second-best results are underlined.

A.2 BASELINES

This section provides a detailed overview of the reinforcement learning (RL) algorithms evaluated in our experiments. Each method represents a different strategy for variance reduction, credit assignment, or stability enhancement in policy gradient optimization.

1. **RLOO (Reinforce Leave-One-Out).** Builds upon the REINFORCE estimator by introducing a leave-one-out baseline within each rollout group. This design reduces variance in advantage estimation compared to vanilla REINFORCE, leading to more stable updates without requiring additional learned value functions.
2. **GRPO (Group Relative Policy Optimization).** Computes relative advantages by normalizing rewards within a rollout group, thereby stabilizing training against reward scale fluctuations. GRPO has become a standard RLVR approach for LLM fine-tuning. Variants may additionally incorporate KL regularization with respect to the base model to control divergence.
3. **GSPO (Group Sequence Policy Optimization).** Moves from token-level to sequence-level optimization by defining the importance ratio at the trajectory level. It applies sequence-level clipping, which simplifies optimization and reduces variance. This approach has demonstrated strong performance and efficiency, particularly in recent Qwen3 models.
4. **Dr.GRPO (GRPO Done Right).** Addresses biases in GRPO by (i) removing the normalization with group standard deviation during advantage computation, and (ii) modifying the loss aggregation scheme to *smts*. These changes improve token efficiency and reduce optimization bias, while preserving the reasoning capability of the model.
5. **DAPO (Decoupled Clip and Dynamic sAmpling Policy Optimization).** Combines *clip-higher* for exploration and a *token-level loss* for fine-grained credit assignment; we omit dynamic sampling and overlong reward shaping.
6. **LOOP (Leave-One-Out PPO).** Extends RLOO by adopting a PPO-style optimization procedure, applying multiple epochs of clipped updates per batch. This combination improves exploration and enhances policy robustness in long-horizon interactive tasks. As the original implementation was not open-sourced, we rely on the reported results from the publication, which are available only for the Test set.

A.3 VALIDATION RESULT

Tab. 5 reports the validation set results from the main experiment, highlighting the performance of RL fine-tuning methods. On the Dev split, GVPO achieves the strongest performance across both metrics, with 72.9 TGC and 56.3 SGC, substantially outperforming all other RL fine-tuning baselines. This mirrors the Test results, where GVPO also consistently leads. Among baselines, Dr.GRPO achieves competitive TGC (66.7) and moderately strong SGC (43.8), aligning with its relatively strong Test-N and Test-C performance. By contrast, standard GRPO performs reasonably

756 in TGC but lags in SGC (50.0), confirming that outcome-only optimization struggles to capture
757 scenario-level success. Similarly, GSPO and DAPO exhibit weaker results, reflecting the limita-
758 tions of their simpler shaping or aggregation strategies. Overall, the Dev results reinforce the trends
759 observed in Test evaluations: incorporating process-verifiable signals via GVPO leads to clear im-
760 provements in both task completion and scenario consistency. This suggests that GVPO not only
761 generalizes better in held-out tests but also provides a more stable and effective training signal al-
762 ready visible during development.

763 A.4 EXAMPLE OF APPWORLD

764 Fig. 5 illustrates a representative trajectory from the AppWorld Spotify task, showcasing how the
765 agent interacts with APIs in a multi-step reasoning process. The agent first queries the supervisor’s
766 profile and stored account passwords, then uses this information to successfully authenticate with the
767 Spotify API and obtain an access token. With the valid token, it proceeds to call the recommendation
768 API to retrieve music suggestions. This example highlights how the agent effectively integrates
769 intermediate signals, such as execution success, to guide subsequent actions, ensuring correctness
770 and reliability in a complex, stateful environment.

771 A.5 LLM USAGE

772 In accordance with the ICLR policy on the use of large language models (LLMs), we report that
773 LLMs were used exclusively for language polishing and grammar refinement in this paper. LLMs
774 were not used for designing experiments, conducting analyses, or generating research content. All
775 research ideas, implementations, and results are the work of the authors.

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819

User Instruction:
Name the artist most recommended to me on Spotify.

820
821
822
823
824
825
826
827

Okay, let's find the password to login Spotify.

```
supervisor_profile = show_profile()
supervisor_passwords = {p["account_name"]:
p["password"] for p in show_account_passwords()}
```

828
829
830

...{'Supervisor's profile'}...

831
832
833
834
835
836
837
838

Ok, now we have the profile of supervisor and get the password, we can login now.

```
access_token = spotify.login(
    username=supervisor_profile["email"],
    password=supervisor_passwords["spotify"]
)[“access_token”]
```

839
840
841
842
843
844
845
846
847
848
849

Execution success

850
851
852
853
854

Next, let's find the artist recommended to supervisor on Spotify.


```
recommendations=show_recommendations(access_to
ken=access_token)
```

855
856
857
858
859
860
861
862
863

• • •

Figure 5: Example trajectory from AppWorld’s Spotify task.