
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GROUP VERIFICATION-BASED POLICY OPTIMIZATION
FOR INTERACTIVE CODING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in reinforcement learning from verifiable rewards (RLVR),
particularly through Group Relative Policy Optimization (GRPO), have signifi-
cantly improved the capabilities of large language models (LLMs) for interactive
coding agents. However, these methods overlook process-verifiable environment
feedback (e.g., code execution failures), leading to inaccurate advantage estima-
tion at each reasoning step and insufficient learning. To address this issue, we
propose Group Verification-based Policy Optimization (GVPO), a novel RL algo-
rithm that introduces an advantage shaping framework integrating both outcome-
verifiable and process-verifiable signals. While outcome-verifiable rewards en-
sure alignment with long-term task objectives, process-verifiable feedback derived
from intermediate execution traces (e.g., syntax errors, runtime exceptions) serves
as corrective shaping terms at the step level. By jointly leveraging these two forms
of verifiability, GVPO achieves more accurate credit assignment, balancing short-
term process guidance with long-term outcome alignment. This unified formula-
tion yields more stable optimization, faster convergence, and stronger generaliza-
tion in complex interactive environments. A 32B-parameter agent trained with
GVPO in the AppWorld environment outperforms OpenAI’s o1 agent by 12.6%s
on the more challenging Test-C split and surpasses the strongest 32B RL-trained
state-of-the-art baseline by 3.6%.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated remarkable progress in understanding,
reasoning, and code generation, positioning them as promising candidates for interactive coding
agents (Chen et al., 2025). A key challenge, however, lies in training these agents to operate reliably
in complex environments where they must engage in multi-turn interactions, plan dynamically, and
execute executable code to achieve user-specified goals. Reinforcement learning from verifiable
rewards (RLVR) has emerged as a powerful paradigm to address this challenge (Guo et al., 2025),
as it enables scalable supervision without costly human annotations by leveraging deterministic
signals. Among RLVR approaches, Group Relative Policy Optimization (GRPO) (Shao et al., 2024)
has proven particularly effective, significantly advancing the performance of LLM-based agents (Li
et al., 2025; Yu et al., 2025).

Despite these successes, current RLVR methods still exhibit critical limitations. Most notably, they
rely almost exclusively on outcome-verifiable rewards, such as exact answer matching. While such
rewards faithfully capture task-level correctness, they are inherently sparse and delayed, offering
little guidance during the intermediate steps of reasoning. As a result, credit assignment becomes
inaccurate: early-stage errors may still receive positive reinforcement if the final outcome succeeds,
while partially correct reasoning may be discarded if the trajectory ultimately fails. This issue leads
to unstable optimization, slow convergence, and underutilization of valuable environment feedback.

One underexplored direction is the integration of process-verifiable signals—intermediate feedback
derived from execution traces such as syntax errors, runtime exceptions, or partial unit-test results.
Unlike outcome-based signals, process feedback is dense, fine-grained, and deterministic, provid-
ing rich supervision at the token or step level. However, existing RLVR methods (Yu et al., 2025),
including GRPO and its variants (Liu et al., 2025), do not incorporate such signals into their learning
framework, thereby missing opportunities for more precise credit assignment and error correction.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Method Clip Aggr. Advantage Function

Calcu. Traj. Step Unbias. Out. Proc.

RLOO (Ahmadian et al., 2024) Sym. smtm GR ✓ ✗ ✓ ✓ ✗
GRPO (Shao et al., 2024) Sym. smtm GR ✓ ✗ ✓ ✓ ✗
Dr.GRPO (Liu et al., 2025) Sym. smts GR ✓ ✗ ✓ ✓ ✗
DAPO (Yu et al., 2025) Asy. tm GR ✓ ✗ ✓ ✓ ✗
LOOP (Chen et al., 2025) Sym. smtm GR ✓ ✗ ✓ ✓ ✗
GVPO (Ours) Asy. smtm Shaping ✓ ✓ ✗ ✓ ✓

Table 1: Comparison of RLVR methods in LLMs. Clip: Sym. = symmetric clipping (single ϵ for both
sides); Asy. = asymmetric clipping (separate high/low bounds, with explicit “clip-high” control).
Aggr.: loss aggregation scheme, where smtm = sequence-mean-token-mean, smts = sequence-mean-
token-sum, and tm = token-mean. Calcu. (Calculation): GR = group-relative advantage; Shaping
= outcome+process advantage shaping. Advantage Function: Traj. = trajectory-level; Step = step-
level. Unbias. = whether the estimator preserves the unbiased (zero-mean) property. Out. = whether
outcome-verifiable rewards are incorporated; Proc. = whether process-verifiable signals are incor-
porated. GVPO is the only method that integrates both outcome- and process-level rewards through
advantage shaping, achieves step-level credit assignment, and employs asymmetric clipping.

In this paper, we introduce Group Verification-based Policy Optimization (GVPO), a novel re-
inforcement learning algorithm that addresses this gap through an advantage shaping frame-
work. GVPO extends group-based policy optimization by integrating both outcome-verifiable and
process-verifiable signals into the advantage function. Specifically, outcome-verifiable rewards en-
sure that learning remains aligned with long-term task objectives, while process-verifiable signals
act as corrective shaping terms that adjust step-level credit assignment in real time. This design
mitigates the risk of reinforcing error-prone reasoning patterns and amplifies partial successes, ef-
fectively balancing short-term guidance with long-term alignment. Tab. 1 presents a comparison of
RLVR methods in LLMs.

We validate GVPO in AppWorld, a challenging benchmark environment where agents must solve
long-horizon, multi-turn tasks spanning multiple applications and APIs. Our experiments show that
a 32B-parameter agent trained with GVPO outperforms OpenAI’s o1 agent by 12.6% on the
difficult Test-C split and surpasses the strongest 32B RL-trained state-of-the-art baseline by 3.6%.
These results establish GVPO as a new milestone for RLVR-based training of interactive coding
agents. In summary, this work makes the following contributions:

• We identify the limitations of current RLVR approaches that rely solely on outcome-verifiable re-
wards and highlight the importance of integrating process-verifiable signals for precise credit as-
signment.

• We propose GVPO, the RL algorithm that unifies outcome-verifiable and process-verifiable signals
through an advantage shaping framework.

• We demonstrate through extensive experiments in AppWorld that GVPO yields substantial im-
provements in stability, convergence, and overall performance, outperforming both open-source
and closed-source baselines.

2 PRELIMINARY

2.1 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

GRPO estimates the advantage in a group-relative manner. We denote a user request as a natural lan-
guage instruction q. The behavior policy πθold samples a group of G individual responses {τi}Gi=1.
The advantage of the i-th response is then computed by normalizing its group-level reward within
the sampled set:

Âi,t =
Ri −mean({Ri}Gi=1)

std({Ri}Gi=1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Note that for a response τi, the computation of Âi,t is independent of t; that is, all timesteps t share
the same advantage value. GRPO then optimizes a clipped objective:

JGRPO(θ)=
1

G

G∑
i=1

1

|τi|

|τi|∑
t=1

{
min

[
ai,t(θ)Âi,t, clip (ai,t(θ), 1− ϵ, 1 + ϵ) Âi,t

]}
,

ai,t(θ) =
πθ(τi,t | q, τi,<t)

πθold(τi,t | q, τi,<t)
,

where ϵ is a hyperparameter. In this work, we drop the KL term; beyond reducing the computational
and memory cost of maintaining πref , this choice is also supported by recent evidence that it can
enhance R1-Zero–style training (Liu et al., 2025).

2.2 INTERACTIVE CODING AGENTS

Interactive Coding Agents (ICA) represent a new paradigm of intelligent agents that accomplish
tasks through iterative interaction with external APIs by executing code snippets (e.g., Python).
Similar to ReAct (Yao et al., 2023), ICA decomposes the process into two components: reasoning
and action. However, unlike ReAct where actions are natural language commands, ICA employs
executable code as actions, making it more suitable for tool-rich environments (Fig. 5).

Formally, let πθ denote a language model, let I be a code interpreter that executes code written by
πθ to realize tool calls, and let q be an input query. Let τ denote the i-th sampled trajectory; for
notational simplicity we suppress the subscript i. We construct the partial reasoning trajectory at
step k as 1:

τ [k] = r1, c1, o1, · · · , rk, ck, ok,
where rj denotes natural language reasoning, cj denotes generated code, and oj is the execution
result of cj . The iterative generation process for trajectory τ follows:

(rk, ck) = πθ(· | q ⊕ τ [k − 1]), ok = I(ck), τ [k] = τ [k − 1]⊕ rk ⊕ ck ⊕ ok.

Here, ⊕ indicates sequence concatenation. This cycle continues until the model produces a final
answer or the maximum number of reasoning steps Kmax is reached, with each step informed by
previous code-execution results.

Next, we clarify some notation to facilitate the subsequent exposition.
Definition 1 (Index sets over a trajectory). Given a trajectory τi, we define Ii = { 1, . . . , |τi| }. For
each j ∈ Ii, let τi,j denote the j-th token in trajectory τi. We partition Ii into two disjoint subsets:

IG
i ∪ IO

i = Ii, IG
i ∩ IO

i = ∅,

where IG
i collects the indices of generation tokens (including both reasoning and code tokens), and

IO
i collects the indices of observation tokens (execution feedback returned by the interpreter). In

addition, we introduce two index sets:

Isucc
i ∪ Ifail

i = IG
i , Isucc

i ∩ Ifail
i = ∅.

The set Isucc
i collects the indices of reasoning and code tokens whose corresponding step execution

succeeded (no error message), while Ifail
i collects those whose execution failed (with error mes-

sages). Observation indices IO
i are not included in this split. Thus, every reasoning/code token in

the trajectory belongs either to Isucc
i or to Ifail

i , but not both.

3 APPROACH

In this section, we first present the proposed algorithm (Sec. 3.1), followed by a description of the
outcome-based reward functions (Sec. 3.2) and the process-verifiable functions (Sec. 3.3) within the
AppWorld environment. An overview of GVPO is illustrated in Fig. 1.

1We distinguish between timestep t, which denotes the t-th generated token (token-level granularity), and
reasoning step k, which denotes the k-th reasoning cycle in ICA, consisting of reasoning, code generation, and
execution (rk, ck, ok).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the proposed GVPO. For each question q, multiple trajectories are sampled
to interact with the environment and yield outcome-based rewards Ri. Outcome-verifiable advan-
tages Âi,t are derived from these rewards, while process-verifiable feedback Bi,t captures step-level
successes and failures. A shaping function f(·) integrates both signals to produce the final advan-
tages Ai,t, enabling outcome alignment with step-level correction.

3.1 GROUP VERIFICATION-BASED POLICY OPTIMIZATION (GVPO)

For each question q, GVPO samples a group of outputs {τi}Gi=1, and optimizes the policy via the
following objective:

JGVPO(θ)=
1

G

G∑
i=1

1

|τi|

|τi|∑
t=1

{min [ai,t(θ)Ai,t, clip (ai,t(θ), 1− ϵlow, 1 + ϵhigh)Ai,t]} , (1)

ai,t(θ) =
πθ(τi,t | q, τi,<t)

πθold(τi,t | q, τi,<t)
.

Loss Aggregation. The objective in Eq. 1 aggregates learning signals hierarchically across both
the group and sequence dimensions. GVPO adopts the sequence-mean-token-mean (smtm) scheme:
within each trajectory, token-level contributions are first averaged to obtain a token mean, and these
are then averaged across sequences to yield the final objective.

For comparison, GRPO also employs smtm, whereas Dr.GRPO (Liu et al., 2025) uses the sequence-
mean-token-sum (smts) scheme, in which token contributions are summed within each sequence
before averaging across sequences, thereby amplifying the influence of longer trajectories. An al-
ternative variant, smtm, averages at the sequence level first and then distributes uniformly to tokens,
yielding a more length-invariant signal. By contrast, DAPO (Yu et al., 2025) applies a simpler
token-mean (tm) strategy, directly averaging token-level signals without additional sequence-level
aggregation.

Advantage Shaping. We introduce the notion of an advantage shaping function, which integrates
both outcome-verifiable and process-verifiable signals into the advantage estimation:

Ai,t = f(Âi,t, Bi,t), Âi,t = Ri −mean({Ri}Gi=1).

where Âi,t is the outcome-verifiable advantage, defined relative to group-based rewards without
std normalization terms (Liu et al., 2025), and Bi,t denotes process-level feedback derived from
execution signals (e.g., compilation status, runtime exceptions, or partial unit-test outcomes). The
shaping function f(·) provides a general mechanism to modulate Âi,t using deterministic process
feedback, thereby calibrating the policy’s credit assignment. It is important to note that after shaping,
A no longer preserves the unbiased property (i.e., E[A] = 0 no longer holds).

Intuition. Outcome-verifiable rewards ensure alignment with final task objectives, while process-
verifiable signals serve as corrective shaping terms that guide learning at a finer granularity. When
execution feedback indicates early-stage failures, f(·) introduces negative corrections to reduce the
likelihood of reinforcing error-prone patterns. Conversely, partial successes yield positive correc-
tions, amplifying behaviors that show promising progress before final outcomes are observed.

By shaping the advantage with both outcome-level and process-level information, the policy benefits
from more accurate credit assignment across trajectories. This unified formulation ensures that
learning is not only guided by final correctness but also by intermediate execution quality, leading to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

more stable optimization, faster convergence, and stronger performance in complex problem-solving
environments.

3.2 OUTCOME-VERIFIABLE REWARD FUNCTIONS

In AppWorld, each task is associated with a set of unit tests that check whether the agent’s generated
code correctly produces the desired state changes without introducing unintended side effects. We
leverage these unit tests to construct an outcome-based reward signal (Chen et al., 2025).

Formally, for a trajectory τi produced in response to query q, let {uj}Mj=1 denote the M unit tests
associated with the task. Each unit test uj returns a binary result pass(uj , τi) ∈ {0, 1}, indicating
whether the output passes the test. The outcome-based reward is defined as the fraction of passed
tests:

Ri =
1

M

M∑
j=1

pass(uj , τi), (2)

where Ri ∈ [0, 1]. This scalar reward provides a direct measure of the final correctness of the
generated output. It is sparse in nature—nonzero signals are only available once execution has
completed—but it captures the ultimate task objective faithfully.

3.3 PROCESS-VERIFIABLE FUNCTIONS

While outcome-based rewards provide only sparse signals at the end of execution, process-verifiable
functions deliver dense step-level feedback by differentiating between successful and failed reason-
ing/code tokens within a trajectory τi. Formally, let Isucc

i and Ifail
i denote the index sets corre-

sponding to successful and failed reasoning/code tokens, respectively. Based on these index sets, we
define a process-verifiable bonus Bi,t that adaptively adjusts the step-level advantage Ai,t:

Bi,t =



0 t ∈ Isucc
i ,

−b t ∈ Ifail
i ∧ Âi,t = 0,

b · Âi,t t ∈ Ifail
i ∧ Âi,t < 0,

−Âi,t otherwise.

⇐⇒ Ai,t =



Âi,t t ∈ Isucc
i ,

Âi,t − b t ∈ Ifail
i ∧ Âi,t = 0,

(1 + b) · Âi,t t ∈ Ifail
i ∧ Âi,t < 0,

0 otherwise.

Here, b > 0 is a fixed penalty coefficient (set to b = 0.2 in our experiments). The adjustment
mechanism can be interpreted as follows:

• Successful tokens (those associated with correct reasoning or code execution) retain their outcome-
based advantage Âi,t unchanged.

• Failed tokens are penalized in a manner sensitive to the trajectory’s outcome advantage:
– When Âi,t = 0, a fixed penalty −b is imposed.
– When Âi,t < 0, the negative outcome advantage is amplified proportionally.
– In all other cases, the advantage is set to zero.

• Observation tokens represent environment feedback and are excluded from updates, hence set to
zero. (Li et al., 2025).

When the advantage is negative, we apply a multiplicative adjustment to penalize failed trajectories,
while also exploring an additive variant in ablations. This yields more robust credit assignment
under noisy or misleading signals.

Scalability. An important advantage of the process-verifiable paradigm is that it is inherently rule-
based and does not require training an additional reward model. This property makes it highly scal-
able: whenever the environment provides deterministic feedback signals, such as compilation status,
runtime errors, constraint checks, or state-transition validations, process-verifiable rewards can be
applied directly. While we instantiate this idea in the coding domain (AppWorld), the paradigm is
not limited to program synthesis. Any environment capable of emitting reliable process-level feed-
back can naturally support this form of supervision, enabling efficient scaling across diverse tasks
without costly human annotation or reward-model training.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Para. Std. Aggr. Out. Proc.
Test-N Test-C

TGC SGC TGC SGC
Prompting with LLM
GPT-4o - - - - - 48.8 32.1 30.2 13.0
GPT-4 Trb - - - - - 26.8 12.5 17.5 5.8
OpenAI o1 - - - - - 61.9 41.1 36.7 19.4
LlaMA3 70B - - - - 24.4 17.9 7.0 4.3
Qwen2.5 32B - - - - 34.5 16.1 18.9 7.9

Fine-tuning with RL
GRPOw/ kl 32B ✓ smtm ✓ ✗ 61.3 42.9 38.8 19.4
GRPO 32B ✓ smtm ✓ ✗ 54.8 30.4 35.5 15.8
GSPO 32B ✓ smtm ✓ ✗ 50.0 33.9 41.6 20.1
DAPO 32B ✓ tm ✓ ✗ 51.8 28.6 28.1 12.2
Dr.GRPO 32B ✗ smts ✓ ✗ 63.7 41.0 43.0 21.6
RLOOw/ kl 32B ✗ smtm ✓ ✗ 60.1 33.9 39.6 15.8
LOOP 32B ✗ smtm ✓ ✗ 71.3 53.6 45.7 26.6
GVPO 32B ✗ smtm ✓ ✓ 71.4 53.6 49.3 29.5

Table 2: Test performance is reported on both the normal (Test-N) and challenge (Test-C) splits
of AppWorld, using TGC (Task Goal Completion) and SGC (Scenario Goal Completion). Para.:
model parameter scale. Std.: whether std normalization is applied in advantage computation. Aggr.:
loss aggregation scheme, where smtm = sequence-mean-token-mean, smts = sequence-mean-token-
sum, and tm = token-mean. Out.: use of outcome-verifiable signals. Proc.: use of process-verifiable
signals. GRPOw/ kl denotes GRPO trained with KL regularization. In DAPO, we omit dynamic
sampling and overlong reward shaping. The best results are shown in bold, and the second-best
results are underlined.

4 EXPERIMENTS

Dataset. We evaluate on AppWorld (Trivedi et al., 2024), a benchmark for interactive coding
agents that requires multi-turn planning and executable code generation in a stateful Python envi-
ronment. It integrates nine simulated consumer apps (e.g., email, payments, shopping, file system),
exposing 457 APIs across realistic digital activities. The benchmark defines 750 tasks from 250
scenarios, split into train (35/105), dev (20/60), test-normal (56/168), and test-challenge (139/417),
with the latter involving unseen apps and more complex planning.

Evaluation. We report results using two key metrics: Task Goal Completion (TGC), the percent-
age of tasks in which the agent passes all evaluation tests, and Scenario Goal Completion (SGC),
the percentage of scenarios in which the agent succeeds on every associated task.

Implementation. We adopt Qwen2.5-32B-Instruct as the base model and train it with the
veRL (Sheng et al., 2024) framework, using vLLM (Kwon et al., 2023) for efficient batched in-
ference. Training is restricted to difficulty-1/2 tasks in AppWorld (72 samples, 24 scenarios) with 8
rollouts per sample, a maximum of 40 interaction turns for training and 50 for evaluation, tempera-
ture 1.0 during training (exploration) and 0 at evaluation (deterministic execution). More details can
be found in Appendix A.1.

Baselines. We compare GVPO against both zero-shot LLMs (GPT-4o, GPT-4 Trb, Llama-3 70B,
OpenAI o1, and Qwen2.5-32B-Instruct) and RL-trained models (RLOO, GRPO, GSPO, Dr.GRPO,
and LOOP), all optimized with unit-test–based rewards Ri ∈ [0, 1]. We select the checkpoint achiev-
ing the highest TGC score on the development set. Detailed descriptions of the baselines are pro-
vided in Appendix A.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Setting Dev Test-N Test-C
TGC SGC TGC SGC TGC SGC

GVPO - 72.9 56.3 71.4 53.6 49.3 29.5

Aggr. tm 68.8 37.5 58.3 35.7 35.6 18.7
smts 68.8 43.8 65.4 42.9 46.2 25.2

Clip Sym. 64.6 37.5 59.5 37.5 40.7 20.1

Std. ✓ 70.8 50.0 62.5 42.9 41.0 23.7

Other mbs ̸= gs 68.8 62.5 64.3 42.9 43.4 22.3
additive shaping only 68.8 50.0 59.5 33.9 42.5 23.0

Table 3: Ablation study of GVPO. Performance under different design choices is reported on the
AppWorld Dev, Test-N, and Test-C splits. Variants include alternative loss aggregation schemes
(tm=token-mean, smts=sequence-mean-token-sum), symmetric vs. asymmetric clipping, std nor-
malization (Std.), and additional settings such as mismatched micro-batch/group sizes (mbs ̸= gs),
and additive shaping only (i.e., Ai,t = Âi,t − b, t ∈ Ifail

i ∧ Âi,t < 0).

4.1 RESULT

Main Results. Table 2 compares zero-shot prompting models and RL fine-tuned methods on the
AppWorld benchmark. Among the zero-shot models, OpenAI o1 achieves the highest performance
(61.9 TGC / 41.1 SGC on Test-N), but still struggles on the more challenging Test-C split. RL fine-
tuning consistently improves performance over prompting. In particular, our method, GVPO, sets
a new state-of-the-art across both splits, achieving 71.4 TGC / 53.6 SGC on Test-N and 49.3 TGC
/ 29.5 SGC on Test-C. Notably, GVPO surpasses the previously strongest 32B RL baseline, LOOP,
by 3.6 points TGC and 2.9 points SGC on Test-C, demonstrating the effectiveness of incorporating
process-verifiable signals for credit assignment. While LOOP performs competitively on Test-N,
it falls short on Test-C, highlighting GVPO’s superior generalization to unseen apps and longer
multi-step planning tasks. More analyses of the validation set results can be found in Appendix A.3.

Figure 2: Entropy trajectories of GRPO, DAPO,
GSPO, and GVPO across training steps.

Entropy Trajectories. Figure 2 compares the
entropy trajectories of GRPO, DAPO, GSPO,
and GVPO during training. GSPO shows the
fastest entropy decay, collapsing to a near-
deterministic policy, which indicates prema-
ture convergence and insufficient exploration.
GRPO and DAPO both maintain moderate
entropy levels, but their trajectories still de-
cline steadily, suggesting exploration dimin-
ishes over time and leading to potential subop-
timal local minima. In contrast, GVPO consis-
tently preserves higher entropy and avoids col-
lapse, reflecting its ability to sustain exploration
throughout training. This stability stems from
its integration of process-verifiable shaping and
asymmetric clipping, which penalize incorrect
trajectories without discouraging diversity. As
a result, GVPO achieves a better balance be-
tween exploration and exploitation than GRPO, DAPO, and GSPO, contributing to its superior ro-
bustness and final performance.

Ablation Result. Tab. 3 presents the ablation results of GVPO across the AppWorld dev, Test-
N, and Test-C splits. The full GVPO consistently achieves the strongest performance, confirming
the effectiveness of its combined design. Alternative aggregation schemes (token-mean, sequence-
mean-token-sum) lead to noticeable drops in Test-C, suggesting that GVPO’s sequence-mean-token-
mean formulation provides a better trade-off between stability and credit assignment. Symmetric

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Case study on the Gmail labeling task. Compared with GRPO and Dr.GRPO, the GVPO-
trained agent exhibits a more cautious strategy by extensively consulting API descriptions and doc-
umentation before executing concrete actions.

clipping underperforms, validating the benefit of the asymmetric “clip-higher” strategy for main-
taining exploration. Similarly, applying std normalization (Std.) degrades performance, suggesting
that removing variance scaling avoids optimization bias and better preserves the reward signal.

For mismatched micro-batch/group sizes (mbs=8, gs=6), we observe a larger performance drop here
compared to prior math-reasoning tasks, likely because AppWorld tasks involve diverse API calls
and state transitions where imbalance in batch-wise normalization amplifies variance in gradient
estimates, making training less stable.

In GVPO, for failed tokens with negative outcome advantages we apply multiplicative shaping,i.e.,
Ai,t = (1+b)·Âi,t for t ∈ Ifail

i ∧Âi,t < 0. In the additive-only variant, this scaling is replaced by a
constant penalty, i.e., Ai,t = Âi,t − b for the same index set. This substitution weakens the balance
between outcome- and process-level signals and leads to poorer generalization, underscoring that
the choice of advantage shaping is critical; we leave a deeper investigation to future work.

4.2 ANALYSIS

Figure 4: Aggregate changes in agent behavior
between the GRPO, Dr.GRPO and GVPO, aver-
aged over three i.i.d. rollouts per dev task.

Agent Behaviors. Figure 4 summarizes
the behavioral characteristics of agents
trained with GRPO, Dr.GRPO, and GVPO
across four measures: (i) average number
of interactions per task, (ii) execution fail-
ure probability per step, (iii) frequency of
show api docs calls, and (iv) frequency
of show api descriptions calls. The
results reveal clear behavioral differences
among the methods. GVPO achieves the
lowest failure probability, while simulta-
neously exhibiting the highest frequency
of documentation queries. In fact, nearly
half of the steps taken by GVPO agents
involve consulting either show api docs
or show api descriptions, suggesting
that the additional penalty on invalid steps
encourages the agent to make more cautious

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

decisions by actively seeking external guidance. Importantly, this cautious behavior does not incur
excessive interaction overhead: GVPO requires slightly more steps than Dr.GRPO but fewer than
GRPO, which often accumulates longer trajectories due to repeated corrections of earlier mistakes.
Overall, these results indicate that GVPO effectively reduces execution errors through more
deliberate decision-making, while still preserving sufficient interaction diversity and efficiency.

Case Study. Building on these quantitative findings, we next provide a qualitative case study in
Figure 3. In contrast to GRPO and Dr.GRPO, which often make invalid attempts such as logging
into Gmail with incorrect parameters or invoking the wrong API, the GVPO adopts a markedly
more cautious strategy. Nearly half of its tool invocations are devoted to querying documentation
before committing to concrete actions (e.g., Gmail login, reading, or labeling emails). This be-
havior directly aligns with the trends observed in Figure 4, offering complementary evidence that
GVPO encourages agents to act more carefully and reliably by consulting external resources prior
to execution.

5 RELATED WORK

RLVR. Since DeepSeek-R1 (Guo et al., 2025), research on the RLVR paradigm has accelerated
significantly (Wen et al., 2025; Xie et al., 2025). This line of work covers diverse dimensions such as
training data curation (Wang et al., 2024), objective formulation (Liu et al., 2025), hyperparameter
optimization (Yu et al., 2025), base model selection (Hu et al., 2025), and empirical insights (Yue
et al., 2025). Verified rewards in prior work are typically derived from deterministic outcome checks
(e.g., exact match in math (Cobbe et al., 2021) , unit tests in coding (Austin et al., 2021)), rule-based
verification with tools Li et al. (2025); Qian et al. (2025), LLM-based verifiers (Wen et al., 2025;
Chen et al., 2024), logic-based verifiers (Wang et al., 2025) or domain-specific reward models (Su
et al., 2025). The related work GiGPO (Feng et al., 2025) employs an additive shaping function to
integrate step-relative advantages but does not leverage intermediate process feedback. In contrast,
we introduce a more general advantage shaping framework that unifies both additive and multiplica-
tive formulations, and validate its effectiveness on the more challenging AppWorld benchmark.

RL for LLM agents. A complementary line of research investigates tool-use learning (Yao et al.,
2023), where agents are trained to interact with external environments through APIs (Qin et al.,
2024), code execution (Li et al., 2025), or multi-turn reasoning (Wei et al., 2025; Xi et al., 2025;
Da et al., 2025; Mai et al., 2025). The applications span text-based games (Narasimhan et al.,
2015; Yao et al., 2020; Carta et al., 2023), web navigation and shopping (Yao et al., 2022), mobile
device interaction (Bai et al., 2024), and embodied tasks (Zhai et al., 2024), yet our work focuses
on AppWorld (Trivedi et al., 2024), a significantly more challenging benchmark that requires long-
horizon, multi-app interactions. The most related effort is LOOP (Chen et al., 2025), but unlike
LOOP, GVPO incorporates signals from intermediate execute feedback, enabling more accurate
credit assignment and improved robustness.

6 CONCLUSION

We propose Group Verification-based Policy Optimization (GVPO), a reinforcement learning algo-
rithm that unifies outcome-verifiable and process-verifiable signals through an advantage shaping
framework. By leveraging intermediate execution feedback alongside final task outcomes, GVPO
achieves more accurate credit assignment, resulting in greater training stability, accelerated conver-
gence, and improved generalization in complex interactive environments. Empirical results on the
challenging AppWorld benchmark demonstrate that GVPO not only surpasses strong RL baselines
but also closes the gap with much larger proprietary systems, highlighting its potential as a scalable
approach for training stateful, multi-turn LLM interactive agents.

Limitations. GVPO currently relies on deterministic environments with well-defined process sig-
nals, and its effectiveness on tasks with ambiguous or noisy feedback remains underexplored. Ex-
tending GVPO to broader domains and integrating it with richer supervision sources are important
directions for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learn-
ing from human feedback in llms. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 12248–12267, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. Advances in
Neural Information Processing Systems, 37:12461–12495, 2024.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning 2023, volume 202, 2023.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou,
and Benyou Wang. Huatuogpt-o1, towards medical complex reasoning with llms. arXiv preprint
arXiv:2412.18925, 2024.

Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger,
Vladlen Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive
llm agents. arXiv preprint arXiv:2502.01600, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jeff Da, Clinton Wang, Xiang Deng, Yuntao Ma, Nikhil Barhate, and Sean Hendryx. Agent-rlvr:
Training software engineering agents via guidance and environment rewards. arXiv preprint
arXiv:2506.11425, 2025.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Xinji Mai, Haotian Xu, Weinong Wang, Jian Hu, Yingying Zhang, Wenqiang Zhang, et al. Agent rl
scaling law: Agent rl with spontaneous code execution for mathematical problem solving. arXiv
preprint arXiv:2505.07773, 2025.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-based
games using deep reinforcement learning. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1–11, 2015.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958,
2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. In ICLR, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. arXiv
preprint arXiv:2503.23829, 2025.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 16022–
16076, 2024.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024.

Xinyu Wang, Changzhi Sun, Lian Cheng, Yuanbin Wu, Dell Zhang, Xiaoling Wang, and Xuelong
Li. Logic-regularized verifier elicits reasoning from llms. In Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 32617–
32630, 2025.

Yuan Wei, Xiaohan Shan, Ran Miao, and Jianmin Li. Agent2: An agent-generates-agent framework
for reinforcement learning automation. arXiv preprint arXiv:2509.13368, 2025.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
incentivizes correct reasoning in base llms. arXiv preprint arXiv:2506.14245, 2025.

Zhiheng Xi, Jixuan Huang, Chenyang Liao, Baodai Huang, Honglin Guo, Jiaqi Liu, Rui Zheng, Jun-
jie Ye, Jiazheng Zhang, Wenxiang Chen, et al. Agentgym-rl: Training llm agents for long-horizon
decision making through multi-turn reinforcement learning. arXiv preprint arXiv:2509.08755,
2025.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep calm and explore:
Language models for action generation in text-based games. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 8736–8754, 2020.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via
reinforcement learning. Advances in neural information processing systems, 37:110935–110971,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 HYPERPARAMETERS AND TRAINING SETUP

Setting Value

Base setup
Base model Qwen2.5-32B-Instruct
Framework veRL + FSDP2 + vLLM (batched inference)
Training tasks AppWorld difficulty-1/2 (72 samples, 24 scenarios)
Rollouts per sample 8
Max turns (train / eval) 40 / 50
Temperature (train / eval) 1.0 / 0.0

GVPO hyperparameters
Group size G 8
Clipping range (ϵlow, ϵhigh) (0.2, 0.28)
Learning rate 1× 10−5(constant)
Batch size 4× 8
Max sequence length per turn 512 tokens
Entropy coefficient 0.0
Advantage shaping penalty b 0.2
Optimizer AdamW
Training steps 144
Mirco batchsize 8

Table 4: Hyperparameters and training setup for GVPO experiments in AppWorld.

Training setup. We conduct all experiments on a single machine equipped with 8 NVIDIA H100
GPUs. Our training framework is based on verl with FSDP2 for efficient distributed training. For
data generation, we employ vLLM to perform rollouts. After collecting trajectories, we recompute
the per-token log-probabilities under the generating policy, rather than using the values directly
reported by vLLM.

Agent setup. All agents are prompted in a ReAct-style format, which includes one in-context
example of a successful task execution. The agent receives as input the results of code execution
(e.g., API call outputs or exception traces), together with the original task instruction. At each turn,
the agent is allowed to generate up to 512 tokens in total. This limit covers both reasoning tokens
(chain-of-thought) and code. If an API response exceeds 3K tokens, it is truncated, and the agent is
provided with a short note indicating that truncation has occurred.

AppWorld setup. During training, we launch 32 independent AppWorld backend services in ad-
vance. The training framework communicates with these AppWorld backends via a Redis message
queue, which serves as the central communication hub. Each backend service is bound to a unique
port, and port numbers are used to associate each AppWorld instance with its corresponding tra-
jectory. This design ensures that multiple trajectories can be executed in parallel while avoiding
interference across different AppWorld backends.

Training Hyperparameters. We use a constant learning rate of 1 × 10−5 and clip the gradient
norm to 1 in all experiments. Each training sample produces 8 rollouts with temperature 1.0. To
accelerate training, we apply early stopping to rollout collection: rollout generation is terminated
once at least 6 rollouts have been collected for each task and 90% of the total rollouts have been
collected. Concretely, we consider two stopping conditions. First, within each group of 8 rollouts
for a given task, rollout collection ends once 6 rollouts have finished. Second, across the 32 sampled
tasks, rollout collection terminates once 30 tasks have completed. Early stopping is only applied
after the model has generated at least 30 steps of rollout, ensuring sufficient exploration before
termination. We allow up to 40 interactions between the agent and the environment during training
and up to 50 for evaluation. Any episode that does not complete within this interaction budget
is considered a failure. If the sequence reaches the model’s context window limit, the rollout is
terminated (Tab. 4).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Para. Std. Aggr. Out. Proc.
Dev

TGC SGC
Fine-tuning with RL
GRPOw/ kl 32B ✓ smtm ✓ ✗ 64.6 37.5
GRPO 32B ✓ smtm ✓ ✗ 62.5 50.0
GSPO 32B ✓ smtm ✓ ✗ 62.5 43.75
DAPO 32B ✓ tm ✓ ✗ 62.5 37.5
Dr.GRPO 32B ✗ smts ✓ ✗ 66.7 43.75
RLOOw/ kl 32B ✗ smtm ✓ ✗ 64.6 37.5
GVPO 32B ✗ smtm ✓ ✓ 72.92 56.25

Table 5: Comparison of RL fine-tuning methods on the AppWorld Dev set. Para.: model parameter
scale. Std.: whether std normalization is applied in advantage computation. Aggr.: loss aggregation
scheme, where smtm = sequence-mean-token-mean, smts = sequence-mean-token-sum, and tm =
token-mean. Out.: use of outcome-verifiable signals. Proc.: use of process-verifiable signals.
GRPOw/ kl denotes GRPO trained with KL regularization. The best results are shown in bold, and
the second-best results are underlined.

A.2 BASELINES

This section provides a detailed overview of the reinforcement learning (RL) algorithms evaluated
in our experiments. Each method represents a different strategy for variance reduction, credit as-
signment, or stability enhancement in policy gradient optimization.

1. RLOO (Reinforce Leave-One-Out). Builds upon the REINFORCE estimator by introducing a
leave-one-out baseline within each rollout group. This design reduces variance in advantage estima-
tion compared to vanilla REINFORCE, leading to more stable updates without requiring additional
learned value functions.

2. GRPO (Group Relative Policy Optimization). Computes relative advantages by normalizing re-
wards within a rollout group, thereby stabilizing training against reward scale fluctuations. GRPO
has become a standard RLVR approach for LLM fine-tuning. Variants may additionally incorporate
KL regularization with respect to the base model to control divergence.

3. GSPO (Group Sequence Policy Optimization). Moves from token-level to sequence-level opti-
mization by defining the importance ratio at the trajectory level. It applies sequence-level clipping,
which simplifies optimization and reduces variance. This approach has demonstrated strong perfor-
mance and efficiency, particularly in recent Qwen3 models.

4. Dr.GRPO (GRPO Done Right). Addresses biases in GRPO by (i) removing the normalization
with group standard deviation during advantage computation, and (ii) modifying the loss aggrega-
tion scheme to smts. These changes improve token efficiency and reduce optimization bias, while
preserving the reasoning capability of the model.

5. DAPO (Decoupled Clip and Dynamic sAmpling Policy Optimization). Combines clip-higher
for exploration and a token-level loss for fine-grained credit assignment; we omit dynamic sampling
and overlong reward shaping.

6. LOOP (Leave-One-Out PPO). Extends RLOO by adopting a PPO-style optimization procedure,
applying multiple epochs of clipped updates per batch. This combination improves exploration and
enhances policy robustness in long-horizon interactive tasks. As the original implementation was
not open-sourced, we rely on the reported results from the publication, which are available only for
the Test set.

A.3 VALIDATION RESULT

Tab. 5 reports the validation set results from the main experiment, highlighting the performance
of RL fine-tuning methods. On the Dev split, GVPO achieves the strongest performance across
both metrics, with 72.9 TGC and 56.3 SGC, substantially outperforming all other RL fine-tuning
baselines. This mirrors the Test results, where GVPO also consistently leads. Among baselines,
Dr.GRPO achieves competitive TGC (66.7) and moderately strong SGC (43.8), aligning with its
relatively strong Test-N and Test-C performance. By contrast, standard GRPO performs reasonably

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

in TGC but lags in SGC (50.0), confirming that outcome-only optimization struggles to capture
scenario-level success. Similarly, GSPO and DAPO exhibit weaker results, reflecting the limita-
tions of their simpler shaping or aggregation strategies. Overall, the Dev results reinforce the trends
observed in Test evaluations: incorporating process-verifiable signals via GVPO leads to clear im-
provements in both task completion and scenario consistency. This suggests that GVPO not only
generalizes better in held-out tests but also provides a more stable and effective training signal al-
ready visible during development.

A.4 EXAMPLE OF APPWORLD

Fig. 5 illustrates a representative trajectory from the AppWorld Spotify task, showcasing how the
agent interacts with APIs in a multi-step reasoning process. The agent first queries the supervisor’s
profile and stored account passwords, then uses this information to successfully authenticate with the
Spotify API and obtain an access token. With the valid token, it proceeds to call the recommendation
API to retrieve music suggestions. This example highlights how the agent effectively integrates
intermediate signals, such as execution success, to guide subsequent actions, ensuring correctness
and reliability in a complex, stateful environment.

A.5 LLM USAGE

In accordance with the ICLR policy on the use of large language models (LLMs), we report that
LLMs were used exclusively for language polishing and grammar refinement in this paper. LLMs
were not used for designing experiments, conducting analyses, or generating research content. All
research ideas, implementations, and results are the work of the authors.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Example trajectory from AppWorld’s Spotify task.

16

	Introduction
	Preliminary
	Group Relative Policy Optimization (GRPO)
	Interactive Coding Agents

	Approach
	Group Verification-based Policy Optimization (GVPO)
	Outcome-Verifiable Reward Functions
	Process-Verifiable Functions

	Experiments
	Result
	Analysis

	Related Work
	Conclusion
	Appendix
	Hyperparameters and Training Setup
	Baselines
	Validation Result
	Example of AppWorld
	LLM Usage

