

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CLEAR: CALIBRATED LEARNING FOR EPISTEMIC AND ALEATORIC RISK

Anonymous authors

Paper under double-blind review

ABSTRACT

Accurate uncertainty quantification is critical for reliable predictive modeling. Existing methods typically address either aleatoric uncertainty due to measurement noise or epistemic uncertainty resulting from limited data, but not both in a balanced manner. We propose CLEAR, a calibration method with two distinct parameters, γ_1 and γ_2 , to combine the two uncertainty components and improve the conditional coverage of predictive intervals for regression tasks. CLEAR is compatible with any pair of aleatoric and epistemic estimators; we show how it can be used with (i) quantile regression for aleatoric uncertainty and (ii) ensembles drawn from the Predictability–Computability–Stability (PCS) framework for epistemic uncertainty. Across 17 diverse real-world datasets, CLEAR achieves an average improvement of 28.2% and 17.4% in the interval width compared to the two individually calibrated baselines while maintaining nominal coverage. Similar improvements are observed when applying CLEAR to Deep Ensembles (epistemic) and Simultaneous Quantile Regression (aleatoric). The benefits are especially evident in scenarios dominated by high aleatoric or epistemic uncertainty.

1 INTRODUCTION

Uncertainty quantification (UQ) is essential for building reliable machine learning systems (Abdar et al., 2021; Gawlikowski et al., 2023). Despite their impressive capabilities, modern machine learning methods can give a false sense of reliability; therefore, producing valid prediction intervals remains an open problem. Calibration (Kuleshov et al., 2018) and conformal methods (Vovk et al., 2005; 2009; Vovk, 2012; 2013; Angelopoulos et al., 2024) adjust prediction intervals to obtain marginal coverage (that is, covering a certain percentage of the data on average). However, they may suffer from poor conditional coverage, meaning well-calibrated coverage at the individual or subgroup level (Gibbs et al., 2024). In particular, under distribution shift or model misspecification, conditional coverage can degrade substantially, especially in extrapolation regions. Most conformal methods, such as conformalized quantile regression (CQR) (Romano et al., 2019), only capture aleatoric uncertainty while ignoring epistemic uncertainty.

It is important to distinguish between the two main sources of uncertainty, namely epistemic and aleatoric. Epistemic uncertainty Hüllermeier & Waegeman (2021) arises from our limited understanding of the data generation process and the model, encompassing issues related to data collection, preprocessing, transformation, and model specification. Notably, this uncertainty is typically large in extrapolation regions where training data is sparse. In contrast, aleatoric uncertainty (Kirchhoff et al., 2025) reflects the inherent variability within the data (stemming from measurement errors, missing covariates, randomness, or intrinsic noise) that cannot be reduced simply by gathering more observations or refining the model unless the data acquisition process itself is improved where more features are measured. Separating the two sources can be beneficial for various applications (Tagasovska & Lopez-Paz, 2019; Laves et al., 2021). For instance, in active learning, epistemic uncertainty helps in selecting which samples to label, while aleatoric uncertainty is less relevant (Settles, 2012). However, for prediction tasks, appropriately combining both epistemic and aleatoric parts is necessary to account for the overall uncertainty in the model’s predictions (Marques & Berenson, 2024).

In this work, we contribute to the existing literature by combining aleatoric and epistemic uncertainties in a data-driven manner. We consider prediction intervals $C(x)$ of the form

$$C(x) = \left[\hat{f}(x) \pm (\gamma_1 \times \text{aleatoric}_{\pm}(x) + \gamma_2 \times \text{epistemic}_{\pm}(x)) \right], \quad \text{with } \gamma_2 = \lambda \gamma_1, \quad (1)$$

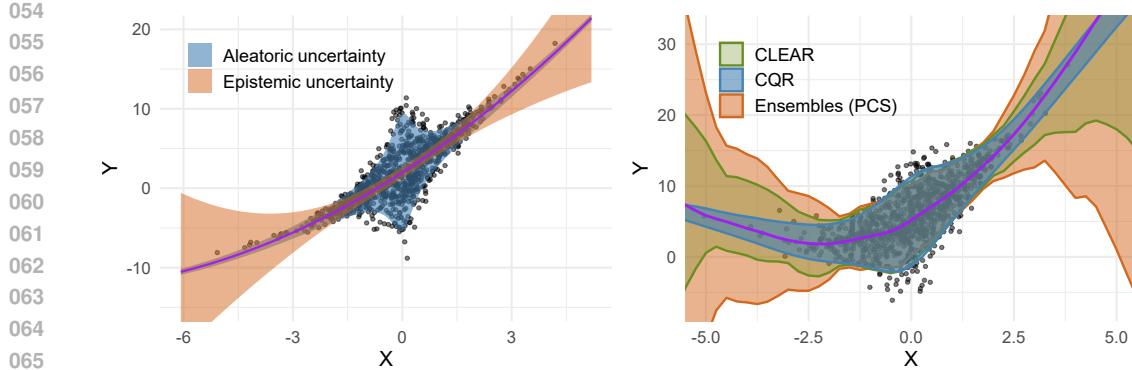


Figure 1: **Left:** Blue represents aleatoric uncertainty, which reflects randomness inherent in the data such as measurement noise. Red represents epistemic uncertainty, which arises from limited sample size. **Right:** Estimated prediction sets using the CLEAR method, which combines both sources of uncertainty in a data-driven manner.

where \hat{f} is a point estimate, and $\gamma_1, \gamma_2 \in [0, \infty)$ are coefficients selected to 1) calibrate marginal coverage and 2) optimally balance the two types of uncertainty (optimality is defined in terms of a quantile loss metric introduced later). The parameter λ controls the trade-off between the two uncertainty types: when $\lambda = 0$, the interval reflects only aleatoric uncertainty, while as $\gamma_1 \rightarrow 0, \lambda = \frac{\gamma_2}{\gamma_1} \rightarrow \infty$, it reflects only epistemic uncertainty. By allowing an adaptively chosen λ , we ensure a more flexible and data-driven trade-off to the two components, leading to prediction intervals that are both well-calibrated and more informative (Figure 1). Moreover, estimating λ can help practitioners better understand which source of uncertainty is the dominant contributor to the overall uncertainty.

The combination of epistemic and aleatoric uncertainty is not new: Bayesian methods have long incorporated both components (Kendall & Gal, 2017; Depeweg et al., 2018), and several recent approaches have also explored this decomposition in the context of conformal prediction (Rossellini et al., 2024; Hofman et al., 2024a; Cabezas et al., 2025). However, to the best of our knowledge, existing methods either do not explicitly distinguish between the two types of uncertainty or implicitly fix the combination ratio, for instance, setting $\lambda = 1$ (Lakshminarayanan et al., 2017; Kendall & Gal, 2017; Depeweg et al., 2018), or fixing $\gamma_1 = 1$ (Rossellini et al., 2024). This fixed choice may be suboptimal, as the relative importance of each uncertainty type varies with the data distribution and prediction task (see Appendix A for more details on related work).

1.1 CONTRIBUTIONS

1. We are the first to introduce two calibration parameters γ_1 and γ_2 , to balance the scales of aleatoric and epistemic uncertainty on the validation dataset.
2. We demonstrate that fitting quantiles on the residuals provides much more sensible estimators of aleatoric uncertainty than fitting the quantiles directly on the targets.
3. We are the first to combine the ensemble perturbation intervals of the PCS framework (Yu & Kumbier, 2020) with the CQR aleatoric uncertainty estimator, and empirically show the strengths of this combination.
4. We conduct large-scale UQ benchmarking for several models on 17 regression datasets.

The remainder of the paper is organized as follows: Section 2 introduces the CLEAR methodology. Section 3 outlines the experimental setup, including synthetic simulations, real-world datasets, baselines, and metrics. Section 4 presents results and a case study of the PCS pipeline. Section 5 concludes with limitations and future directions.

108

2 METHOD

109

2.1 PROBLEM SCENARIO

110 Consider a classical setting, where an i.i.d. sample $(X_i, Y_i), i = 1, \dots, n$ is drawn from distribution
111 $P_X \times P_{Y|X}$. The goal of conformal inference is to construct a prediction set $C(X_{n+1}) \subseteq \text{supp}(Y)$
112 for a new data-point (X_{n+1}, Y_{n+1}) satisfying marginal coverage

113
$$\mathbb{P}(Y_{n+1} \in C(X_{n+1})) \geq 1 - \alpha, \quad (2)$$

114 where $\alpha \in (0, 1)$ is for instance $\alpha = 0.05$. In order to construct C , data $\mathcal{D} = \{(X_i, Y_i), i = 1, \dots, n\}$
115 can be split into train and calibration subsets $\mathcal{D}_{\text{train}}, \mathcal{D}_{\text{cal}}$. On the training data, a first estimate of C
116 can be constructed, and then we can use data from \mathcal{D}_{cal} to calibrate C such that (2) is satisfied.
117118 In case of CQR, we first estimate conditional quantiles $\hat{q}_{\alpha/2}(x), \hat{q}_{1-\alpha/2}(x)$ using $\mathcal{D}_{\text{train}}$, and then
119 construct $C(x) = [\hat{q}_{\alpha/2}(x) - \gamma, \hat{q}_{1-\alpha/2}(x) + \gamma]$, where the calibration parameter γ is chosen so that
120 the prediction interval $C(X_i)$ contains Y_i for exactly $\lceil (1 - \alpha)(|\mathcal{D}_{\text{cal}}| + 1) \rceil$ points in the calibration set
121 \mathcal{D}_{cal} . While this procedure guarantees finite-sample distribution-free marginal coverage Angelopoulos
122 et al. (2024), conditional coverage

123
$$\mathbb{P}(Y_{n+1} \in C(X_{n+1}) \mid X_{n+1} = x) \geq 1 - \alpha$$

124 does not need to hold. As pointed out in Lei & Wasserman (2014); Barber et al. (2020), any
125 algorithm with finite-sample distribution-free conditional coverage guarantees for all x must be trivial
126 $C(x) = (-\infty, \infty)$. However, we aim to design estimators such that conditional coverage holds
127 approximately under reasonable real-world scenarios, even if exact finite-sample guarantees are
128 impossible in general.
129130

2.2 EPISTEMIC UNCERTAINTY

131 The traditional machine learning approach trains a predictive algorithm on a single version of the
132 cleaned/preprocessed dataset and uses the best-performing algorithm (compared using the validation
133 set) for future predictions. While theoretically sound in the infinite-sample limit, this approach
134 ignores the uncertainty stemming from finite sample size and model choice (epistemic uncertainty).
135 Various methods have been proposed to estimate this uncertainty, including Deep Ensembles (Laksh-
136 minarayanan et al., 2017), MC dropout in NN (Gal & Ghahramani, 2016), Orthonormal Certificates
137 (Tagasovska & Lopez-Paz, 2019), NOMU (Heiss et al., 2022b), BNNs (MacKay, 1992) and Laplace
138 Approximation (Ritter et al., 2018), among others.
139140 Estimating Epistemic Uncertainty via PCS: In practice, additional sources of uncertainty arise from
141 subjective choices in data cleaning, imputation, and dataset construction, which we also consider as
142 extended epistemic uncertainty. The Predictability, Computability, and Stability (PCS) framework
143 (Yu & Kumbier, 2020) offers a holistic point of view on the data-science-life-cycle, without explicitly
144 modeling aleatoric uncertainty. One can obtain an ensemble of m estimators $\hat{f}_1, \dots, \hat{f}_m$ as follows:
145

- 146
- 147 1. Split the data into $\mathcal{D}_{\text{train}}, \mathcal{D}_{\text{val}}$.
 - 148 2. Create N_1 differently preprocessed versions of the data and define N_2 different models (e.g.,
149 linear regression, random forest, neural networks). Then, train models for all $N_1 \times N_2$
150 combinations on $\mathcal{D}_{\text{train}}$ and pick the top- k based on their performance on \mathcal{D}_{val} .
 - 151 3. Refit each of the top- k models on b bootstrap samples $\mathcal{D}_{\text{train}}^1, \dots, \mathcal{D}_{\text{train}}^b$ of $\mathcal{D}_{\text{train}}$ to obtain an
152 ensemble of $m = k \times b$ estimators $\hat{f}_1, \dots, \hat{f}_m$.

153 Taking the point-wise median of $\hat{f}_1, \dots, \hat{f}_m$, yields the final PCS estimate \hat{f} , and the point-wise $\alpha/2$
154 and $1 - \alpha/2$ quantiles (denoted $\hat{f}_{\alpha/2}$ and $\hat{f}_{1-\alpha/2}$, respectively) define the uncalibrated uncertainty
155 band. The widths of this interval, denoted as $\hat{q}_{1-\alpha/2}^{\text{epi}}(x) := \hat{f}_{1-\alpha/2}(x) - \hat{f}(x)$ and $\hat{q}_{\alpha/2}^{\text{epi}}(x) :=$
156 $\hat{f}(x) - \hat{f}_{\alpha/2}(x)$, quantifies the uncalibrated epistemic uncertainty. Agarwal et al. (2025) extends this
157 by using the combined data set $\mathcal{D}_{\text{train}} \cup \mathcal{D}_{\text{val}}$ for training and calibrating uncertainty based on out-of-
158 bag data. The focus is only on the modeling step of the framework. We later demonstrate—through a
159 case study in Section 4.3—that accounting for uncertainty from data cleaning and pre-processing
160 is also important, and how the uncertainty contributions can be adapted and improved using our
161 approach.

162 2.3 ALEATORIC UNCERTAINTY
163

164 Aleatoric uncertainty can be estimated by modeling the conditional distribution of the outcome
165 given the inputs. Common approaches include direct conditional quantile regression (Koenker &
166 Bassett, 1978), either parametric or nonparametric, such as smooth quantile regression (Fasiolo
167 et al., 2020) and quantile random forests (QRF) (Meinshausen, 2006); heteroskedastic models that
168 estimate input-dependent noise levels $\sigma(x)$ under Gaussian assumptions (Nix & Weigend, 1994); and
169 distributional regression techniques such as simultaneous quantile regression (Tagasovska & Lopez-
170 Paz, 2019). More flexible alternatives include conditional density estimation and deep generative
171 models such as conditional generative adversarial networks (Oberdiek et al., 2022), conditional
172 variational autoencoders (Han et al., 2020) and diffusion models (Chang et al., 2023).
173

174 In this work, we estimate aleatoric uncertainty using quantile regression models $\hat{r}_{\alpha/2}, \hat{r}_{0.5}, \hat{r}_{1-\alpha/2}$
175 (selected in Line 2 from PCS) trained on the residuals $Y_i - \hat{f}(X_i)$. This approach offers improved
176 stability: underfitting quantile regression directly on the y -values can severely distort aleatoric
177 uncertainty estimates. In contrast, extreme underfitting on residuals, at worst, corresponds to assuming
178 homoskedastic noise, which can be an acceptable bias. This improves the stability with respect to
179 hyperparameters. To further improve the stability, we apply a PCS-inspired bagging strategy, by
180 taking the empirical median
181

$$\hat{q}_{1-\alpha/2}^{\text{ale}}(x) := \text{Median} \left[(\hat{r}_{1-\alpha/2}(x) - \hat{r}_{0.5}(x))^+ \right] \text{ and } \hat{q}_{\alpha/2}^{\text{ale}}(x) := \text{Median} \left[(\hat{r}_{0.5}(x) - \hat{r}_{\alpha/2}(x))^+ \right]$$

182 over the ensemble members. Overall, it is computationally efficient and straightforward to implement.
183

184 2.4 CLEAR: COMBINING ALEATORIC & EPISTEMIC UNCERTAINTY
185

186 To combine both aleatoric and epistemic uncertainties, we use a weighted scheme as in Equation (1).
187 Specifically, using a PCS-type estimator $\hat{q}_{\alpha}^{\text{epi}}$ and a quantile regression estimator $\hat{q}_{\alpha}^{\text{ale}}$ trained on the
188 residuals $Y_i - \hat{f}(X_i)$, we define the prediction interval:
189

$$C = \left[\hat{f} - \gamma_1 \hat{q}_{\alpha/2}^{\text{ale}} - \gamma_2 \hat{q}_{\alpha/2}^{\text{epi}}, \quad \hat{f} + \gamma_1 \hat{q}_{1-\alpha/2}^{\text{ale}} + \gamma_2 \hat{q}_{1-\alpha/2}^{\text{epi}} \right]. \quad (3)$$

190 Given a fixed ratio $\lambda = \frac{\gamma_2}{\gamma_1}$, we compute γ_1 on a held-out calibration set using the standard split
191 conformal prediction procedure. While the natural choice $\gamma_1 = \gamma_2$ may seem appealing, it is often
192 suboptimal. The relative contribution of aleatoric and epistemic uncertainty can vary across datasets,
193 and the corresponding estimators may differ substantially in scale and precision when $\gamma_1 = \gamma_2$.
194

195 To choose λ from data, we evaluate a grid of positive values Λ . For each candidate $\lambda \in \Lambda$, we
196 construct the (calibrated) interval C_{λ} . To ensure the best trade-off between uncertainty sources, we
197 select λ^* such that C_{λ^*} performs best under the chosen metric on \mathcal{D}_{val} . We have chosen quantile loss
198 (Koenker & Bassett, 1978) (defined in Algorithm 1, also known as pinball loss) as a simple metric to
199 balance both coverage and width. However, any other metric can also be used. As a proper scoring
200 rule, quantile loss incentivizes truthfulness from a theoretical perspective (see Appendix B.3). This
201 procedure is summarized in Algorithm 1.
202

203 Parameter λ^* balances aleatoric and epistemic uncertainties: if one estimator fails, λ^* compensates
204 by re-weighting the other. When both estimators $\hat{q}_{\alpha}^{\text{epi}}$ and $\hat{q}_{\alpha}^{\text{ale}}$ are reliable (up to scaling), λ^* is
205 interpretable. A large ratio

$$\lambda^* \frac{\hat{q}_{1-\alpha/2}^{\text{epi}}(x) + \hat{q}_{\alpha/2}^{\text{epi}}(x)}{\hat{q}_{1-\alpha/2}^{\text{ale}}(x) + \hat{q}_{\alpha/2}^{\text{ale}}(x)} \gg 1$$

206 indicates that epistemic uncertainty dominates at x (reducible with more training observations
207 or stronger assumptions), while a small ratio $\ll 1$ indicates aleatoric uncertainty dominates (not
208 reducible by adding more training observations, though sometimes reducible by adding covariates).
209

210 **Lemma 2.1.** *Let Λ be compact. Suppose that at least k of the base models used in the PCS ensemble
211 are consistent for the true function $f(x)$, and the quantile regression estimators $\hat{q}_{\tau}^{\text{ale}}$ are consistent
212 for both $\tau \in \{\alpha/2, 1 - \alpha/2\}$. Then we obtain **asymptotic conditional validity**: for any fixed $x \in \mathcal{X}$,
213 it holds that*

$$\liminf_{|\mathcal{D}_{\text{train}}|, |\mathcal{D}_{\text{cal}}| \rightarrow \infty} \mathbb{P}(Y_{n+1} \in C(X_{n+1}) \mid X_{n+1} = x) \geq 1 - \alpha.$$

216 **Algorithm 1** CLEAR: Calibrated Learning for Epistemic and Aleatoric Risk

-
- 217 1: **Input:** Data (X_i, Y_i) for $i = 1, \dots, n$, split into training $\mathcal{D}_{\text{train}}$, calibration \mathcal{D}_{cal} , and validation
218 \mathcal{D}_{val} (we consider $\mathcal{D}_{\text{cal}} = \mathcal{D}_{\text{val}}$); grid of λ values Λ ; significance level α .
- 219 2: **Step 1: Estimate epistemic uncertainty on $\mathcal{D}_{\text{train}}$.**
220 Example: Estimate stable point predictor \hat{f} and epistemic quantiles $\hat{q}_{\alpha/2}^{\text{epi}}, \hat{q}_{1-\alpha/2}^{\text{epi}}$ using PCS
221 ensembles across data perturbations.
- 222 3: **Step 2: Estimate aleatoric uncertainty on $\mathcal{D}_{\text{train}}$.**
223 Example: train a quantile regression model on the residuals $Y_i - \hat{f}(X_i)$ to estimate conditional
224 quantiles $\hat{q}_{\alpha/2}^{\text{ale}}, \hat{q}_{1-\alpha/2}^{\text{ale}}$.
- 225 4: **Step 3: Define prediction intervals for each $\lambda \in \Lambda$.**
226 Define C_λ by selecting the smallest value γ_1 such that the prediction set
227
- $$228 C_\lambda = \left[\hat{f} - \gamma_1 \hat{q}_{\alpha/2}^{\text{ale}} - \lambda \gamma_1 \hat{q}_{\alpha/2}^{\text{epi}}, \hat{f} + \gamma_1 \hat{q}_{1-\alpha/2}^{\text{ale}} + \lambda \gamma_1 \hat{q}_{1-\alpha/2}^{\text{epi}} \right]$$
- 229 contains at least $\lceil (1 - \alpha)(|\mathcal{D}_{\text{cal}}| + 1) \rceil$ of points in \mathcal{D}_{cal} . See Appendix B.5 for implementation.
- 230 5: **Step 4: Select λ^* that minimizes a chosen evaluation metric.**
231 For any metric in Appendix D.5 (e.g., quantile loss), evaluate $C_\lambda(x)$ on \mathcal{D}_{val} and set
232
- $$233 \lambda^* = \arg \min_{\lambda \in \Lambda} \text{QuantileLoss}(\mathcal{D}_{\text{val}}, C_\lambda),$$
- 234 where $\text{QuantileLoss}(\mathcal{D}_{\text{val}}, C_\lambda) := \frac{1}{|\mathcal{D}_{\text{val}}|} \sum_{i \in \mathcal{D}_{\text{val}}} [QL_{\alpha/2}(Y_i, l(X_i)) + QL_{1-\alpha/2}(Y_i, u(X_i))] / 2$,
235 with $l(x), u(x)$ denoting the bounds of $C_\lambda(x)$, and $QL_\tau(y, q) = (y - q)(\tau - \mathbb{1}_{(-\infty, q]}(y))$.
236 6: **Output:** λ^* and calibrated prediction interval $C_{\lambda^*}(x)$.
-

241 *Proof.* The consistency of the predictors implies $\hat{q}_\tau^{\text{epi}}(x) \rightarrow 0$, and the consistency of the quantile
242 estimators implies $\hat{q}_\tau^{\text{ale}}(x) \rightarrow q_\tau^{\text{ale}}(x)$ point-wise. Hence, the estimated pre-calibrated intervals
243 converge to their population analogues. Since $\sup_{\lambda \in \Lambda} \lambda \hat{q}_\tau^{\text{epi}}(x) \rightarrow 0$ uniformly over
244 $\lambda \in \Lambda$ (due to compactness of Λ), therefore $C(x)$ is asymptotically equal to true conditional quantiles
245 $[r_{\alpha/2}(x), r_{1-\alpha/2}(x)]$; and necessarily $\lim_{|\mathcal{D}_{\text{cal}}| \rightarrow \infty} \gamma_1 = 1$, as is the case in classical CQR (see e.g.
246 (Angelopoulos et al., 2024, Section 5)). \square

247 Note that these assumptions are satisfied by the finite grid Λ used in our implementation and by many
248 base models, including tree-based methods and neural networks. We elaborate on the theoretical
249 implications in Appendix B, with formal guarantees for marginal coverage in Lemma B.2.

250

3 EXPERIMENTAL SETUP

251

3.1 DATA

252 We conduct experiments using both simulations and real-world data. The synthetic experiments assess
253 the theoretical guarantees of our approach. We sample $X \sim \mathcal{N}(0_d, I_d)$ and compute the response
254 $Y = \mu(X) + \sigma(X) \cdot \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, 1)$. The mean function $\mu(X)$ introduces non-linearity
255 through transformations of input features (involving absolute values and fractional powers with
256 random coefficients); its explicit form, alongside $\sigma(X)$, is detailed in Appendix C. The sample
257 size is fixed at $n = 5000$ and divided into 70-30% training and validation splits. In the univariate
258 case, we generate 100 datasets for $d = 1$, and in multivariate, 100 datasets randomly sampled for
259 $d \in \{2, 3, 20\}$. We then assess the conditional performance as a function of distance from $[X]$,
260 where test points are randomly generated on the surfaces of spheres with varying radii. For the
261 real-world scenarios, we use 17 regression datasets curated by Agarwal et al. (2025), forming one
262 of the largest benchmarks for UQ (see Appendix D.1 for details). Categorical features are one-hot
263 encoded, with no further preprocessing. To ensure robustness, each dataset is evaluated over 10
264 random train-validation-test splits (60%-20%-20%). We conduct experiments in two configurations:
265 **standard** (using \mathcal{D}_{val} also as \mathcal{D}_{cal}) and **conformalized** (splitting the 20% validation into 10% $\mathcal{D}_{\text{val}} +$
266 10% \mathcal{D}_{cal} for stronger theoretical guarantees). Note that while the body of the paper only focuses on
267 the standard experiments, the conformalized results are provided in Appendix G.

270 3.2 BASELINES
271

272 We compare CLEAR against its core components, CQR and PCS ensemble (for details, including
273 PCS implementation and further baselines that are relevant only to the appendices, see Appendix D).
274 Notably, the underlying uncertainty estimation models from CQR and PCS are reused within the
275 CLEAR framework. Our CQR follows the classical implementation (Romano et al., 2019) with the
276 difference that in our experiments, we primarily utilize an enhanced variant, termed **ALEATORIC**,
277 which uses bootstrapping ($b = 100$) on Y_i and the model selection from PCS. We further improve
278 ALEATORIC in a new baseline called **ALEATORIC-R**, which models the residuals $Y_i - \hat{f}(X_i)$
279 instead, using \hat{f} from the corresponding PCS ensemble. The CLEAR method presented uses the
280 uncalibrated aleatoric uncertainty estimate from this ALEATORIC-R and the uncalibrated epistemic
281 uncertainty from PCS. For fairness and cross-comparison, the model type for quantile estimation
282 within the ALEATORIC-R model is determined by the best-chosen model for epistemic uncertainty.

283 We perform ablation studies by exploring three different variants of base models for PCS (epistemic)
284 and CQR (aleatoric). Our main approach, which we refer to as **variant (a)**, uses a **quantile PCS** for
285 estimating epistemic uncertainty. We employ a diverse set of models designed to estimate conditional
286 quantiles, namely quantile random forests (QRF) (Meinshausen, 2006), quantile XGBoost (QXGB)
287 (Chen & Guestrin, 2016), and Expectile GAM (Servén & Brummitt, 2018). Then, the top-performing
288 model ($k = 1$) on the validation set is selected and bootstrapped ($b = 100$) to generate the epistemic
289 uncertainty estimate \hat{q}^{epi} and the median \hat{f} . CLEAR then combines this bootstrapped \hat{q}^{epi} with the
290 bootstrapped aleatoric estimate from ALEATORIC-R, ensuring ALEATORIC-R also uses the same
291 selected quantile model. The other two variants are explained in Appendix D.4, both using the same
292 b and k as above and only modifying the models. **Variant (b)** restricts quantile PCS as well as CQR
293 baselines to **only QXGB** to remove any impact on CLEAR’s evaluation due to the choice of the base
294 models. In contrast, **variant (c)** uses the standard PCS models to estimate the **conditional mean**. In
295 all cases, PCS intervals are calibrated using the multiplicative method.

296 To further validate the generalizability of CLEAR, we also apply and evaluate it to other uncertainty
297 estimators. This is a separate setup, where for epistemic uncertainty, we employ **Deep Ensem-**
298 **bles (DE)** (Lakshminarayanan et al., 2017)—an ensemble of neural networks trained with diverse
299 initializations—and for aleatoric uncertainty, we use **Simultaneous Quantile Regression (SQR)**
300 (Tagasovska & Lopez-Paz, 2019), which directly models multiple conditional quantiles (more de-
301 tail in Appendix D.3). These represent state-of-the-art deep learning approaches for uncertainty
302 quantification, complementing our primary PCS and CQR baselines.

303 In all cases, CLEAR parameters (λ, γ_1) are optimized via quantile loss on the validation set. λ is
304 chosen from a dense grid combining linearly spaced values from 0 to 0.09 and logarithmically spaced
305 values from 0.1 to 100 (totaling over 4000 points), and γ_1 is determined via conformal calibration
306 for the chosen λ . All intervals are evaluated at 95% nominal coverage. In our benchmarks, we only
307 address the model perturbations of PCS, not the data processing part, where we simplify the process
308 to a single dataset ($N_1 = 1$), as in Agarwal et al. (2025). However, we show an example in Section 4.3
309 of how CLEAR can be applied in the $N_1 > 1$ setting from Yu & Barter (2024, Chapter 13).

310 3.3 METRICS
311

312 To evaluate the quality of our prediction intervals, we employ interval coverage (PICP), normalized
313 interval width (NIW), average interval score loss and the quantile loss that are common in the interval
314 prediction literature (Pearce et al., 2018; V'yugin & Trunov, 2019; Azizi et al., 2025). We also
315 evaluate our work on Normalized Calibrated Interval Width (NCIW), defined as:

$$316 \quad \text{NCIW}(\hat{f}, l, u) = \text{NIW} \left(\hat{f} - c_{\text{test-cal}} l, \hat{f} + c_{\text{test-cal}} u \right),$$

317 with a calibration constant

$$319 \quad c_{\text{test-cal}} := \arg \min_{c \geq 0} \left\{ \text{PICP} \left(\hat{f} - cl, \hat{f} + cu \right) \geq 1 - \alpha \right\}.$$

321 In the standard configuration, all methods are calibrated on the validation set; in the conformalized
322 configuration, calibration uses a separate 10% calibration split. In both cases the methods are already
323 calibrated before evaluation on the test set, resulting in $c_{\text{test-cal}} \approx 1$. We primarily discuss NCIW and
324 quantile loss, but provide the results for all the available metrics.

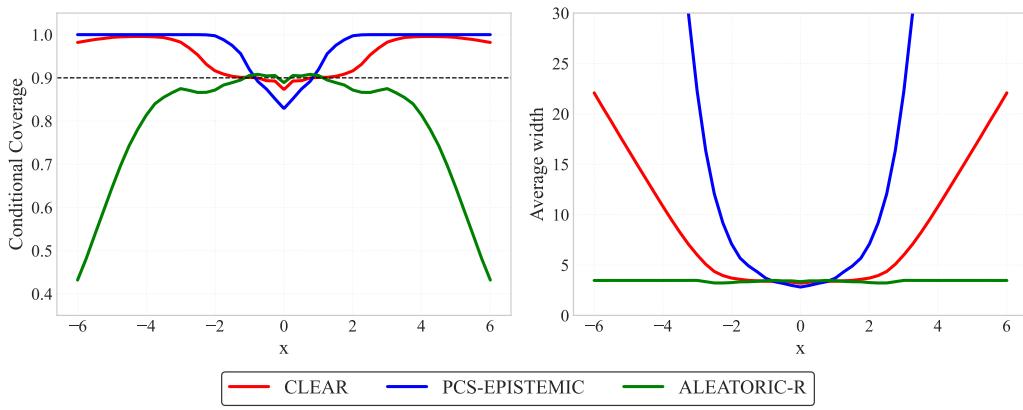
324

4 RESULTS

325

4.1 SIMULATIONS

328 Figure 2 shows conditional coverage and interval width for the univariate homoskedastic case. While
 329 ALEATORIC-R achieve good coverage in high-density regions but under-cover in low-density or
 330 extrapolation regions. When aleatoric and epistemic uncertainties are correlated, all methods perform
 331 similarly in the data-rich region, but only CLEAR maintains correct conditional coverage throughout,
 332 adapting interval width as needed. Additional results for heteroskedastic and multivariate settings in
 333 Appendix C.2.2 show similar findings.



348 Figure 2: Results for univariate homoskedastic case averaged over 100 simulations: On the left,
 349 conditional coverage, and on the right, mean width, for $X = x$. It compares CLEAR, PCS, and
 350 ALEATORIC-R (bootstrapped CQR trained on residuals $Y_i - \hat{f}(X_i)$). The dashed horizontal line is
 351 the target coverage level of 0.9. CLEAR adapts to maintain target coverage across the input space.

353

4.2 REAL-WORLD DATA

355 Figure 3 shows the Normalized Calibrated Interval Width (NCIW) and Quantile Loss for 95%
 356 prediction intervals across all datasets for our main approach, CLEAR (variant a), compared to
 357 several baselines. CLEAR consistently demonstrates superior performance, achieving better or
 358 comparable interval width and loss metrics while rigorously maintaining nominal coverage. The
 359 inset boxplots show that CLEAR (a) compared to PCS, ALEATORIC, and ALEATORIC-R has
 360 an improved quantile loss of 15.8%, 34.5%, and 9.4%, respectively. Similar relative increases are
 361 observed for NCIW, with PCS, ALEATORIC, and ALEATORIC-R exhibiting increases of 17.4%,
 362 28.2%, and 3%. Moreover, CLEAR (a) was, in fact, the top-performing method on 15 of the 17
 363 datasets, while remaining the most stable compared to the baselines. These trends hold across our
 364 other model variants as well (Appendix F for standard and Appendix G for conformalized results):
 365 both CLEAR (b) and CLEAR (c) exhibit very similar relative improvements (Figures 7 and 8 in
 366 Appendices F.2 and F.3), with variant (a) remaining the strongest and most robust configuration.

367 While we observed that setting $\lambda = 1$ or $\gamma_1 = 1$ could marginally improve results if one had
 368 prior knowledge of uncertainty components—an unlikely scenario in practice—fully optimizing
 369 both parameters offers greater robustness. A limited size of the validation dataset can lead to
 370 overfitting of the two parameters, and incorporating some prior on them could further improve the
 371 results. Importantly, the absolute value of λ is relative to the pre-calibrated scales of the uncertainty
 372 estimators and dataset noise; its interpretation is best contextualized by observing its behavior when
 373 systematically varying dataset characteristics, such as the number of features or observations. While
 374 fixed parameters ($\lambda = 1$ or $\gamma_1 = 1$) could marginally improve results with prior knowledge, fully
 375 optimizing both parameters offers greater robustness. CLEAR’s dual-parameter calibration enhances
 376 stability by adaptively re-weighting potentially unreliable uncertainty components, as evidenced in
 377 datasets like `energy_efficiency`, where baselines show markedly larger NCIW. The dataset-
 378 dependent variability in optimal λ underscores the need for adaptive selection over fixed heuristics.
 379 The calibration runtime (grid-search) is also extremely negligible in practice (Appendix F.5).

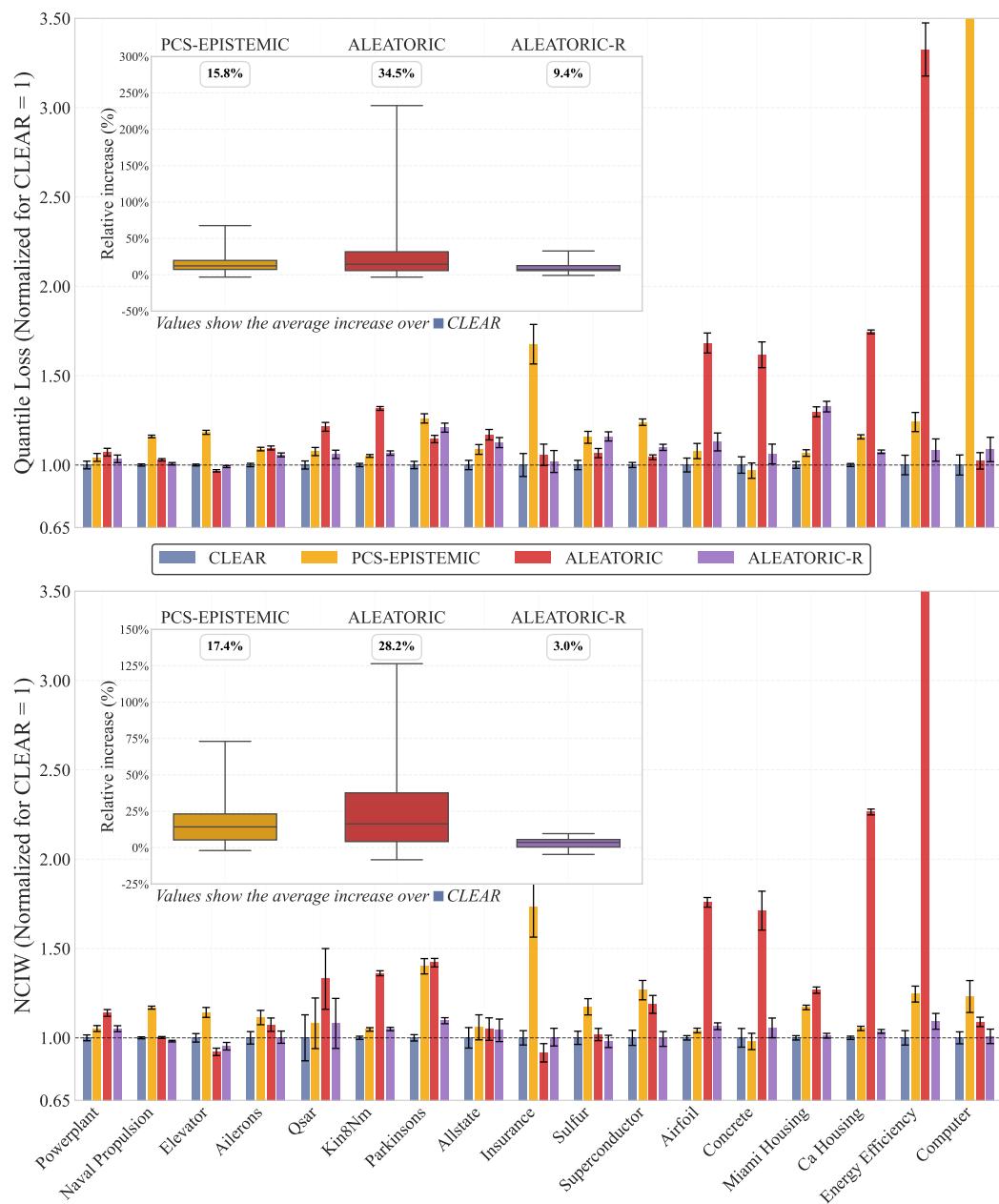


Figure 3: Results for real-world data: Quantile loss and NCIW performance of different methods over 10 seeds normalized relative to CLEAR (baseline = 1.0) with error bars are $\pm 1 \sigma$. Lower values are better. The inset boxplot shows the average (%) relative increase of the metric over CLEAR. EPISTEMIC is PCS-UQ, ALEATORIC is bootstrapped CQR, and ALEATORIC-R uses residuals.

Empirical Comparison with UACQR When comparing against UACQR, we summarize the results in Table X (table below, with a number in the camera-ready version), which shows the percentage improvement of (standard/non-conformalized) CLEAR over both UACQR variants across all 17 datasets and three metrics (detailed metric-specific tables are provided in Tables 43 to 45). The performance of CLEAR is much more reliable across the considered datasets and metrics. For example, on the airfoil, energy efficiency, and naval propulsion datasets, CLEAR is significantly better (40-70%) in metrics such as Quantile Loss, NCIW, and Average Interval Score Loss, while UACQR never outperforms CLEAR by more than 26% in any of the

432 datasets in any of the considered metrics. Sometimes UACQR-P can also output infinitely wide
 433 predictive intervals (Rossellini et al., 2024, p. 5), which we observed for energy efficiency in
 434 our experiments. CLEAR performs better than both versions of UACQR in 14 out of 17 datasets.
 435 These large differences in performance in Appendix G.3 can partially be explained by our approach
 436 for fitting aleatoric uncertainty to the residuals. We hypothesize that CLEAR is more stable and
 437 robust because it can more easily compensate for the shortcomings of the base models. If aleatoric
 438 uncertainty is over- or underestimated, CLEAR can correct its scale by adjusting γ_1 .

439
 440 Improvement (%) of standard CLEAR variant (c) over UACQR-S and UACQR-P for at 95% coverage
 441 across 17 datasets. **Bold values with +** indicate CLEAR outperforms the s.

Dataset	UACQR-S			UACQR-P		
	NCIW	QuantileLoss	ScoreLoss	NCIW	QuantileLoss	ScoreLoss
aileron	-1.6%	0.0%	+3.4%	-11.8%	0.0%	+2.5%
airfoil	+42.7%	+46.5%	+46.5%	+40.5%	+43.1%	+43.1%
allstate	+6.2%	+1.3%	+1.3%	+0.2%	-2.8%	-2.8%
ca_housing	+23.4%	+8.7%	+8.7%	+15.7%	+5.8%	+5.8%
computer	+20.1%	+9.3%	+9.3%	+6.9%	+6.7%	+6.7%
concrete	+24.7%	+21.2%	+21.2%	+22.0%	+19.1%	+19.1%
elevator	+36.6%	+30.6%	+29.4%	+23.3%	+28.7%	+27.3%
energy_efficiency	+69.8%	+63.2%	+63.2%	+70.3%	-	+62.4%
insurance	-15.3%	-25.9%	-25.9%	-19.4%	-24.3%	-24.3%
kin8nm	+27.6%	+26.1%	+26.1%	+25.6%	+24.2%	+24.2%
miami_housing	+20.1%	+19.0%	+19.0%	+14.1%	+15.1%	+15.1%
naval_propulsion	+55.9%	+50.6%	+52.0%	+6.8%	+57.0%	+58.0%
parkinsons	+19.9%	+5.1%	+5.1%	+8.1%	-5.4%	-5.4%
powerplant	+19.9%	+13.3%	+13.3%	+15.9%	+10.2%	+10.2%
qsar	+22.3%	+11.1%	+11.1%	+14.7%	+6.1%	+6.1%
sulfur	+13.3%	+9.8%	+9.8%	+4.7%	+6.9%	+6.8%
superconductor	+17.0%	+7.3%	+7.3%	+12.6%	+3.7%	+3.7%

461
 462 **Empirical Comparison with DE and SQR** Beyond PCS and CQR, CLEAR demonstrates substantial
 463 improvements when applied to DE and SQR (Table 1). When using DE for epistemic uncertainty
 464 and SQR for aleatoric uncertainty at 95% nominal coverage, CLEAR achieves average width re-
 465 ductions (NCIW) of 28.6% and 13.4%, respectively, with similar improvements in quantile loss
 466 (24.0% and 13.7%). The gains persist even after conformal calibration of the baselines, particularly
 467 relevant to the aleatoric component (SQR). The results underscore CLEAR’s ability to balance the
 468 two uncertainty sources well, regardless of the underlying estimators. This consistency across both
 469 PCS and neural approaches validates the generality of CLEAR (full results in Appendix E).

470 Table 1: Mean (%) improvement of CLEAR over DE & SQR across 17 datasets (higher is better).
 471

Metric	DE	SQR	DE-conformal	SQR-conformal
PICP	+0.05%	-0.66%	-0.09%	-0.15%
NIW	+28.81%	+17.38%	+29.55%	+14.07%
NCIW	+28.57%	+13.36%	+27.90%	+13.23%
QuantileLoss	+23.98%	+13.66%	+24.08%	+10.12%

479 4.3 CASE STUDY: ACCOUNTING FOR DATA UNCERTAINTY

480 We consider a case study on the Ames Housing dataset, detailed in Appendix H, where we demonstrate
 481 the full PCS pipeline and vary the number of predictor variables used to model housing prices. Starting
 482 from approximately 80 features, we construct a reduced version using only the top two predictors; this
 483 setup naturally balances aleatoric uncertainty (increases due to limited information) and epistemic
 484 uncertainty (decreases due to reduced model complexity). Table 2 reveals that while PCS performs
 485 better with many predictors and CQR excels with fewer features, CLEAR adapts effectively to

486 both scenarios through its calibrated uncertainty combination. CLEAR estimates $\lambda = 0.6$ in the 2-
 487 variable case (prioritizing aleatoric uncertainty) versus $\lambda = 14.5$ in the full-feature case (emphasizing
 488 epistemic uncertainty), with corresponding epistemic-to-aleatoric ratios of 0.03 and 7.72. This
 489 adaptive weighting enables CLEAR to maintain sharp intervals across both scenarios, with nearly
 490 halved average interval width when using all features.

491
492 Table 2: Ames Housing results (90% coverage target).
493

494 Experiment	Method	Coverage	Average Width (\$)	Quantile Loss	NCIW
495 2 features	PCS	0.87	107,880	3,818	0.213
	CQR	0.89	104,741	3,448	0.186
	CLEAR	0.89	98,571	3,191	0.179
498 All features	PCS	0.89	57,594	1,922	0.105
	CQR	0.87	62,398	2,194	0.117
	CLEAR	0.89	56,745	1,873	0.102

501
502 5 CONCLUSION, LIMITATIONS & FUTURE WORK
503

504 This paper introduces CLEAR, a novel framework for constructing prediction intervals by adaptively
 505 balancing epistemic and aleatoric uncertainty. Through a calibration process involving two distinct
 506 parameters, γ_1 and γ_2 , CLEAR offers an improvement over classical methods that often address
 507 these uncertainty types in isolation or rely on their fixed, non-adaptive combination. Our evaluations
 508 using CQR (and SQR) for aleatoric uncertainty and PCS (and DE) for epistemic uncertainty show
 509 that interval width and quantile loss improve on both simulated and the 17 real-world datasets.
 510 CLEAR consistently achieves improved conditional coverage, notably by adapting interval widths
 511 appropriately in extrapolation regions, while yielding narrower interval widths.
 512

513 Limitations remain despite CLEAR’s significant advantages, and these warrant further discussion.
 514 When scaling CLEAR to significantly larger datasets and models, specific hyperparameters (e.g.,
 515 number of bootstraps) can be adjusted to save computational costs. The accuracy of CLEAR is
 516 intrinsically linked to the quality of the base estimators for epistemic and aleatoric uncertainty. All our
 517 calibration datasets contained at least 150 data points, but for smaller calibration datasets, overfitting
 518 γ_1 and λ could be a problem. Epistemic uncertainty, as demonstrated in the case study, must be
 519 addressed through careful judgment calls, in line with the principles of the PCS framework. The
 520 additive combination of scaled uncertainties, while powerful, is also a specific structural choice.
 521

522 Future work could explore extension to classification tasks (Romano et al., 2020), alternative λ
 523 selection techniques, integration with active learning, and more scalable epistemic UQ approaches
 524 (Tagasovska et al., 2023). Extending CLEAR to time series settings could also be valuable, particularly
 525 for capturing the dynamics of temporal uncertainty. Finally, a deeper study of the interpretability of
 526 learned parameters could provide insights into the dominance of the two uncertainty sources.
 527

528
529 REPRODUCIBILITY STATEMENT AND USAGE OF LARGE LANGUAGE MODELS
530

531 All code and datasets used in this work are provided in the supplementary material to ensure full
 532 reproducibility of our results. We declare that we used a large language model for grammar and
 533 language polishing, as well as for limited coding assistance (e.g., boilerplate code and debugging).
 534 All conceptual and theoretical contributions, experimental designs, and conclusions are our own.
 535

536 REFERENCES
537

- 538 M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao,
 539 A. Khosravi, U. R. Acharya, V. Makarenkov, and S. Nahavandi. A review of uncertainty quantification
 540 in deep learning: Techniques, applications and challenges. *Information Fusion*, 76:
 243–297, 2021. ISSN 1566-2535. doi: <https://doi.org/10.1016/j.inffus.2021.05.008>. URL <https://www.sciencedirect.com/science/article/pii/S1566253521001081>.

- 540 A. Agarwal, M. Xiao, R. Barter, O. Ronen, B. Fan, and B. Yu. Pcs-uq: Uncertainty quantification via
 541 the predictability-computability-stability framework. *arXiv preprint arXiv:2505.08784*, 2025.
 542
- 543 Sam Allen, Georgios Gavrilopoulos, Alexander Henzi, Gian-Reto Kleger, and Johanna Ziegel. In-
 544 sample calibration yields conformal calibration guarantees, 2025. URL <https://arxiv.org/abs/2503.03841>.
 545
- 546 Allstate Claims Severity. Allstate claims severity. <https://www.openml.org/d/42571>,
 547 2020. Accessed: 2025-04-15.
 548
- 549 Andres Altieri, Marco Romanelli, Georg Pichler, Florence Alberge, and Pablo Piantanida. Beyond the
 550 norms: detecting prediction errors in regression models. In *Proceedings of the 41st International
 551 Conference on Machine Learning*, ICML'24. JMLR.org, 2024.
- 552 A. N. Angelopoulos, R. F. Barber, and S. Bates. Theoretical foundations of conformal prediction,
 553 2024. URL <https://arxiv.org/abs/2411.11824>.
 554
- 555 Ilia Azizi, Marc-Olivier Boldi, and Valérie Chavez-Demoulin. Semf: Supervised expectation-
 556 maximization framework for predicting intervals. In Khuong An Nguyen, Zhiyuan Luo, Harris
 557 Papadopoulos, Tuwe Löfström, Lars Carlsson, and Henrik Boström (eds.), *Proceedings of the
 558 Fourteenth Symposium on Conformal and Probabilistic Prediction with Applications*, volume 266
 559 of *Proceedings of Machine Learning Research*, pp. 250–281. PMLR, 10–12 Sep 2025. URL
 560 <https://proceedings.mlr.press/v266/azizi25a.html>.
 561
- 562 R. F. Barber, E. J. Candès, A. Ramdas, and R. J. Tibshirani. The limits of distribution-free conditional
 563 predictive inference, 2020. URL <https://arxiv.org/abs/1903.04684>.
 564
- 565 Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
 566 neural networks. In *32nd International Conference on Machine Learning (ICML)*, 2015. URL
 567 <http://proceedings.mlr.press/v37/blundell11.pdf>.
 568
- 569 J. Bodik and V. Chavez-Demoulin. Structural restrictions in local causal discovery: identifying direct
 570 causes of a target variable. *Biometrika (to appear)*, 2025. URL <https://arxiv.org/abs/2307.16048>.
 571
- 572 T. F. Brooks, D. S. Pope, and M. A. Marcolini. Airfoil self-noise and prediction. *NASA Reference
 573 Publication*, 1218, 1989. URL <https://ntrs.nasa.gov/citations/19890016302>.
 574
- 575 Erez Buchweitz, João Vitor Romano, and Ryan J. Tibshirani. Asymmetric penalties underlie proper
 576 loss functions in probabilistic forecasting, 2025. URL <https://arxiv.org/abs/2505.00937>.
 577
- 578 L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer,
 579 A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux. API
 580 design for machine learning software: experiences from the scikit-learn project. In *ECML PKDD
 581 Workshop: Languages for Data Mining and Machine Learning*, pp. 108–122, 2013.
- 582 Luben M. C. Cabezas, Vagner S. Santos, Thiago R. Ramos, and Rafael Izicki. Epistemic uncer-
 583 tainty in conformal scores: a unified approach. In *Proceedings of the Forty-First Conference on
 584 Uncertainty in Artificial Intelligence*, UAI '25. JMLR.org, 2025.
- 585 R. Camacho and L. Torgo. Ailerons. <https://www.openml.org/d/296>, 2014. Accessed:
 586 2025-04-15.
 587
- 588 M. Cassotti, D. Ballabio, R. Todeschini, and V. Consonni. A similarity-based qsar model for
 589 predicting acute toxicity towards the fathead minnow (pimephales promelas). *SAR and QSAR in
 590 Environmental Research*, 26(3):217–243, 2015.
 591
- 592 Matthew A. Chan, Maria J. Molina, and Christopher A. Metzler. Estimating epistemic and aleatoric
 593 uncertainty with a single model. In *Proceedings of the 38th International Conference on Neural
 594 Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2025. Curran Associates Inc.
 595 ISBN 9798331314385.

- 594 Z. Chang, G. A. Koulieris, and H. P. H. Shum. On the design fundamentals of diffusion models: A
595 survey, 2023. URL <https://arxiv.org/abs/2306.04542>.
- 596
- 597 T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In *Proceedings of the 22nd ACM
598 SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '16, pp. 785–
599 794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785.
600 URL <http://doi.acm.org/10.1145/2939672.2939785>.
- 601 Youngseog Chung, Willie Neiswanger, Ian Char, and Jeff Schneider. Beyond pinball loss: quantile
602 methods for calibrated uncertainty quantification. In *Proceedings of the 35th International Conference
603 on Neural Information Processing Systems*, NIPS '21, Red Hook, NY, USA, 2021. Curran
604 Associates Inc. ISBN 9781713845393.
- 605 D. De Cock. Ames, iowa: Alternative to the boston housing data as an end of semester regression
606 project. *Journal of Statistics Education*, 19(3), 2011. URL <https://www.tandfonline.com/doi/full/10.1080/10691898.2011.11889627>.
- 607
- 608 Computer Activity. Computer activity. <https://www.openml.org/d/197>, 2014. Accessed:
609 2025-04-15.
- 610
- 611 Bai Cong, Nico Daheim, Yuesong Shen, Daniel Cremers, Rio Yokota, Mohammad Emtiyaz Khan,
612 and Thomas Möllenhoff. Variational low-rank adaptation using ivon, 2024. URL <https://arxiv.org/abs/2411.04421>.
- 612
- 613 A. Coraddu, L. Oneto, A. Ghio, S. Savio, D. Anguita, and M. Figari. Machine learning approaches for
614 improving condition-based maintenance of naval propulsion plants. *Proceedings of the Institution
615 of Mechanical Engineers, Part M*, 230(1):136–153, 2016. doi: 10.1177/1475090214540874. URL
616 <https://doi.org/10.1177/1475090214540874>.
- 617
- 618 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer,
619 and Philipp Hennig. Laplace redux - effortless bayesian deep learning. In M. Ranzato,
620 A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances
621 in Neural Information Processing Systems*, volume 34, pp. 20089–20103. Curran
622 Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/a7c9585703d275249f30a088cebba0ad-Paper.pdf.
- 623
- 624
- 625 G. De Ath, R. M. Everson, A. A. M. Rahat, and J. E. Fieldsend. Greed is good: Exploration and
626 exploitation trade-offs in bayesian optimisation. *ACM Trans. Evol. Learn. Optim.*, 1(1), April 2021.
627 doi: 10.1145/3425501. URL <https://doi.org/10.1145/3425501>.
- 628
- 629 S. Depeweg, J. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft. Decomposition of uncertainty
630 in Bayesian deep learning for efficient and risk-sensitive learning. In *Proceedings of the 35th
631 International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning
632 Research*, pp. 1184–1193. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/depeweg18a.html>.
- 633
- 634 R. Dwivedi, Y. Tan, B. Park, M. Wei, K. Horgan, D. Madigan, and B. Yu. Stable discovery of
635 interpretable subgroups via calibration in causal studies (stadisc). *International Statistical Review*,
636 2020.
- 637
- 638 R. C. Edward. Gaussian processes in machine learning. In *Summer school on machine learning*, pp.
639 63–71. Springer, 2003.
- 640
- 641 M. Fasiolo, S. N. Wood, M. Zaffran, R. Nedellec, and Y. Goude. Fast calibrated additive quantile
642 regression. *Journal of the American Statistical Association*, 115(531):1402–1412, 2020. doi:
643 10.1080/01621459.2020.1725521.
- 644
- 645 Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
646 in deep learning. In *Proceedings of The 33rd International Conference on Machine Learning*,
647 volume 48 of *Proceedings of Machine Learning Research*, pp. 1050–1059, New York, New York,
648 USA, 20–22 Jun 2016. PMLR.
- 649
- 650 Matteo Gasparin and Aaditya Ramdas. Merging uncertainty sets via majority vote, 2024. URL
651 <https://arxiv.org/abs/2401.09379>.

- 648 J. Gawlikowski, C. R. N. Tassi, M. Ali, and et.al. A survey of uncertainty in deep neural networks.
 649 *Artificial Intelligence Review*, 56(1):1513–1589, 2023. doi: 10.1007/s10462-023-10562-9.
 650
- 651 Z. Ghahramani. kin8nm dataset, 1996. URL <https://www.cs.toronto.edu/~delve/data/kin/desc.html>. Accessed: 2025-04-15.
 652
- 653 I. Gibbs, J. J. Cherian, and E. J. Candès. Conformal prediction with conditional guarantees, 2024.
 654 URL <https://arxiv.org/abs/2305.12616>.
 655
- 656 T. Gneiting and A. E Raftery. Strictly proper scoring rules, prediction, and estimation. *Journal of the
 657 American statistical Association*, 102(477):359–378, 2007.
 658
- 659 Tilmann Gneiting. Quantiles as optimal point forecasts. *International Journal of Forecasting*,
 660 27(2):197–207, 2011. ISSN 0169-2070. doi: <https://doi.org/10.1016/j.ijforecast.2009.12.015>. URL <https://www.sciencedirect.com/science/article/pii/S0169207010000063>.
 661
- 662
- 663 Alex Graves. Practical variational inference for neural networks. In *Advances in neural information
 664 processing systems*, pp. 2348–2356, 2011. URL <http://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf>.
 665
- 666
- 667 L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based models still outperform deep
 668 learning on typical tabular data? *Advances in Neural Information Processing Systems*, 35:507–520,
 669 2022.
- 670
- 671 L. Guan. Localized conformal prediction: a generalized inference framework for conformal prediction.
 672 *Biometrika*, 110:33–50, 2022.
- 673
- 674 K. Hamidieh. A data-driven statistical model for predicting the critical temperature of a super-
 675 conductor. *Computational Materials Science*, 154:346–354, 2018. ISSN 0927-0256. doi:
 676 <https://doi.org/10.1016/j.commatsci.2018.07.052>. URL <https://www.sciencedirect.com/science/article/pii/S0927025618304877>.
 677
- 678 L. Han, R. Gao, M. Kim, X. Tao, B. Liu, and D. Metaxas. Evidential sparsification of multimodal la-
 679 tent spaces in conditional vaes. In *Advances in Neural Information Processing Systems*, volume 33,
 680 pp. 14513–14524, 2020.
- 681
- 682 Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lak-
 683 shminarayanan, Andrew Mingbo Dai, and Dustin Tran. Training independent subnetworks
 684 for robust prediction. In *International Conference on Learning Representations*, 2021. URL
 685 <https://openreview.net/forum?id=OGg9XnKxFAH>.
- 686
- 687 J. Heiss. *Inductive Bias of Neural Networks and Selected Applications*. Doctoral thesis, ETH Zurich,
 688 Zurich, 2024. URL <https://www.research-collection.ethz.ch/handle/20500.11850/699241>.
 689
- 690 J. Heiss, J. Teichmann, and H. Wutte. How infinitely wide neural networks can benefit from multi-task
 691 learning - an exact macroscopic characterization. *arXiv preprint arXiv:2112.15577*, 2022a. doi:
 692 10.3929/ETHZ-B-000550890.
- 693
- 694 J. M Heiss, J. Weissteiner, H. S Wutte, S. Seuken, and J. Teichmann. NOMU: Neural optimization-
 695 based model uncertainty. In *Proceedings of the 39th International Conference on Machine
 696 Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 8708–8758. PMLR,
 697 17–23 Jul 2022b. URL <https://proceedings.mlr.press/v162/heiss22a.html>.
 698
- 699 José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning
 700 of bayesian neural networks. In *International Conference on Machine Learning*, pp. 1861–1869,
 701 2015. URL <http://proceedings.mlr.press/v37/hernandez-lobato15.pdf>.
 702
- 703 P. Hofman, Y. Sale, and E. Hüllermeier. Quantifying aleatoric and epistemic uncertainty with proper
 704 scoring rules, 2024a. URL <https://arxiv.org/abs/2404.12215>.

- 702 Paul Hofman, Yusuf Sale, and Eyke Hüllermeier. Quantifying aleatoric and epistemic uncertainty:
 703 A credal approach. In *ICML 2024 Workshop on Structured Probabilistic Inference & Generative*
 704 *Modeling*, 2024b. URL <https://openreview.net/forum?id=MhLnSoWp3p>.
- 705 N. Hollmann, S. Müller, L. Purucker, A. Krishnakumar, M. Körfer, S. B. Hoo, R. T. Schirrmeister,
 706 and F. Hutter. Accurate predictions on small data with a tabular foundation model. *Nature*, 01
 707 2025. doi: 10.1038/s41586-024-08328-6. URL <https://www.nature.com/articles/s41586-024-08328-6>.
- 708 S. B. Hoo, S. Müller, D. Salinas, and F. Hutter. The tabular foundation model tabPFN outperforms
 709 specialized time series forecasting models based on simple features, 2025. URL <https://arxiv.org/abs/2501.02945>.
- 710 E. Hüllermeier and W. Waegeman. Aleatoric and epistemic uncertainty in machine learning: an
 711 introduction to concepts and methods. *Machine Learning*, 110:457–506, 2021. doi: 10.1007/
 712 s10994-021-05946-3. URL <https://doi.org/10.1007/s10994-021-05946-3>.
- 713 Alireza Javanmardi, Soroush H. Zargarbashi, Santo M. A. R. Thies, Willem Waegeman, Aleksandar
 714 Bojchevski, and Eyke Hüllermeier. Optimal conformal prediction under epistemic uncertainty,
 715 2025. URL <https://arxiv.org/abs/2505.19033>.
- 716 R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics & Prob-
 717 ability Letters*, 33(3):291–297, 1997. ISSN 0167-7152. doi: [https://doi.org/10.1016/S0167-7152\(96\)00140-X](https://doi.org/10.1016/S0167-7152(96)00140-X). URL <https://www.sciencedirect.com/science/article/pii/S016771529600140X>.
- 718 A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning for computer vision?,
 719 2017. URL <https://arxiv.org/abs/1703.04977>.
- 720 kin8nm dataset. kin8nm dataset. <https://www.openml.org/d/189>, 2014. Accessed: 2025-
 721 04-15.
- 722 M. Kirchhof, G. Kasneci, and E. Kasneci. Reexamining the aleatoric
 723 and epistemic uncertainty dichotomy. In *ICLR Blogposts* 2025,
 724 2025. URL <https://iclr-blogposts.github.io/2025/blog/reexamining-the-aleatoric-and-epistemic-uncertainty-dichotomy/>.
- 725 R. Koenker. *Quantile Regression*. Number No. 38 in Econometric Society Monographs. Cambridge
 726 University Press, Cambridge, 2005.
- 727 Roger Koenker and Gilbert Bassett. Regression quantiles. *Econometrica*, 46(1):33–50, 1978. ISSN
 728 00129682, 14680262. URL <http://www.jstor.org/stable/1913643>.
- 729 Anastasis Kratsios. Universal regular conditional distributions via probabilistic transformers. *Con-
 730 structive Approximation*, 57(3):1145–1212, 2023.
- 731 V. Kuleshov, N. Fenner, and S. Ermon. Accurate uncertainties for deep learning using calibrated
 732 regression. In *Proceedings of the 35th International Conference on Machine Learning*, volume 80
 733 of *Proceedings of Machine Learning Research*, pp. 2796–2804. PMLR, 10–15 Jul 2018. URL
 734 <https://proceedings.mlr.press/v80/kuleshov18a.html>.
- 735 Volodymyr Kuleshov and Shachi Deshpande. Calibrated and sharp uncertainties in deep learning
 736 via density estimation. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
 737 Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine*
 738 *Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 11683–11693. PMLR, 17–
 739 23 Jul 2022. URL <https://proceedings.mlr.press/v162/kuleshov22a.html>.
- 740 B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty estima-
 741 tion using deep ensembles. In *Advances in Neural Information Processing Systems*, volume 30. Cur-
 742 ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf.

- 756 M. Laves, S. Ihler, J. F. Fast, L. A. Kahrs, and T. Ortmaier. Recalibration of aleatoric and epistemic-
 757 regression uncertainty in medical imaging. *Machine Learning for Biomedical Imaging*, 1:1–26,
 758 2021. ISSN 2766-905X. doi: 10.59275/j.melba.2021-a6fd.
- 759
- 760 J. Lei and L. Wasserman. Distribution-free prediction bands for non-parametric regression. *Journal
 761 of the Royal Statistical Society: Series B (Statistical Methodology)*, 76, 2014.
- 762 Jing Lei, Max G'Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-free
 763 predictive inference for regression. *Journal of the American Statistical Association*, 113(523):
 764 1094–1111, 2018.
- 765
- 766 Dan Levi, Liran Gispan, Niv Giladi, and Ethan Fetaya. Evaluating and calibrating uncertainty
 767 prediction in regression tasks. *Sensors*, 22(15), 2022. ISSN 1424-8220. doi: 10.3390/s22155540.
 768 URL <https://www.mdpi.com/1424-8220/22/15/5540>.
- 769 D. J. C. MacKay. A practical bayesian framework for backpropagation networks. *Neural Computation*,
 770 4(3):448–472, 05 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.3.448.
- 771
- 772 L. Marques and D. Berenson. Quantifying aleatoric and epistemic dynamics uncertainty via local
 773 conformal calibration, 2024. URL <https://arxiv.org/abs/2409.08249>.
- 774 Michael Mayer, Steven C. Bourassa, Martin Hoesli, and Donato Scognamiglio. Machine learning
 775 applications to land and structure valuation. *Journal of Risk and Financial Management*, 15
 776 (5), 2022. ISSN 1911-8074. doi: 10.3390/jrfm15050193. URL <https://www.mdpi.com/1911-8074/15/5/193>.
- 777
- 778 N. Meinshausen. Quantile regression forests. *Journal of Machine Learning Research*, 7(35):983–999,
 779 2006. URL <http://jmlr.org/papers/v7/meinshausen06a.html>.
- 780
- 781 S. Müller, N. Hollmann, S. P. Arango, J. Grabocka, and F. Hutter. Transformers can do bayesian
 782 inference. *arXiv preprint arXiv:2112.10510*, 2021.
- 783
- 784 Radford M. Neal. *Bayesian Learning for Neural Networks*, volume 118 of *Lecture Notes in Statistics*.
 785 Springer New York, New York, NY, 1996.
- 786
- 787 Luong-Ha Nguyen and James-A. Goulet. Analytically tractable hidden-states inference in bayesian
 788 neural networks. *Journal of Machine Learning Research*, 23(50):1–33, 2022a. URL <http://jmlr.org/papers/v23/21-0758.html>.
- 789
- 790 Luong-Ha Nguyen and James-A. Goulet. cuTAGI: a CUDA library for Bayesian neural networks
 791 with tractable approximate Gaussian inference. <https://github.com/lhnguyen102/cuTAGI>, 2022b.
- 792
- 793 D.A. Nix and A.S. Weigend. Estimating the mean and variance of the target probability distribution.
 794 In *Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)*, volume 1,
 795 pp. 55–60 vol.1, 1994. doi: 10.1109/ICNN.1994.374138.
- 796
- 797 P. Oberdiek, G. Fink, and M. Rottmann. Uqgan: A unified model for uncertainty quantification
 798 of deep classifiers trained via conditional gans. In *Advances in Neural Information Processing
 Systems*, volume 35, pp. 12345–12356, 2022.
- 799
- 800 T. Pearce, A. Brintrup, M. Zaki, and A. Neely. High-quality prediction intervals for deep learning:
 801 A distribution-free, ensembled approach. In *International conference on machine learning*, pp.
 802 4075–4084. PMLR, 2018.
- 803
- 804 PyCaret. Insurance dataset, n.d. URL <https://raw.githubusercontent.com/pycaret/datasets/main/data/common/insurance.csv>. Accessed: 2025-04-15.
- 805
- 806 H. Ritter, A. Botev, and D. Barber. A scalable laplace approximation for neural networks. In
 807 *6th International Conference on Learning Representations (ICLR)*, 2018. URL <https://openreview.net/forum?id=Skdvd2xAZ>. Conference Track Proceedings.
- 808
- 809 Y. Romano, E. Patterson, and E. Candès. Conformalized quantile regression. In *Advances in Neural
 810 Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.

- 810 Y. Romano, M. Sesia, and E. Candès. Classification with valid and adaptive coverage. In *Advances in*
 811 *Neural Information Processing Systems*, volume 33, pp. 3581–3591. Curran Associates, Inc., 2020.
 812
- 813 R. Rossellini, R. Barber, and R. Willett. Integrating uncertainty awareness into conformalized quantile
 814 regression, 2024. URL <https://arxiv.org/abs/2306.08693>.
 815
- 816 Jonas Rothfuss, Fabio Ferreira, Simon Walther, and Maxim Ulrich. Conditional density estimation
 817 with neural networks: Best practices and benchmarks, 2019. URL <https://arxiv.org/abs/1903.00954>.
 818
- 819 Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. Consistency of random forests. *The Annals of*
 820 *Statistics*, 43(4):1716 – 1741, 2015. doi: 10.1214/15-AOS1321. URL <https://doi.org/10.1214/15-AOS1321>.
 821
- 822 D. Servén and C. Brummitt. pygam: Generalized additive models in python, March 2018. URL
 823 <https://doi.org/10.5281/zenodo.1208723>.
 824
- 825 B. Settles. *Active Learning*, volume 1 of *Synthesis Lectures on Artificial Intelligence and Ma-*
 826 *chine Learning*. Springer Cham, 1 edition, 2012. ISBN 978-3-031-00432-2. doi: 10.1007/978-3-031-01560-1. URL <https://doi.org/10.1007/978-3-031-01560-1>. Syn-
 827 thesis Collection of Technology (R0), eBColl Synthesis Collection 4.
 828
- 829 Xinwei Shen and Nicolai Meinshausen. Engression: extrapolation through the lens of distributional
 830 regression. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 87(3):
 831 653–677, 11 2024. ISSN 1369-7412. doi: 10.1093/rssb/qkae108. URL <https://doi.org/10.1093/rssb/qkae108>.
 832
- 833 Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Bazan Clement Emile Mar-
 834 cel Raoul, Rio Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, and Thomas
 835 Möllenhoff. Variational learning is effective for large deep networks. In Ruslan Salakhutdinov, Zico
 836 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 837 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 838 *Proceedings of Machine Learning Research*, pp. 44665–44686. PMLR, 21–27 Jul 2024. URL
 839 <https://proceedings.mlr.press/v235/shen24b.html>.
 840
- 841 Hao Song, Tom Diethe, Meelis Kull, and Peter Flach. Distribution calibration for regression. In
 842 Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International*
 843 *Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*,
 844 pp. 5897–5906. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/song19a.html>.
 845
- 846 Ingo Steinwart and Andreas Christmann. Estimating conditional quantiles with the help of the pinball
 847 loss. *Bernoulli*, 17(1):211 – 225, 2011. doi: 10.3150/10-BEJ267. URL <https://doi.org/10.3150/10-BEJ267>.
 848
- 849 sulfur dataset. sulfur dataset. <https://www.openml.org/d/23515>, 2014. Accessed: 2025-
 850 04-15.
 851
- 852 N. Tagasovska and D. Lopez-Paz. Single-model uncertainties for deep learning. In *Advances in*
 853 *Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.
 854
- 855 N. Tagasovska, F. Ozdemir, and A. Brando. Retrospective uncertainties for deep models using
 856 vine copulas. In *Proceedings of The 26th International Conference on Artificial Intelligence and*
 857 *Statistics*, volume 206 of *Proceedings of Machine Learning Research*, pp. 7528–7539. PMLR,
 858 25–27 Apr 2023. URL <https://proceedings.mlr.press/v206/tagasovska23a.html>.
 859
- 860 L. Torgo. Elevators. <https://www.openml.org/d/216>, 2014. Accessed: 2025-04-15.
 861
- 862 A. Tsanas and A. Xifara. Accurate quantitative estimation of energy performance of residential
 863 buildings using statistical machine learning tools. *Energy and Buildings*, 49:560–567, 2012.

- 864 A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig. Accurate telemonitoring of parkinson's
 865 disease progression by noninvasive speech tests. *IEEE Transactions on Biomedical Engineering*, 57:
 866 884–893, 2009. URL <https://api.semanticscholar.org/CorpusID:7382779>.
 867
- 868 P. Tüfekci. Prediction of full load electrical power output of a base load operated combined cycle
 869 power plant using machine learning methods. *International Journal of Electrical Power & Energy
 870 Systems*, 60:126–140, 2014. URL <https://api.semanticscholar.org/CorpusID:111365542>.
 871
- 872 M. Valdenegro-Toro and D. Saromo. A deeper look into aleatoric and epistemic uncertainty disentan-
 873 glement, 2022. URL <https://arxiv.org/abs/2204.09308>.
 874
- 875 V. Vovk. Conditional validity of inductive conformal predictors. In *Asian Conference on Machine
 876 Learning*, pp. 475–490, 2012.
 877
- 878 V. Vovk. Transductive conformal predictors. In *IFIP International Conference on Artificial Intelli-
 879 gence Applications and Innovations*, pp. 348–360. Springer, 2013.
 880
- 881 V. Vovk, A. Gammerman, and G. Shafer. *Algorithmic Learning in a Random World*. Springer Science
 & Business Media, 2005.
 882
- 883 V. Vovk, I. Nouretdinov, and A. Gammerman. On-line predictive linear regression. *The Annals of
 Statistics*, 37(3):1566–1590, 2009.
 884
- 885 V. V'yugin and V. G. Trunov. Online learning with continuous ranked probability score. In *Pro-
 ceedings of the Eighth Symposium on Conformal and Probabilistic Prediction and Applications*,
 886 volume 105 of *Proceedings of Machine Learning Research*, pp. 163–177. PMLR, 09–11 Sep 2019.
 887 URL <https://proceedings.mlr.press/v105/v-yugin19a.html>.
 888
- 889 Hanjing Wang and Qiang Ji. Epistemic uncertainty quantification for pretrained neural networks. In
 890 *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11052–
 891 11061, 2024. doi: 10.1109/CVPR52733.2024.01051.
 892
- 893 Ziyu Wang, Tongzheng Ren, Jun Zhu, and Bo Zhang. Function space particle optimization for
 894 bayesian neural networks. In *International Conference on Learning Representations*, 2019. URL
<https://openreview.net/forum?id=BkgfDsCcKQ>.
 895
- 896 J. Weisseiner, J. Heiss, J. Siems, and S. Seuken. Bayesian optimization-based combinatorial
 897 assignment. *Proceedings of the AAAI Conference on Artificial Intelligence*, 37, 2023.
 898
- 899 Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: An alternative approach to efficient en-
 900 semble and lifelong learning, 2020. URL <https://arxiv.org/pdf/2002.06715.pdf>.
 901
- 902 Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper
 903 Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the Bayes posterior
 904 in deep neural networks really? In *Proceedings of the 37th International Conference on Machine
 905 Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 10248–10259. PMLR,
 13–18 Jul 2020a. URL <https://proceedings.mlr.press/v119/wenzel20a.html>.
 906
- 907 Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter ensembles
 908 for robustness and uncertainty quantification. In *Proceedings of the 34th International Confer-
 909 ence on Neural Information Processing Systems*, NIPS'20, Red Hook, NY, USA, 2020b. Curran
 910 Associates Inc. ISBN 9781713829546. URL <https://papers.nips.cc/paper/2020/file/481fbfa59da2581098e841b7afc122f1-Paper.pdf>.
 911
- 912 I. Yeh. Modeling of strength of high-performance concrete using artificial neural networks. *Cement
 and Concrete Research*, 28(12):1797–1808, 1998.
 913
- 914 B. Yu and R. L. Barter. *Veridical Data Science: The Practice of Responsible Data Analysis and
 915 Decision Making*. Adaptive Computation and Machine Learning Series. MIT Press, 2024. ISBN
 916 0262379708, 9780262379700. URL <https://vdsbook.com>.
 917
- B. Yu and K. Kumbier. Veridical data science. *Proceedings of the National Academy of Sciences*, 117
 (8):3920–3929, 2020.

918 Tong Zhang and Bin Yu. Boosting with early stopping: Convergence and consistency. *The Annals*
 919 *of Statistics*, 33(4):1538 – 1579, 2005. doi: 10.1214/009053605000000255. URL <https://doi.org/10.1214/009053605000000255>.

922 Table 3: List of notable abbreviations used in main the paper.
923

924 Abbreviation	925 Full Term	926 Description / Citation
927 PCS	928 Predictability, Computability, 929 and Stability	930 Framework for veridical data science (Yu & 931 Kumbier, 2020; Yu & Barter, 2024).
932 CQR	933 Conformalized Quantile Re- 934 gression	935 Distribution-free prediction intervals (Vovk et al., 936 2005; Vovk, 2013).
937 ALEATORIC	938 Bootstrapped CQR	939 CQR variant, where we compute CQR on boot- 940 strapped data and taking the median as final estimate. 941 Follows from PCS framework (Yu & Barter, 2024)
942 ALEATORIC-R	943 Residual-based Bootstrapped 944 CQR	945 ALEATORIC applied on residuals $Y_i - \hat{f}(X_i)$, 946 where \hat{f} is obtained from PCS.
947 UACQR	948 Uncertainty aware CQR	949 Method from (Rossellini et al., 2024) with two vari- 950 ants UACQR-S and UACQR-P
951 QRF	952 Quantile Random Forests	953 Tree-based model for quantile estimation (Mein- 954 shausen, 2006).
955 QXGB	956 Quantile XGBoost	957 Gradient boosting for quantile estimation.
958 GAM	959 Generalized Additive Model	960 Used for expectile or quantile regression (Servén & 961 Brummitt, 2018).
962 DE	963 Deep Ensembles	964 Ensemble of neural networks for epistemic uncer- 965 tainty (Lakshminarayanan et al., 2017).
966 SQR	967 Simultaneous Quantile Regres- 968 sion	969 Neural network approach for multiple quantile esti- 970 mation (Tagasovska & Lopez-Paz, 2019).
971 PICP	972 Prediction Interval Coverage 973 Probability	974 Fraction of targets within predicted intervals.
975 NIW	976 Normalized Interval Width	977 Average interval width normalized by target range.
978 NCIW	979 Normalized Calibrated Inter- 980 val Width	981 NIW after test-time calibration.
982 RMSE	983 Root Mean Squared Error	984 Average of squared prediction errors.
985 MAE	986 Mean Absolute Error	987 Average of absolute prediction errors.
988 $\mathcal{N}(0, 1)$	989 Standard Normal Distribution	990 Gaussian distribution with mean 0 and variance 1.
991 supp	992 support	993 Support of a distribution or function.

972	LIST OF APPENDICES	
973		
974		
975	A Related Literature	21
976	A.1 Literature that implicitly assumes $\gamma_1 = 1$	21
977	A.2 Literature that implicitly assumes $\lambda = 1$	21
978	A.3 Bayesian Models	23
979	A.4 Conformal Literature that does not account for Epistemic and Aleatoric Uncertainty	24
980	A.5 Other Calibration Methods	24
981	A.6 Methods that Mainly Focus on Distributional Aleatoric Uncertainty	24
982	A.7 Further Related Literature	25
983		
984		
985		
986		
987	B Theory: Coverage Guarantees and Theoretical Justifications	27
988	B.1 Finite-sample marginal coverage for CLEAR	27
989	B.2 Asymptotic conditional coverage for CLEAR: Lemma 2.1 assumptions	29
990	B.3 Properties of the QuantileLoss	29
991	B.4 Intuitive Theoretical Motivation of CLEAR	33
992	B.5 CLEAR Algorithm: Details	34
993		
994		
995		
996	C Simulations: Details	35
997	C.1 Heteroskedastic Case	35
998	C.2 Multivariate Case	35
999		
1000		
1001	D Experimental Setup: Details	37
1002	D.1 Real-World Data	37
1003	D.2 Baselines for Variants (a), (b), (c)	37
1004	D.3 Deep Ensembles and Simultaneous Quantile Regression Implementation	37
1005	D.4 PCS Implementation: Details	38
1006	D.5 Metrics	40
1007		
1008		
1009		
1010		
1011	E CLEAR with DE and SQR: Results on Real-World Data	41
1012		
1013	F CLEAR with PCS and CQR: Results on Real-World Data	44
1014		
1015	F.1 Variant (a)	46
1016	F.2 Variant (b)	48
1017	F.3 Variant (c)	51
1018	F.4 Comparing Variants of CLEAR	54
1019	F.5 Runtime	54
1020		
1021		
1022	G Conformalized CLEAR with PCS and CQR: Results on Real-World Data	57
1023		
1024	G.1 Variant (a) Conformalized	57
1025	G.2 Variant (b) Conformalized	60

1026	G.3 Variant (c) Conformalized	63
1027		
1028	H Case Study: House Price Prediction with Varying Number of Predictors	66
1029		
1030		
1031	I On the Role of Relative and Absolute Uncertainty in Coverage Guarantees	67
1032	I.1 Metrics: Relevance	67
1033		
1034	I.2 Applications	67
1035		
1036	I.3 Methods	68
1037		
1038	I.4 Calibration Techniques	68
1039		
1040	I.5 Achieving Conditional Coverage	68
1041		
1042		
1043		
1044		
1045		
1046		
1047		
1048		
1049		
1050		
1051		
1052		
1053		
1054		
1055		
1056		
1057		
1058		
1059		
1060		
1061		
1062		
1063		
1064		
1065		
1066		
1067		
1068		
1069		
1070		
1071		
1072		
1073		
1074		
1075		
1076		
1077		
1078		
1079		

1080 **A RELATED LITERATURE**
 1081

1082 In the main paper, Section 1 provides a high-level overview of uncertainty quantification in ML.
 1083 Section 2.2 contains an overview of epistemic uncertainty, and Section 2.3 discusses the aleatoric un-
 1084 certainty. In this appendix, we discuss these concepts in more depth. For an introduction to epistemic
 1085 and aleatoric uncertainty, see Hüllermeier & Waegeman (2021), which provides a comprehensive
 1086 overview.

1087
 1088 **A.1 LITERATURE THAT IMPLICITLY ASSUMES $\gamma_1 = 1$**
 1089

1090 UACQR, introduced by Rossellini et al. (2024), is conceptually closest to CLEAR. Conceptually
 1091 on a high level, this method corresponds to a variant of CLEAR where $\gamma_1 = 1$ is fixed, and only
 1092 λ is tuned. This is justified when aleatoric uncertainty is well-calibrated, which may often hold
 1093 asymptotically. When validation dataset is very small, setting $\gamma_1 = 1$ can even bring small advantages
 1094 compared to tuning γ_1 . In practice, however, aleatoric uncertainty is often miscalibrated due to over-
 1095 or under-regularization. Tuning γ_1 helps correct its scale. Furthermore, it can happen in practice that
 1096 the estimator of the aleatoric uncertainty has a much lower or much higher quality than the epistemic
 1097 uncertainty. In this case, optimizing both parameters γ_1 and λ allows us to compensate for the failure
 1098 of one of the two uncertainties to some extent by putting more weight on the other type of uncertainty
 1099 without changing the marginal coverage. This results in a higher robustness and stability of CLEAR.

1100
 1101 **A.2 LITERATURE THAT IMPLICITLY ASSUMES $\lambda = 1$**

1102 Most of the literature that combines epistemic and aleatoric uncertainty implicitly assumes that $\lambda = 1$,
 1103 when they simply combine epistemic and aleatoric uncertainty in the ratio 1:1. On top of the resulting
 1104 uncertainty, one can use (conformal) calibration, which corresponds to CLEAR’s calibration of γ_1 .
 1105 However, in contrast to CLEAR, they do not rebalance the ratio of epistemic and aleatoric uncertainty
 1106 with λ .

1107 In practice, it is possible to underestimate the aleatoric uncertainty and overestimate epistemic
 1108 uncertainty. This results in a one-dimensional calibration via γ_1 , and consequently, narrow intervals
 1109 in regions of dominating aleatoric uncertainty or in wide intervals in regions of dominating epistemic
 1110 uncertainty. γ_1 alone cannot solve this. CLEAR can deal well with such situations by compensating
 1111 for such an imbalance via λ .

1112
 1113 **A.2.1 DEEP ENSEMBLES**

1114 While it is quite common to refer to *deep ensembles* (DE), whenever one uses an ensemble of neural
 1115 networks (NNs) for uncertainty estimation, it is important to note that Lakshminarayanan et al. (2017)
 1116 introduced DE as a method which both estimates epistemic and aleatoric uncertainty. For regression,
 1117 they train each NN with 2 outputs estimating μ and σ via a Gaussian Maximum-Likelihood-loss (as
 1118 in Nix & Weigend (1994)), where σ is responsible for the aleatoric uncertainty, which they refer
 1119 to as “ambiguity in targets y for a given x”. Moreover, they use the ensemble diversity to estimate
 1120 epistemic uncertainty, which they refer to as “model uncertainty”. Although DE is mainly known
 1121 for its ensembling approach, (Lakshminarayanan et al., 2017, Table 2 in Appendix A.1) clearly
 1122 shows that both the aleatoric and epistemic parts are crucial in terms of empirical performance. In
 1123 their paper, the authors do not apply any calibration on top, i.e., as it is implicitly assumed that
 1124 $\gamma_2 = \gamma_1 = 1 = \lambda$. However, it is common to apply (conformal) calibration on top. The commonly
 1125 used calibration techniques only calibrate γ_1 , while keeping $\lambda = 1$ fixed, in contrast to CLEAR. In
 1126 particular, for DE, both the diversity of the ensemble and the bias on aleatoric are very sensitive to
 1127 various hyperparameters. One type of uncertainty may be strongly underestimated. In contrast, the
 1128 other type is strongly overestimated, which motivates the need to explicitly calibrate λ in a data-driven
 1129 way.

1130 **Technical Details on Adversarial Attacks for Deep Ensembles.** The original paper Lakshmi-
 1131 narayanan et al. (2017) is written as if applying adversarial attacks is an integral part of DEs and one
 1132 of the paper’s main contributions. However, to the best of our knowledge, many practitioners refer to
 1133 “DEs” without implying adversarial attacks during training, and adversarial attacks during training
 are seen as an optional add-on to DEs, but not an important part of DEs. Furthermore, the regression

1134 results in (Lakshminarayanan et al., 2017, Table 2 in Appendix A.1) do not suggest that adversarial
 1135 attacks during training are particularly beneficial to the performance.
 1136

1137 **Technical Details on Measuring Deep Ensemble’s diversity.** Intuitively, one should estimate high
 1138 epistemic uncertainty if there is a significant disagreement among the ensemble’s predictions and
 1139 small epistemic uncertainty if they agree. While (Yu & Barter, 2024, Chapter 13) and Agarwal et al.
 1140 (2025) suggest using quantiles, Lakshminarayanan et al. (2017) suggest using the empirical standard
 1141 deviation to estimate DE’s disagreement among ensemble members’ predictions. It seems plausible
 1142 that in Lakshminarayanan et al. (2017)’s case of 5 ensemble members, using the standard deviation
 1143 and some Gaussian assumptions can be more appropriate while in (Yu & Barter, 2024, Chapter 13)’s
 1144 and Agarwal et al. (2025)’s case of 100 or more ensemble members, quantiles can be more accurate.
 1145

1146 **Variations of Deep Ensembles.** There exist several modifications of DE that, for example, promote
 1147 the ensemble’s diversity on the function space via an additional loss term during training (Wang
 1148 et al., 2019), ensemble over multiple different hyperparameters (Wenzel et al., 2020b), or reduce
 1149 the computational training cost (Kendall & Gal, 2017; Gal & Ghahramani, 2016; Wen et al., 2020;
 1150 Havasi et al., 2021; Rossellini et al., 2024; Chan et al., 2025; Agarwal et al., 2025).
 1151

1152 A.2.2 MONTE CARLO DROPOUT

1153 Gal & Ghahramani (2016) originally studied Monte Carlo Dropout (MC Dropout) without explicitly
 1154 modeling aleatoric uncertainty, which was then extended by Kendall & Gal (2017) to also explicitly
 1155 model aleatoric uncertainty. While Gal & Ghahramani (2016) see MC Dropout as an approximation
 1156 of a Bayesian neural network, one can also see it as another ensemble method. The main difference
 1157 to DE is that MC Dropout only trains one NN with dropout and obtains an ensemble after training by
 1158 randomly setting weights of the model to zero at inference time. Analogously to DE, MC Dropout
 1159 also adds epistemic and aleatoric uncertainty in the ratio 1:1 with the same disadvantages as described
 1160 before in Appendix A.2.1.
 1161

1162 A.2.3 “A DEEPER LOOK INTO ALEATORIC AND EPISTEMIC UNCERTAINTY 1163 DISENTANGLEMENT”

1164 Valdenegro-Toro & Saromo (2022) empirically concludes that ensembles have the best uncertainty
 1165 and disentangling behavior of epistemic and aleatoric uncertainty. In their paper, the authors do not
 1166 use any form of calibration. This would correspond to $\gamma_2 = \gamma_1 = 1 = \lambda$ in our notation. Their paper
 1167 suggests a different loss function, which they call β -NLL, for training to mitigate the underestimation
 1168 of aleatoric uncertainty to some extent in their experimental setting without comparing this approach
 1169 to calibration. In (Valdenegro-Toro & Saromo, 2022, Figure 6), one can observe that even without
 1170 the β -NLL, both epistemic and aleatoric uncertainty already have a good shape (that is, good relative
 1171 uncertainty, see Appendix I) for deep ensembles (DE). The main problem of DE in (Valdenegro-Toro
 1172 & Saromo, 2022, Figure 6) is that the epistemic uncertainty is too small by a very large factor (that is,
 1173 poor absolute scale of uncertainty, see Appendix I), while aleatoric uncertainty has already almost
 1174 the correct scaling. From our perspective, applying CLEAR on their DE would probably largely fix
 1175 their problem of DE if CLEAR chooses $\gamma_1 \approx 1$ and $\lambda \gg 1$. However, they show that for this specific
 1176 experiment, β -NLL also fixes the problem. In general, where one suspects that the aleatoric or the
 1177 epistemic uncertainty might be too small or too large across the domain, we strongly recommend
 1178 simply applying CLEAR on top of the already trained ensemble instead of retraining all the models
 1179 with a new training pipeline. The concept of CLEAR can be implemented in a few minutes and
 1180 calibrates an already trained ensemble in a few seconds. We considered an interesting open problem
 1181 to study if β -NLL can improve the relative epistemic and aleatoric uncertainty (see Appendix I).
 1182

1183 A.2.4 “RECALIBRATION OF ALEATORIC AND EPISTEMIC REGRESSION UNCERTAINTY IN 1184 MEDICAL IMAGING”

1185 Laves et al. (2021) also combines epistemic and aleatoric uncertainty in the ratio 1:1 and applies a
 1186 single constant (corresponding to γ_1 in our notation) to scale the total predictive uncertainty, which
 1187 corresponds to fixing $\lambda = 1$, resulting in the same potential for problems as mentioned before.
 1188

1188 A.3 BAYESIAN MODELS
11891190 If one had access to a perfect prior, perfectly computed Bayesian inference, it would provide well-
1191 calibrated epistemic and aleatoric uncertainty, at least in theory. However, in practice, the ratio
1192 of estimated epistemic and aleatoric uncertainty can be very wrong, and the uncertainty can be
1193 miscalibrated.1194
1195 A.3.1 GAUSSIAN PROCESS REGRESSION (GPR)
11961197 Gaussian Process regression (Edward, 2003) provides a closed form for exact posterior epistemic
1198 uncertainty for a given Gaussian process as a prior and for a given known noise Gaussian noise
1199 distribution. If the (scale of the) prior or the scale (of the noise) is misspecified, the ratio of estimated
1200 epistemic and aleatoric uncertainty can be arbitrarily bad, and the uncertainty can be miscalibrated.
1201 Therefore, it is common to optimize hyperparameters like the noise scale and the prior scale (typically
1202 in a non-Bayesian way). The main differences to CLEAR are that 1) for GPR, one has to refit the
1203 model for every considered possibility of hyperparameters, while CLEAR optimizes γ_1 and λ after
1204 fitting the model, resulting in much lower computational costs; 2) CLEAR can be applied to other
1205 base models as well such as tree-based models which are more popular in many applications; 3)
1206 standard-implementations of GPR fit the hyperparameter on the training data rather than on the
1207 validation data.1208 A.3.2 BAYESIAN NEURAL NETWORKS (BNNs)
12091210 Bayesian neural networks MacKay (1992); Neal (1996) offer a principled Bayesian framework for
1211 quantifying both epistemic and aleatoric uncertainty through the placement of a prior distribution
1212 on network weights. As for GPR, the ratio of estimated epistemic and aleatoric uncertainty in
1213 BNNs is highly sensitive to the choice of prior. Consequently, we advocate applying CLEAR to an
1214 already trained BNN, calibrating both uncertainty types via scaling factors γ_1 and γ_2 with negligible
1215 additional computational overhead. While exact Bayesian inference in large BNNs is computationally
1216 intractable, numerous approximation techniques have been proposed (Graves, 2011; Blundell et al.,
1217 2015; Hernández-Lobato & Adams, 2015; Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017;
1218 Ritter et al., 2018; Daxberger et al., 2021; Heiss et al., 2022b; Wenzel et al., 2020a; Nguyen & Goulet,
1219 2022b;a; Cong et al., 2024; Shen et al., 2024). Interestingly, theoretical (Heiss et al., 2022a; Heiss,
1220 2024) and empirical (Wenzel et al., 2020a) studies suggest that some of these approximations can
1221 actually provide superior estimates compared to their exact counterparts, due to poor choices of
1222 priors, such as i.i.d. Gaussian priors, in certain settings.1223 A.3.3 EPISCORE
12241225 The recent work by Cabezas et al. (2025) introduces EPICSCORE. Similar to our work, this method
1226 addresses the limitations of standard conformal prediction in capturing epistemic uncertainty. EPIC-
1227 SCORE focuses on enhancing existing conformal scores with Bayesian epistemic uncertainty. They
1228 also compute the average interval score for 95% predictive intervals on the datasets `airfoil` (where
1229 their best method out of 6 variants performs more than 2 times worse than the worst of the 3 variants
1230 of CLEAR), `concrete` (where their best method performs more than 1.5 times worse than the worst
1231 variant of CLEAR) and `Superconductivity` (where their best method performs approximately
1232 1.3 times worse than the worst variant of CLEAR).1233 A.3.4 TABPFN
12341235 *TabPFN* (Müller et al., 2021; Hollmann et al., 2025) is a transformer trained to emulate Bayesian
1236 inference over a diverse prior of realistic tabular problems, achieving strong predictive uncertainty
1237 estimates with a single forward pass. Its prior spans diverse noise structures and function classes,
1238 yielding uncertainty estimates that inherently mix aleatoric and epistemic components. Although
1239 recent variants such as TabPFN-TS (Hoo et al., 2025) extend its applicability to time series, the
1240 method is limited to small tabular datasets and does not disentangle uncertainty types. In contrast, our
1241 approach explicitly separates and calibrates epistemic and aleatoric uncertainty and scales to arbitrary
1242 modalities and data sizes.

1242 A.4 CONFORMAL LITERATURE THAT DOES NOT ACCOUNT FOR EPISTEMIC AND ALEATORIC
 1243 UNCERTAINTY
 1244

1245 The classical conformal prediction literature (Vovk et al., 2005; Vovk, 2012; Lei & Wasserman,
 1246 2014; Romano et al., 2019; Angelopoulos et al., 2024) primarily focuses on achieving marginal
 1247 coverage, often with attention to asymptotic conditional coverage. However, it often overlooks
 1248 epistemic uncertainty, which is especially critical in finite-sample settings. While Barber et al.
 1249 (2020) established the impossibility of achieving exact distribution-free conditional coverage in finite
 1250 samples, several recent works attempt to improve coverage guarantees in more restricted settings
 1251 under certain assumptions. For instance, Gibbs et al. (2024) propose coverage guarantees over a
 1252 subclass of distribution shifts, effectively interpolating between marginal and conditional coverage.
 1253 Others, such as Guan (2022) and Dwivedi et al. (2020), provide guarantees over a finite set of
 1254 prespecified subgroups. We argue that to obtain reliable conditional coverage, one must model
 1255 the uncertainty arising from each stage of the data science life cycle (Yu & Barter, 2024), and
 1256 appropriately integrate these uncertainties to achieve meaningful coverage guarantees.
 1257

1257 A.5 OTHER CALIBRATION METHODS
 1258

1259 Predictive uncertainty can be expressed either as a predictive set for a given level α , as a predictive
 1260 distribution, or as a numerical value quantifying the level of uncertainty (e.g., the entropy of the pre-
 1261 dictive distribution). Our implementation of CLEAR yields predictive intervals, making it compatible
 1262 with both base models that output intervals (such as QR) and with base models that output predictive
 1263 distributions from which one can easily obtain predictive intervals. Conceptually, CLEAR could also
 1264 be extended to predictive distributions or numerical values.

1265 In the applied literature on **predictive intervals**, it is quite common to calibrate a constant factor
 1266 to rescale the width of predictive intervals (Laves et al., 2021; Heiss et al., 2022b; Yu & Barter,
 1267 2024; Agarwal et al., 2025). Independently, the conformal community came up with almost identical
 1268 methods based on theoretical considerations, as already discussed in Appendix A.4.

1269 In the literature on **predictive distributions**, early works suggested more sophisticated non-linear
 1270 transformations for the predictive distributions (Kuleshov et al., 2018; Song et al., 2019; Kuleshov
 1271 & Deshpande, 2022). However, Levi et al. (2022) demonstrated that simply calibrating a constant
 1272 scaling factor performs on par with these more sophisticated calibration methods.

1273 To summarize, there are multiple (slightly) different methods to calibrate uncertainty with similar em-
 1274 pirical performance. These methods only monotonically transform the uncertainty without changing
 1275 the ranking of the uncertainties (i.e., if one was more uncertain on x than on \tilde{x} before the calibration
 1276 step, one will also be more uncertain on x than on \tilde{x} afterwards; see Appendix I). In contrast, CLEAR
 1277 and UACQR can also change the ranking of the uncertainties (e.g., in the situation of Figure 1, a
 1278 small value of λ would assign more uncertainty to the center around $x = 0$ compared to the region
 1279 around $x = -6$, whereas a large value of λ would assign more uncertainty to $x = -6$ than to $x = 0$).
 1280

1281 A.6 METHODS THAT MAINLY FOCUS ON DISTRIBUTIONAL ALEATORIC UNCERTAINTY
 1282

1283 In this section, we provide more details on the literature overview on aleatoric uncertainty from
 1284 Section 2.3.

1285 One can directly estimate **conditional quantiles** for a given level α via *quantile regression* (QR)
 1286 (Koenker & Bassett, 1978), either parametric or nonparametric, such as smooth quantile regression
 1287 (Fasiolo et al., 2020) and quantile random forests (QRF) (Meinshausen, 2006). This is computationally
 1288 cheap if you a priori know which level α is of interest for your predictive intervals.

1289 Alternatively, one can also try to estimate the **conditional distribution**. This can initially be
 1290 computationally more expensive, but once the conditional distributions are estimated, one can easily
 1291 obtain conditional quantiles for multiple different levels α . One of the computationally cheapest ways
 1292 to estimate conditional distributions is to estimate parameters of a specific distribution (e.g., $\mu(x)$ and
 1293 $\sigma(x)$ of a Gaussian distribution) (Nix & Weigend, 1994). There are semi-parametric extensions of
 1294 this with universal approximation properties (Kratsios, 2023). There are many similar approaches to
 1295 estimate conditional densities (Rothfuss et al., 2019). Another way to obtain a conditional distribution
 1296 is to estimate the conditional quantiles for all levels $\alpha \in [0, 1]$ simultaneously, as in *simultaneous*

1296 *quantile regression* (SQR) (Tagasovska & Lopez-Paz, 2019) and its extension MAQR (Chung
 1297 et al., 2021). Especially for applications where the model output is high-dimensional (e.g., models
 1298 that output images), more modern deep generative models have become popular, e.g., conditional
 1299 generative adversarial networks (Oberdiek et al., 2022), conditional variational autoencoders (Han
 1300 et al., 2020), and diffusion models (Chang et al., 2023; Chan et al., 2025).

1301 **Limitations and Empirical Comparison** The majority of these works fail to properly account
 1302 for epistemic uncertainty¹, and don't include a post-hoc calibration step. Each of these methods
 1303 could be incorporated into CLEAR as an alternative to our recommended ALEATORIC-R module.
 1304 For example, in some preliminary experiments combining SQR (Tagasovska & Lopez-Paz, 2019)
 1305 with ensemble-diversity (Lakshminarayanan et al., 2017) via CLEAR's calibration step results in
 1306 significant improvements over the (calibrated versions) of the individual models. This shows the
 1307 applicability of CLEAR's calibration step on pure deep-learning pipelines. Furthermore, when we
 1308 compare the results of our entire CLEAR pipeline reported in our paper with the results of the
 1309 entire SQR-pipeline and MAQR-pipeline reported in (Tagasovska & Lopez-Paz, 2019; Chung et al.,
 1310 2021), we can see that CLEAR massively outperforms their pipelines. This shows that our PCS-
 1311 based approach and our novel variant of QR are already highly recommendable choices, resulting in
 1312 state-of-the-art performance of the CLEAR-pipeline directly out of the box.
 1313

1314 A.7 FURTHER RELATED LITERATURE

1316 A.7.1 “BEYOND PINBALL LOSS: QUANTILE METHODS FOR CALIBRATED UNCERTAINTY 1317 QUANTIFICATION”

1318 Chung et al. (2021) explores the limitations of the pinball loss (which we call Quantile Loss),
 1319 criticizing that its direct minimization does not guarantee correct marginal coverage. In CLEAR,
 1320 we address this by framing the optimization of γ_1 and λ as a constrained optimization problem (see
 1321 Equation (4) in Appendix B.3): we minimize the pinball loss on a calibration dataset \mathcal{D}_{cal} (see Line 5
 1322 in Algorithm 1) while constraining the marginal coverage on \mathcal{D}_{cal} (see Line 4 in Algorithm 1). This
 1323 constrained approach directly mitigates the criticism of Chung et al. (2021).

1325 A.7.2 UNCERTAINTY QUANTIFICATION FOR CONDITIONAL IMAGE GENERATION

1326 Chan et al. (2025) suggests combining a diffusion model for aleatoric uncertainty with a hyper-
 1327 network-generated ensemble for epistemic uncertainty to quantify the uncertainty in conditional
 1328 image generation. Diffusion models are particularly well-suited for conditional image generation, and
 1329 using a hyper-network can be a computationally more efficient way to obtain an ensemble. However,
 1330 they combine these two sources of uncertainty simply in the ratio 1:1 without any form of calibration
 1331 (corresponding to hard-coding $\lambda = \gamma_1 = \gamma_2 = 1$ in our notation). It would be interesting future work
 1332 to apply calibration in the spirit of CLEAR on top of Chan et al. (2025) to extend the idea of CLEAR
 1333 to conditional image generation.

1335 A.7.3 UNCERTAINTY QUANTIFICATION FOR PRETRAINED MODELS

1336 Wang & Ji (2024) estimates the epistemic uncertainty for pre-trained classification models, while
 1337 CLEAR focuses on both epistemic and aleatoric components for regression. It would be interesting
 1338 future work to extend CLEAR to also be applicable to already pre-trained models using techniques
 1339 presented in Wang & Ji (2024).

1341 A.7.4 UNCERTAINTY QUANTIFICATION AS A BINARY CLASSIFICATION PROBLEM

1343 Altieri et al. (2024) do not provide predictive intervals or distributions. Instead, they partition test
 1344 data into “good” (more certain) and “bad” (less certain) points. As future work, one could derive
 1345 a binary classifier from CLEAR by thresholding the predictive interval width, and then evaluate it
 1346 under their proposed metrics.

1347 ¹Chan et al. (2025) include epistemic uncertainty in the ratio 1:1; Chung et al. (2021) conduct limited
 1348 experiments on including epistemic uncertainty in their appendix; Tagasovska & Lopez-Paz (2019) proposes
 1349 *Orthonormal Certificates* for estimating epistemic uncertainty, but explicitly leave the combination for future
 work.

1350
1351

A.7.5 CREDAL SETS

1352

Hofman et al. (2024b) describe epistemic uncertainty via credal sets on the space of distributions. This approach is quite natural for classification, where the space of distributions over K classes is $(K - 1)$ -dimensional. However, they do not provide any concrete algorithms for regression, where the space of all distributions over a continuous set is infinite-dimensional. Hofman et al. (2024b) suggest multiple ideas on how one can translate credal sets into two real/valued numbers describing the magnitude of the epistemic and the aleatoric uncertainty. Javanmardi et al. (2025) proposes a method that can provide conformal predictive sets for classification with guaranteed input-conditional coverage under the assumption that one already has access to credal sets that guaranteeably cover the true input/conditional distribution. They also briefly discuss that for real-world applications, this assumption is not satisfied.

1361

1362

A.7.6 IN-SAMPLE CALIBRATION YIELDS CONFORMAL CALIBRATION GUARANTEES

1363

1364

For the distributional regression, Allen et al. (2025) suggest using conformal binning or conformal isotonic distributional regression and prove theoretical guarantees under the exchangeability assumption.

1365

1366

A.7.7 ENGRESSION

1367

1368

Shen & Meinshausen (2024) uses generative methods for uncertainty estimation that, in particular, take advantage of pre-additive noise (i.e., noise that is directly added to x).

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

B THEORY: COVERAGE GUARANTEES AND THEORETICAL JUSTIFICATIONS
B.1 FINITE-SAMPLE MARGINAL COVERAGE FOR CLEAR

While conformal methods typically offer finite-sample marginal coverage guarantees, our implementation of CLEAR does not strictly adhere to these guarantees for two reasons:

1. We reuse the validation dataset \mathcal{D}_{val} as the calibration dataset, i.e., $\mathcal{D}_{\text{cal}} = \mathcal{D}_{\text{val}}$.
2. We optimize two parameters γ_1 and λ on the calibration dataset \mathcal{D}_{cal} .

However, our empirical results in Tables 12, 17 and 22 show that for reasonably sized datasets, this theoretical discrepancy does not visibly impact our practical marginal coverage. From a theoretical perspective, CLEAR still achieves asymptotic marginal coverage (as a consequence of asymptotic conditional coverage, see Lemma 2.1).

By slightly modifying the CLEAR procedure, we can obtain a theoretical finite-sample guarantee for marginal coverage under the standard exchangeability assumption, as in conformal inference, without sacrificing asymptotic conditional coverage. The key idea is to optimize the parameter λ using only a validation dataset \mathcal{D}_{val} , and then calibrate γ_1 using a separate, previously unseen calibration dataset \mathcal{D}_{cal} .

Definition B.1 (Conformalized CLEAR). Let the available data be split into a training set $\mathcal{D}_{\text{train}}$ and an old validation set $\mathcal{D}_{\text{val}}^{\text{old}}$. We first split $\mathcal{D}_{\text{val}}^{\text{old}}$ into two disjoint sets: a new validation set \mathcal{D}_{val} and a calibration set \mathcal{D}_{cal} . The procedure is as follows:

1. **Train and Optimize λ by running Algorithm 1 on $\mathcal{D}_{\text{train}}$ and \mathcal{D}_{val} :** The model \hat{f} and the uncertainty estimators are trained on $\mathcal{D}_{\text{train}}$ (Step 2 and 3 of Algorithm 1). The optimal value λ^* is found by optimizing the QuantileLoss on \mathcal{D}_{val} , without using any data from \mathcal{D}_{cal} (Step 4 and 5 of Algorithm 1).

2. **Compute Conformity Scores:** For each data point $(X_i, Y_i) \in \mathcal{D}_{\text{cal}}$, compute the conformity score $S_i^{\lambda^*}$:

$$S_i^{\lambda^*} = \max \left\{ \frac{\tilde{l}_{\lambda^*}(X_i) - Y_i}{\hat{f}(X_i) - \tilde{l}_{\lambda^*}(X_i)}, \frac{Y_i - \tilde{u}_{\lambda^*}(X_i)}{\tilde{u}_{\lambda^*}(X_i) - \hat{f}(X_i)} \right\}$$

where $\tilde{l}_{\lambda^*} := \hat{f} - \hat{q}_{\alpha/2}^{\text{ale}} - \lambda^* \hat{q}_{\alpha/2}^{\text{epi}}$ and $\tilde{u}_{\lambda^*} := \hat{f} + \hat{q}_{1-\alpha/2}^{\text{ale}} + \lambda^* \hat{q}_{1-\alpha/2}^{\text{epi}}$.

3. **Calibrate the Prediction Interval:** Set the calibration parameter γ_1^* to be the $\lceil (1 - \alpha)(|\mathcal{D}_{\text{cal}}| + 1) \rceil$ -th smallest value among the conformity scores $S_i^{\lambda^*}$ from \mathcal{D}_{cal} . If $\lceil (1 - \alpha)(|\mathcal{D}_{\text{cal}}| + 1) \rceil > |\mathcal{D}_{\text{cal}}|$, set $\gamma_1^* = \infty$.

4. **Form the Final Prediction Interval:** For a new test point x_{new} , the final $(1 - \alpha)$ -prediction interval is given by:

$$C(x_{\text{new}}) = \left[\hat{f}(x_{\text{new}}) - \gamma_1^* \left(\hat{q}_{\alpha/2}^{\text{ale}} + \lambda^* \hat{q}_{\alpha/2}^{\text{epi}} \right), \quad \hat{f}(x_{\text{new}}) + \gamma_1^* \left(\hat{q}_{1-\alpha/2}^{\text{ale}} + \lambda^* \hat{q}_{1-\alpha/2}^{\text{epi}} \right) \right]$$

This modified version of CLEAR, which we call Conformalized CLEAR, satisfies the standard finite-sample marginal coverage guarantee of conformal prediction.

Lemma B.2. *Under the assumption that the data points in the calibration set \mathcal{D}_{cal} and the test point $(X_{\text{new}}, Y_{\text{new}})$ are exchangeable, the prediction interval $C(X_{\text{new}})$ generated by the Conformalized CLEAR procedure satisfies:*

$$\mathbb{P}(Y_{\text{new}} \in C(X_{\text{new}})) \geq 1 - \alpha.$$

Proof. The proof is a direct application of the standard theoretical guarantees for split conformal prediction. Since λ^* is determined using only data from \mathcal{D}_{val} , it is fixed with respect to the calibration set \mathcal{D}_{cal} . The conformity scores $S_i^{\lambda^*}$ are therefore exchangeable for all $(X_i, Y_i) \in \mathcal{D}_{\text{cal}} \cup \{(X_{\text{new}}, Y_{\text{new}})\}$. The choice of γ_1^* as the empirical $(1 - \alpha)(1 + 1/|\mathcal{D}_{\text{cal}}|)$ -quantile of the calibration scores ensures that the resulting prediction interval achieves at least $1 - \alpha$ marginal coverage, as established by (Angelopoulos et al., 2024, Theorem 1.4). \square

1458 However, in practice, we recommend using our default implementation of CLEAR, where the validation
 1459 data is reused for calibration ($\mathcal{D}_{\text{cal}} = \mathcal{D}_{\text{val}}$). This improves data efficiency while still achieving
 1460 strong approximate marginal coverage in our experiments (see Tables 12, 17 and 22). Avoiding a split
 1461 allows more data for both validation and calibration, which improves model selection and stabilizes
 1462 marginal and conditional coverage. Even when marginal coverage $\mathbb{P}(Y_{\text{new}} \in C(X_{\text{new}})) \geq 1 - \alpha$ is
 1463 satisfied, the actual coverage $\mathbb{P}(Y_{\text{new}} \in C(X_{\text{new}}) | \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{val}}, \mathcal{D}_{\text{cal}})$ can be significantly lower than the
 1464 target coverage $1 - \alpha$ for a fixed calibration dataset \mathcal{D}_{cal} , due to the inherent variation of \mathcal{D}_{cal} . Only
 1465 with sufficiently large calibration datasets \mathcal{D}_{cal} can we expect $\mathbb{P}(Y_{\text{new}} \in C(X_{\text{new}}) | \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{val}}, \mathcal{D}_{\text{cal}})$ to
 1466 be reliably close to $\mathbb{P}(Y_{\text{new}} \in C(X_{\text{new}}))$.²

1467 B.1.1 LIMITATIONS OF CONFORMAL MARGINAL COVERAGE GUARANTEES

1469 The conformal theory heavily relies on the assumptions of exchangeability. Exchangeability means
 1470 that the joint distribution of calibration and test observations is invariant to permutations (e.g.,
 1471 iid observations satisfy this assumption). While exchangeability is theoretically convenient, it is
 1472 unrealistic in many real-world settings. Models are typically trained on past data and deployed in the
 1473 future, where the distribution of X_{new} usually shifts, i.e., $\mathbb{P}[X_{\text{new}}] \neq \mathbb{P}[X]$. Even if $\mathbb{P}[Y_{\text{new}} | X_{\text{new}}] =$
 1474 $\mathbb{P}[Y | X]$ remains fixed, such marginal shifts in X_{new} can cause conformal methods to catastrophically
 1475 fail to provide valid marginal coverage. In Section 4.1 and Appendix C (Figures 2 and 4 to 6),
 1476 CLEAR empirically remains robust, while CQR and Naive-Conformal fail under distribution shifts in
 1477 X_{new} . E.g., Figure 4, suggests $\mathbb{P}[Y_{\text{new}} \in C_{\text{Naive}}(X_{\text{new}}) | |X_{\text{new}}| \geq 2] \leq 70\% \ll 90\% = 1 - \alpha$, thus
 1478 a marginal distribution shift of X_{new} that strongly increases the probability of $|X_{\text{new}}| > 2$, would
 1479 lead to a large drop of marginal coverage for $(X_{\text{new}}, Y_{\text{new}})$. CLEAR likewise lacks formal guarantees
 1480 under extreme shifts, but consistently performs more reliably across our experiments. In the case
 1481 study (Section 4.3), a realistic temporal split (see (Yu & Barter, 2024, Section 8.4.3)) also violates
 1482 exchangeability, and CLEAR outperforms conformal baselines in marginal coverage. Caution is
 1483 required when trusting conformal guarantees, as the assumption of exchangeability is often not
 1484 met in practice, and some conformal methods catastrophically fail for slight deviations from the
 1485 exchangeability assumption.

1486 Even under the assumption of exchangeability, conformal guarantees have further weaknesses:

- 1487 1. The conformal marginal coverage guarantee

$$1488 \mathbb{P}[Y_{\text{new}} \in C(X_{\text{new}})] = \mathbb{E}_{\mathcal{D}_{\text{train}}, \mathcal{D}_{\text{cal}}} [\mathbb{P}[Y_{\text{new}} \in C(X_{\text{new}}) | \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{cal}}]] \geq 1 - \alpha$$

1489 does not imply that $\mathbb{P}[Y_{\text{new}} \in C(X_{\text{new}}) | \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{cal}}] \geq 1 - \alpha$ for a fixed realization of the
 1490 calibration set \mathcal{D}_{cal} , as already discussed before. If the calibration residuals are small by
 1491 chance, conformal intervals may be too narrow, especially with tiny calibration datasets.
 1492 Reliable calibration is generally unattainable with tiny calibration datasets: Even if the
 1493 exchangeability assumption is satisfied, even methods with conformal guarantees often
 1494 strongly undercover, i.e., $\mathbb{P}_{\mathcal{D}_{\text{train}}, \mathcal{D}_{\text{cal}}} [\mathbb{P}[Y_{\text{new}} \in C_{\text{conformal}}(X_{\text{new}}) | \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{cal}}]] \ll 1 - \alpha \gg 0$.
 1495 Therefore, caution is required when communicating conformal guarantees to practitioners.

- 1496 2. Beyond marginal coverage, CLEAR is designed to improve *conditional calibration*:
 $\mathbb{P}[Y_{\text{new}} \in C(X_{\text{new}}) | X_{\text{new}}] \approx 1 - \alpha$. This is crucial in human-in-the-loop settings, where
 1497 interventions are prioritized based on an accurate *ranking* of predictive uncertainty across
 1498 data points (see Appendix I). Marginal coverage guarantees offer no guarantees for such
 1499 rankings nor for conditional coverage. A method could have perfect marginal coverage but
 1500 rank uncertainties arbitrarily. In other words, marginal coverage guarantees only address
 1501 one specific metric (marginal coverage), while ignoring many other metrics that are often
 1502 more important in practice.

1503 To summarize, conformal marginal coverage guarantees (such as Lemma B.2) say very little about the
 1504 overall quality of an uncertainty quantification method. Conformal marginal coverage guarantees only
 1505 shed light on a very specific aspect of uncertainty quantification and only under the quite unrealistic
 1506 assumption of exchangeability.

1507 ²Conformal theory provides theoretical guarantees for $\mathbb{P}(Y_{\text{new}} \in C(X_{\text{new}})) \geq 1 - \alpha$ and $\mathbb{P}(Y_{\text{new}} \in$
 1508 $C(X_{\text{new}}) | \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{val}}) \geq 1 - \alpha$ under the standard exchangeability assumption. However, it does *not* pro-
 1509 vide finite-sample guarantees for $\mathbb{P}(Y_{\text{new}} \in C(X_{\text{new}}) | \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{val}}, \mathcal{D}_{\text{cal}})$ and $\mathbb{P}(Y_{\text{new}} \in C(X_{\text{new}}) | \mathcal{D}_{\text{cal}})$ for a fixed
 1510 calibration dataset, even under the standard exchangeability assumption.

1512 B.2 ASYMPTOTIC CONDITIONAL COVERAGE FOR CLEAR: LEMMA 2.1 ASSUMPTIONS
1513

1514 The assumptions underlying Lemma 2.1 are generally mild and often satisfied in practice. The
1515 assumption that Λ is compact is particularly mild. In our experiments, we use a finite grid; for
1516 example, a combination of linearly spaced values from 0 to 0.09 and logarithmically spaced values
1517 from 0.1 to 100, resulting in approximately 4010 points. Intuitively, we believe that even if Λ were
1518 unbounded, the result of Lemma 2.1 would still hold, since QuantileLoss is a strictly proper scoring
1519 rule and thus would not lead to excessively large values of λ^* in the limit.

1520 Lemma 2.1 also assumes consistency of the estimators. Many estimators satisfy this condition for
1521 both regression and quantile regression tasks:

- 1522
- 1523 Quantile Random Forests have been shown to consistently estimate quantiles under rea-
1524 sonable conditions, such as by regularizing the minimum number of samples per leaf
(Meinshausen, 2006). Similarly, classical Random Forests are known to be consistent under
1525 standard assumptions (Scornet et al., 2015). Both QRF and Random Forests are available in
1526 our implementation of CLEAR.
 - 1527 Boosting methods trained on general loss functions can be made consistent under certain
1528 conditions, especially when regularized through early stopping (Zhang & Yu, 2005). This
1529 suggests that XGBoost and its quantile version, QXGB, can be consistent for suitable choices
1530 of hyperparameters. Both are included in our implementation of CLEAR.
 - 1531 More generally, regularized minimization of QuantileLoss over a sufficiently expressive
1532 function class on $\mathcal{D}_{\text{train}}$ yields consistent quantile estimators under broad assumptions
1533 (Steinwart & Christmann, 2011).
- 1534

1535 In our experiments, we set $k = 1$, so Lemma 2.1 requires only one of the base models to be consistent.

1536 Finally, note that Lemma 2.1 implicitly assumes i.i.d. data, as described in Section 2.1. For real-world
1537 datasets, this i.i.d. assumption is often the most difficult to justify in practice and may pose a greater
1538 challenge than the other assumptions in the lemma.

1540 B.3 PROPERTIES OF THE QUANTILELOSS
1541

1542 We define the QuantileLoss(\mathcal{D}, C) := $\frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} [QL_{\alpha/2}(y, l(x)) + QL_{1-\alpha/2}(y, u(x))] / 2$
1543 (also denoted as “pinball loss”, “quantile loss”, “asymmetric piecewise linear loss”, “linlin loss”,
1544 “hinge loss”, “tick loss”, or “newsvendor loss” (Gneiting, 2011)), with $l(x), u(x)$ denoting the bounds
1545 of $C(x)$, and $QL_\tau(y, q) = (y - q)(\tau - \mathbb{1}_{(-\infty, q]}(y))$. Note that the majority of the literature defines
1546 the quantile loss as QL_τ , whereas our QuantileLoss already aggregates QL_τ over both the upper and
1547 the lower bound of the intervals C and over the data points in \mathcal{D} .

1548 We use the QuantileLoss for three different purposes in this paper:

- 1549
- 1550 Some QR-methods in Step 2 of Algorithm 1 use the QuantileLoss to train their models.
 - 1551 In Step 4 of Algorithm 1 we minimize the QuantileLoss to determine λ^* . In other words,
1552 Step 3 and 4 of Algorithm 1 together (approximately) solve

$$1554 (\gamma_1^*, \lambda^*) = \arg \min_{(\gamma_1, \lambda) \in (0, \infty) \times \Lambda} \text{QuantileLoss}(\mathcal{D}_{\text{val}}, C_{\gamma_1, \lambda}), \quad (4)$$

1555 s.t. $|\{(x, y) \in \mathcal{D}_{\text{cal}} : y \in C_{\gamma_1, \lambda}(x)\}| \geq \lceil (1-\alpha)(|\mathcal{D}_{\text{cal}}|+1) \rceil$

$$1557 \text{where } C_{\gamma_1, \lambda} = \left[\hat{f} - \gamma_1 \hat{q}_{\alpha/2}^{\text{ale}} - \lambda \gamma_1 \hat{q}_{\alpha/2}^{\text{epi}}, \hat{f} + \gamma_1 \hat{q}_{1-\alpha/2}^{\text{ale}} + \lambda \gamma_1 \hat{q}_{1-\alpha/2}^{\text{epi}} \right].$$

- 1558 We use the QuantileLoss as an evaluation metric on the test dataset $\mathcal{D}_{\text{test}}$.

1560 In the following, we will discuss multiple favorable properties of the QuantileLoss (many of these
1561 properties also hold for the Interval Score Loss).

1563 B.3.1 INTUITION BEHIND THE QUANTILELOSS

1564 In many real-world applications, the severity of a prediction error often depends on the magnitude of
1565 the deviation from the predictive interval. For example, in financial portfolio management, a massive

drop below the predicted lower bound can be significantly more damaging than a slight deviation. Similarly, for flood protection systems where dam heights are based on an upper predictive bound, a large amount of overflow causes substantially more damage than a small overflow. Traditional metrics like PICP treat coverage as a binary outcome, distinguishing only between points that are covered and those that are not. The QuantileLoss, however, offers a more nuanced evaluation by penalizing the magnitude of a data point’s distance from the predictive interval when it is not covered.

Intuitively, the QuantileLoss strongly penalizes the distance to the predictive intervals for data points outside the predictive interval, and gently penalizes the width of the predictive intervals that do not cover the data points. This incentivizes the predictive intervals to widen in regions of large uncertainty and to adaptively narrow down in regions of low uncertainty, incentivizing good relative uncertainty (see Appendix I). Simultaneously, the QuantileLoss incentivizes good absolute uncertainty (i.e., marginal calibration, see Appendix I): If the proportion of data points below the upper bounds is less than $1 - \frac{\alpha}{2}$, then increasing the upper bounds by a constant improves the QuantileLoss until the proportion reaches $1 - \frac{\alpha}{2}$, i.e., for all $c > 0$,

$$\begin{aligned} & |\{(x, y) \in \mathcal{D}_{\text{cal}} : y \leq u(x) + c\}| < (1 - \frac{\alpha}{2})|\mathcal{D}_{\text{cal}}| \\ \implies & \text{QuantileLoss}(\mathcal{D}, [l, u]) > \text{QuantileLoss}(\mathcal{D}, [l, u + c]), \end{aligned}$$

and vice versa if the proportion of data points below the upper bounds is more than $1 - \frac{\alpha}{2}$, i.e., for all $c > 0$,

$$\begin{aligned} & |\{(x, y) \in \mathcal{D}_{\text{cal}} : y \leq u(x)\}| > (1 - \frac{\alpha}{2})|\mathcal{D}_{\text{cal}}| \\ \implies & \text{QuantileLoss}(\mathcal{D}, [l, u]) < \text{QuantileLoss}(\mathcal{D}, [l, u + c]), \end{aligned}$$

and analogously, the QuantileLoss incentivizes the lower bound to be above $\frac{\alpha}{2}|\mathcal{D}_{\text{cal}}|$ data points and below $(1 - \frac{\alpha}{2})|\mathcal{D}_{\text{cal}}|$ data points. The QuantileLoss simultaneously evaluates multiple different properties of predictive intervals and cannot be easily tricked, in contrast to other metrics: PCIP can be easily maximized by infinitely wide intervals, which are completely useless in practice; NIW can be minimized by zero-width intervals, which are useless in practice; NCIW only measures the relative uncertainty while completely ignoring the marginal coverage.

B.3.2 THE QUANTILELOSS MEASURES INPUT-CONDITIONAL CALIBRATION

In the following, we will mathematically argue why the QuantileLoss measures input-conditional calibration. Within this paper, we denote input conditional calibration $\mathbb{P}[Y_{\text{new}} \in C(X_{\text{new}}) | X_{\text{new}}] = 1 - \alpha$ simply as conditional calibration.

The true input conditional quantiles minimize the expected QuantileLoss, i.e.,

$$(q_{\alpha/2}, q_{1-\alpha/2}) \in \arg \min_{(l, u) \in \mathcal{Y}^{\mathcal{X}} \times \mathcal{Y}^{\mathcal{X}}} \mathbb{E}_{(X_{\text{new}}, Y_{\text{new}})} [\text{QuantileLoss}(\{(X_{\text{new}}, Y_{\text{new}})\}, [l, u])]. \quad (5)$$

Any minimizer of the QuantileLoss satisfies input-conditional coverage almost surely (a.s.)³, i.e., any solution (l^*, u^*) of the minimization problem (5) satisfies that $l^*(X)$ is an input-conditional $\alpha/2$ -quantile a.s. and $u^*(X)$ is an input-conditional $1 - \alpha/2$ -quantile a.s., thus, $\mathbb{P}[Y_{\text{new}} \in [l(X_{\text{new}}), u(X_{\text{new}})] | X_{\text{new}}] \stackrel{\text{a.s.}}{\geq} 1 - \alpha$. In other words, any deviation from the true quantiles gets penalized by the expected QuantileLoss, as it is a strictly proper scoring rule (Koenker, 2005). If the true conditional CDF is a.s. continuous, then any solution (l^*, u^*) of (5) satisfies input-conditional calibration $\mathbb{P}[Y_{\text{new}} \in [l(X_{\text{new}}), u(X_{\text{new}})] | X_{\text{new}}] \stackrel{\text{a.s.}}{=} 1 - \alpha$. In other words, any deviation from input-conditional coverage gets penalized. Applying the QuantileLoss on a finite dataset \mathcal{D} can be seen as a Monte-Carlo approximation of the expected QuantileLoss.

Another common evaluation method is to compare the average interval width NIW (or NCIW) among methods that approximately obtain the targeted marginal coverage. However, this evaluation method can be exploited: Even if you perfectly know the true distribution, reporting intervals that do not satisfy input-conditional coverage would be optimal. This evaluation method prefers intervals

³A statement holds *almost surely* if it holds a probability of 100%. E.g., a standard normally distributed random variable $X \sim \mathcal{N}(0, 1)$ is a.s. not exactly equal to $\sqrt{2}$, i.e., $X \neq \sqrt{2}$.

1620 that over-cover in regions with low uncertainty and under-cover in regions of high uncertainty, as
 1621 demonstrated in the following examples (Examples B.3 and B.4 are easier to derive, but Examples B.5
 1622 and B.6 are slightly more insightful).
 1623

1624 *Example B.3.* Let $X \in \{1, 2\}$, with $\mathbb{P}[X = 1] = 0.5$ and $\mathbb{P}[X = 2] = 0.5$. Let $Y|X = 1 \sim \mathcal{U}(-1, 1)$
 1625 and $Y|X = 2 \sim \mathcal{U}(-2, 2)$. For a target coverage of $1 - \alpha = 0.9$, the true conditional intervals are:
 1626

- 1627 • $[-0.9, 0.9]$ when $X = 1$ (width=1.8, coverage=0.9)
- 1628 • $[-1.8, 1.8]$ when $X = 2$ (width=3.6, coverage=0.9)

1629 The average width of the true intervals is $\mathbb{E}[\text{width}] = 0.5 \times 2 \cdot 0.9 + 0.5 \times 2 \cdot 1.8 = 2.7$. The marginal
 1630 coverage is exactly 0.9. Now, consider an alternative method that sacrifices conditional calibration to
 1631 minimize average width. This method could report the following intervals:
 1632

- 1633 • $[-1, 1]$ when $X = 1$ (width=2, coverage=1)
- 1634 • $[-1.6, 1.6]$ when $X = 2$ (width=3.2, coverage=0.8)

1635 The marginal coverage of this method is $\mathbb{P}[\text{covered}] = 0.5 \times 1 + 0.5 \times 0.8 = 0.9$. It still achieves the
 1636 target marginal coverage of 90%, but its average width is $\mathbb{E}[\text{width}] = 0.5 \times 2 + 0.5 \times 2 \cdot 1.6 = 2.6$.
 1637 Since $2.6 < 2.7$, this method would be preferred, demonstrating that NIW can incentivize deviations
 1638 from input-conditional calibration. \diamond

1639 *Example B.4.* Under the setting of Example B.3, the situation gets even more extreme if we change
 1640 to $\alpha = 0.5$: For a target coverage of $1 - \alpha = 0.5$, the true conditional intervals are:
 1641

- 1642 • $[-0.5, 0.5]$ when $X = 1$ (width=1, coverage=0.5)
- 1643 • $[-1, 1]$ when $X = 2$ (width=2, coverage=0.5)

1644 The average width of the true intervals is $\mathbb{E}[\text{width}] = 0.5 \times 1 + 0.5 \times 2 = 1.5$. The marginal coverage
 1645 is exactly 0.5. Now, consider an alternative method that sacrifices conditional calibration to minimize
 1646 average width. This method could report the following intervals:
 1647

- 1648 • $[-1, 1]$ when $X = 1$ (width=2, coverage=1)
- 1649 • $[127, 127]$ when $X = 2$ (width=0, coverage=0)

1650 The marginal coverage of this untruthful method is $\mathbb{P}[\text{covered}] = 0.5 \times 1 + 0.5 \times 0 = 0.5$. It still
 1651 achieves the target marginal coverage, but its average width is $\mathbb{E}[\text{width}] = 0.5 \times 2 + 0.5 \times 0 = 1$.
 1652 Since $1 < 1.5$, this untruthful method would be preferred, demonstrating that NIW can incentivize
 1653 strong deviations from input-conditional calibration. Here, the interval that minimizes NIW (and
 1654 NCIW) under the constraint of maintaining marginal coverage, outputs a much wider interval for
 1655 $X = 1$ than for $X = 2$, while there is obviously more uncertainty for $X = 2$ than for $X = 1$. \diamond

1656 *Example B.5.* Let $\mathbb{P}[X = 1] = 0.5 = \mathbb{P}[X = 2]$, and $Y|X = x \sim \mathcal{N}(\mu = 0, \sigma = x)$. Then
 1657 for $\alpha = 5\%$, the true conditional quintiles would be $q_{0.975}(x) = \Phi^{-1}(0.975)x \approx 1.96x$ and
 1658 $q_{0.025}(x) = \Phi^{-1}(0.025)x \approx -1.96x$, thus $[q_{0.025}, q_{0.975}]$ exactly satisfy input-conditional calibra-
 1659 tion $\mathbb{P}[Y_{\text{new}} \in [q_{0.025}(X_{\text{new}}), q_{0.975}(X_{\text{new}})] \mid X_{\text{new}}] \stackrel{\text{a.s.}}{=} 95\%$. However, the on average narrowest
 1660 intervals satisfying marginal coverage would be approximately
 1661

- 1662 • $[-2.16357, 2.16357]$ when $X = 1$ (width = $2 \cdot 2.16357$, coverage ≈ 0.969502)
- 1663 • $[-1.81514 \cdot 2, 1.81514 \cdot 2]$ when $X = 2$ (width = $2 \cdot 1.81514 \cdot 2$, coverage ≈ 0.930498).
 1664

1665 These intervals fail input-conditional coverage while maintaining marginal coverage and result in a
 1666 narrower average width $5.79385 < 5.88$ than the true intervals $[q_{0.025}, q_{0.975}]$. \diamond

1667 *Example B.6.* Let $\mathbb{P}[X = 1] = \frac{9}{19} = \mathbb{P}[X = 2]$, $\mathbb{P}[X = 11] = \frac{1}{19}$, and $Y|X = x \sim \mathcal{N}(\mu = 0, \sigma = x)$. Then for $\alpha = 10\%$, the true conditional quintiles would be $q_{0.9}(x) = \Phi^{-1}(0.95)x \approx 1.645x$ and
 1668 $q_{0.05}(x) = \Phi^{-1}(0.05)x \approx -1.645x$, thus $[q_{0.05}, q_{0.95}]$ exactly satisfy input-conditional calibration
 1669 $\mathbb{P}[Y_{\text{new}} \in [q_{0.05}(X_{\text{new}}), q_{0.95}(X_{\text{new}})] \mid X_{\text{new}}] \stackrel{\text{a.s.}}{=} 90\%$. However, the on average narrowest intervals
 1670 satisfying marginal coverage would be approximately

- $[-2.16357, 2.16357]$ when $X = 1$ (width = $2 \cdot 2.16357$, coverage ≈ 0.969502)
- $[-1.81514 \cdot 2, 1.81514 \cdot 2]$ when $X = 2$ (width = $2 \cdot 1.81514 \cdot 2$, coverage ≈ 0.930498).
- $[12345, 12345]$ when $X = 11$ (width = 0, coverage = 0).

These intervals fail input-conditional coverage while maintaining marginal coverage and result in a narrower average width $5.48891 < 6.705263$ than the true intervals $[q_{0.5}, q_{0.95}]$. \diamond

Interpretation of Examples B.3 to B.6. While QuantileLoss is only minimized for intervals consisting of the true quantiles $[q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}]$, the Examples B.3 to B.6 showed that metrics like PCIP, NIW, NCIW, and their combinations can be misaligned with input-conditional coverage. This misalignment can be very severe in Examples B.4 and B.6, whereas it is less severe in Examples B.3 and B.5. Intuitively, the malalignment can be particularly extreme for large values of α (as in Example B.3) or for inputs that are much more uncertain than the average uncertainty (as for $x = 11$ in Example B.5). In our experiments on real-world data in Sections 4.2 and 4.3 and Appendix F, compared to these extreme examples, the different metrics are more aligned, in the sense that CLEAR shows superior performance across all considered metrics. Reasons for this empirically observed alignment could be that 1st none of the compared methods actively tries to exploit the weaknesses of PCIP, NIW, NCIW; 2nd in our experiments, we use only small values of $\alpha = 5\%$ (and $\alpha = 10\%$); 3rd there might not be many regions of extremely high uncertainty in these dataset.

Now we have concluded that under the QuantileLoss, it is optimal always to report the true quantiles if the true underlying distributions are known. In the next subsection, we will discuss how this translates to situations where the true distributions are not known.

B.3.3 THE QUANTILELOSS INCENTIVIZES TRUTHFULNESS EVEN UNDER INCOMPLETE INFORMATION (FROM A BAYESIAN POINT OF VIEW)

Proper scoring rules are mathematically guaranteed to incentivize reporting the true distribution, but their application to uncertainty quantification requires care in interpreting what kind of uncertainty they incentivize. Buchweitz et al. (2025) show that some proper scoring rules impose asymmetric penalties for over- versus under-estimation. While this may appear to induce bias, we argue that such asymmetry faithfully captures epistemic uncertainty rather than distorting the estimate of *total* predictive uncertainty.

In our case, the relevant scoring rule is the QuantileLoss. For a given quantile, e.g., $q_{0.975}$, the loss penalizes underestimation more heavily than overestimation. This asymmetry is not a flaw; rather, it incentivizes appropriately wider predictive intervals in the presence of epistemic uncertainty. Specifically, this asymmetry encourages intervals to widen more in regions of high epistemic uncertainty than in regions of low epistemic uncertainty.

This phenomenon can be described more quantitatively from a Bayesian perspective. The posterior predictive distribution,

$$\mathbb{P}[Y_{\text{new}} \mid X_{\text{new}}, \mathcal{D}_{\text{train}}, \pi] = \mathbb{E} [\mathbb{P}[Y_{\text{new}} \mid X_{\text{new}}, \theta] \mid \mathcal{D}_{\text{train}}, \pi]$$

optimally reflects both aleatoric uncertainty $\mathbb{P}[Y_{\text{new}} \mid X_{\text{new}}, \theta]$ (e.g., noise) and epistemic uncertainty $\mathbb{P}[\theta \mid \mathcal{D}_{\text{train}}, \pi]$ (e.g., over parameters) given a prior π .⁴ Marginalizing over the posterior naturally yields a wider distribution than relying on a single point estimate, with a greater widening effect in regions of high epistemic uncertainty. Let $q_{\tau, P}$ denote the τ -quantile of a distribution P . The posterior predictive quantiles $(q_{\alpha/2, \mathbb{P}[Y_{\text{new}} \mid X_{\text{new}}, \mathcal{D}_{\text{train}}, \pi]}, q_{1-\alpha/2, \mathbb{P}[Y_{\text{new}} \mid X_{\text{new}}, \mathcal{D}_{\text{train}}, \pi]})$ minimize the expected quantile loss:

$$\mathbb{E} [\text{QuantileLoss}(\{(X_{\text{new}}, Y_{\text{new}})\}, [l, u]) \mid \mathcal{D}_{\text{train}}, \pi].$$

Since the posterior predictive distribution includes epistemic uncertainty, its quantiles also appropriately include this component. This stands in contrast to other estimators, such as $q_{1-\alpha/2, \mathbb{P}[Y_{\text{new}} \mid X_{\text{new}}, \hat{\theta}]}$, $\mathbb{E} [q_{1-\alpha/2, \mathbb{P}[Y_{\text{new}} \mid X_{\text{new}}, \theta]} \mid \mathcal{D}_{\text{train}}, \pi]$, or Median $[q_{1-\alpha/2, \mathbb{P}[Y_{\text{new}} \mid X_{\text{new}}, \theta]} \mid \mathcal{D}_{\text{train}}, \pi]$ (similar to how we estimate the pure aleatoric uncertainty in Section 2.3), which ignore epistemic uncertainty.

⁴Mathematicians (with a background in measure-theory) should read “ $\mathbb{P}[Y \mid X]$ ” as “ $\mathbb{P}[Y \in (\cdot) \mid X]$ ”.

1728
 1729 *Example B.7.* Let $Y|X = x \sim \mathcal{N}(\theta(x), \sigma = 1)$ with an unknown mean $\theta(x) \in \mathbb{R}$ and a known
 1730 standard deviation of 1. Further, assume that the posterior distribution of $\theta(x)$ is $\mathcal{N}(0, \sigma = 10)$
 1731 due to large epistemic uncertainty. Then, the predictive posterior distribution of $Y|X = x$ is
 1732 $\mathcal{N}(0, \sigma = \sqrt{10^2 + 1})$, which includes both aleatoric and epistemic uncertainty.
 1733

- 1733 • $q_{0.975, \mathbb{P}[Y_{\text{new}}|X_{\text{new}}, \mathcal{D}_{\text{train}}, \pi]} = q_{0.975, \mathcal{N}(0, \sigma = \sqrt{10^2 + 1})} \approx 1.96 \cdot \sqrt{10^2 + 1}$ appropriately takes
 1734 epistemic uncertainty into account.
- 1736 • $q_{0.975, \mathbb{P}[Y_{\text{new}}|X_{\text{new}}, \hat{\theta}]} = q_{0.975, \mathcal{N}(\hat{\theta}(x), \sigma = 1)} \approx \hat{\theta}(x) + 1.96$ ignores the large epistemic uncer-
 1737 tainty (with an interval width of $2 \cdot 1.96$ as $q_{0.025, \mathbb{P}[Y_{\text{new}}|X_{\text{new}}, \hat{\theta}]} \approx \hat{\theta}(x) - 1.96$).
- 1739 • $\mathbb{E}[q_{0.975, \mathbb{P}[Y_{\text{new}}|X_{\text{new}}, \theta]} | \mathcal{D}_{\text{train}}, \pi] = \mathbb{E}[q_{0.975, \mathcal{N}(\theta(x), \sigma = 1)} | \mathcal{D}_{\text{train}}, \pi] \approx$
 1740 $\mathbb{E}[\theta(x) + 1.96 | \mathcal{D}_{\text{train}}, \pi] = 1.96$ ignores the large epistemic uncertainty.
- 1742 • Median $[q_{0.975, \mathbb{P}[Y_{\text{new}}|X_{\text{new}}, \theta]} | \mathcal{D}_{\text{train}}, \pi] = \text{Median}[q_{0.975, \mathcal{N}(\theta(x), \sigma = 1)} | \mathcal{D}_{\text{train}}, \pi] \approx$
 1743 Median $[\theta(x) + 1.96 | \mathcal{D}_{\text{train}}, \pi] = 1.96$ ignores the large epistemic uncertainty.

1744 ◇

1745 We fully agree with Buchweitz et al. (2025), that minimizing the QuantileLoss leads to a biased
 1746 estimator of *aleatoric* uncertainty alone (as in Example B.7, the aleatoric uncertainty corresponds to
 1747 an interval width of $2 \cdot 1.96$). However, minimizing the QuantileLoss yields a principled estimator
 1748 for *total predictive uncertainty*, as it is optimal from a Bayesian point of view, taking epistemic
 1749 uncertainty into account. An unbiased estimator for total predictive uncertainty must also incorporate
 1750 the epistemic uncertainty and is therefore naturally biased for estimating aleatoric uncertainty.
 1751

1752 Thus, the asymmetry of the QuantileLoss is precisely what makes it appropriate for evaluating models
 1753 that estimate total predictive uncertainty. This justifies its use both in Step 4 of our Algorithm 1 and
 1754 as an evaluation metric on the unseen test dataset $\mathcal{D}_{\text{test}}$.
 1755

1756 B.4 INTUITIVE THEORETICAL MOTIVATION OF CLEAR

1757 PCS achieves empirically good results and nicely captures common sense, with limited theoretical
 1758 guarantees, while CQR satisfies theoretical guarantees, but misses crucial common sense. In our
 1759 work, we combine practical experience, theoretical insights, common sense, and empirical results,
 1760 always with the goal in mind to obtain a useful, veridical, reliable, stable, high-performing method
 1761 for practical real-world applications.

1762 Note that the original version of PCS did not have any theoretical guarantees for uncertainty quantifi-
 1763 cation Yu & Barter (2024), and Agarwal et al. (2025) mentioned a modified version of PCS-UQ that
 1764 satisfies conformal marginal coverage guarantees. However, no version of PCS offered a theoretical
 1765 guarantee for asymptotic input-conditional coverage.

1766 Via CLEAR, we are the first to propose an extension of PCS-UQ that provably satisfies asymptotic
 1767 input-conditional coverage guarantees (see Lemma 2.1). All previous versions of PCS, did not only
 1768 lack a proof for input-conditional coverage guarantees, but actually do not satisfy input-conditional
 1769 coverage guarantees. Pure PCS-UQ has the systematic bias of under-coverage in regions with many
 1770 observations and large noise. This was a central motivation for CLEAR. While this theoretical
 1771 bias is quite obvious from a theoretical common sense point of view, we conducted our large-scale
 1772 experimental evaluation to see that this bias can actually have a significant impact on the performance,
 1773 which can be substantially mitigated by CLEAR.

1774 On the other hand, CQR (or QR) has major problems based on common sense. If one looks deep into
 1775 the proof of the asymptotic input-conditional coverage of CQR (or QR), one can see that the main idea
 1776 of the proof is that, asymptotically, you will have infinitely many training data points around every
 1777 point x , resulting in accurate quantile predictions. However, for finitely many data points, there will
 1778 always be regions in the input space with too few data points. In this region (C)QR cannot accurately
 1779 estimate the quantiles. However, (C)QR will sometimes output very narrow intervals in these regions,
 1780 which are absolutely not trustworthy and will undercover substantially in these regions. We can
 1781 see this phenomenon across all different synthetic data-generating processes that we've tried (see

1782 Sections 3.1 and 4.1 and Appendix C). When we sample $X \sim \mathcal{N}(0, I_d)$ standard Gaussian, we can see
 1783 that even for $n = 5000$ training data points $\mathbb{P}[Y \in C_{\text{CQR}} \mid \|X\|_2 > 4] \ll 1 - \alpha$. Based on common
 1784 sense it is strongly expected that for $\forall n \in \mathbb{N} : \exists r(n) : \mathbb{P}[Y \in C_{\text{CQR}} \mid \|X\|_2 > r(n)] \ll 1 - \alpha$, as
 1785 the intervals of (C)QR do not have any reason to become wider out-of-sample while their predictions
 1786 become more unreliable the further you move away from the training data.

1787 **Hypothesis B.8.** *We hypothesize that under some fairly general and mild assumptions, for every*
 1788 *“non-trivial” data-generating process,*

$$1790 \exists c > 0 : \forall n \in \mathbb{N} : \exists R(n) \in (0, \infty) : \forall r > R(n) \mathbb{P}[Y \in C_{\text{CQR}} \mid \|X\|_2 > r] < 1 - \alpha - c$$

1791 *holds. We think that this claim strongly agrees with basic intuition, and all our empirical results*
 1792 *strongly support this hypothesis. However, we leave the proof for future work. The main technical*
 1793 *challenge is probably to define “non-trivial” appropriately.*

1794 This does not contradict *asymptotic* input-conditional coverage guarantees as $\lim_{n \rightarrow \infty} r(n) = \infty$.
 1795 However, for any finite sample size n , this is a huge problem both from a common-sense perspective
 1796 and from what you can see from our empirical results. In other words, even in regions where the
 1797 ensemble members heavily disagree on the predictions (usually in regions with few training data),
 1798 (C)QR would be way too over-confident. CQR tries to compensate for this overconfidence in the
 1799 calibration step, which results in CQR over-covering in regions with many training data points and
 1800 under-covering in regions with few training data points (see Figures 1, 2 and 4 to 6).

1801 This is the reason why PCS-UQ and CQR form a wonderful symbiosis. In regions with many
 1802 training data points, the ensemble predictions coming from different bootstraps of the training data
 1803 will be close to each other. PCS-UQ has a systematic basis to under-cover in regions with many
 1804 training data points and to overcover in regions with few training data points, whereas for CQR,
 1805 it is exactly the other way around. If you apply any monotonic transformation of the uncertainty
 1806 of PCS (multiplicative (conformal) calibration, additive (conformal) calibration, or the calibration
 1807 methods suggested by Kuleshov et al. (2018); Song et al. (2019); Kuleshov & Deshpande (2022);
 1808 Levi et al. (2022)), you will always have the systematic bias that any monotonically calibrated version
 1809 of PCS-UQ will under-cover in regions with many training data points and will over-cover in regions
 1810 with few training data points, whereas it is exactly the other way around for any monotonically
 1811 calibrated version of CQR. By combining the two of them, we can mitigate this bias (see Figures 1,
 1812 2 and 4 to 6). This aligns very well with classical statistical results, telling us that for predictive
 1813 intervals, one needs to combine the estimated noise structure with epistemic uncertainty on the
 1814 parameters (confidence intervals).

1815 B.5 CLEAR ALGORITHM: DETAILS

1818 Algorithm 2 Fast Conformal Implementation of Step 3 from Algorithm 1

1819 1: **Input:** Data (X_i, Y_i) for $i = 1, \dots, n$, split into training $\mathcal{D}_{\text{train}}$, calibration \mathcal{D}_{cal} , and validation
 1820 \mathcal{D}_{val} (we consider $\mathcal{D}_{\text{cal}} = \mathcal{D}_{\text{val}}$); grid of λ values Λ ; significance level α .

1821 2: **Step 3: Define prediction intervals for each $\lambda \in \Lambda$.**

1822 First, define a preliminary (non-calibrated) interval:

$$1824 \tilde{C}_\lambda = \left[\hat{f} - \hat{q}_{\alpha/2}^{\text{ale}} - \lambda \hat{q}_{\alpha/2}^{\text{epi}}, \hat{f} + \hat{q}_{1-\alpha/2}^{\text{ale}} + \lambda \hat{q}_{1-\alpha/2}^{\text{epi}} \right]$$

1826 Then, compute conformity scores $S_i^\lambda = \max \left\{ \frac{\tilde{l}_\lambda(X_i) - Y_i}{\hat{f}(X_i) - \tilde{l}_\lambda(X_i)}, \frac{Y_i - \tilde{u}_\lambda(X_i)}{\tilde{u}_\lambda(X_i) - \hat{f}(X_i)} \right\}$, where $\tilde{l}_\lambda(x), \tilde{u}_\lambda(x)$
 1827 are the lower and upper bounds of $\tilde{C}_\lambda(x)$. Let γ_1 be the $\lceil (1 - \alpha)(|\mathcal{D}_{\text{cal}}| + 1) \rceil$ -th smallest score
 1828 among $\{S_i^\lambda\}$ (if $\lceil (1 - \alpha)(|\mathcal{D}_{\text{cal}}| + 1) \rceil > |\mathcal{D}_{\text{cal}}|$, take the largest score). Define the calibrated
 1829 interval:

$$1831 C_\lambda = \left[\hat{f} - \gamma_1 \hat{q}_{\alpha/2}^{\text{ale}} - \lambda \gamma_1 \hat{q}_{\alpha/2}^{\text{epi}}, \hat{f} + \gamma_1 \hat{q}_{1-\alpha/2}^{\text{ale}} + \lambda \gamma_1 \hat{q}_{1-\alpha/2}^{\text{epi}} \right]$$

1832 3: **Output:** calibrated prediction intervals C_λ for each λ from the grid Λ .

1836 **C SIMULATIONS: DETAILS**

1837
1838 For each simulation run, the coefficients β_1, \dots, β_d are drawn independently from a Gaussian distribution $\mathcal{N}(1, 0.5^2)$. The mean function $\mu(X)$ is then defined as $\mu(X) = 5.0 + \sum_{i=1}^d (-1)^{i+1} \beta_i |X_i|^{e_i}$,
1839 where the exponent $e_i = 1.5$ if i is odd, and $e_i = 1.25$ if i is even.
1840
1841

1842 **C.1 HETROSKEDEASTIC CASE**
1843

1844 In Section 3.1, we focused on the univariate homoskedastic setting ($d = 1$ and $\sigma(x) = 1$). Here,
1845 we briefly report results for heteroskedastic data, which show similar patterns. Figures 4 and 5
1846 illustrate the conditional coverage and interval width of the algorithms under two heteroskedastic
1847 noise structures: $\sigma_2(x) = 1 + |x|$ and $\sigma_3(x) = 1 + \frac{1}{1+x^2}$. As mentioned, the results are analogous to
1848 the homoskedastic setting in Section 3.1.
1849
1850

1851 **C.2 MULTIVARIATE CASE**
1852

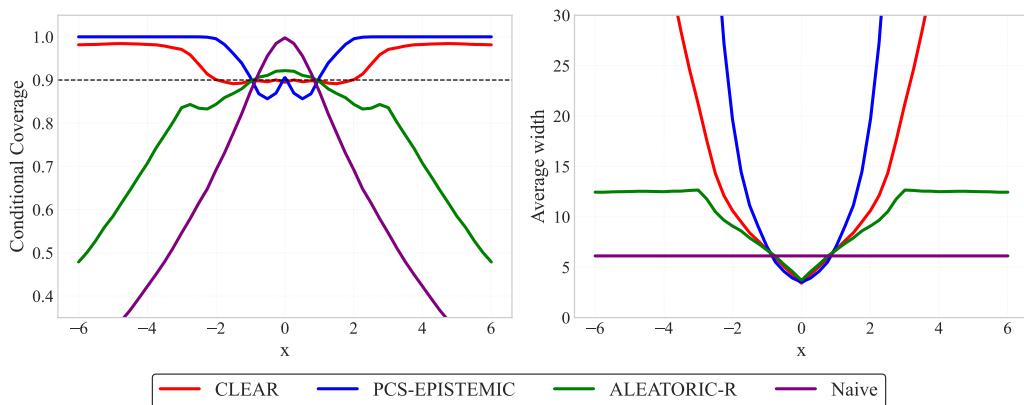
1853 **C.2.1 TEST POINT GENERATION**
1854

1855 Following setup in (Bodik & Chavez-Demoulin, 2025), let $r_1 < r_2 < \dots < r_K$ denote a set of
1856 predetermined distances. For each radius r_k , we sample points uniformly from the surface of the
1857 unit d -dimensional sphere as follows. First, we draw a vector $\mathbf{v} \in \mathbb{R}^d$ whose entries are independent
1858 standard normal random variables. We then normalize \mathbf{v} to obtain a unit vector $\mathbf{u} = \mathbf{v}/\|\mathbf{v}\|_2$. Finally,
1859 we scale \mathbf{u} by r_k to obtain the test point $\mathbf{x} = r_k \cdot \mathbf{u}$. In the one-dimensional case, this procedure
1860 reduces to selecting $x = r_k$ or $x = -r_k$ with equal probability. This mechanism ensures that, for
1861 each r_k , the generated points are uniformly distributed on the surface of the sphere of radius r_k ,
1862 thereby allowing a precise evaluation of prediction intervals as a function of distance from the origin.
1863 Finally, we generate Y with the same data-generating mechanism as in the train set.
1864
1865

1866 **C.2.2 RESULTS**
1867

1868 Figure 6 illustrates the conditional coverage and interval width of the evaluated algorithms in the
1869 multivariate setting, where X is drawn from an independent multivariate Gaussian distribution and
1870 $Y = \mu(X) + \varepsilon$, with $\varepsilon \sim \mathcal{N}(0, 1)$. The regression function $\mu(X)$, as previously defined, involves a
1871 sum of randomly weighted power transformations of the absolute values of the input features.
1872
1873

1874 Consistent with the univariate homoskedastic results in Section 3.1, Figure 6 shows that both CQR and
1875 naive conformal prediction achieve reliable coverage in high-density regions but tend to under-cover
1876 in low-density or extrapolation areas. In contrast, CLEAR maintains valid conditional coverage
1877 across the entire input space by appropriately adjusting interval widths.
1878
1879


1888 Figure 4: Univariate conditional coverage and average width of the prediction intervals for a het-
1889 eroskedastic case where $\sigma_2(x) = 1 + |x|$.

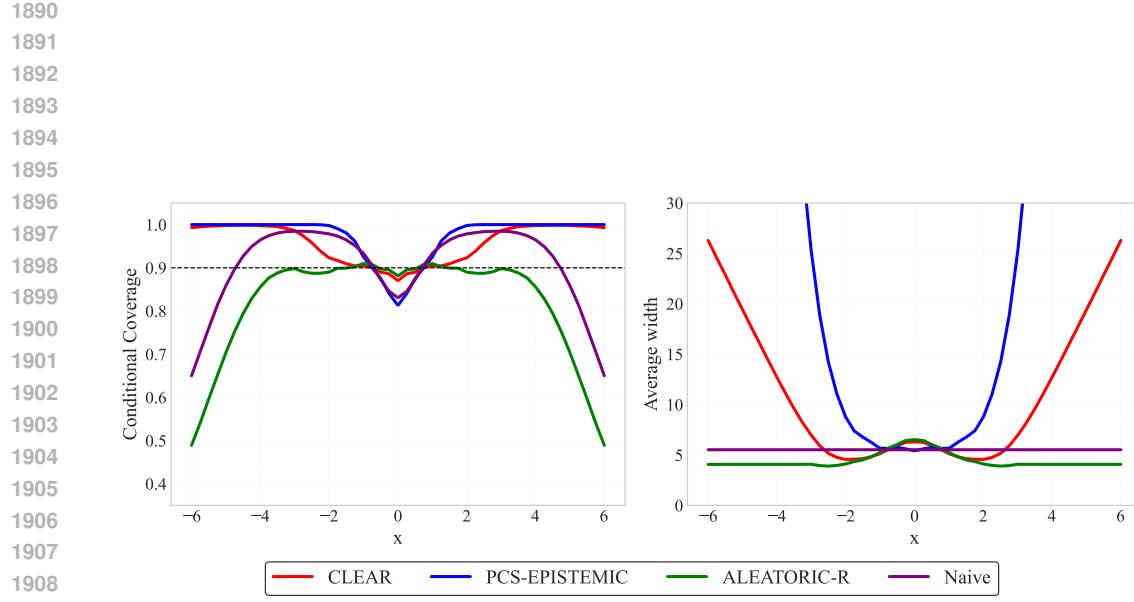


Figure 5: Univariate conditional coverage and average width of the prediction intervals for a heteroskedastic case where $\sigma_3(x) = 1 + \frac{1}{1+x^2}$.

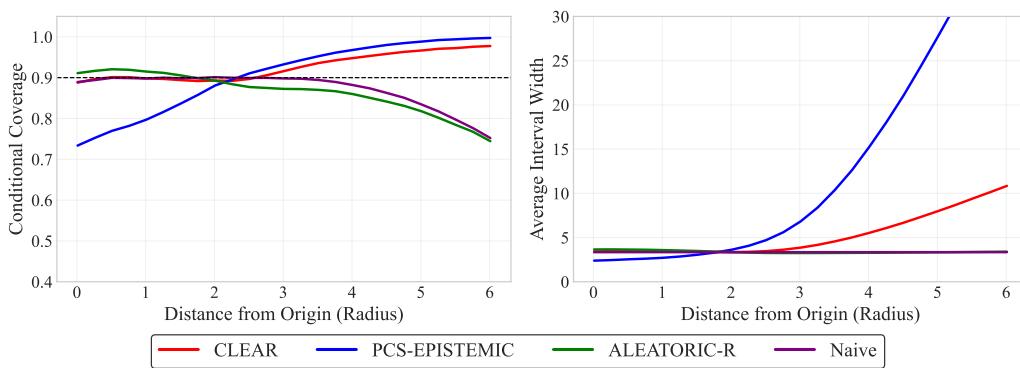


Figure 6: Multivariate conditional coverage and average width (distance from the origin is shown) of the prediction intervals for a homoskedastic case where $d \in \{1, 2, 3, 20\}$ was randomly selected.

1944

D EXPERIMENTAL SETUP: DETAILS

1945

1946

D.1 REAL-WORLD DATA

1947

To evaluate our method in real-world scenarios, we apply it to 17 publicly available regression datasets curated by Agarwal et al. (2025) that includes various domains such as housing, energy, materials science, and healthcare Kelley Pace & Barry (1997); Mayer et al. (2022); Tüfekci (2014); Tsanas & Xifara (2012); Hamidieh (2018); Camacho & Torgo (2014); Tsanas et al. (2009); Coraddu et al. (2016); Yeh (1998); Cassotti et al. (2015); Brooks et al. (1989); PyCaret (n.d.); Torgo (2014); Computer Activity; Allstate Claims Severity; Grinsztajn et al. (2022); Ghahramani (1996); kin8nm dataset; sulfur dataset. Description of the datasets can be found in Table 11.

1955

D.2 BASELINES FOR VARIANTS (A), (B), (C)

1956

1957

The following baselines provide further context and comparisons, omitted from the main paper for brevity. All compared methods (except UACQR) use the same median $\hat{f}(x) = \hat{f}_{\text{PCS}}(x)$ obtained from PCS. The results from Appendix F.1 use PCS variant (a), Appendix F.2 uses PCS variant (b), and Appendix F.3 uses PCS variant (c). This allows us to isolate the effect of different UQ methods.

1958

1959

1960

1961

1962

1963

1964

1965

1966

1. **Conformalized PCS median (Naive):** For the PCS ensemble, we compute the median prediction $\hat{f}(x) = \hat{f}_{\text{PCS}}(x)$ for each x . On the calibration set, absolute residuals $a_i = |y_i - \hat{f}(x_i)|$ are computed. The $(1 - \alpha)$ -th quantile γ_{naive} of these absolute residuals is then used to define the interval:

1967

1968

$$C_{\text{Naive}}(x) = [\hat{f}(x) - \gamma_{\text{naive}}, \hat{f}(x) + \gamma_{\text{naive}}]$$

1969

1970

1971

1972

1973

1974

1975

This method applies a constant, symmetric width adjustment to the point predictions. The result of this baseline has been presented for the simulations. We omit it from the real-world data for brevity. However, all the baselines can be found in the supplementary code.

2. **CLEAR with fixed $\lambda = 1$:** This is a variant of the main CLEAR methodology where the ratio $\lambda = \gamma_2/\gamma_1$ is fixed to 1. This implies $\gamma_1 = \gamma_2$. The prediction interval, based on Equation (3), becomes:

1976

1977

$$C_{\lambda=1}(x) = \left[\hat{f}(x) - \gamma_1 \left(\hat{q}_{\alpha/2}^{\text{ale}}(x) + \hat{q}_{\alpha/2}^{\text{epi}}(x) \right), \hat{f}(x) + \gamma_1 \left(\hat{q}_{1-\alpha/2}^{\text{ale}}(x) + \hat{q}_{1-\alpha/2}^{\text{epi}}(x) \right) \right].$$

1978

1979

1980

1981

1982

1983

In this configuration, the single parameter γ_1 is calibrated using the standard split conformal procedure on the validation set. It effectively learns a single scaling factor for the sum of the pre-calibrated aleatoric and epistemic uncertainty widths, without adjusting their ratio.

3. **CLEAR with fixed $\gamma_1 = 1$:** Another variant of CLEAR where γ_1 is fixed to 1. With $\gamma_1 = 1$, then $\gamma_2 = \lambda$ and the prediction interval from Equation (3) reads as:

1984

1985

$$C_{\gamma_1=1}(x) = \left[\hat{f}(x) - \hat{q}_{\alpha/2}^{\text{ale}}(x) - \lambda \hat{q}_{\alpha/2}^{\text{epi}}(x), \hat{f}(x) + \hat{q}_{1-\alpha/2}^{\text{ale}}(x) + \lambda \hat{q}_{1-\alpha/2}^{\text{epi}}(x) \right].$$

1986

1987

1988

1989

Here, λ (or equivalently γ_2) is the parameter calibrated on the calibration set through a coverage-based adjustment. This approach fixes the contribution of the (pre-calibrated) aleatoric uncertainty component and adaptively scales the epistemic uncertainty component.

4. **UACQR-S and UACQR-P** For variant (c), instead of computing $C_{\gamma_1=1}(x)$ and $C_{\lambda=1}(x)$ with CLEAR, we directly use the implementation from Rossellini et al. (2024) to assess our performance against this alternative. Since this is only relevant for variant (c), we use the exact same configuration as the aleatoric part for QRF (see Appendix D.4 and Table 4).

1990

1991

1992

1993

1994

1995

1996

1997

D.3 DEEP ENSEMBLES AND SIMULTANEOUS QUANTILE REGRESSION IMPLEMENTATION

To demonstrate CLEAR’s versatility beyond tree-based methods, we implement state-of-the-art deep learning approaches for uncertainty quantification.

1998
1999

D.3.1 DEEP ENSEMBLES FOR EPISTEMIC UNCERTAINTY

2000 Our deep ensemble implementation follows Lakshminarayanan et al. (2017) with several enhancements for improved diversity and calibration. Each ensemble consists of $M = 5$ neural networks (adaptive based on dataset size), with the following specifications:

- **Architecture:** Each network employs a fully-connected architecture with hidden layers of sizes (256, 128), ReLU activations, batch normalization, and dropout (rate=0.1). Skip connections are incorporated to stabilize training.
- **Diversity strategies:** To promote ensemble diversity, we employ: (i) different random initializations, (ii) bootstrap sampling where each member trains on different subsamples, (iii) varied learning rates, (iv) different learning rate schedules, and (v) small input noise augmentation.
- **Training:** Each network is trained for up to 1500 epochs using Adam optimizer with learning rate 10^{-3} , early stopping (patience=50), weight decay (10^{-5}), and batch size 64.
- **Calibration:** Following training, we apply a multiplicative calibration factor computed on the validation set using a grid search over c-values to ensure the ensemble achieves target coverage.

The epistemic uncertainty is quantified through the empirical quantiles of the ensemble predictions: $\hat{q}_{\alpha/2}^{\text{epi}}(x) = \hat{f}(x) - Q_{\alpha/2}(\{\hat{f}_m(x)\}_{m=1}^M)$ and $\hat{q}_{1-\alpha/2}^{\text{epi}}(x) = Q_{1-\alpha/2}(\{\hat{f}_m(x)\}_{m=1}^M) - \hat{f}(x)$, where $\hat{f}(x)$ is the ensemble median and Q_τ denotes the empirical quantile function.

D.3.2 SIMULTANEOUS QUANTILE REGRESSION FOR ALEATORIC UNCERTAINTY

For aleatoric uncertainty, we implement simultaneous quantile regression (SQR) following Tagasovska & Lopez-Paz (2019), which directly models multiple conditional quantiles through a single neural network with specialized architecture:

- **Architecture:** The network uses hidden layers of sizes (256, 256, 128) with LeakyReLU activations (negative slope=0.01), layer normalization, and dropout (rate=0.2). The output layer produces three values corresponding to the $\alpha/2$, 0.5, and $1 - \alpha/2$ quantiles.
- **Loss function:** We minimize a combined loss consisting of: (i) the pinball loss for each quantile, and (ii) a crossing penalty term that encourages monotonicity of quantiles: $\mathcal{L}_{\text{crossing}} = \text{ReLU}(q_{\alpha/2} - q_{0.5}) + \text{ReLU}(q_{0.5} - q_{1-\alpha/2})$.
- **Training:** The model is trained for up to 3000 epochs using Adam optimizer with learning rate 5×10^{-4} , cosine annealing schedule, and early stopping (patience=200). Gradient clipping (max norm=1.0) prevents training instabilities.
- **Ensemble averaging:** To improve stability, we train an ensemble of SQR models with different random seeds and average their quantile predictions.

The aleatoric uncertainty estimates are computed as $\hat{q}_{\alpha/2}^{\text{ale}}(x) = q_{0.5}(x) - q_{\alpha/2}(x)$ and $\hat{q}_{1-\alpha/2}^{\text{ale}}(x) = q_{1-\alpha/2}(x) - q_{0.5}(x)$, ensuring consistency with the median prediction.

D.3.3 INTEGRATION WITH CLEAR

The DE and SQR components are integrated into CLEAR using the same calibration procedure as our PCS-UQ (model selection and tree-based methods). The epistemic estimates from DE and aleatoric estimates from SQR are combined using the optimized parameters λ and γ_1 according to Equation (3). The conformal calibration step ensures approximate marginal coverage while the adaptive λ selection balances the relative contributions of epistemic and aleatoric uncertainties, accounting for potential scale differences between neural network and tree-based estimators.

D.4 PCS IMPLEMENTATION: DETAILS

This section outlines the specific implementation details for generating the PCS ensembles, which provide the point predictor \hat{f} and the raw epistemic uncertainty estimates \hat{q}^{epi} used as input for the

2052 CLEAR method (Section 2.4), and also form the basis for the standalone calibrated PCS baseline
 2053 intervals. We explicitly opted for experimenting with three variants of CLEAR to assess the frame-
 2054 work’s performance and robustness across different modeling choices for epistemic and aleatoric
 2055 uncertainty components, as discussed in the main text. The core methodology, involving model
 2056 selection and model perturbations via bootstrapping to capture epistemic uncertainty, follows the
 2057 principles described in Section 2.

2058 The process begins with data partitioning and bootstrapping. For each dataset and unique random
 2059 seed, the data is divided into training (60%), validation (20%), and test (20%) sets. Subsequently,
 2060 $n_{boot} = 100$ bootstrap resamples are drawn from this designated training set to construct the PCS
 2061 ensemble. Then, for our variants, two distinct pools of base models were developed to generate these
 2062 PCS ensembles, catering to the different CLEAR variants. Table 4 details the quantile estimators
 2063 used for CLEAR variant (a). Variant (b) only uses QXGB from Table 4. Table 5 describes the mean
 2064 estimators utilized for CLEAR variant (c).

2065

2066 Table 4: Base models and key hyperparameters for the quantile models used in CLEAR variants (a).
 2067 Variant (b) uses only QXGB from this table. All models target the conditional median ($\tau = 0.5$).

2068

2069 Model	2070 Key Hyperparameters	2071 Ref.
2070 QRF	2071 100 trees, min. leaf size: 10	2072 Meinshausen (2006)
2072 QXGB	2073 100 trees, tree method: histogram, min. child weight: 10	2074 Chen & Guestrin (2016)
2075 Expectile GAM	2076 10 P-splines (order 3), smoothing parameter optimized via 2077 CV (5 min. timeout)*	2078 Servén & Brummitt (2018)

2078 *Included only if hyperparameter optimization converged successfully, otherwise using the default values.

2079

2080

2081 Table 5: Base models and key hyperparameters for the mean estimators (used in CLEAR variant
 2082 c). All models target the conditional mean and are from Scikit-learn (Buitinck et al., 2013), except
 2083 XGBoost, which is from (Chen & Guestrin, 2016). All unspecified hyperparameters use the Scikit-
 2084 learn defaults.

2085

2086 Category	2087 Model	2088 Key Hyperparameters
2088 Linear Models	Ordinary Least Squares	Default
	Ridge	Default alphas (CV)
	Lasso	3-fold CV
	ElasticNet	3-fold CV
2091 Tree Ensembles	Random Forest	100 trees, min. leaf size: 5, max. features: 0.33
	Extra Trees	Same hyperparameters as random forest
	AdaBoost	Default
	XGBoost	Default
2095 Neural Network	MLP	Single hidden layer (64 neurons)

2096

2097

2098

Ensemble Construction and Model Selection: For each of the $n_{boot} = 100$ bootstrap samples,
 2099 all models within the relevant pool (median estimators for variants a/b, mean estimators for variant
 2100 c) were trained. The single best-performing model type ($k = 1$) was then identified based on the
 2101 lowest RMSE achieved on the held-out validation set. Consequently, the final PCS ensemble for
 2102 each random seed comprised 100 instances of this selected top-performing model type. Specifically,
 2103 CLEAR variant (a) considered all models from Table 4 for this selection process, variant (b) was
 2104 restricted to selecting always QXGB from this pool, and variant (c) considered all the models from
 2105 Table 4 instead. All models used default parameters from their respective libraries unless otherwise
 specified in the tables, and random states were fixed to ensure reproducibility.

Derivation of \hat{f} and \hat{q}^{epi} for CLEAR: The point predictor $\hat{f}(x)$ and the raw epistemic uncertainty contributions $\hat{q}_{\alpha/2}^{\text{epi}}(x)$ and $\hat{q}_{1-\alpha/2}^{\text{epi}}(x)$ supplied to the CLEAR method are derived from this final ensemble of 100 model instances. As detailed in Section 2.2, $\hat{f}(x)$ is the pointwise empirical median of the ensemble’s predictions. The epistemic uncertainty terms represent the pointwise distances from this median to the ensemble’s empirical $\alpha/2$ and $1 - \alpha/2$ quantiles, respectively.

Calibration of the Standalone PCS Baseline: The standalone PCS baseline method involves a distinct calibration process. From the ensemble’s raw pointwise $\alpha/2$ and $1 - \alpha/2$ quantile predictions ($\hat{f}_{\alpha/2}(x)$ and $\hat{f}_{1-\alpha/2}(x)$), a single, global multiplicative calibration factor, γ_{PCS} , is computed. This γ_{PCS} is the smallest value ensuring that prediction intervals, formed by scaling the raw epistemic uncertainty around $\hat{f}(x)$ (i.e., $[\hat{f}(x) - \gamma_{\text{PCS}}(\hat{f}(x) - \hat{f}_{\alpha/2}(x)), \hat{f}(x) + \gamma_{\text{PCS}}(\hat{f}_{1-\alpha/2}(x) - \hat{f}(x))]$), achieve the target $1 - \alpha$ coverage on the validation set, incorporating the standard finite-sample correction. This γ_{PCS} is then applied to generate the PCS baseline intervals on the test set. It is important to reiterate that this γ_{PCS} is separate and computed independently from γ_1 and λ parameters optimized within the CLEAR framework.

D.5 METRICS

This appendix provides detailed definitions for the evaluation metrics used in the main paper. We consider test data $(X_i, Y_i)_{i=1}^N$ and prediction intervals $[L_i, U_i]$.

- **Prediction Interval Coverage Probability (PICP):** Measures the proportion of true values falling within the predicted intervals, calculated as:

$$\text{PICP}(L, U) = \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{[L_i, U_i]}(Y_i)$$

where $\mathbb{1}_{[L_i, U_i]}(Y_i)$ is the indicator function; it equals 1 if $Y_i \in [L_i, U_i]$ and 0 otherwise.

- **Normalized Interval Width (NIW):** Quantifies the average width of prediction intervals normalized by the range of the target variable:

$$\text{NIW}(L, U) = \frac{\frac{1}{N} \sum_{i=1}^N (U_i - L_i)}{\max(Y) - \min(Y)}$$

- **Quantile Loss (also known as pinball loss):** Evaluates the accuracy of predicted quantiles by penalizing both under- and overestimation. It reflects a trade-off between coverage (PICP) and interval width (NIW), rewarding narrow intervals that still maintain proper coverage and penalizing data points that are far outside the intervals (see Appendix B.3 for more details).

For a given quantile level τ , the quantile loss function is:

$$QL_\tau(y, q) = (y - q)(\tau - \mathbb{1}_{(-\infty, q]}(y)),$$

where q is the predicted τ -quantile. For prediction intervals at level $1 - \alpha$, we evaluate this at both $\tau = \alpha/2$ and $\tau = 1 - \alpha/2$ using

$$\text{QuantileLoss}(L, U) = \sum_{i=1}^N [QL_{\alpha/2}(Y_i, L(X_i)) + QL_{1-\alpha/2}(Y_i, U(X_i))] / 2.$$

- **Average Interval Score Loss (AISL)** (Gneiting & Raftery, 2007): This score balances interval width with coverage penalties (with similar properties as the quantile loss explained in Appendix B.3), defined as

$$\text{AISL}(L, U) = \frac{1}{N} \sum_{i=1}^N \left[(U_i - L_i) + \frac{2}{\alpha} (L_i - Y_i) \mathbb{1}\{Y_i < L_i\} + \frac{2}{\alpha} (Y_i - U_i) \mathbb{1}\{Y_i > U_i\} \right],$$

where $\mathbb{1}\{\cdot\}$ is the indicator function.

2160 E CLEAR WITH DE AND SQR: RESULTS ON REAL-WORLD DATA

2162 This section presents the comprehensive experimental results of CLEAR when combined with
 2163 deep learning-based uncertainty estimators: deep ensembles (DE) for epistemic uncertainty and
 2164 simultaneous quantile regression (SQR) for aleatoric uncertainty. The experiments further validate
 2165 CLEAR’s generality beyond the PCS and CQR methods that are presented in the body of our paper.
 2166 The results demonstrate that CLEAR remains effective across different modeling paradigms. We
 2167 evaluate both the neural baselines individually and their integration through CLEAR, comparing
 2168 against conformalized versions to assess the added value of our dual-parameter calibration approach.
 2169 Results are reported across all 17 datasets with 95% nominal coverage, using up to 10 random seeds
 2170 for robustness.

2171 Table 6: DE-SQR PICP at 95% prediction intervals, aggregated across 10 seeds. CLEAR consists
 2172 of the deep ensemble (DE) and the simultaneous quantile regressor (SQR). DE-conformal is the
 2173 conformalized (calibrated) deep ensemble and SQR-conformal is the conformalized simultaneous
 2174 quantile regressor.

Dataset	CLEAR	DE	SQR	DE-conformal	SQR-conformal
aileron	0.95 ± 0.00	0.95 ± 0.00	0.94 ± 0.01	0.95 ± 0.00	0.95 ± 0.00
airfoil	0.96 ± 0.02	0.95 ± 0.02	0.98 ± 0.01	0.95 ± 0.02	0.96 ± 0.01
allstate	0.95 ± 0.01	0.95 ± 0.01	0.91 ± 0.01	0.95 ± 0.01	0.94 ± 0.01
ca_housing	0.95 ± 0.01	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00
computer	0.95 ± 0.01	0.95 ± 0.01	0.94 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
concrete	0.94 ± 0.02	0.95 ± 0.02	0.98 ± 0.01	0.96 ± 0.02	0.95 ± 0.03
elevator	0.95 ± 0.00	0.95 ± 0.00	0.94 ± 0.01	0.95 ± 0.00	0.95 ± 0.00
energy_efficiency	0.96 ± 0.01	0.95 ± 0.02	0.99 ± 0.01	0.95 ± 0.02	0.96 ± 0.03
insurance	0.96 ± 0.01	0.95 ± 0.01	0.96 ± 0.01	0.96 ± 0.01	0.96 ± 0.02
kin8nm	0.95 ± 0.01	0.95 ± 0.01	0.98 ± 0.00	0.95 ± 0.01	0.95 ± 0.01
miami_housing	0.95 ± 0.00	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.00
naval_propulsion	0.95 ± 0.01	0.95 ± 0.01	1.00 ± 0.00	0.95 ± 0.01	0.95 ± 0.01
parkinsons	0.95 ± 0.01	0.95 ± 0.01	0.96 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
powerplant	0.95 ± 0.01	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00
qsar	0.95 ± 0.01	0.96 ± 0.01	0.93 ± 0.01	0.96 ± 0.01	0.95 ± 0.01
sulfur	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.00	0.95 ± 0.01	0.95 ± 0.01
superconductor	0.95 ± 0.00	0.95 ± 0.00	0.96 ± 0.00	0.95 ± 0.00	0.95 ± 0.00

2194 Table 7: DE-SQR NIW at 95% prediction intervals, aggregated across 10 seeds. CLEAR consists
 2195 of the deep ensemble (DE) and the simultaneous quantile regressor (SQR). DE-conformal is the
 2196 conformalized (calibrated) deep ensemble and SQR-conformal is the conformalized simultaneous
 2197 quantile regressor. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place.
 2198 **Bold** values are the minimum (best) for that dataset, while underlined values indicate the second-best
 2199 result.

Dataset	CLEAR	DE	SQR	DE-conformal	SQR-conformal
aileron	0.201 ± 0.017	0.284 ± 0.025	0.196 ± 0.014	0.285 ± 0.025	0.203 ± 0.015
airfoil	0.185 ± 0.023	<u>0.223 ± 0.023</u>	0.349 ± 0.025	0.226 ± 0.023	0.311 ± 0.025
allstate	0.333 ± 0.061	0.380 ± 0.073	0.283 ± 0.043	0.383 ± 0.075	0.324 ± 0.058
ca_housing	$0.357 \pm 9.1e-03$	0.502 ± 0.020	$0.378 \pm 8.0e-03$	0.502 ± 0.020	<u>$0.374 \pm 4.0e-03$</u>
computer	$0.087 \pm 3.2e-03$	$0.121 \pm 6.3e-03$	<u>$0.104 \pm 8.9e-03$</u>	$0.122 \pm 6.1e-03$	$0.106 \pm 5.7e-03$
concrete	0.264 ± 0.033	0.365 ± 0.068	0.441 ± 0.041	0.369 ± 0.067	0.392 ± 0.069
elevator	<u>$0.117 \pm 6.6e-03$</u>	0.174 ± 0.011	0.114 ± 0.011	0.174 ± 0.011	$0.117 \pm 8.8e-03$
energy_efficiency	0.085 ± 0.012	0.115 ± 0.020	0.480 ± 0.059	0.120 ± 0.020	0.368 ± 0.036
insurance	0.393 ± 0.044	0.523 ± 0.135	<u>0.397 ± 0.073</u>	0.558 ± 0.141	0.406 ± 0.085
kin8nm	$0.197 \pm 8.2e-03$	$0.260 \pm 9.5e-03$	$0.246 \pm 8.7e-03$	$0.261 \pm 9.6e-03$	<u>$0.208 \pm 8.8e-03$</u>
miami_housing	$0.093 \pm 2.9e-03$	$0.131 \pm 5.6e-03$	$0.101 \pm 2.8e-03$	$0.131 \pm 5.7e-03$	<u>$0.100 \pm 1.8e-03$</u>
naval_propulsion	$1.5e-03 \pm 4.2e-04$	$5.4e-03 \pm 1.1e-03$	$3.7e-03 \pm 1.3e-04$	$5.4e-03 \pm 1.1e-03$	<u>$1.7e-03 \pm 1.5e-04$</u>
parkinsons	0.378 ± 0.014	0.476 ± 0.027	0.419 ± 0.021	0.479 ± 0.027	<u>0.403 ± 0.017</u>
powerplant	$0.186 \pm 6.7e-03$	0.266 ± 0.012	$0.204 \pm 6.8e-03$	0.267 ± 0.013	<u>$0.202 \pm 7.3e-03$</u>
qsar	0.410 ± 0.136	0.508 ± 0.178	0.402 ± 0.135	0.509 ± 0.179	0.456 ± 0.153
sulfur	$0.105 \pm 8.5e-03$	0.199 ± 0.015	$0.120 \pm 7.4e-03$	0.200 ± 0.015	<u>$0.120 \pm 8.3e-03$</u>
superconductor	0.208 ± 0.024	0.295 ± 0.038	0.247 ± 0.027	0.295 ± 0.038	<u>0.245 ± 0.028</u>

2214
 2215
 2216
 2217
 2218 Table 8: DE-SQR Quantile Loss at 95% prediction intervals, aggregated across 10 seeds. CLEAR
 2219 consists of the deep ensemble (DE) and the simultaneous quantile regressor (SQR). DE-conformal is
 2220 the conformalized (calibrated) deep ensemble and SQR-conformal is the conformalized simultaneous
 2221 quantile regressor. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place.
 2222 **Bold** values are the minimum (best) for that dataset, while underlined values indicate the second-best
 2223 result.

Dataset	CLEAR	DE	SQR	DE-conformal	SQR-conformal
aileron	$9.6e-06 \pm 3.1e-07$	$1.3e-05 \pm 3.5e-07$	<u>$9.6e-06 \pm 4.0e-07$</u>	$1.3e-05 \pm 3.5e-07$	$9.5e-06 \pm 3.7e-07$
airfoil	$0.097 \pm 6.8e-03$	0.117 ± 0.010	0.162 ± 0.017	0.117 ± 0.010	0.153 ± 0.018
allstate	$1.4e+02 \pm 9.329$	$1.5e+02 \pm 8.112$	$1.5e+02 \pm 9.210$	$1.5e+02 \pm 8.106$	$1.4e+02 \pm 8.368$
ca_housing	$3.0e+03 \pm 63.719$	$3.9e+03 \pm 1.2e+02$	<u>$3.0e+03 \pm 54.590$</u>	$3.9e+03 \pm 1.2e+02$	$3.0e+03 \pm 53.118$
computer	$0.146 \pm 5.5e-03$	$0.183 \pm 6.8e-03$	$0.162 \pm 8.3e-03$	$0.183 \pm 6.8e-03$	$0.162 \pm 7.9e-03$
concrete	0.348 ± 0.049	0.427 ± 0.056	0.467 ± 0.031	0.428 ± 0.057	0.458 ± 0.051
elevator	$1.2e-04 \pm 1.9e-06$	$1.6e-04 \pm 3.5e-06$	<u>$1.1e-04 \pm 2.5e-06$</u>	$1.6e-04 \pm 3.5e-06$	$1.1e-04 \pm 2.4e-06$
energy_efficiency	$0.052 \pm 9.5e-03$	0.067 ± 0.012	0.221 ± 0.023	0.067 ± 0.012	0.188 ± 0.020
insurance	$3.9e+02 \pm 42.155$	$5.3e+02 \pm 97.010$	$3.9e+02 \pm 37.867$	$5.4e+02 \pm 93.793$	$3.9e+02 \pm 45.372$
kin8nm	$4.1e-03 \pm 4.4e-05$	$5.2e-03 \pm 8.2e-05$	$4.5e-03 \pm 5.7e-05$	$5.2e-03 \pm 8.2e-05$	$4.2e-03 \pm 7.1e-05$
miami_housing	$4.5e+03 \pm 2.1e+02$	$5.4e+03 \pm 1.7e+02$	<u>$4.4e+03 \pm 1.2e+02$</u>	$5.4e+03 \pm 1.7e+02$	$4.4e+03 \pm 1.2e+02$
naval_propulsion	$3.6e-05 \pm 9.4e-06$	$1.3e-04 \pm 2.7e-05$	$8.2e-05 \pm 2.9e-06$	$1.3e-04 \pm 2.7e-05$	$4.4e-05 \pm 4.3e-06$
parkinsons	0.298 ± 0.014	$0.343 \pm 9.8e-03$	<u>$0.291 \pm 5.7e-03$</u>	$0.343 \pm 9.8e-03$	$0.289 \pm 5.8e-03$
powerplant	0.227 ± 0.013	0.301 ± 0.014	0.234 ± 0.012	0.301 ± 0.014	0.234 ± 0.013
qsar	$0.055 \pm 3.2e-03$	$0.064 \pm 3.5e-03$	$0.061 \pm 3.7e-03$	$0.064 \pm 3.5e-03$	<u>$0.060 \pm 3.6e-03$</u>
sulfur	$1.7e-03 \pm 1.0e-04$	$2.7e-03 \pm 1.9e-04$	<u>$1.8e-03 \pm 1.3e-04$</u>	$2.7e-03 \pm 1.9e-04$	$1.8e-03 \pm 1.3e-04$
superconductor	0.545 ± 0.024	0.707 ± 0.024	0.560 ± 0.017	0.707 ± 0.024	0.559 ± 0.018

2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244 Table 9: DE-SQR NCIW at 95% prediction intervals, aggregated across 10 seeds. CLEAR consists
 2245 of the deep ensemble (DE) and the simultaneous quantile regressor (SQR). DE-conformal is the
 2246 conformalized (calibrated) deep ensemble and SQR-conformal is the conformalized simultaneous
 2247 quantile regressor. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place.
 2248 **Bold** values are the minimum (best) for that dataset, while underlined values indicate the second-best
 2249 result.

Dataset	CLEAR	DE	SQR	DE-conformal	SQR-conformal
aileron	0.205 ± 0.017	0.292 ± 0.027	<u>0.205 ± 0.017</u>	0.291 ± 0.026	0.204 ± 0.017
airfoil	0.173 ± 0.016	0.220 ± 0.025	<u>0.290 ± 0.026</u>	<u>0.217 ± 0.025</u>	0.293 ± 0.026
allstate	0.328 ± 0.048	0.384 ± 0.062	0.342 ± 0.051	0.381 ± 0.060	0.330 ± 0.045
ca_housing	$0.354 \pm 8.1e-03$	0.501 ± 0.021	<u>$0.372 \pm 7.1e-03$</u>	0.501 ± 0.021	$0.373 \pm 7.8e-03$
computer	$0.088 \pm 1.7e-03$	$0.120 \pm 5.0e-03$	$0.106 \pm 6.5e-03$	$0.120 \pm 5.1e-03$	$0.106 \pm 7.1e-03$
concrete	0.274 ± 0.026	0.345 ± 0.053	0.371 ± 0.036	<u>0.339 ± 0.051</u>	0.376 ± 0.040
elevator	$0.117 \pm 7.0e-03$	0.172 ± 0.010	<u>$0.117 \pm 9.0e-03$</u>	0.172 ± 0.010	$0.116 \pm 9.4e-03$
energy_efficiency	$0.079 \pm 7.4e-03$	0.114 ± 0.017	0.351 ± 0.049	0.106 ± 0.014	0.346 ± 0.046
insurance	0.364 ± 0.060	0.465 ± 0.125	<u>0.351 ± 0.064</u>	0.460 ± 0.122	0.350 ± 0.061
kin8nm	$0.194 \pm 6.6e-03$	$0.255 \pm 5.6e-03$	$0.205 \pm 6.3e-03$	$0.254 \pm 5.3e-03$	$0.208 \pm 6.3e-03$
miami_housing	$0.092 \pm 3.5e-03$	$0.129 \pm 7.8e-03$	<u>$0.100 \pm 2.6e-03$</u>	$0.129 \pm 7.7e-03$	$0.100 \pm 2.9e-03$
naval_propulsion	$1.5e-03 \pm 4.2e-04$	$5.4e-03 \pm 1.2e-03$	$1.7e-03 \pm 2.0e-04$	$5.4e-03 \pm 1.2e-03$	<u>$1.6e-03 \pm 1.7e-04$</u>
parkinsons	0.382 ± 0.015	0.473 ± 0.025	<u>0.398 ± 0.013</u>	0.470 ± 0.022	0.398 ± 0.013
powerplant	$0.190 \pm 6.0e-03$	$0.272 \pm 9.5e-03$	$0.202 \pm 8.1e-03$	$0.272 \pm 9.5e-03$	<u>$0.202 \pm 8.1e-03$</u>
qsar	0.407 ± 0.134	0.477 ± 0.150	0.450 ± 0.151	0.476 ± 0.150	<u>0.441 ± 0.146</u>
sulfur	$0.104 \pm 6.2e-03$	0.198 ± 0.016	<u>$0.120 \pm 7.1e-03$</u>	0.197 ± 0.015	$0.120 \pm 7.2e-03$
superconductor	0.209 ± 0.024	0.303 ± 0.036	<u>0.242 ± 0.027</u>	0.302 ± 0.036	0.245 ± 0.027

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

Table 10: DE-SQR Interval Score Loss at 95% prediction intervals, aggregated across 10 seeds. CLEAR consists of the deep ensemble (DE) and the simultaneous quantile regressor (SQR). DE-conformal is the conformalized (calibrated) deep ensemble and SQR-conformal is the conformalized simultaneous quantile regressor. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values are the minimum (best) for that dataset, while underlined values indicate the second-best result.

Dataset	CLEAR	DE	SQR	DE-conformal	SQR-conformal
airfoils	$7.7e-04 \pm 2.5e-05$	$1.0e-03 \pm 2.8e-05$	<u>$7.7e-04 \pm 3.2e-05$</u>	$1.0e-03 \pm 2.8e-05$	$7.6e-04 \pm 2.9e-05$
airfoil	7.761 ± 0.546	9.368 ± 0.826	12.937 ± 1.386	9.370 ± 0.813	12.279 ± 1.418
allstate	$1.1e+04 \pm 7.5e+02$	$1.2e+04 \pm 6.5e+02$	$1.2e+04 \pm 7.4e+02$	$1.2e+04 \pm 6.5e+02$	<u>$1.2e+04 \pm 6.7e+02$</u>
ca_housing	$2.4e+05 \pm 5.1e+03$	$3.1e+05 \pm 9.2e+03$	<u>$2.4e+05 \pm 4.4e+03$</u>	$3.1e+05 \pm 9.2e+03$	$2.4e+05 \pm 4.2e+03$
computer	11.669 ± 0.436	14.633 ± 0.543	12.938 ± 0.662	14.634 ± 0.545	<u>12.926 ± 0.634</u>
concrete	27.850 ± 3.946	34.179 ± 4.507	37.343 ± 2.464	34.203 ± 4.564	36.678 ± 4.051
elevator	$9.2e-03 \pm 1.5e-04$	$0.013 \pm 2.8e-04$	<u>$9.0e-03 \pm 2.0e-04$</u>	$0.013 \pm 2.8e-04$	$9.0e-03 \pm 1.9e-04$
energy_efficiency	4.154 ± 0.758	5.369 ± 0.965	17.719 ± 1.871	5.387 ± 0.974	15.020 ± 1.595
insurance	$3.1e+04 \pm 3.4e+03$	$4.2e+04 \pm 7.8e+03$	$3.1e+04 \pm 3.0e+03$	$4.3e+04 \pm 7.5e+03$	<u>$3.1e+04 \pm 3.6e+03$</u>
kin8nm	$0.327 \pm 3.5e-03$	$0.417 \pm 6.5e-03$	$0.358 \pm 4.6e-03$	$0.417 \pm 6.6e-03$	<u>$0.340 \pm 5.7e-03$</u>
miami_housing	$3.6e+05 \pm 1.7e+04$	$4.3e+05 \pm 1.4e+04$	<u>$3.5e+05 \pm 9.5e+03$</u>	$4.3e+05 \pm 1.4e+04$	$3.5e+05 \pm 9.5e+03$
naval_propulsion	$2.9e-03 \pm 7.5e-04$	$0.011 \pm 2.2e-03$	<u>$6.5e-03 \pm 2.3e-04$</u>	$0.011 \pm 2.2e-03$	<u>$3.5e-03 \pm 3.5e-04$</u>
parkinsons	23.860 ± 1.124	27.437 ± 0.787	<u>23.297 ± 0.456</u>	27.449 ± 0.784	23.159 ± 0.461
powerplant	18.145 ± 1.005	24.110 ± 1.141	18.714 ± 0.990	24.106 ± 1.140	<u>18.706 ± 1.002</u>
qsar	4.419 ± 0.255	5.152 ± 0.278	4.875 ± 0.294	5.154 ± 0.278	<u>4.800 ± 0.286</u>
sulfur	$0.134 \pm 8.1e-03$	0.213 ± 0.015	<u>0.144 ± 0.010</u>	0.213 ± 0.015	0.144 ± 0.010
superconductor	43.610 ± 1.937	56.594 ± 1.943	44.763 ± 1.388	56.591 ± 1.943	<u>44.731 ± 1.406</u>

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322 F CLEAR WITH PCS AND CQR: RESULTS ON REAL-WORLD DATA

2324 This appendix presents the detailed quantitative results from the benchmark experiments conducted
 2325 on the 17 real-world datasets, complementing the summary findings in the main paper (Section 4.2).
 2326 As a reminder, we evaluate three distinct configurations (variants) of our proposed CLEAR method
 2327 alongside the baseline approaches (PCS, ALEATORIC, ALEATORIC-R). The differences among
 2328 these 3 variants are considered base models. For each variant, CLEAR is applied on the already
 2329 trained PCS and uncalibrated ALEATORIC-R. To recap these variants:

- 2330 • **Variant (a):** Employs a quantile PCS approach using a diverse pool of quantile estimators
 2331 (QRF, QXGB, Expectile GAM⁵) for estimating the conditional medians based on the
 2332 bootstraps. The top-performing model type ($k = 1$) on the validation set is selected. 1)
 2333 Based on the selected model type, we compute the epistemic component \hat{q}^{epi} (via empirical
 2334 quantiles over the estimated medians from the $b = m$ bootstraps) and the median \hat{f} (as
 2335 empirical median over the estimated medians). 2) Using the same selected quantile model
 2336 type, the aleatoric component \hat{q}^{ale} is derived from a bootstrapped ALEATORIC-R model.
 2337
- 2338 • **Variant (b):** Similar to (a), but restricts the model pool for both PCS and the paired
 2339 ALEATORIC-R exclusively to QXGB.
- 2340 • **Variant (c):** Uses a standard PCS approach with mean-based regression models (e.g.,
 2341 Random Forest, XGBoost) for the epistemic component (via empirical quantiles over the
 2342 estimated medians) and median prediction \hat{f} (as empirical median over the estimated means),
 2343 selecting the top model ($k = 1$). The aleatoric component is derived from a bootstrapped
 2344 ALEATORIC-R model using QRF.

2345 The subsequent subsections present the comprehensive results for each variant (a, b, c). All exper-
 2346 iments were run across 10 different random seeds⁶, and the results on the test set are presented.
 2347 The subsequent tables report the average performance metric across these 10 seeds, along with the
 2348 standard deviation ($\pm\sigma$), to indicate the variability associated with data splitting. For each variant, we
 2349 provide tables detailing the metrics presented in Appendix D.5 for all methods across all datasets at a
 2350 95% nominal coverage level. Lower values are preferable for all metrics except PICP, which should
 2351 ideally be close to the target of 0.95. Additionally, summary plots (Figures 3, 7 and 8) visualize the
 2352 relative NCIW and Quantile Loss performance normalized against the respective CLEAR variant
 2353 baseline. Additionally, only for variant (c), we provide Table 27 with the values of λ and γ_1 to provide
 2354 some insights into the aleatoric/epistemic allocations of CLEAR. Finally, Figure 9 (Appendix F.4)
 2355 provides a direct comparison of the NCIW and Quantile Loss between the three CLEAR variants
 2356 themselves, using variant (a) as the reference baseline.

2357 Appendix F.4 shows that the primary configuration of CLEAR presented in the main text, variant (a),
 2358 leverages a diverse set of quantile models for robust epistemic uncertainty estimation and generally
 2359 delivers the most consistent and superior performance. As detailed in Figure 9 in the appendix,
 2360 CLEAR in variant (a) tends to marginally outperform the model in variant (b), which is restricted to
 2361 QXGB, and variant (c), which utilizes standard mean-based PCS models. For instance, in variant
 2362 (a), QXGB was selected in approximately 64% of cases, QRF in 24%, and ExpectileGAM in the
 2363 remainder of cases. In variant (c), XGBoost was chosen about 70% of the time, with other models
 2364 (excluding Ridge) sharing the rest. The importance of this dynamic model selection is evident in
 2365 datasets like `naval_propulsion`, where variants (b) and (c) can struggle due to their fixed model
 2366 choices (QXGB and QRF for the aleatoric part, respectively), whereas variant (a) can adapt by
 2367 selecting, for example, ExpectileGAM. This highlights the stability advantage of CLEAR (a) and
 2368 the benefit of PCS’s dynamic model choice, especially when the aleatoric component can also adapt.
 2369 Nevertheless, the CLEAR framework overall demonstrates considerable robustness even with these
 2370 alternative model choices. For instance, variant (b) still provides NCIW reductions of approximately
 2371 17.3% and 4.9% over its corresponding PCS and ALEATORIC-R baselines, respectively (Figure 7). A
 2372 similar advantage is observed for variant (c) (Figure 8), which reduces NCIW by about 7.6% against
 2373 ALEATORIC-R, the best-performing variant of CQR that uses our novel residual-based technique.

2374 ⁵Strictly speaking, Expectile GAM estimates expectiles rather than quantiles. While it is not a consistent
 2375 estimator for quantiles in theory, mixing expectiles and quantiles may still be practical in applications.

2376 ⁶Due to a bug in pygam’s Expectile GAM Servén & Brummitt (2018), for the `naval_propulsion` data
 2377 in variant (c), one of the runs failed; hence, there are 9 runs available instead of 10.

2376 **Detailed motivation behind variant (a).** Overall, variant (a) archives the best results (see Figure 9).
 2377 Therefore, we recommend to use CLEAR variant (a). The experiments in variant (a) are fair, since
 2378 each of the competing methods uses the same base model, which is selected per data set based on the
 2379 RMSE on the validation data set. See Appendix F.1 for the results.
 2380

2381 **Detailed motivation behind variant (b).** Variant (b) is the simplest to understand, easiest to imple-
 2382 ment, and computationally cheapest variant and provides maximal fairness, making it particularly
 2383 scientifically sound. Each method simply uses QXGB as base model without any model selection
 2384 step. Strictly speaking, variant (b) is the only variant where ALEATORIC and ALEATORIC-R are
 2385 fully conformal, since variant (b) uses the calibration data set only for calibration, while variant (a)
 2386 and (c) reuse the validation set used for model selection as calibration data set. However, in practice,
 2387 we observe this re-usage does not hurt calibration in any significant way (Table 12 and Table 22). See
 2388 Appendix F.2 for the results of variant (b).
 2389

2390 **Detailed motivation behind variant (c).** Variant (c) uses the same set of base models as suggested
 2391 by the authors of PCS uncertainty quantification as Agarwal et al. (2025). They conducted extensive
 2392 experiments showing that PCS uncertainty quantification substantially outperforms popular conformal
 2393 baselines such as split conformal regression (Lei et al., 2018), Studentized conformal regression
 2394 (Lei et al., 2018), and Majority Vote (Gasparin & Ramdas, 2024) (by more than 20% on average
 2395 in terms of interval width). Our experiments showing that CLEAR (a) outperforms CLEAR (c)
 2396 (Figure 9) and CLEAR (c) outperforms PCS uncertainty quantification (c) (Appendix F.3), together
 2397 with the experiments by Agarwal et al. (2025), strongly suggests that CLEAR clearly outperforms
 2398 these popular conformal baselines. See Appendix F.3 for the results of variant (c).
 2399

2400 Overall, CLEAR shows the strongest performance across all variants (a), (b) and (c), demonstrating
 2401 CLEAR’s stability across different settings, data sets, and metrics.
 2402

2403 Table 11: Dataset statistics where d represents the number of variables, n represents the number of
 2404 observations, followed by the minimum, maximum, and range values for y .
 2405

Dataset	n	d	y_{min}	y_{max}	y_{range}
ailerons	13,750	40	-0.0036	0.00e+00	0.0036
airfoil	1,503	5	104.2040	140.1580	35.9540
allstate	5,000	1037	200.0000	3.31e+04	3.29e+04
ca_housing	20,640	8	1.50e+04	5.00e+05	4.85e+05
computer	8,192	21	0.00e+00	99.0000	99.0000
concrete	1,030	8	2.3300	81.7500	79.4200
elevator	16,599	18	0.0120	0.0780	0.0660
energy_efficiency	768	10	6.0100	43.1000	37.0900
insurance	1,338	8	1121.8739	6.26e+04	6.15e+04
kin8nm	8,192	8	0.0632	1.4585	1.3953
miami_housing	13,932	28	7.20e+04	2.65e+06	2.58e+06
naval_propulsion	11,934	24	0.0690	1.8320	1.7630
parkinsons	5,875	18	7.0000	54.9920	47.9920
powerplant	9,568	4	420.2600	495.7600	75.5000
qsar	5,742	500	-6.2400	11.0000	17.2400
sulfur	10,081	5	0.00e+00	1.0000	1.0000
superconductor	21,263	79	3.25e-04	185.0000	184.9997

2430 F.1 VARIANT (A)
24312432 Table 12: Variant (a) PICP at 95% prediction intervals, aggregated across 10 seeds.
2433

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	0.95 \pm 0.00	0.95 \pm 0.00	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.00
airfoil	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.02	0.95 \pm 0.02	0.95 \pm 0.01
allstate	0.95 \pm 0.01						
ca_housing	0.95 \pm 0.01						
computer	0.95 \pm 0.01	0.97 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.96 \pm 0.01	0.95 \pm 0.01	0.96 \pm 0.01
concrete	0.95 \pm 0.02	0.96 \pm 0.02	0.95 \pm 0.02	0.95 \pm 0.01	0.94 \pm 0.03	0.95 \pm 0.01	0.95 \pm 0.01
elevator	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.00
energy_efficiency	0.95 \pm 0.02	0.96 \pm 0.02	0.95 \pm 0.02	0.96 \pm 0.01	0.95 \pm 0.02	0.96 \pm 0.01	0.96 \pm 0.01
insurance	0.95 \pm 0.02	0.96 \pm 0.01	0.96 \pm 0.02	0.95 \pm 0.01	0.95 \pm 0.02	0.96 \pm 0.02	0.96 \pm 0.01
kin8nm	0.95 \pm 0.01						
miami_housing	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.00
naval_propulsion	0.95 \pm 0.01	0.96 \pm 0.01	0.95 \pm 0.01				
parkinsons	0.95 \pm 0.01	0.96 \pm 0.01	0.95 \pm 0.01				
powerplant	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01
qsar	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01
sulfur	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01
superconductor	0.95 \pm 0.00	0.95 \pm 0.00	0.95 \pm 0.00	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.00

2448 Table 13: Variant (a) NIW at 95% prediction intervals, aggregated across 10 seeds. Values \geq 100
2449 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the
2450 minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red**
2451 values are more than 33% worse than the best result.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	0.193 \pm 0.016	0.208 \pm 0.017	0.195 \pm 0.017	0.215 \pm 0.016	0.220 \pm 0.021	<u>0.193 \pm 0.016</u>	0.193 \pm 0.016
airfoil	0.207 \pm 0.012	0.367 \pm 0.018	0.215 \pm 0.018	0.215 \pm 0.012	0.246 \pm 0.024	0.205 \pm 0.012	0.206 \pm 0.012
allstate	0.260 \pm 0.037	0.266 \pm 0.045	0.259 \pm 0.045	0.259 \pm 0.044	0.327 \pm 0.056	0.246 \pm 0.042	0.247 \pm 0.042
ca_housing	0.339 \pm 0.008	0.760 \pm 0.006	0.350 \pm 0.006	0.354 \pm 0.011	0.434 \pm 0.020	0.333 \pm 0.006	0.331 \pm 0.007
computer	0.091 \pm 0.008	0.099 \pm 0.001	0.091 \pm 0.010	18.269 \pm 11.847	0.115 \pm 0.007	0.091 \pm 0.010	0.091 \pm 0.007
concrete	0.249 \pm 0.025	0.486 \pm 0.028	0.265 \pm 0.029	0.249 \pm 0.017	0.263 \pm 0.028	0.251 \pm 0.022	0.253 \pm 0.023
elevator	0.156 \pm 0.009	0.144 \pm 0.007	0.149 \pm 0.007	0.178 \pm 0.012	0.144 \pm 0.008	0.156 \pm 0.009	0.160 \pm 0.008
energy_efficiency	0.047 \pm 0.005	0.212 \pm 0.015	0.050 \pm 0.007	0.062 \pm 0.006	0.062 \pm 0.013	0.051 \pm 0.004	0.053 \pm 0.004
insurance	0.309 \pm 0.032	0.332 \pm 0.049	0.329 \pm 0.056	0.585 \pm 0.167	0.478 \pm 0.070	0.331 \pm 0.077	0.295 \pm 0.044
kin8nm	0.360 \pm 0.012	0.490 \pm 0.020	0.374 \pm 0.014	0.373 \pm 0.014	0.397 \pm 0.017	0.359 \pm 0.012	0.360 \pm 0.011
miami_housing	0.085 \pm 0.002	0.105 \pm 0.001	0.086 \pm 0.004	0.098 \pm 0.003	0.126 \pm 0.006	0.084 \pm 0.002	0.085 \pm 0.002
naval_propulsion	6.1e-04 \pm 6.3e-06	6.2e-04 \pm 6.5e-06	6.0e-04 \pm 6.4e-06	7.2e-04 \pm 1.3e-05	6.0e-04 \pm 7.0e-06	6.2e-04 \pm 5.7e-06	6.1e-04 \pm 5.6e-06
parkinsons	0.227 \pm 0.010	0.321 \pm 0.013	0.249 \pm 0.014	0.312 \pm 0.021	0.303 \pm 0.022	0.228 \pm 0.008	0.225 \pm 0.008
powerplant	0.170 \pm 0.007	0.196 \pm 0.009	0.180 \pm 0.009	0.178 \pm 0.007	0.183 \pm 0.006	0.173 \pm 0.007	0.172 \pm 0.007
qsar	0.363 \pm 0.121	0.486 \pm 0.160	0.386 \pm 0.126	0.388 \pm 0.131	0.420 \pm 0.139	0.362 \pm 0.121	0.362 \pm 0.121
sulfur	0.109 \pm 0.010	0.112 \pm 0.010	0.107 \pm 0.010	0.131 \pm 0.017	0.122 \pm 0.015	0.108 \pm 0.011	0.108 \pm 0.011
superconductor	0.196 \pm 0.022	0.233 \pm 0.025	0.196 \pm 0.023	0.248 \pm 0.028	0.329 \pm 0.042	0.194 \pm 0.022	0.194 \pm 0.021

2464 Table 14: Variant (a) Quantile Loss at 95% prediction intervals, aggregated across 10 seeds. Values
2465 \geq 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable)
2466 are the minimum for that dataset and metric, while the underlined values indicate the second-best
2467 result. **Red** values are more than 33% worse than the best result.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	9.2e-06 \pm 2.3e-07	1.0e-05 \pm 2.8e-07	9.7e-06 \pm 2.8e-07	1.0e-05 \pm 2.2e-07	1.1e-05 \pm 3.7e-07	9.2e-06 \pm 2.3e-07	9.2e-06 \pm 2.3e-07
airfoil	0.109 \pm 0.011	0.183 \pm 0.013	0.123 \pm 0.016	0.117 \pm 0.012	0.147 \pm 0.019	0.109 \pm 0.011	0.109 \pm 0.011
allstate	1.1e+02 \pm 7.835	1.3e+02 \pm 8.197	1.3e+02 \pm 7.925	1.2e+02 \pm 7.770	1.7e+02 \pm 13.696	1.1e+02 \pm 7.563	1.1e+02 \pm 7.631
ca_housing	2.8e+03 \pm 59.700	4.8e+03 \pm 25.753	3.0e+03 \pm 73.283	3.2e+03 \pm 93.396	4.0e+03 \pm 1.2e+02	2.8e+03 \pm 66.414	2.8e+03 \pm 70.545
computer	0.147 \pm 0.022	0.150 \pm 0.012	0.160 \pm 0.029	22.643 \pm 14.662	0.192 \pm 0.010	0.146 \pm 0.020	0.147 \pm 0.023
concrete	0.338 \pm 0.040	0.546 \pm 0.061	0.359 \pm 0.053	0.327 \pm 0.036	0.376 \pm 0.058	0.330 \pm 0.037	0.331 \pm 0.037
elevator	1.5e-04 \pm 2.0e-06	1.4e-04 \pm 2.9e-06	1.5e-04 \pm 2.4e-06	1.7e-04 \pm 5.6e-06	1.6e-04 \pm 5.1e-06	1.5e-04 \pm 2.4e-06	1.5e-04 \pm 2.0e-06
energy_efficiency	0.031 \pm 0.004	0.102 \pm 0.008	0.033 \pm 0.005	0.038 \pm 0.003	0.041 \pm 0.005	0.033 \pm 0.003	0.034 \pm 0.003
insurance	3.5e+02 \pm 61.616	3.6e+02 \pm 39.928	3.6e+02 \pm 54.512	5.8e+02 \pm 1.0e+02	4.4e+02 \pm 38.440	3.6e+02 \pm 68.243	3.5e+02 \pm 62.851
kin8nm	7.2e-03 \pm 1.7e-04	9.5e-03 \pm 1.6e-04	7.7e-03 \pm 2.7e-04	7.6e-03 \pm 9.7e-05	8.3e-03 \pm 2.5e-04	7.2e-03 \pm 1.6e-04	7.2e-03 \pm 1.7e-04
miami_housing	3.9e+03 \pm 1.9e+02	5.1e+03 \pm 3.1e+02	5.2e+03 \pm 3.4e+02	4.2e+03 \pm 1.6e+02	8.1e+03 \pm 3.6e+02	3.9e+03 \pm 1.9e+02	3.9e+03 \pm 1.8e+02
naval_propulsion	1.5e-05 \pm 2.1e-07	1.5e-05 \pm 2.6e-07	1.5e-05 \pm 2.6e-07	1.7e-05 \pm 2.7e-07	1.6e-05 \pm 3.5e-07	1.5e-05 \pm 2.1e-07	1.5e-05 \pm 2.3e-07
parkinsons	0.178 \pm 0.010	0.202 \pm 0.007	0.215 \pm 0.012	0.224 \pm 0.012	0.251 \pm 0.014	0.185 \pm 0.011	0.178 \pm 0.010
powerplant	0.212 \pm 0.012	0.228 \pm 0.011	0.220 \pm 0.011	0.221 \pm 0.012	0.231 \pm 0.010	0.213 \pm 0.012	0.213 \pm 0.012
qsar	0.049 \pm 0.003	0.060 \pm 0.003	0.052 \pm 0.003	0.053 \pm 0.003	0.057 \pm 0.003	0.049 \pm 0.003	0.049 \pm 0.003
sulfur	2.0e-03 \pm 1.4e-04	2.1e-03 \pm 1.3e-04	2.3e-03 \pm 1.1e-04	2.3e-03 \pm 1.9e-04	3.5e-03 \pm 2.0e-04	2.0e-03 \pm 1.4e-04	2.0e-03 \pm 1.4e-04
superconductor	0.490 \pm 0.018	0.511 \pm 0.014	0.538 \pm 0.023	0.608 \pm 0.023	0.861 \pm 0.036	0.490 \pm 0.018	0.491 \pm 0.018

2484
2485
2486
2487
2488
2489

2490 Table 15: Variant (a) NCIW at 95% prediction intervals, aggregated across 10 seeds. Values ≥ 100
2491 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the
2492 minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red**
2493 values are more than 33% worse than the best result.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	0.195 \pm 0.017	0.209 \pm 0.019	0.196 \pm 0.017	0.217 \pm 0.021	0.220 \pm 0.020	<u>0.195 \pm 0.017</u>	0.195 \pm 0.017
airfoil	0.203 \pm 0.006	<u>0.356 \pm 0.016</u>	0.216 \pm 0.012	0.211 \pm 0.007	0.246 \pm 0.019	<u>0.200 \pm 0.007</u>	0.200 \pm 0.006
allstate	0.252 \pm 0.037	0.264 \pm 0.042	0.262 \pm 0.042	0.266 \pm 0.051	<u>0.328 \pm 0.051</u>	0.245 \pm 0.042	0.245 \pm 0.041
ca.housing	0.336 \pm 0.008	<u>0.760 \pm 0.009</u>	0.348 \pm 0.010	0.354 \pm 0.012	<u>0.440 \pm 0.016</u>	0.331 \pm 0.007	<u>0.328 \pm 0.007</u>
computer	0.091 \pm 0.008	0.099 \pm 0.001	0.091 \pm 0.011	0.112 \pm 0.028	0.113 \pm 0.008	0.092 \pm 0.009	0.091 \pm 0.007
concrete	0.246 \pm 0.033	<u>0.421 \pm 0.079</u>	0.259 \pm 0.035	0.241 \pm 0.025	0.264 \pm 0.037	<u>0.238 \pm 0.027</u>	0.240 \pm 0.026
elevator	0.155 \pm 0.010	<u>0.143 \pm 0.008</u>	0.148 \pm 0.008	0.177 \pm 0.011	0.145 \pm 0.010	0.155 \pm 0.010	0.159 \pm 0.010
energy.efficiency	0.046 \pm 0.005	<u>0.196 \pm 0.032</u>	0.050 \pm 0.005	0.057 \pm 0.004	0.060 \pm 0.006	0.050 \pm 0.005	0.051 \pm 0.004
insurance	0.303 \pm 0.029	0.284 \pm 0.049	0.308 \pm 0.043	<u>0.530 \pm 0.178</u>	<u>0.454 \pm 0.102</u>	0.282 \pm 0.049	<u>0.271 \pm 0.046</u>
kin8nm	0.354 \pm 0.008	<u>0.482 \pm 0.014</u>	0.371 \pm 0.009	0.371 \pm 0.009	0.396 \pm 0.013	0.355 \pm 0.008	0.355 \pm 0.008
miami_housing	0.084 \pm 0.003	0.106 \pm 0.004	0.085 \pm 0.003	0.098 \pm 0.002	<u>0.124 \pm 0.006</u>	<u>0.083 \pm 0.002</u>	0.084 \pm 0.002
naval_propulsion	6.1e-04 \pm 7.9e-06	6.1e-04 \pm 7.4e-06	6.0e-04 \pm 5.5e-06	7.1e-04 \pm 1.5e-05	<u>5.9e-04 \pm 6.1e-06</u>	6.1e-04 \pm 9.3e-06	6.1e-04 \pm 6.4e-06
parkinsons	0.225 \pm 0.012	<u>0.321 \pm 0.013</u>	0.247 \pm 0.007	<u>0.316 \pm 0.032</u>	<u>0.302 \pm 0.013</u>	0.227 \pm 0.007	0.224 \pm 0.008
powerplant	<u>0.173 \pm 0.007</u>	0.197 \pm 0.009	0.182 \pm 0.007	0.182 \pm 0.007	0.187 \pm 0.008	0.176 \pm 0.007	0.174 \pm 0.007
qsar	0.360 \pm 0.119	0.479 \pm 0.156	0.389 \pm 0.130	0.389 \pm 0.134	0.421 \pm 0.142	0.360 \pm 0.120	0.360 \pm 0.120
sulfur	0.109 \pm 0.010	0.111 \pm 0.008	0.106 \pm 0.009	0.128 \pm 0.013	0.129 \pm 0.011	0.108 \pm 0.011	0.107 \pm 0.010
superconductor	0.195 \pm 0.021	0.231 \pm 0.025	<u>0.194 \pm 0.021</u>	0.247 \pm 0.028	<u>0.314 \pm 0.035</u>	0.194 \pm 0.021	0.194 \pm 0.021

2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517

2518 Table 16: Variant (a) Interval Score Loss at 95% prediction intervals, aggregated across 10
2519 seeds. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold**
2520 values (desirable) are the minimum for that dataset and metric, while the underlined values indicate
2521 the second-best result. **Red** values are more than 33% worse than the best result.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	7.4e-04 \pm 1.8e-05	8.1e-04 \pm 2.2e-05	7.8e-04 \pm 2.2e-05	8.0e-04 \pm 1.8e-05	9.1e-04 \pm 2.9e-05	<u>7.4e-04 \pm 1.8e-05</u>	7.4e-04 \pm 1.8e-05
airfoil	8.717 \pm 0.870	<u>14.669 \pm 1.007</u>	9.843 \pm 1.249	9.397 \pm 0.977	<u>11.761 \pm 1.548</u>	8.727 \pm 0.902	8.730 \pm 0.892
allstate	<u>9.1e+03 \pm 6.3e+02</u>	1.1e+04 \pm 6.6e+02	1.0e+04 \pm 6.3e+02	9.9e+03 \pm 6.2e+02	<u>1.3e+04 \pm 1.1e+03</u>	9.2e+03 \pm 6.1e+02	9.2e+03 \pm 6.1e+02
ca_housing	<u>2.2e+05 \pm 4.8e+03</u>	<u>3.9e+05 \pm 2.1e+03</u>	2.4e+05 \pm 5.9e+03	2.6e+05 \pm 7.5e+03	<u>3.2e+05 \pm 9.7e+03</u>	2.2e+05 \pm 5.3e+03	2.2e+05 \pm 5.6e+03
computer	11.741 \pm 1.723	12.023 \pm 0.924	12.761 \pm 2.285	<u>1.8e+03 \pm 1.2e+03</u>	15.360 \pm 0.785	<u>11.667 \pm 1.598</u>	11.761 \pm 1.841
concrete	27.020 \pm 3.202	<u>43.690 \pm 4.842</u>	28.684 \pm 4.251	26.165 \pm 2.857	30.054 \pm 4.640	26.365 \pm 2.976	26.445 \pm 2.996
elevator	0.012 \pm 0.000	0.011 \pm 0.000	0.012 \pm 0.000	0.014 \pm 0.000	0.013 \pm 0.000	0.012 \pm 0.000	0.012 \pm 0.000
energy.efficiency	2.465 \pm 0.347	<u>8.199 \pm 0.672</u>	2.671 \pm 0.416	3.058 \pm 0.217	3.253 \pm 0.388	2.667 \pm 0.280	2.721 \pm 0.270
insurance	<u>2.8e+04 \pm 4.9e+03</u>	2.9e+04 \pm 3.2e+03	2.8e+04 \pm 4.4e+03	<u>4.7e+04 \pm 8.1e+03</u>	3.6e+04 \pm 3.1e+03	2.9e+04 \pm 5.5e+03	<u>2.8e+04 \pm 5.0e+03</u>
kin8nm	0.577 \pm 0.014	0.760 \pm 0.013	0.616 \pm 0.021	0.607 \pm 0.008	0.666 \pm 0.020	0.577 \pm 0.013	0.577 \pm 0.013
miami_housing	3.1e+05 \pm 1.5e+04	4.1e+05 \pm 2.5e+04	<u>4.2e+05 \pm 2.7e+04</u>	3.3e+05 \pm 1.3e+04	<u>6.5e+05 \pm 2.9e+04</u>	<u>3.1e+05 \pm 1.5e+04</u>	3.1e+05 \pm 1.5e+04
naval_propulsion	<u>1.2e-03 \pm 1.7e-05</u>	1.2e-03 \pm 2.1e-05	1.2e-03 \pm 2.2e-05	1.3e-03 \pm 2.8e-05	1.2e-03 \pm 1.7e-05	<u>1.2e-03 \pm 1.8e-05</u>	1.2e-03 \pm 1.8e-05
parkinsons	<u>14.221 \pm 0.792</u>	16.142 \pm 0.582	17.188 \pm 0.985	17.947 \pm 0.957	<u>20.088 \pm 1.130</u>	14.762 \pm 0.882	14.259 \pm 0.786
powerplant	16.993 \pm 0.937	18.211 \pm 0.897	17.577 \pm 0.884	17.715 \pm 0.965	18.501 \pm 0.815	17.064 \pm 0.951	17.027 \pm 0.954
qsar	3.951 \pm 0.230	4.795 \pm 0.219	4.187 \pm 0.231	4.249 \pm 0.217	4.558 \pm 0.216	<u>3.950 \pm 0.225</u>	3.953 \pm 0.224
sulfur	0.161 \pm 0.011	0.172 \pm 0.011	0.187 \pm 0.008	0.186 \pm 0.015	<u>0.280 \pm 0.016</u>	0.161 \pm 0.011	0.161 \pm 0.011
superconductor	39.217 \pm 1.419	40.851 \pm 1.157	43.049 \pm 1.848	48.630 \pm 1.867	<u>68.891 \pm 2.882</u>	<u>39.182 \pm 1.438</u>	39.296 \pm 1.444

2532
2533
2534
2535
2536
2537

F.2 VARIANT (B)

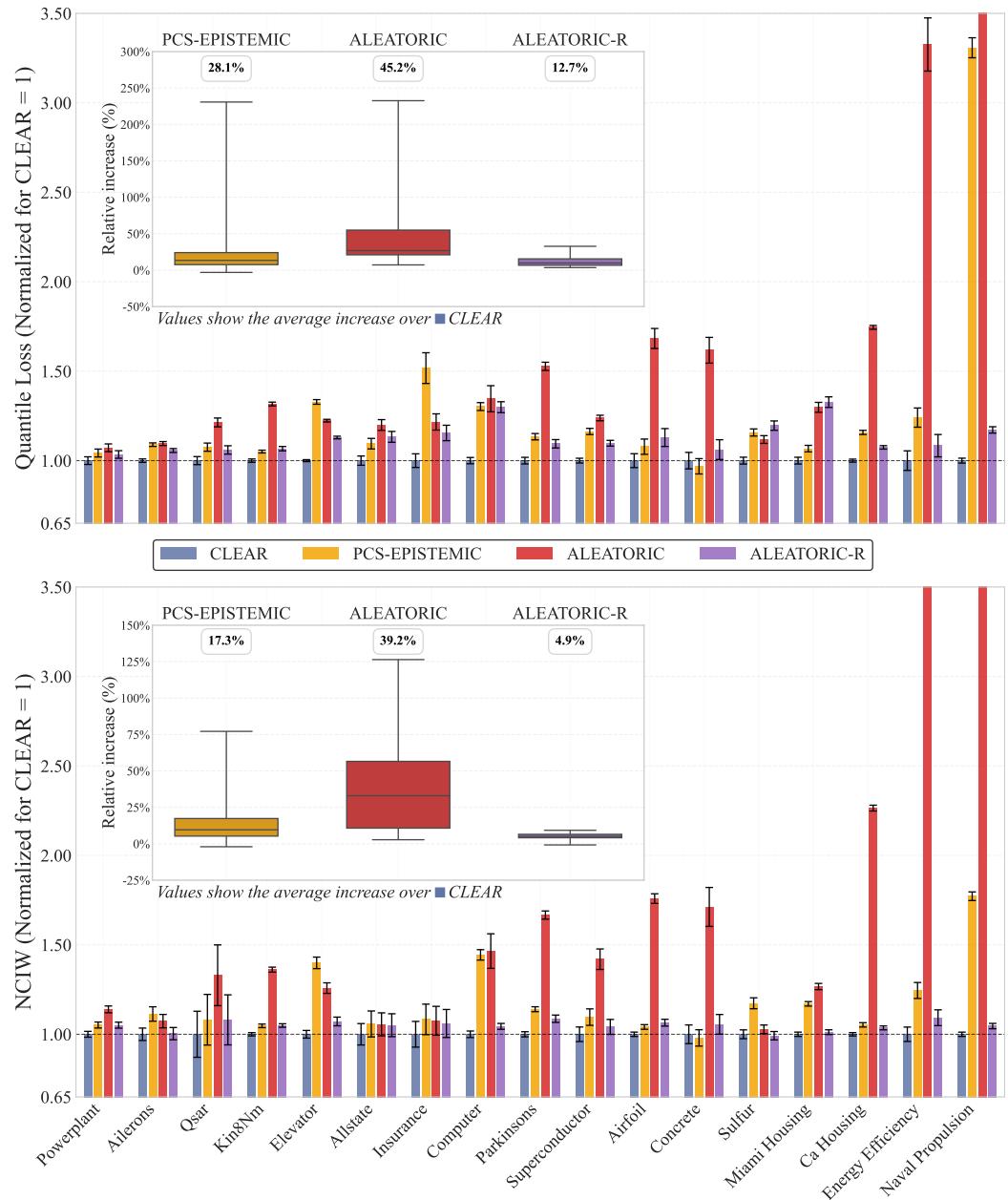


Figure 7: Quantile loss and NCIW performance of different methods (CLEAR, PCS, ALEATORIC, ALEATORIC-R) for variant (b), over 10 seeds normalized relative to CLEAR (baseline = 1.0). Lower values indicate better performance. The inset boxplot shows the % improvement relative to the CLEAR baseline $\pm 1\sigma$. Values inside each subplot represent the mean improvement across all datasets.

2592

2593

2594

Table 17: Variant (b) PICP at 95% prediction intervals, aggregated across 10 seeds.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	0.95 \pm 0.00	0.95 \pm 0.00	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.00
airfoil	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.02	0.95 \pm 0.02	0.95 \pm 0.01
allstate	0.95 \pm 0.01						
ca_housing	0.95 \pm 0.01						
computer	0.95 \pm 0.01						
concrete	0.95 \pm 0.02	0.96 \pm 0.02	0.95 \pm 0.02	0.95 \pm 0.01	0.94 \pm 0.03	0.95 \pm 0.01	0.95 \pm 0.01
elevator	0.95 \pm 0.00	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.00
energy_efficiency	0.95 \pm 0.02	0.96 \pm 0.02	0.95 \pm 0.02	0.96 \pm 0.01	0.95 \pm 0.02	0.96 \pm 0.01	0.96 \pm 0.01
insurance	0.95 \pm 0.01	0.96 \pm 0.01	0.96 \pm 0.02	0.95 \pm 0.01	0.95 \pm 0.02	0.96 \pm 0.01	0.96 \pm 0.01
kin8nm	0.95 \pm 0.01						
miami_housing	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.00
naval_propulsion	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	1.00 \pm 0.00	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.00
parkinsons	0.95 \pm 0.01						
powerplant	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01
qsar	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01
sulfur	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.01	0.95 \pm 0.01
superconductor	0.95 \pm 0.00	0.95 \pm 0.01	0.95 \pm 0.00				

2608

2609

2610

2611

Table 18: Variant (b) NIW at 95% prediction intervals, aggregated across 10 seeds. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red** values are more than 33% worse than the best result.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	0.193 \pm 0.016	0.208 \pm 0.017	0.195 \pm 0.017	0.215 \pm 0.016	0.220 \pm 0.021	<u>0.193 \pm 0.016</u>	0.193 \pm 0.016
airfoil	0.207 \pm 0.012	0.367 \pm 0.018	0.215 \pm 0.018	0.215 \pm 0.012	0.246 \pm 0.024	0.205 \pm 0.012	0.206 \pm 0.012
allstate	0.256 \pm 0.045	0.265 \pm 0.047	0.260 \pm 0.047	0.263 \pm 0.053	0.325 \pm 0.055	0.243 \pm 0.044	0.245 \pm 0.046
ca_housing	0.339 \pm 0.008	0.760 \pm 0.006	0.350 \pm 0.006	0.354 \pm 0.011	0.434 \pm 0.020	0.333 \pm 0.006	0.331 \pm 0.007
computer	0.099 \pm 0.006	0.143 \pm 0.029	0.104 \pm 0.005	0.142 \pm 0.009	0.113 \pm 0.006	0.101 \pm 0.005	0.104 \pm 0.005
concrete	0.249 \pm 0.025	0.486 \pm 0.028	0.265 \pm 0.029	0.249 \pm 0.017	0.263 \pm 0.028	0.251 \pm 0.022	0.253 \pm 0.023
elevator	0.137 \pm 0.007	0.171 \pm 0.010	0.146 \pm 0.008	0.193 \pm 0.013	0.169 \pm 0.010	0.136 \pm 0.008	0.137 \pm 0.008
energy_efficiency	0.047 \pm 0.005	0.212 \pm 0.015	0.050 \pm 0.007	0.062 \pm 0.006	0.062 \pm 0.013	0.051 \pm 0.004	0.053 \pm 0.004
insurance	0.329 \pm 0.045	0.407 \pm 0.064	0.381 \pm 0.055	0.434 \pm 0.179	0.478 \pm 0.070	0.339 \pm 0.104	0.306 \pm 0.058
kin8nm	0.360 \pm 0.012	0.490 \pm 0.020	0.374 \pm 0.014	0.373 \pm 0.014	0.397 \pm 0.017	0.359 \pm 0.012	0.360 \pm 0.011
miami_housing	0.085 \pm 0.002	0.105 \pm 0.001	0.086 \pm 0.004	0.098 \pm 0.003	0.126 \pm 0.006	0.084 \pm 0.002	0.085 \pm 0.002
naval_propulsion	1.9e-03 \pm 7.3e-05	0.222 \pm 0.003	1.9e-03 \pm 9.7e-05	8.1e-03 \pm 4.1e-04	2.4e-03 \pm 1.4e-04	2.1e-03 \pm 8.1e-05	2.8e-03 \pm 1.3e-04
parkinsons	0.281 \pm 0.009	0.483 \pm 0.006	0.302 \pm 0.012	0.325 \pm 0.011	0.345 \pm 0.011	0.282 \pm 0.009	0.281 \pm 0.009
powerplant	0.170 \pm 0.007	0.196 \pm 0.009	0.180 \pm 0.009	0.178 \pm 0.007	0.183 \pm 0.006	0.173 \pm 0.007	0.172 \pm 0.007
qsar	0.366 \pm 0.123	0.486 \pm 0.160	0.387 \pm 0.127	0.393 \pm 0.134	0.421 \pm 0.139	0.362 \pm 0.121	0.362 \pm 0.121
sulfur	0.108 \pm 0.009	0.110 \pm 0.008	0.107 \pm 0.011	0.129 \pm 0.014	0.122 \pm 0.015	0.106 \pm 0.009	0.106 \pm 0.009
superconductor	0.219 \pm 0.023	0.309 \pm 0.033	0.228 \pm 0.026	0.243 \pm 0.027	0.354 \pm 0.042	0.223 \pm 0.025	0.216 \pm 0.024

2627

2628

2629

2630

Table 19: Variant (b) Quantile Loss at 95% prediction intervals, aggregated across 10 seeds. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red** values are more than 33% worse than the best result.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	9.2e-06 \pm 2.3e-07	1.0e-05 \pm 2.8e-07	9.7e-06 \pm 2.8e-07	1.0e-05 \pm 2.2e-07	1.1e-05 \pm 3.7e-07	9.2e-06 \pm 2.3e-07	9.2e-06 \pm 2.3e-07
airfoil	0.109 \pm 0.011	0.183 \pm 0.013	0.123 \pm 0.016	0.117 \pm 0.012	0.147 \pm 0.019	0.109 \pm 0.011	0.109 \pm 0.011
allstate	1.1e+02 \pm 7.318	1.4e+02 \pm 8.321	1.3e+02 \pm 8.046	1.3e+02 \pm 8.557	1.7e+02 \pm 10.782	1.2e+02 \pm 7.533	1.2e+02 \pm 7.762
ca_housing	2.8e+03 \pm 59.700	4.8e+03 \pm 25.753	3.0e+03 \pm 73.283	3.2e+03 \pm 93.396	4.0e+03 \pm 1.2e+02	2.8e+03 \pm 66.414	2.8e+03 \pm 70.545
computer	0.159 \pm 0.007	0.214 \pm 0.041	0.206 \pm 0.015	0.207 \pm 0.009	0.234 \pm 0.019	0.159 \pm 0.007	0.161 \pm 0.008
concrete	0.338 \pm 0.040	0.546 \pm 0.061	0.359 \pm 0.053	0.327 \pm 0.036	0.376 \pm 0.058	0.330 \pm 0.037	0.331 \pm 0.037
elevator	1.4e-04 \pm 2.0e-06	1.8e-04 \pm 3.0e-06	1.6e-04 \pm 3.1e-06	1.9e-04 \pm 6.2e-06	2.1e-04 \pm 5.5e-06	1.4e-04 \pm 2.0e-06	1.4e-04 \pm 2.1e-06
energy_efficiency	0.031 \pm 0.004	0.102 \pm 0.008	0.033 \pm 0.005	0.038 \pm 0.003	0.041 \pm 0.005	0.033 \pm 0.003	0.034 \pm 0.003
insurance	3.2e+02 \pm 31.593	3.9e+02 \pm 36.904	3.7e+02 \pm 35.107	4.9e+02 \pm 88.647	4.4e+02 \pm 34.159	3.7e+02 \pm 62.380	3.4e+02 \pm 40.487
kin8nm	7.2e-03 \pm 1.7e-04	9.5e-03 \pm 1.6e-04	7.7e-03 \pm 2.7e-04	7.6e-03 \pm 9.7e-05	8.3e-03 \pm 2.5e-04	7.2e-03 \pm 1.6e-04	7.2e-03 \pm 1.7e-04
miami_housing	3.9e+03 \pm 1.9e+02	5.1e+03 \pm 3.1e+02	5.2e+03 \pm 3.4e+02	4.2e+03 \pm 1.6e+02	8.1e+03 \pm 3.6e+02	3.9e+03 \pm 1.9e+02	3.9e+03 \pm 1.8e+02
naval_propulsion	5.4e-05 \pm 1.9e-06	4.9e-03 \pm 7.0e-05	6.4e-05 \pm 2.7e-06	1.8e-04 \pm 9.1e-06	8.8e-05 \pm 5.9e-06	6.0e-05 \pm 1.8e-06	7.5e-05 \pm 2.7e-06
parkinsons	0.209 \pm 0.010	0.319 \pm 0.009	0.228 \pm 0.014	0.237 \pm 0.008	0.265 \pm 0.013	0.209 \pm 0.010	0.209 \pm 0.009
powerplant	0.121 \pm 0.012	0.228 \pm 0.011	0.220 \pm 0.011	0.221 \pm 0.012	0.231 \pm 0.010	0.213 \pm 0.012	0.213 \pm 0.012
qsar	0.049 \pm 0.003	0.060 \pm 0.003	0.052 \pm 0.003	0.053 \pm 0.003	0.057 \pm 0.003	0.049 \pm 0.003	0.049 \pm 0.003
sulfur	1.9e-03 \pm 9.6e-05	2.2e-03 \pm 1.1e-04	2.3e-03 \pm 1.4e-04	2.2e-03 \pm 8.6e-05	3.5e-03 \pm 2.4e-04	1.9e-03 \pm 8.2e-05	1.9e-03 \pm 8.6e-05
superconductor	0.523 \pm 0.018	0.648 \pm 0.020	0.573 \pm 0.024	0.611 \pm 0.025	0.892 \pm 0.035	0.522 \pm 0.018	0.523 \pm 0.020

2645

2646
2647
2648
2649
2650
26512652 Table 20: Variant (b) NCIW at 95% prediction intervals, aggregated across 10 seeds. Values ≥ 100
2653 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the
2654 minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red**
2655 values are more than 33% worse than the best result.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	0.195 \pm 0.017	0.209 \pm 0.019	0.196 \pm 0.017	0.217 \pm 0.021	0.220 \pm 0.020	0.195 \pm 0.017	0.195 \pm 0.017
airfoil	0.203 \pm 0.006	<u>0.356 \pm 0.016</u>	0.216 \pm 0.012	0.211 \pm 0.007	0.246 \pm 0.019	0.200 \pm 0.007	0.200 \pm 0.006
allstate	0.250 \pm 0.043	0.265 \pm 0.043	0.266 \pm 0.044	0.270 \pm 0.052	<u>0.329 \pm 0.053</u>	0.245 \pm 0.045	0.244 \pm 0.044
ca_housing	0.336 \pm 0.008	<u>0.760 \pm 0.009</u>	0.348 \pm 0.010	0.354 \pm 0.012	<u>0.440 \pm 0.016</u>	0.331 \pm 0.007	0.328 \pm 0.007
computer	0.098 \pm 0.005	<u>0.144 \pm 0.034</u>	0.103 \pm 0.003	<u>0.142 \pm 0.008</u>	0.111 \pm 0.005	0.101 \pm 0.004	0.105 \pm 0.004
concrete	0.246 \pm 0.033	<u>0.421 \pm 0.079</u>	0.259 \pm 0.035	0.241 \pm 0.025	0.264 \pm 0.037	0.238 \pm 0.027	0.240 \pm 0.026
elevator	0.137 \pm 0.008	0.173 \pm 0.011	0.147 \pm 0.009	<u>0.192 \pm 0.012</u>	0.168 \pm 0.012	0.137 \pm 0.007	0.137 \pm 0.007
energy_efficiency	0.046 \pm 0.005	<u>0.196 \pm 0.032</u>	0.050 \pm 0.005	0.057 \pm 0.004	0.060 \pm 0.006	0.050 \pm 0.005	0.051 \pm 0.004
insurance	0.320 \pm 0.059	0.344 \pm 0.069	0.339 \pm 0.066	0.346 \pm 0.076	<u>0.455 \pm 0.090</u>	0.292 \pm 0.058	0.275 \pm 0.054
kin8nm	0.354 \pm 0.008	<u>0.482 \pm 0.014</u>	0.371 \pm 0.009	0.371 \pm 0.009	0.396 \pm 0.013	0.355 \pm 0.008	<u>0.355 \pm 0.008</u>
miami_housing	0.084 \pm 0.003	0.106 \pm 0.004	0.085 \pm 0.003	0.098 \pm 0.002	<u>0.124 \pm 0.006</u>	<u>0.083 \pm 0.002</u>	0.084 \pm 0.002
naval_propulsion	<u>1.8e-03 \pm 5.6e-05</u>	<u>0.195 \pm 0.011</u>	<u>1.9e-03 \pm 8.0e-05</u>	<u>3.2e-03 \pm 1.2e-04</u>	<u>2.4e-03 \pm 1.4e-04</u>	2.1e-03 \pm 7.2e-05	2.8e-03 \pm 1.1e-04
parkinsons	0.284 \pm 0.010	<u>0.473 \pm 0.016</u>	0.309 \pm 0.018	0.324 \pm 0.008	0.349 \pm 0.019	<u>0.285 \pm 0.011</u>	0.285 \pm 0.011
powerplant	<u>0.173 \pm 0.007</u>	0.197 \pm 0.009	0.182 \pm 0.007	0.182 \pm 0.007	0.187 \pm 0.008	0.176 \pm 0.007	<u>0.174 \pm 0.007</u>
qsar	0.363 \pm 0.121	0.480 \pm 0.157	0.390 \pm 0.130	0.393 \pm 0.131	0.423 \pm 0.142	0.362 \pm 0.120	0.362 \pm 0.120
sulfur	0.106 \pm 0.007	0.109 \pm 0.006	0.105 \pm 0.006	0.125 \pm 0.009	0.127 \pm 0.008	<u>0.105 \pm 0.006</u>	0.104 \pm 0.006
superconductor	0.218 \pm 0.022	<u>0.308 \pm 0.032</u>	0.226 \pm 0.022	0.241 \pm 0.028	<u>0.347 \pm 0.036</u>	0.223 \pm 0.024	0.216 \pm 0.024

2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
26792680 Table 21: Variant (b) Interval Score Loss at 95% prediction intervals, aggregated across 10
2681 seeds. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold**
2682 values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the
2683 second-best result. **Red** values are more than 33% worse than the best result.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	7.4e-04 \pm 1.8e-05	8.1e-04 \pm 2.2e-05	7.8e-04 \pm 2.2e-05	8.0e-04 \pm 1.8e-05	9.1e-04 \pm 2.9e-05	<u>7.4e-04 \pm 1.8e-05</u>	7.4e-04 \pm 1.8e-05
airfoil	8.717 \pm 0.870	<u>14.669 \pm 1.007</u>	9.843 \pm 1.249	9.397 \pm 0.977	11.761 \pm 1.548	8.727 \pm 0.902	8.730 \pm 0.892
allstate	<u>9.2e+03 \pm 5.9e+02</u>	1.1e+04 \pm 6.7e+02	1.0e+04 \pm 6.4e+02	1.0e+04 \pm 6.8e+02	<u>1.3e+04 \pm 8.6e+02</u>	9.3e+03 \pm 6.0e+02	<u>9.3e+03 \pm 6.2e+02</u>
ca_housing	<u>2.2e+05 \pm 4.8e+03</u>	<u>3.9e+05 \pm 2.1e+03</u>	2.4e+05 \pm 5.9e+03	2.6e+05 \pm 7.5e+03	<u>3.2e+05 \pm 9.7e+03</u>	2.2e+05 \pm 5.3e+03	2.2e+05 \pm 5.6e+03
computer	12.707 \pm 0.575	<u>17.102 \pm 3.298</u>	16.503 \pm 1.199	16.547 \pm 0.692	<u>18.684 \pm 1.517</u>	<u>12.707 \pm 0.591</u>	12.897 \pm 0.602
concrete	27.020 \pm 3.202	<u>43.690 \pm 4.842</u>	28.684 \pm 4.251	26.165 \pm 2.857	30.054 \pm 4.640	26.365 \pm 2.976	26.445 \pm 2.996
elevator	0.011 \pm 0.000	0.014 \pm 0.000	0.013 \pm 0.000	0.015 \pm 0.000	<u>0.017 \pm 0.000</u>	0.012 \pm 0.000	0.012 \pm 0.000
energy_efficiency	2.465 \pm 0.347	<u>8.199 \pm 0.672</u>	2.671 \pm 0.416	3.058 \pm 0.217	3.253 \pm 0.388	<u>2.667 \pm 0.280</u>	2.721 \pm 0.270
insurance	<u>2.6e+04 \pm 2.5e+03</u>	3.1e+04 \pm 3.0e+03	3.0e+04 \pm 2.8e+03	<u>3.9e+04 \pm 7.1e+03</u>	<u>3.5e+04 \pm 2.7e+03</u>	3.0e+04 \pm 5.0e+03	<u>2.8e+04 \pm 3.2e+03</u>
kin8nm	0.577 \pm 0.014	0.760 \pm 0.013	0.616 \pm 0.021	0.607 \pm 0.008	0.666 \pm 0.020	0.577 \pm 0.013	0.577 \pm 0.013
miami_housing	3.1e+05 \pm 1.5e+04	4.1e+05 \pm 2.5e+04	<u>4.2e+05 \pm 2.7e+04</u>	3.3e+05 \pm 1.3e+04	<u>6.5e+05 \pm 2.9e+04</u>	<u>3.1e+05 \pm 1.5e+04</u>	3.1e+05 \pm 1.5e+04
naval_propulsion	<u>4.4e-03 \pm 1.5e-04</u>	<u>0.391 \pm 0.006</u>	5.1e-03 \pm 2.2e-04	<u>0.014 \pm 0.001</u>	<u>7.1e-03 \pm 4.7e-04</u>	4.8e-03 \pm 1.4e-04	<u>6.0e-03 \pm 2.2e-04</u>
parkinsons	16.697 \pm 0.794	<u>25.497 \pm 0.692</u>	18.270 \pm 1.122	18.931 \pm 0.600	21.220 \pm 1.011	16.688 \pm 0.771	16.680 \pm 0.750
powerplant	<u>16.993 \pm 0.937</u>	18.211 \pm 0.897	17.577 \pm 0.884	17.715 \pm 0.965	18.501 \pm 0.815	17.064 \pm 0.951	17.027 \pm 0.954
qsar	3.956 \pm 0.218	4.802 \pm 0.219	4.193 \pm 0.227	4.270 \pm 0.220	4.562 \pm 0.217	3.946 \pm 0.222	3.946 \pm 0.223
sulfur	0.155 \pm 0.008	0.174 \pm 0.009	0.186 \pm 0.012	0.180 \pm 0.007	<u>0.277 \pm 0.020</u>	0.156 \pm 0.007	0.155 \pm 0.007
superconductor	41.801 \pm 1.407	51.826 \pm 1.568	45.860 \pm 1.883	48.899 \pm 2.037	<u>71.323 \pm 2.803</u>	41.747 \pm 1.460	41.821 \pm 1.571

2694
2695
2696
2697
2698
2699

F.3 VARIANT (C)

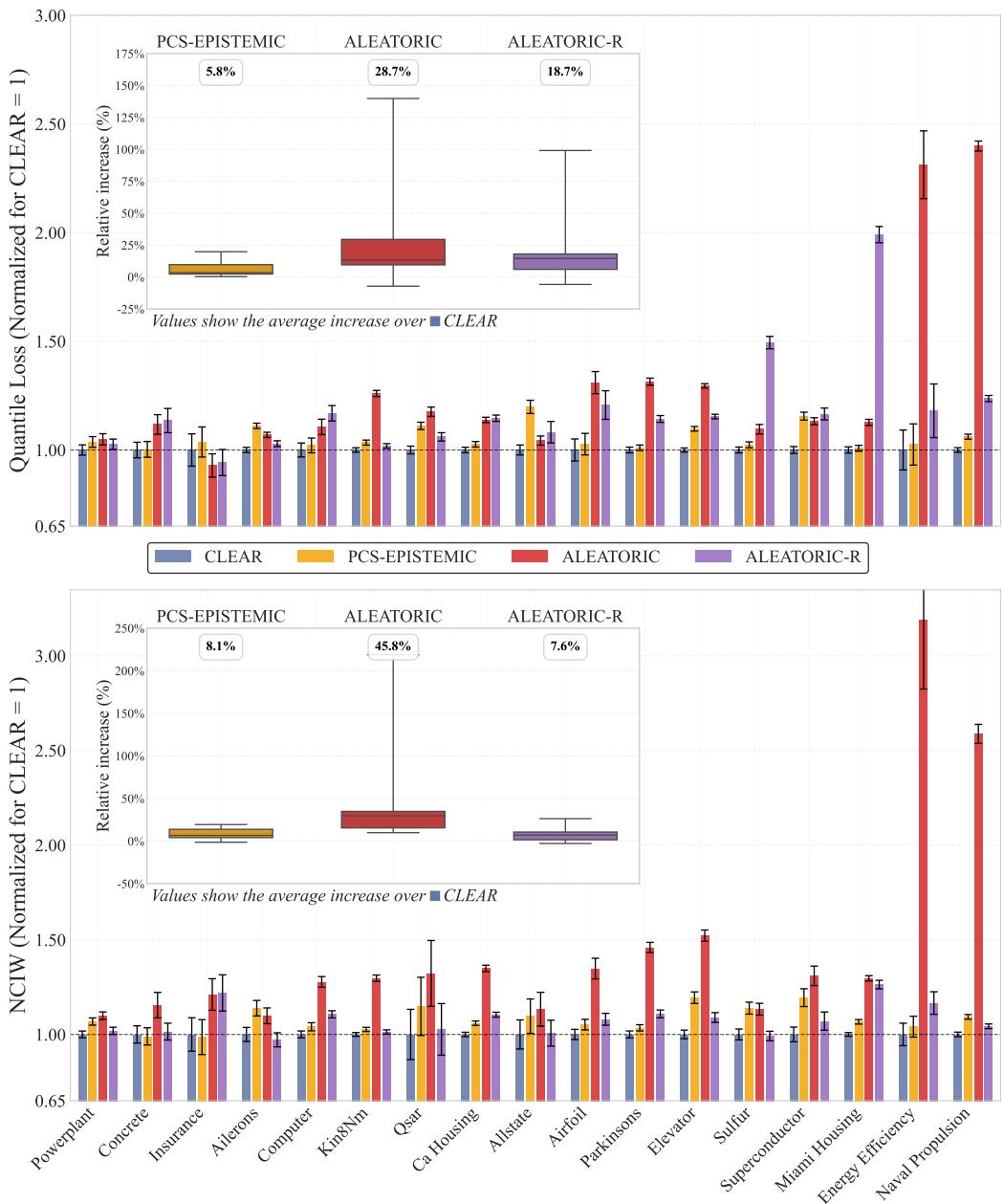


Figure 8: Quantile loss and NCIW performance of different methods (CLEAR, PCS, ALEATORIC, ALEATORIC-R) for variant (c), over 10 seeds normalized relative to CLEAR (baseline = 1.0). Lower values indicate better performance. The inset boxplot shows the % improvement relative to the CLEAR baseline $\pm 1\sigma$. Values inside each subplot represent the mean improvement across all datasets.

2754

2755

2756

Table 22: Variant (c) PICP at 95% prediction intervals, aggregated across 10 seeds.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
airfoil	0.96 ± 0.01	0.95 ± 0.02	0.96 ± 0.01	0.95 ± 0.02	0.95 ± 0.02	0.96 ± 0.01	0.96 ± 0.01
allstate	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
ca_housing	0.95 ± 0.01	0.95 ± 0.00	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
computer	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
concrete	0.96 ± 0.01	0.96 ± 0.02	0.96 ± 0.02	0.96 ± 0.01	0.95 ± 0.02	0.96 ± 0.01	0.96 ± 0.01
elevator	0.95 ± 0.01	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.01	0.95 ± 0.01
energy_efficiency	0.95 ± 0.01	0.96 ± 0.01	0.96 ± 0.01	0.96 ± 0.02	0.95 ± 0.01	0.97 ± 0.01	0.96 ± 0.01
insurance	0.95 ± 0.01	0.95 ± 0.01	0.96 ± 0.01	0.96 ± 0.01	0.95 ± 0.01	0.96 ± 0.01	0.96 ± 0.01
kin8nm	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
miami_housing	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.00	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
naval_propulsion	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.00	0.95 ± 0.01	0.95 ± 0.01
parkinsons	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
powerplant	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
qsar	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
sulfur	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
superconductor	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00

2770

2771

2772

2773

Table 23: Variant (c) NIW at 95% prediction intervals, aggregated across 10 seeds. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red** values are more than 33% worse than the best result.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	0.208 ± 0.017	0.227 ± 0.017	0.202 ± 0.018	0.237 ± 0.024	0.229 ± 0.020	0.208 ± 0.016	0.208 ± 0.017
airfoil	0.199 ± 0.013	<u>0.286 ± 0.016</u>	0.223 ± 0.024	0.204 ± 0.019	0.214 ± 0.024	0.205 ± 0.018	0.202 ± 0.014
allstate	0.279 ± 0.052	0.317 ± 0.065	0.277 ± 0.047	0.299 ± 0.065	0.315 ± 0.059	0.274 ± 0.053	0.272 ± 0.051
ca_housing	0.315 ± 0.010	<u>0.425 ± 0.005</u>	0.345 ± 0.013	0.332 ± 0.011	0.400 ± 0.016	0.312 ± 0.008	0.311 ± 0.008
computer	0.080 ± 0.004	0.102 ± 0.001	0.089 ± 0.004	0.084 ± 0.004	0.091 ± 0.006	<u>0.079 ± 0.004</u>	0.078 ± 0.004
concrete	0.278 ± 0.029	0.315 ± 0.019	0.284 ± 0.027	0.273 ± 0.031	0.276 ± 0.028	0.279 ± 0.029	0.281 ± 0.029
elevator	0.127 ± 0.008	<u>0.192 ± 0.010</u>	0.137 ± 0.008	0.152 ± 0.008	0.144 ± 0.010	0.127 ± 0.007	0.127 ± 0.007
energy_efficiency	0.043 ± 0.007	<u>0.138 ± 0.007</u>	0.051 ± 0.005	0.045 ± 0.007	0.049 ± 0.005	0.047 ± 0.007	0.046 ± 0.007
insurance	0.397 ± 0.091	0.421 ± 0.049	0.459 ± 0.050	0.395 ± 0.096	0.423 ± 0.083	0.440 ± 0.092	0.475 ± 0.109
kin8nm	0.325 ± 0.012	0.415 ± 0.018	0.330 ± 0.014	0.329 ± 0.011	0.344 ± 0.012	0.328 ± 0.014	0.326 ± 0.013
miami_housing	0.088 ± 0.001	<u>0.112 ± 0.002</u>	<u>0.113 ± 0.008</u>	0.093 ± 0.002	0.123 ± 0.008	0.078 ± 0.002	0.078 ± 0.002
naval_propulsion	<u>1.6e-03 ± 3.2e-05</u>	<u>4.1e-03 ± 8.9e-05</u>	1.6e-03 ± 4.3e-05	1.7e-03 ± 4.3e-05	1.8e-03 ± 3.9e-05	1.6e-03 ± 1.9e-05	1.6e-03 ± 3.0e-05
parkinsons	0.250 ± 0.007	<u>0.371 ± 0.011</u>	0.281 ± 0.011	0.260 ± 0.008	0.285 ± 0.010	0.251 ± 0.008	0.248 ± 0.007
powerplant	0.157 ± 0.007	0.175 ± 0.008	0.161 ± 0.008	0.169 ± 0.006	0.164 ± 0.007	0.158 ± 0.007	0.158 ± 0.007
qsar	0.344 ± 0.117	<u>0.464 ± 0.153</u>	0.353 ± 0.117	0.399 ± 0.138	0.386 ± 0.131	0.352 ± 0.120	0.346 ± 0.118
sulfur	0.111 ± 0.009	0.124 ± 0.010	0.109 ± 0.014	0.124 ± 0.009	0.114 ± 0.013	0.105 ± 0.009	0.104 ± 0.009
superconductor	0.195 ± 0.020	0.250 ± 0.025	0.210 ± 0.029	0.235 ± 0.027	<u>0.308 ± 0.035</u>	0.193 ± 0.020	0.193 ± 0.020

2789

2790

2791

2792

Table 24: Variant (c) Quantile Loss at 95% prediction intervals, aggregated across 10 seeds. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red** values are more than 33% worse than the best result.

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	9.6e-06 ± 2.9e-07	1.0e-05 ± 2.7e-07	9.9e-06 ± 3.6e-07	1.1e-05 ± 2.7e-07	1.2e-05 ± 3.7e-07	9.6e-06 ± 2.9e-07	9.6e-06 ± 2.9e-07
airfoil	0.107 ± 0.014	0.140 ± 0.007	0.129 ± 0.019	0.110 ± 0.013	0.130 ± 0.019	0.108 ± 0.014	0.108 ± 0.014
allstate	<u>1.2e+02 ± 6.874</u>	1.2e+02 ± 4.960	1.2e+02 ± 19.401	1.4e+02 ± 9.737	1.6e+02 ± 10.679	1.2e+02 ± 7.379	1.2e+02 ± 7.410
ca_housing	<u>2.8e+03 ± 92.560</u>	3.2e+03 ± 71.387	3.2e+03 ± 1.0e+02	2.9e+03 ± 87.120	3.6e+03 ± 1.2e+02	<u>2.8e+03 ± 88.458</u>	2.8e+03 ± 87.820
computer	0.137 ± 0.011	0.152 ± 0.013	0.160 ± 0.012	0.140 ± 0.012	0.164 ± 0.013	0.137 ± 0.011	0.138 ± 0.011
concrete	0.337 ± 0.032	0.374 ± 0.044	0.381 ± 0.059	0.336 ± 0.032	0.384 ± 0.056	0.336 ± 0.032	0.337 ± 0.032
elevator	1.3e-04 ± 3.2e-06	1.7e-04 ± 2.2e-06	1.5e-04 ± 3.3e-06	1.4e-04 ± 3.7e-06	1.6e-04 ± 3.1e-06	<u>1.3e-04 ± 2.9e-06</u>	1.3e-04 ± 2.9e-06
energy_efficiency	0.029 ± 0.007	<u>0.068 ± 0.005</u>	0.034 ± 0.010	0.030 ± 0.007	0.034 ± 0.010	<u>0.030 ± 0.007</u>	0.030 ± 0.007
insurance	4.2e+02 ± 80.269	3.9e+02 ± 33.576	4.0e+02 ± 53.283	4.4e+02 ± 65.348	4.1e+02 ± 41.712	4.3e+02 ± 77.643	4.5e+02 ± 67.994
kin8nm	6.7e-03 ± 1.8e-04	8.4e-03 ± 2.6e-04	6.8e-03 ± 1.9e-04	6.9e-03 ± 2.2e-04	7.4e-03 ± 2.8e-04	6.7e-03 ± 1.6e-04	6.7e-03 ± 1.7e-04
miami_housing	3.7e+03 ± 1.4e+02	4.2e+03 ± 1.2e+02	7.3e+03 ± 4.2e+02	7.3e+03 ± 1.2e+02	7.7e+03 ± 4.2e+02	4.0e+03 ± 2.4e+02	4.0e+03 ± 2.3e+02
naval_propulsion	4.0e-05 ± 1.0e-06	9.5e-05 ± 2.1e-06	4.9e-05 ± 1.6e-06	4.2e-05 ± 1.2e-06	5.7e-05 ± 1.2e-06	4.1e-05 ± 1.2e-06	4.5e-05 ± 1.6e-06
parkinsons	0.189 ± 0.006	0.249 ± 0.007	0.216 ± 0.008	0.191 ± 0.006	0.220 ± 0.008	<u>0.189 ± 0.006</u>	0.190 ± 0.007
powerplant	0.203 ± 0.012	0.213 ± 0.014	0.208 ± 0.012	0.211 ± 0.013	0.211 ± 0.012	0.203 ± 0.012	0.203 ± 0.012
qsar	0.048 ± 0.002	0.057 ± 0.003	0.051 ± 0.002	0.054 ± 0.002	0.055 ± 0.003	0.049 ± 0.002	0.049 ± 0.002
sulfur	<u>1.8e-03 ± 6.3e-05</u>	1.9e-03 ± 1.2e-04	2.7e-03 ± 1.6e-04	1.8e-03 ± 6.2e-05	2.9e-03 ± 1.7e-04	<u>1.8e-03 ± 6.8e-05</u>	1.8e-03 ± 7.1e-05
superconductor	0.489 ± 0.020	0.553 ± 0.018	0.568 ± 0.042	0.568 ± 0.025	0.792 ± 0.035	0.490 ± 0.020	0.489 ± 0.021

2807

2808

2809 Table 25: Variant (c) NCIW at 95% prediction intervals, aggregated across 10 seeds. Values ≥ 100
 2810 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the
 2811 minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red**
 2812 values are more than 33% worse than the best result.

2813

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	0.210 \pm 0.020	0.231 \pm 0.023	0.204 \pm 0.021	0.239 \pm 0.021	0.230 \pm 0.021	0.209 \pm 0.020	0.210 \pm 0.019
airfoil	0.188 \pm 0.014	<u>0.258 \pm 0.034</u>	0.204 \pm 0.017	0.199 \pm 0.013	0.204 \pm 0.014	0.190 \pm 0.012	0.188 \pm 0.010
allstate	0.277 \pm 0.056	0.316 \pm 0.065	0.281 \pm 0.041	0.305 \pm 0.070	0.319 \pm 0.051	0.271 \pm 0.054	0.270 \pm 0.053
ca_housing	0.311 \pm 0.010	<u>0.419 \pm 0.014</u>	0.343 \pm 0.010	0.329 \pm 0.009	0.401 \pm 0.018	0.309 \pm 0.009	0.309 \pm 0.009
computer	0.081 \pm 0.004	0.104 \pm 0.007	0.090 \pm 0.004	0.084 \pm 0.005	0.092 \pm 0.005	0.079 \pm 0.004	0.080 \pm 0.004
concrete	0.259 \pm 0.032	0.303 \pm 0.054	0.263 \pm 0.029	0.257 \pm 0.031	0.265 \pm 0.027	0.258 \pm 0.033	0.259 \pm 0.032
elevator	0.126 \pm 0.008	<u>0.192 \pm 0.008</u>	0.138 \pm 0.008	0.151 \pm 0.011	0.144 \pm 0.010	0.127 \pm 0.007	0.127 \pm 0.007
energy_efficiency	0.041 \pm 0.006	<u>0.116 \pm 0.015</u>	0.048 \pm 0.005	0.043 \pm 0.005	0.049 \pm 0.005	0.042 \pm 0.006	0.042 \pm 0.006
insurance	0.345 \pm 0.078	0.413 \pm 0.043	0.424 \pm 0.074	0.343 \pm 0.087	0.385 \pm 0.112	0.367 \pm 0.100	0.407 \pm 0.137
kin8nm	0.323 \pm 0.008	0.420 \pm 0.018	0.327 \pm 0.008	0.331 \pm 0.010	0.341 \pm 0.012	0.325 \pm 0.009	0.324 \pm 0.009
miami_housing	0.088 \pm 0.002	<u>0.113 \pm 0.004</u>	<u>0.111 \pm 0.007</u>	0.094 \pm 0.003	0.122 \pm 0.007	0.077 \pm 0.003	0.076 \pm 0.003
naval_propulsion	<u>1.6e-03 \pm 5.0e-05</u>	<u>4.0e-03 \pm 2.4e-04</u>	1.6e-03 \pm 4.1e-05	1.7e-03 \pm 4.7e-05	1.8e-03 \pm 5.8e-05	1.6e-03 \pm 5.2e-05	1.6e-03 \pm 6.2e-05
parkinsons	0.250 \pm 0.012	<u>0.366 \pm 0.017</u>	0.279 \pm 0.013	0.259 \pm 0.009	0.284 \pm 0.013	0.251 \pm 0.011	0.250 \pm 0.011
powerplant	0.161 \pm 0.007	0.176 \pm 0.009	0.163 \pm 0.008	0.171 \pm 0.008	0.166 \pm 0.007	0.161 \pm 0.007	0.161 \pm 0.007
qsar	0.348 \pm 0.118	<u>0.465 \pm 0.156</u>	0.361 \pm 0.124	0.407 \pm 0.142	0.395 \pm 0.134	0.359 \pm 0.124	0.354 \pm 0.122
sulfur	0.109 \pm 0.008	0.124 \pm 0.008	0.108 \pm 0.006	0.124 \pm 0.008	0.115 \pm 0.007	0.104 \pm 0.007	0.102 \pm 0.007
superconductor	0.192 \pm 0.019	0.251 \pm 0.025	0.206 \pm 0.027	0.232 \pm 0.025	0.297 \pm 0.029	0.191 \pm 0.019	0.191 \pm 0.019

2824

2825

2826 Table 26: Variant (c) Interval Score Loss at 95% prediction intervals, aggregated across 10
 2827 seeds. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold**
 2828 values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the
 2829 second-best result. **Red** values are more than 33% worse than the best result.

2830

Dataset	CLEAR	ALEATORIC	ALEATORIC-R	PCS-EPISTEMIC	Naive	$\gamma_1 = 1$	$\lambda = 1$
aileron	7.7e-04 \pm 2.3e-05	8.2e-04 \pm 2.2e-05	7.9e-04 \pm 2.9e-05	8.5e-04 \pm 2.2e-05	9.4e-04 \pm 3.0e-05	7.7e-04 \pm 2.3e-05	7.7e-04 \pm 2.3e-05
airfoil	8.569 \pm 1.099	11.217 \pm 0.549	10.341 \pm 1.548	8.799 \pm 1.034	10.361 \pm 1.499	8.675 \pm 1.116	8.624 \pm 1.105
allstate	9.2e+03 \pm 5.5e+02	9.6e+03 \pm 4.0e+02	1.0e+04 \pm 1.6e+03	1.1e+04 \pm 7.8e+02	1.3e+04 \pm 8.5e+02	9.2e+03 \pm 5.9e+02	9.3e+03 \pm 5.9e+02
ca_housing	2.2e+05 \pm 7.4e+03	2.5e+05 \pm 5.7e+03	2.5e+05 \pm 8.1e+03	2.3e+05 \pm 7.0e+03	2.9e+05 \pm 9.7e+03	2.2e+05 \pm 7.1e+03	2.2e+05 \pm 7.0e+03
computer	10.978 \pm 0.911	12.134 \pm 1.001	12.827 \pm 0.945	11.204 \pm 0.996	13.130 \pm 1.051	10.986 \pm 0.873	11.030 \pm 0.866
concrete	26.928 \pm 2.529	29.955 \pm 3.544	30.449 \pm 4.693	26.855 \pm 2.535	30.720 \pm 4.505	26.882 \pm 2.568	26.962 \pm 2.581
elevator	0.010 \pm 0.000	0.014 \pm 0.000	0.012 \pm 0.000	0.011 \pm 0.000	0.013 \pm 0.000	0.010 \pm 0.000	0.010 \pm 0.000
energy_efficiency	2.348 \pm 0.554	5.407 \pm 0.418	2.759 \pm 0.822	2.397 \pm 0.573	2.756 \pm 0.822	2.392 \pm 0.564	2.395 \pm 0.588
insurance	3.4e+04 \pm 6.4e+03	3.1e+04 \pm 2.7e+03	3.2e+04 \pm 4.3e+03	3.5e+04 \pm 5.2e+03	3.3e+04 \pm 3.3e+03	3.4e+04 \pm 6.2e+03	3.6e+04 \pm 5.4e+03
kin8nm	0.534 \pm 0.014	0.673 \pm 0.021	0.544 \pm 0.015	0.552 \pm 0.017	0.591 \pm 0.022	0.536 \pm 0.013	0.535 \pm 0.013
miami_housing	2.9e+05 \pm 1.1e+04	3.3e+05 \pm 9.5e+03	5.9e+05 \pm 3.4e+04	3.0e+05 \pm 9.6e+03	6.1e+05 \pm 3.4e+04	3.2e+05 \pm 1.9e+04	3.2e+05 \pm 1.9e+04
naval_propulsion	3.2e-03 \pm 8.4e-05	7.6e-03 \pm 1.7e-04	3.9e-03 \pm 1.3e-04	3.4e-03 \pm 9.6e-05	4.6e-03 \pm 9.6e-05	3.2e-03 \pm 9.3e-05	3.6e-03 \pm 1.3e-04
parkinsons	15.149 \pm 0.518	19.899 \pm 0.576	17.316 \pm 0.634	15.312 \pm 0.459	17.596 \pm 0.621	15.150 \pm 0.499	15.161 \pm 0.537
powerplant	16.243 \pm 0.985	17.062 \pm 1.128	16.673 \pm 0.987	16.846 \pm 1.029	16.874 \pm 0.975	16.231 \pm 0.984	16.231 \pm 0.983
qsar	3.877 \pm 0.176	4.521 \pm 0.225	4.086 \pm 0.193	4.334 \pm 0.125	4.390 \pm 0.205	3.927 \pm 0.146	3.892 \pm 0.151
sulfur	0.143 \pm 0.005	0.156 \pm 0.010	0.213 \pm 0.013	0.146 \pm 0.005	0.228 \pm 0.013	0.143 \pm 0.005	0.145 \pm 0.006
superconductor	39.104 \pm 1.604	44.230 \pm 1.428	45.479 \pm 3.358	45.456 \pm 2.039	63.347 \pm 2.824	39.224 \pm 1.613	39.119 \pm 1.642

2841

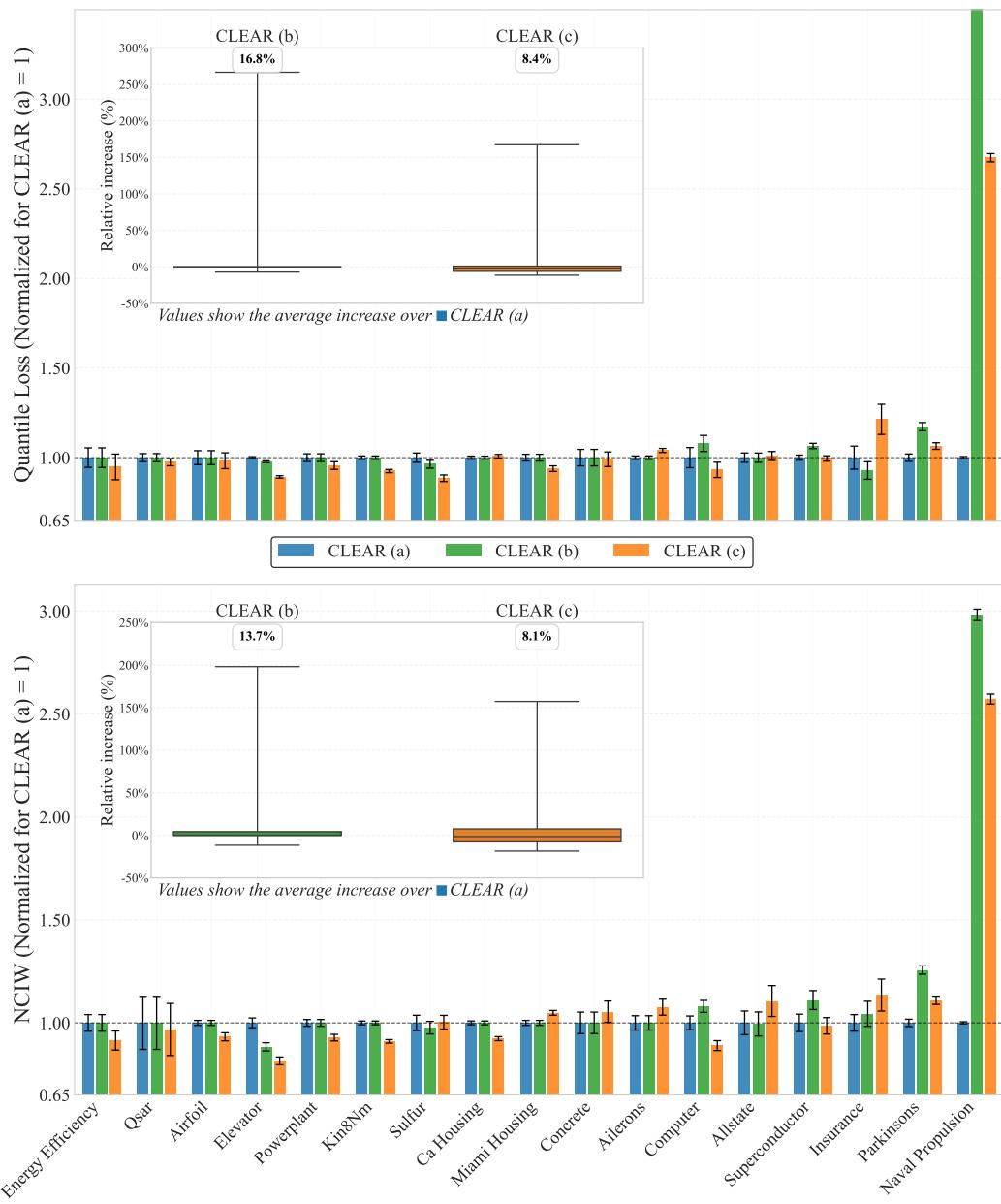
2842

2843 Table 27: Variant (c) CLEAR calibration parameters λ and γ_1 for 95% prediction intervals across 10
 2844 seeds. Using all available variables. Showing median [min:max] values.

2845

Dataset	λ	γ_1
aileron	0.89 [0.17:4.47]	0.98 [0.87:1.58]
airfoil	0.76 [0.23:5.25]	1.70 [0.25:4.30]
allstate	0.21 [0.00:14.06]	1.14 [0.16:1.93]
ca_housing	1.90 [1.14:5.08]	0.70 [0.33:0.93]
computer	2.21 [1.63:8.87]	0.74 [0.21:0.96]
concrete	1.33 [0.06:100.00]	1.65 [0.01:16.73]
elevator	0.94 [0.67:1.43]	1.04 [0.82:1.22]
energy_efficiency	0.12 [0.01:100.00]	7.96 [0.02:24.25]
insurance	5.07 [0.14:100.00]	0.38 [0.02:27.45]
kin8nm	1.87 [1.64:3.82]	0.76 [0.58:0.83]
miami_housing	7.06 [4.84:19.45]	0.23 [0.09:0.33]
naval_propulsion	16.16 [12.48:21.17]	0.63 [0.53:0.76]
parkinsons	1.16 [0.72:8.42]	1.26 [0.22:1.84]
powerplant	1.05 [0.73:3.26]	1.05 [0.51:1.36]
qsar	0.51 [0.32:1.70]	1.45 [0.96:2.37]
sulfur	2.41 [1.53:7.16]	0.71 [0.29:0.91]
superconductor	0.91 [0.34:1.39]	1.07 [0.80:1.34]

2861

2862 F.4 COMPARING VARIANTS OF CLEAR
2863

2904 Figure 9: Quantile loss and NCIW performance of different variants of CLEAR (a, b and c) over 10
2905 seeds normalized relative to CLEAR (a) (baseline = 1.0). Lower values indicate better performance.
2906 The inset boxplot shows the % improvement relative to the CLEAR (a) baseline $\pm 1\sigma$. Values inside
2907 each subplot represent the mean improvement across all datasets.

2910 F.5 RUNTIME
2911

2912 The grid search for finding the optimal parameter is extremely fast and negligible compared to the
2913 baselines, despite using a grid with 4000 points, which is finer and larger than necessary. In Tables 28
2914 to 30, we provide the average training time for each variant on a given real-world dataset, computed
2915 on a machine with an Intel® Core™ i9-13900KF CPU (with maximum 20+ threads used in parallel).
For experiments involving SQR and DEs, we had access to an NVIDIA® GeForce RTX™ 4090 GPU.

2916 All results are computed using 32 GB of memory. The times are provided in seconds and have been
 2917 averaged over 10 seeds. For CLEAR, the required computation is the calibration time (computation
 2918 of λ and γ_1 , denoted as *Grid Search* in the tables). Only the runtimes for the methods included in the
 2919 paper are provided. The experiments were run exactly as described in the paper (particularly for the
 2920 100 bootstraps).

2921 As stated previously, CLEAR is highly modular, allowing the modules and their components (such
 2922 as the choice of base models within the PCS module) to be replaced or modified to adhere to
 2923 computational budget limitations. For example, if the dataset is very large, base models that scale
 2924 well with the training data size can be used (such as deep learning models, trained via stochastic
 2925 gradient descent). Alternatively, if training each model is expensive, one might want to use fewer than
 2926 100 different bootstraps per dataset, or maybe even use techniques (such as Monte-Carlo Dropout) to
 2927 obtain an ensemble from a single trained model (Kendall & Gal, 2017; Gal & Ghahramani, 2016;
 2928 Wen et al., 2020; Havasi et al., 2021; Rossellini et al., 2024; Chan et al., 2025; Agarwal et al., 2025).

2929 Note that ALEATORIC-R cannot be computed without first computing PCS, as it utilizes the residuals
 2930 from PCS. In practice, the total computational costs of ALEATORIC-R would be equal to the costs
 2931 of PCS plus the additional costs of the residual approach. Thus, the minimal total computational
 2932 costs necessary to obtain CLEAR results are equal to the minimal total computational costs required
 2933 to obtain ALEATORIC-R results (up to a few seconds of the grid search).

2934 *Remark F.1* (Parallelization and Scalability). Every step in the entire CLEAR pipeline is parallelizable
 2935 and distributable. The most expensive part is fitting multiple models to multiple bootstraps of the data
 2936 for PCS. However, these models can be trained perfectly in parallel on different distributed nodes,
 2937 as they do not have to communicate with each other. Similar parallelization (distributed) is also
 2938 possible for ALEATORIC-R, where multiple models are fitted independently. The computational
 2939 costs of CLEAR’s calibration step (*Grid-Search*), albeit negligible, could be further reduced by
 2940 distributing the exploration of the grid across multiple servers. The computations necessary for each
 2941 grid point are fully vectorized and are highly suited for GPUs (in the case of a large calibration
 2942 dataset). In other words, regardless of whether the user has access to many weak CPU servers, a
 2943 powerful GPU, or multiple powerful GPU servers, the calibration step can efficiently utilize all these
 2944 different infrastructures (when tuning the implementation accordingly). For all these reasons, CLEAR
 2945 is highly scalable.

◊

2947 Table 28: Variant (a) average runtime (over 10 seeds) in seconds for base components and the
 2948 CLEAR’s grid search. The grid search includes any other overhead for CLEAR.

2950	2951	Dataset	PCS	ALEATORIC-R	Grid-Search	Total
2952		ailerons	13.46	6.80	0.27	20.53
2953		airfoil	3.10	1.92	0.17	5.19
2954		allstate	1124.47	22.93	0.19	1147.59
2955		ca_housing	8.51	7.79	0.54	16.84
2956		computer	61.92	76.09	0.16	138.16
2957		concrete	1.10	2.16	0.17	3.43
2958		elevator	18.79	122.16	0.60	141.54
2959		energy_efficiency	0.81	1.65	0.16	2.62
2960		insurance	3.48	17.23	0.11	20.82
2961		kin8nm	3.25	5.43	0.21	8.89
2962		miami_housing	7.31	7.66	0.72	15.68
2963		naval_propulsion	19.83	81.32	0.29	101.44
2964		parkinsons	39.53	60.99	0.14	100.66
2965		powerplant	3.08	4.92	0.21	8.22
2966		qsar	348.59	10.00	0.20	358.78
2967		sulfur	21.55	16.56	0.21	38.32
2968		superconductor	561.84	795.45	12.70	1369.99
2969		Total	2240.60	1241.06	17.06	3498.71

2970

2971

2972

2973 Table 29: Variant (b) average runtime (over 10 seeds) in seconds for base components and the
2974 CLEAR's grid search. The grid search includes any other overhead for CLEAR.

2975

Dataset	PCS	ALEATORIC-R	Grid-Search	Total
ailers	4.51	6.89	0.26	11.66
airfoil	0.78	1.64	0.16	2.59
allstate	27.73	14.22	0.20	42.15
ca_housing	5.42	7.69	0.39	13.50
computer	3.46	5.97	0.21	9.65
concrete	0.86	1.82	0.17	2.85
elevator	4.43	6.71	0.79	11.93
energy_efficiency	0.68	1.40	0.17	2.25
insurance	0.80	1.65	0.17	2.62
kin8nm	2.61	4.96	0.21	7.78
miami_housing	4.61	7.70	0.70	13.01
naval_propulsion	3.72	6.38	0.55	10.64
parkinsons	2.71	5.37	0.20	8.28
powerplant	2.73	4.32	0.22	7.26
qsar	5.00	9.67	0.20	14.86
sulfur	2.89	4.64	0.23	7.76
superconductor	13.81	22.74	1.00	37.55
Total	86.77	113.76	5.81	206.34

2994

2995

2996

2997

2998

2999

3000

3001 Table 30: Variant (c) average runtime (over 10 seeds) in seconds for base components and the
3002 CLEAR's grid search. The grid search includes any other overhead for CLEAR.

3002

Dataset	PCS	ALEATORIC-R	Grid-Search	Total
ailers	10.20	104.32	0.65	115.17
airfoil	0.88	17.82	0.11	18.81
allstate	651.02	125.77	0.14	776.93
ca_housing	3.63	130.87	4.16	138.66
computer	4.55	65.28	0.16	69.98
concrete	1.16	17.49	0.11	18.76
elevator	3.25	98.73	1.97	103.95
energy_efficiency	0.95	15.42	0.10	16.47
insurance	0.90	19.80	0.11	20.81
kin8nm	16.89	69.17	0.16	86.22
miami_housing	5.34	123.32	0.92	129.58
naval_propulsion	1.14	115.41	0.74	117.28
parkinsons	3.71	53.43	0.14	57.27
powerplant	2.37	60.99	0.17	63.52
qsar	21.48	93.84	0.14	115.46
sulfur	2.43	67.41	0.17	70.01
superconductor	60.63	644.13	8.10	712.86
Total	790.52	1823.18	18.05	2631.75

3021

3022

3023

3024 **G CONFORMALIZED CLEAR WITH PCS AND CQR: RESULTS ON**
 3025 **REAL-WORLD DATA**
 3026

3027 This section presents results from our conformalized experimental configuration, where we split
 3028 the 20% validation set into separate 10% validation and 10% calibration sets. This approach
 3029 provides stronger finite-sample distribution-free marginal coverage guarantees following conformal
 3030 prediction principles, as the calibration set remains completely unseen during model selection and
 3031 hyperparameter optimization. While the conformalized approach may sacrifice some performance
 3032 due to reduced data availability for validation, it offers theoretical rigor by ensuring the conformal
 3033 calibration step operates on the held-out data. Similar to the standard results, CLEAR adapts to this
 3034 more stringent experimental setting while maintaining its advantages over baseline methods across
 3035 all three variants (a), (b), and (c).

3036 **G.1 VARIANT (A) CONFORMALIZED**
 3037

3039 Table 31: Conformalized Variant (a) PICP at 95% prediction intervals, aggregated across 10 seeds.
 3040 Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into
 3041 two parts, one for validation and one for calibration.

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR
aileron	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.00
airfoil	0.96 ± 0.01	0.95 ± 0.02	0.95 ± 0.02	0.95 ± 0.01
allstate	0.96 ± 0.01	0.94 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
ca_housing	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
computer	0.95 ± 0.01	0.95 ± 0.01	0.96 ± 0.01	0.95 ± 0.01
concrete	0.95 ± 0.02	0.95 ± 0.02	0.94 ± 0.02	0.95 ± 0.02
elevator	0.95 ± 0.00	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.00
energy_efficiency	0.97 ± 0.02	0.95 ± 0.02	0.96 ± 0.02	0.95 ± 0.02
insurance	0.96 ± 0.02	0.95 ± 0.02	0.96 ± 0.02	0.95 ± 0.02
kin8nm	0.96 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
miami_housing	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
naval_propulsion	0.96 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
parkinsons	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
powerplant	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
qsar	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
sulfur	0.95 ± 0.01	0.96 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
superconductor	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.00

3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077

3078

3079

3080

Table 32: Conformalized Variant (a) NIW at 95% prediction intervals, aggregated across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red** values are more than 33% worse than the best result.

3086

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR
aileron	0.193 \pm 0.016	0.217 \pm 0.017	0.195 \pm 0.018	0.193 \pm 0.016
airfoil	<u>0.215 \pm 0.019</u>	0.217 \pm 0.022	0.227 \pm 0.031	0.207 \pm 0.012
allstate	<u>0.267 \pm 0.041</u>	0.263 \pm 0.060	0.259 \pm 0.046	0.260 \pm 0.037
ca_housing	0.339 \pm 0.006	0.355 \pm 0.012	0.349 \pm 0.008	0.339 \pm 0.008
computer	0.091 \pm 0.006	8.020 \pm 11.958	0.094 \pm 0.016	0.091 \pm 0.008
concrete	0.272 \pm 0.030	<u>0.260 \pm 0.050</u>	0.266 \pm 0.038	0.249 \pm 0.025
elevator	0.157 \pm 0.009	0.177 \pm 0.014	0.149 \pm 0.008	0.156 \pm 0.009
energy_efficiency	0.053 \pm 0.009	0.058 \pm 0.009	<u>0.053 \pm 0.009</u>	0.047 \pm 0.005
insurance	0.338 \pm 0.063	0.535 \pm 0.315	0.379 \pm 0.089	0.309 \pm 0.032
kin8nm	<u>0.362 \pm 0.014</u>	0.373 \pm 0.013	0.370 \pm 0.011	0.360 \pm 0.012
miami_housing	<u>0.085 \pm 0.003</u>	0.097 \pm 0.002	0.087 \pm 0.005	0.085 \pm 0.002
naval_propulsion	6.2e-04 \pm 5.9e-06	7.1e-04 \pm 1.5e-05	6.0e-04 \pm 9.6e-06	6.1e-04 \pm 6.3e-06
parkinsons	0.227 \pm 0.017	0.315 \pm 0.034	0.253 \pm 0.020	0.227 \pm 0.010
powerplant	<u>0.171 \pm 0.010</u>	0.179 \pm 0.008	0.183 \pm 0.008	0.170 \pm 0.007
qsar	<u>0.369 \pm 0.123</u>	0.388 \pm 0.132	0.381 \pm 0.125	0.363 \pm 0.121
sulfur	0.112 \pm 0.009	0.136 \pm 0.014	0.108 \pm 0.010	0.109 \pm 0.010
superconductor	0.197 \pm 0.022	0.249 \pm 0.032	0.195 \pm 0.023	0.196 \pm 0.022

3103

3104

3105

3106

3107

3108

Table 33: Conformalized Variant (a) Quantile Loss at 95% prediction intervals, aggregated across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red** values are more than 33% worse than the best result.

3114

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR
aileron	9.2e-06 \pm 2.3e-07	1.0e-05 \pm 2.1e-07	9.7e-06 \pm 2.7e-07	9.2e-06 \pm 2.3e-07
airfoil	<u>0.110 \pm 0.013</u>	0.119 \pm 0.012	0.126 \pm 0.015	0.109 \pm 0.011
allstate	<u>1.1e+02 \pm 8.530</u>	1.3e+02 \pm 8.381	1.3e+02 \pm 7.926	1.1e+02 \pm 7.835
ca_housing	2.8e+03 \pm 56.920	3.2e+03 \pm 91.466	3.0e+03 \pm 73.272	<u>2.8e+03 \pm 59.700</u>
computer	0.142 \pm 0.013	9.961 \pm 14.797	0.157 \pm 0.021	0.147 \pm 0.022
concrete	0.342 \pm 0.039	0.337 \pm 0.047	0.355 \pm 0.047	0.338 \pm 0.040
elevator	1.5e-04 \pm 2.0e-06	1.7e-04 \pm 6.3e-06	1.5e-04 \pm 2.5e-06	1.5e-04 \pm 2.0e-06
energy_efficiency	<u>0.033 \pm 0.005</u>	0.038 \pm 0.003	0.034 \pm 0.005	0.031 \pm 0.004
insurance	<u>3.5e+02 \pm 55.800</u>	5.8e+02 \pm 1.7e+02	3.8e+02 \pm 49.983	3.5e+02 \pm 61.616
kin8nm	<u>7.2e-03 \pm 1.7e-04</u>	7.6e-03 \pm 1.1e-04	7.7e-03 \pm 2.7e-04	7.2e-03 \pm 1.7e-04
miami_housing	<u>3.9e+03 \pm 2.1e+02</u>	4.2e+03 \pm 1.7e+02	5.2e+03 \pm 3.4e+02	3.9e+03 \pm 1.9e+02
naval_propulsion	<u>1.5e-05 \pm 1.9e-07</u>	1.7e-05 \pm 2.9e-07	1.5e-05 \pm 2.7e-07	1.5e-05 \pm 2.1e-07
parkinsons	<u>0.179 \pm 0.008</u>	0.226 \pm 0.016	0.216 \pm 0.012	0.178 \pm 0.010
powerplant	<u>0.213 \pm 0.011</u>	0.222 \pm 0.011	0.220 \pm 0.011	0.212 \pm 0.012
qsar	<u>0.050 \pm 0.003</u>	0.053 \pm 0.003	0.052 \pm 0.003	0.049 \pm 0.003
sulfur	<u>2.0e-03 \pm 1.7e-04</u>	2.4e-03 \pm 2.2e-04	2.3e-03 \pm 1.6e-04	2.0e-03 \pm 1.4e-04
superconductor	<u>0.490 \pm 0.018</u>	0.609 \pm 0.021	0.538 \pm 0.023	0.490 \pm 0.018

3130

3131

3132
 3133
 3134 Table 34: Conformalized Variant (a) NCIW at 95% prediction intervals, aggregated across 10 seeds.
 3135 Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided
 3136 into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are presented in
 3137 scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and
 3138 metric, while the underlined values indicate the second-best result. **Red** values are more than 33%
 3139 worse than the best result.
 3140

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR
aileron	<u>0.195</u> ± 0.018	0.217 ± 0.021	0.196 ± 0.017	0.195 ± 0.017
airfoil	<u>0.203</u> ± 0.007	0.211 ± 0.007	0.216 ± 0.011	0.203 ± 0.006
allstate	<u>0.255</u> ± 0.040	0.272 ± 0.057	0.263 ± 0.043	0.252 ± 0.037
ca_housing	<u>0.336</u> ± 0.006	0.354 ± 0.012	0.348 ± 0.011	0.336 ± 0.008
computer	<u>0.091</u> ± 0.008	0.108 ± 0.016	0.090 ± 0.008	0.091 ± 0.008
concrete	0.262 ± 0.038	<u>0.259</u> ± 0.047	0.264 ± 0.040	0.246 ± 0.033
elevator	0.155 ± 0.010	0.177 ± 0.011	0.148 ± 0.008	0.155 ± 0.010
energy_efficiency	<u>0.046</u> ± 0.006	0.057 ± 0.004	0.050 ± 0.005	0.046 ± 0.005
insurance	0.299 ± 0.037	0.480 ± 0.181	0.312 ± 0.036	0.303 ± 0.029
kin8nm	0.355 ± 0.008	0.371 ± 0.009	0.371 ± 0.009	0.354 ± 0.008
miami_housing	0.084 ± 0.004	0.098 ± 0.002	0.085 ± 0.003	0.084 ± 0.003
naval_propulsion	<u>6.1e-04</u> $\pm 7.3e-06$	7.1e-04 $\pm 1.5e-05$	6.0e-04 $\pm 5.4e-06$	6.1e-04 $\pm 7.9e-06$
parkinsons	0.226 ± 0.012	0.316 ± 0.032	0.248 ± 0.007	0.225 ± 0.012
powerplant	0.173 ± 0.008	0.182 ± 0.007	0.182 ± 0.007	0.173 ± 0.007
qsar	0.361 ± 0.120	0.389 ± 0.134	0.389 ± 0.131	0.360 ± 0.119
sulfur	0.110 ± 0.007	0.127 ± 0.008	0.105 ± 0.005	0.109 ± 0.010
superconductor	0.195 ± 0.021	0.247 ± 0.028	0.194 ± 0.021	0.195 ± 0.021

3157
 3158
 3159
 3160
 3161 Table 35: Conformalized Variant (a) Interval Score Loss at 95% prediction intervals, aggregated
 3162 across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation
 3163 set divided into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are
 3164 presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for
 3165 that dataset and metric, while the underlined values indicate the second-best result. **Red** values are
 3166 more than 33% worse than the best result.
 3167

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR
aileron	<u>7.4e-04</u> $\pm 1.8e-05$	8.1e-04 $\pm 1.7e-05$	7.8e-04 $\pm 2.2e-05$	7.4e-04 $\pm 1.8e-05$
airfoil	<u>8.794</u> ± 1.047	9.523 ± 0.959	10.075 ± 1.227	8.717 ± 0.870
allstate	<u>9.2e+03</u> $\pm 6.8e+02$	1.0e+04 $\pm 6.7e+02$	1.0e+04 $\pm 6.3e+02$	9.1e+03 $\pm 6.3e+02$
ca_housing	2.2e+05 $\pm 4.6e+03$	2.6e+05 $\pm 7.3e+03$	2.4e+05 $\pm 5.9e+03$	<u>2.2e+05</u> $\pm 4.8e+03$
computer	11.388 ± 1.051	8.0e+02 $\pm 1.2e+03$	12.535 ± 1.698	<u>11.741</u> ± 1.723
concrete	27.347 ± 3.094	26.963 ± 3.739	28.402 ± 3.793	<u>27.020</u> ± 3.202
elevator	0.012 ± 0.000	0.014 ± 0.001	0.012 ± 0.000	<u>0.012</u> ± 0.000
energy_efficiency	<u>2.609</u> ± 0.417	3.019 ± 0.237	2.681 ± 0.431	2.465 ± 0.347
insurance	<u>2.8e+04</u> $\pm 4.5e+03$	4.6e+04 $\pm 1.3e+04$	3.0e+04 $\pm 4.0e+03$	2.8e+04 $\pm 4.9e+03$
kin8nm	<u>0.578</u> ± 0.014	0.607 ± 0.009	0.615 ± 0.022	0.577 ± 0.014
miami_housing	<u>3.2e+05</u> $\pm 1.7e+04$	3.3e+05 $\pm 1.4e+04$	4.2e+05 $\pm 2.7e+04$	3.1e+05 $\pm 1.5e+04$
naval_propulsion	<u>1.2e-03</u> $\pm 1.6e-05$	1.4e-03 $\pm 2.3e-05$	1.2e-03 $\pm 2.1e-05$	1.2e-03 $\pm 1.7e-05$
parkinsons	<u>14.332</u> ± 0.644	18.091 ± 1.263	17.266 ± 0.988	14.221 ± 0.792
powerplant	<u>17.066</u> ± 0.919	17.724 ± 0.919	17.567 ± 0.899	16.993 ± 0.937
qsar	<u>3.967</u> ± 0.222	4.251 ± 0.212	4.194 ± 0.234	3.951 ± 0.230
sulfur	<u>0.161</u> ± 0.013	0.189 ± 0.018	0.182 ± 0.013	0.161 ± 0.011
superconductor	39.234 ± 1.418	48.702 ± 1.695	43.062 ± 1.835	39.217 ± 1.419

3186 G.2 VARIANT (B) CONFORMALIZED
31873188 Table 36: Conformalized Variant (b) PICP at 95% prediction intervals, aggregated across 10 seeds.
3189 Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into
3190 two parts, one for validation and one for calibration.
3191

3192 Dataset	3193 CLEAR-c	3194 PCS-EPISTEMIC-c	3195 ALEATORIC-R-c	3196 CLEAR
3194 ailerons	3195 0.95 ± 0.01	3196 0.95 ± 0.01	3197 0.95 ± 0.01	3198 0.95 ± 0.00
3195 airfoil	3196 0.96 ± 0.01	3197 0.95 ± 0.02	3198 0.95 ± 0.02	3199 0.95 ± 0.01
3196 allstate	3197 0.95 ± 0.01	3198 0.94 ± 0.01	3199 0.95 ± 0.01	3200 0.95 ± 0.01
3197 ca_housing	3198 0.95 ± 0.01	3199 0.95 ± 0.01	3200 0.95 ± 0.01	3201 0.95 ± 0.01
3198 computer	3199 0.95 ± 0.01	3200 0.95 ± 0.01	3201 0.95 ± 0.01	3202 0.95 ± 0.01
3199 concrete	3200 0.95 ± 0.02	3201 0.95 ± 0.02	3202 0.95 ± 0.02	3203 0.95 ± 0.02
3200 elevator	3201 0.95 ± 0.01	3202 0.95 ± 0.01	3203 0.95 ± 0.01	3204 0.95 ± 0.00
3201 energy_efficiency	3202 0.97 ± 0.02	3203 0.95 ± 0.02	3204 0.96 ± 0.02	3205 0.95 ± 0.02
3202 insurance	3203 0.96 ± 0.02	3204 0.95 ± 0.02	3205 0.96 ± 0.02	3206 0.95 ± 0.01
3203 kin8nm	3204 0.96 ± 0.01	3205 0.95 ± 0.01	3206 0.95 ± 0.01	3207 0.95 ± 0.01
3204 miami_housing	3205 0.95 ± 0.01	3206 0.95 ± 0.01	3207 0.95 ± 0.01	3208 0.95 ± 0.01
3205 naval_propulsion	3209 0.95 ± 0.01	3210 1.00 ± 0.00	3211 0.95 ± 0.01	3212 0.95 ± 0.01
3206 parkinsons	3210 0.95 ± 0.01	3211 0.95 ± 0.01	3212 0.95 ± 0.01	3213 0.95 ± 0.01
3207 powerplant	3214 0.95 ± 0.01	3215 0.95 ± 0.01	3216 0.95 ± 0.01	3217 0.95 ± 0.01
3208 qsar	3218 0.95 ± 0.01	3219 0.95 ± 0.01	3220 0.95 ± 0.01	3221 0.95 ± 0.01
3209 sulfur	3222 0.95 ± 0.01	3223 0.95 ± 0.01	3224 0.95 ± 0.01	3225 0.95 ± 0.01
3210 superconductor	3226 0.95 ± 0.01	3227 0.95 ± 0.00	3228 0.95 ± 0.00	3229 0.95 ± 0.00

3211 Table 37: Conformalized Variant (b) NIW at 95% prediction intervals, aggregated across 10 seeds.
3212 Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided
3213 into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are presented in
3214 scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and
3215 metric, while the underlined values indicate the second-best result. **Red** values are more than 33%
3216 worse than the best result.
3217

3218 Dataset	3219 CLEAR-c	3220 PCS-EPISTEMIC-c	3221 ALEATORIC-R-c	3222 CLEAR
3220 ailerons	0.193 ± 0.016	0.217 ± 0.017	0.195 ± 0.018	0.193 ± 0.016
3221 airfoil	<u>0.215 ± 0.019</u>	0.217 ± 0.022	0.227 ± 0.031	0.207 ± 0.012
3222 allstate	<u>0.257 ± 0.044</u>	0.263 ± 0.057	0.258 ± 0.046	0.256 ± 0.045
3223 ca_housing	<u>0.339 ± 0.006</u>	0.355 ± 0.012	0.349 ± 0.008	0.339 ± 0.008
3224 computer	0.099 ± 0.006	0.142 ± 0.010	0.104 ± 0.005	0.099 ± 0.006
3225 concrete	0.268 ± 0.023	0.247 ± 0.040	0.271 ± 0.044	0.249 ± 0.025
3226 elevator	0.137 ± 0.009	0.194 ± 0.012	0.145 ± 0.008	0.137 ± 0.007
3227 energy_efficiency	0.053 ± 0.009	0.058 ± 0.009	<u>0.053 ± 0.009</u>	0.047 ± 0.005
3228 insurance	<u>0.357 ± 0.070</u>	0.461 ± 0.292	0.408 ± 0.102	0.329 ± 0.045
3229 kin8nm	<u>0.362 ± 0.014</u>	0.373 ± 0.013	0.370 ± 0.011	0.360 ± 0.012
3230 miami_housing	<u>0.085 ± 0.003</u>	0.097 ± 0.002	0.087 ± 0.005	0.085 ± 0.002
3231 naval_propulsion	$1.9e-03 \pm 9.1e-05$	$8.1e-03 \pm 4.1e-04$	$1.9e-03 \pm 1.0e-04$	$1.9e-03 \pm 7.3e-05$
3232 parkinsons	0.279 ± 0.014	0.325 ± 0.016	0.305 ± 0.012	0.281 ± 0.009
3233 powerplant	<u>0.171 ± 0.010</u>	0.179 ± 0.008	0.183 ± 0.008	0.170 ± 0.007
3234 qsar	<u>0.371 ± 0.126</u>	0.395 ± 0.134	0.386 ± 0.127	0.366 ± 0.123
3235 sulfur	0.111 ± 0.010	0.129 ± 0.016	0.106 ± 0.011	0.108 ± 0.009
3236 superconductor	<u>0.220 ± 0.025</u>	0.240 ± 0.027	0.227 ± 0.025	0.219 ± 0.023

3240

3241

3242

Table 38: Conformalized Variant (b) Quantile Loss at 95% prediction intervals, aggregated across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red** values are more than 33% worse than the best result.

3243

3244

3245

3246

3247

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR
aileron	<u>9.2e-06 \pm 2.3e-07</u>	1.0e-05 \pm 2.1e-07	9.7e-06 \pm 2.7e-07	9.2e-06 \pm 2.3e-07
airfoil	<u>0.110 \pm 0.013</u>	0.119 \pm 0.012	0.126 \pm 0.015	0.109 \pm 0.011
allstate	<u>1.2e+02 \pm 7.662</u>	1.3e+02 \pm 8.290	1.3e+02 \pm 7.774	1.1e+02 \pm 7.318
ca_housing	2.8e+03 \pm 56.920	3.2e+03 \pm 91.466	3.0e+03 \pm 73.272	<u>2.8e+03 \pm 59.700</u>
computer	0.159 \pm 0.007	0.207 \pm 0.009	0.206 \pm 0.015	<u>0.159 \pm 0.007</u>
concrete	0.340 \pm 0.037	<u>0.327 \pm 0.039</u>	0.356 \pm 0.048	<u>0.338 \pm 0.040</u>
elevator	<u>1.4e-04 \pm 2.4e-06</u>	1.9e-04 \pm 6.7e-06	1.6e-04 \pm 3.0e-06	1.4e-04 \pm 2.0e-06
energy_efficiency	<u>0.033 \pm 0.005</u>	0.038 \pm 0.003	0.034 \pm 0.005	0.031 \pm 0.004
insurance	<u>3.3e+02 \pm 28.437</u>	5.2e+02 \pm 1.4e+02	3.8e+02 \pm 43.883	3.2e+02 \pm 31.593
kin8nm	<u>7.2e-03 \pm 1.7e-04</u>	7.6e-03 \pm 1.1e-04	7.7e-03 \pm 2.7e-04	7.2e-03 \pm 1.7e-04
miami_housing	<u>3.9e+03 \pm 2.1e+02</u>	4.2e+03 \pm 1.7e+02	5.2e+03 \pm 3.4e+02	3.9e+03 \pm 1.9e+02
naval_propulsion	<u>5.5e-05 \pm 1.9e-06</u>	1.8e-04 \pm 9.1e-06	6.4e-05 \pm 2.7e-06	5.4e-05 \pm 1.9e-06
parkinsons	<u>0.209 \pm 0.008</u>	0.237 \pm 0.008	0.228 \pm 0.013	0.209 \pm 0.010
powerplant	<u>0.213 \pm 0.011</u>	0.222 \pm 0.011	0.220 \pm 0.011	0.212 \pm 0.012
qsar	<u>0.050 \pm 0.003</u>	0.053 \pm 0.003	0.052 \pm 0.003	0.049 \pm 0.003
sulfur	<u>2.0e-03 \pm 1.1e-04</u>	2.3e-03 \pm 8.5e-05	2.3e-03 \pm 1.5e-04	1.9e-03 \pm 9.6e-05
superconductor	<u>0.523 \pm 0.018</u>	0.611 \pm 0.026	0.573 \pm 0.024	0.523 \pm 0.018

3264

3265

3266

3267

3268

3269

Table 39: Conformalized Variant (b) NCIW at 95% prediction intervals, aggregated across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red** values are more than 33% worse than the best result.

3270

3271

3272

3273

3274

3275

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR
aileron	<u>0.195 \pm 0.018</u>	0.217 \pm 0.021	0.196 \pm 0.017	0.195 \pm 0.017
airfoil	<u>0.203 \pm 0.007</u>	0.211 \pm 0.007	0.216 \pm 0.011	0.203 \pm 0.006
allstate	0.248 \pm 0.041	0.270 \pm 0.052	0.266 \pm 0.044	<u>0.250 \pm 0.043</u>
ca_housing	<u>0.336 \pm 0.006</u>	0.354 \pm 0.012	0.348 \pm 0.011	0.336 \pm 0.008
computer	0.098 \pm 0.005	0.142 \pm 0.008	0.103 \pm 0.003	0.098 \pm 0.005
concrete	0.248 \pm 0.032	0.241 \pm 0.025	0.261 \pm 0.039	0.246 \pm 0.033
elevator	0.137 \pm 0.008	0.192 \pm 0.012	0.147 \pm 0.009	<u>0.137 \pm 0.008</u>
energy_efficiency	0.046 \pm 0.006	0.057 \pm 0.004	0.050 \pm 0.005	0.046 \pm 0.005
insurance	0.314 \pm 0.052	0.346 \pm 0.076	0.335 \pm 0.059	<u>0.320 \pm 0.059</u>
kin8nm	<u>0.355 \pm 0.008</u>	0.371 \pm 0.009	0.371 \pm 0.009	0.354 \pm 0.008
miami_housing	0.084 \pm 0.004	0.098 \pm 0.002	0.085 \pm 0.003	0.084 \pm 0.003
naval_propulsion	<u>1.8e-03 \pm 4.7e-05</u>	3.2e-03 \pm 1.2e-04	1.9e-03 \pm 8.4e-05	1.8e-03 \pm 5.6e-05
parkinsons	0.284 \pm 0.011	0.324 \pm 0.008	0.309 \pm 0.018	<u>0.284 \pm 0.010</u>
powerplant	0.173 \pm 0.008	0.182 \pm 0.007	0.182 \pm 0.007	0.173 \pm 0.007
qsar	<u>0.363 \pm 0.122</u>	0.393 \pm 0.131	0.390 \pm 0.131	0.363 \pm 0.121
sulfur	0.108 \pm 0.008	0.125 \pm 0.009	0.105 \pm 0.006	<u>0.106 \pm 0.007</u>
superconductor	0.218 \pm 0.023	0.241 \pm 0.028	0.226 \pm 0.022	0.218 \pm 0.022

3292

3293

3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309

3310 Table 40: Conformalized Variant (b) Interval Score Loss at 95% prediction intervals, aggregated
 3311 across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation
 3312 set divided into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are
 3313 presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for
 3314 that dataset and metric, while the underlined values indicate the second-best result. **Red** values are
 3315 more than 33% worse than the best result.

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR
ailerons	<u>$7.4e-04 \pm 1.8e-05$</u>	$8.1e-04 \pm 1.7e-05$	$7.8e-04 \pm 2.2e-05$	$7.4e-04 \pm 1.8e-05$
airfoil	<u>8.794 ± 1.047</u>	9.523 ± 0.959	10.075 ± 1.227	8.717 ± 0.870
allstate	<u>$9.2e+03 \pm 6.1e+02$</u>	$1.0e+04 \pm 6.6e+02$	$1.0e+04 \pm 6.2e+02$	$9.2e+03 \pm 5.9e+02$
ca_housing	$2.2e+05 \pm 4.6e+03$	$2.6e+05 \pm 7.3e+03$	$2.4e+05 \pm 5.9e+03$	<u>$2.2e+05 \pm 4.8e+03$</u>
computer	12.704 ± 0.571	16.543 ± 0.706	16.505 ± 1.190	<u>12.707 ± 0.575</u>
concrete	27.168 ± 2.969	26.195 ± 3.142	28.509 ± 3.874	<u>27.020 ± 3.202</u>
elevator	<u>0.011 ± 0.000</u>	0.015 ± 0.001	0.013 ± 0.000	0.011 ± 0.000
energy_efficiency	<u>2.609 ± 0.417</u>	3.019 ± 0.237	2.681 ± 0.431	2.465 ± 0.347
insurance	<u>$2.6e+04 \pm 2.3e+03$</u>	$4.2e+04 \pm 1.1e+04$	$3.1e+04 \pm 3.5e+03$	$2.6e+04 \pm 2.5e+03$
kin8nm	<u>0.578 ± 0.014</u>	0.607 ± 0.009	0.615 ± 0.022	0.577 ± 0.014
miami_housing	<u>$3.2e+05 \pm 1.7e+04$</u>	$3.3e+05 \pm 1.4e+04$	$4.2e+05 \pm 2.7e+04$	$3.1e+05 \pm 1.5e+04$
naval_propulsion	<u>$4.4e-03 \pm 1.5e-04$</u>	0.014 ± 0.001	$5.1e-03 \pm 2.2e-04$	$4.4e-03 \pm 1.5e-04$
parkinsons	<u>16.712 ± 0.669</u>	18.967 ± 0.645	18.250 ± 1.030	16.697 ± 0.794
powerplant	<u>17.066 ± 0.919</u>	17.724 ± 0.919	17.567 ± 0.899	16.993 ± 0.937
qsar	<u>3.960 ± 0.207</u>	4.277 ± 0.215	4.195 ± 0.229	3.956 ± 0.218
sulfur	<u>0.157 ± 0.008</u>	0.180 ± 0.007	0.186 ± 0.012	0.155 ± 0.008
superconductor	<u>41.818 ± 1.464</u>	48.902 ± 2.063	45.854 ± 1.910	41.801 ± 1.407

332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347

3348 G.3 VARIANT (C) CONFORMALIZED
33493350 Table 41: Conformalized Variant (c) PICP at 95% prediction intervals, aggregated across 10 seeds.
3351 Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into
3352 two parts, one for validation and one for calibration.
3353

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR	UACQR-P	UACQR-S
aileron	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.96 ± 0.00
airfoil	0.96 ± 0.02	0.96 ± 0.02	0.96 ± 0.02	0.96 ± 0.01	0.95 ± 0.01	0.96 ± 0.01
allstate	0.95 ± 0.01	0.94 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
ca_housing	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.00	0.96 ± 0.00
computer	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.97 ± 0.00
concrete	0.96 ± 0.02	0.96 ± 0.01	0.96 ± 0.02	0.96 ± 0.01	0.96 ± 0.02	0.96 ± 0.02
elevator	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.97 ± 0.00
energy_efficiency	0.97 ± 0.01	0.95 ± 0.03	0.96 ± 0.01	0.95 ± 0.01	0.97 ± 0.02	0.96 ± 0.02
insurance	0.96 ± 0.02	0.95 ± 0.02	0.96 ± 0.02	0.95 ± 0.01	0.96 ± 0.01	0.96 ± 0.01
kin8nm	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
miami_housing	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
naval_propulsion	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.99 ± 0.00
parkinsons	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.02	0.95 ± 0.01	0.95 ± 0.01	0.97 ± 0.01
powerplant	0.95 ± 0.01	0.95 ± 0.00	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01
qsar	0.95 ± 0.01	0.94 ± 0.01	0.94 ± 0.01	0.95 ± 0.01	0.96 ± 0.01	0.96 ± 0.01
sulfur	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.95 ± 0.00	0.95 ± 0.01
superconductor	0.95 ± 0.01	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.00	0.95 ± 0.01

3368
3369 Table 42: Conformalized Variant (c) NIW at 95% prediction intervals, aggregated across 10 seeds.
3370 Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided
3371 into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are presented in
3372 scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and
3373 metric, while the underlined values indicate the second-best result. **Red** values are more than 33%
3374 worse than the best result.

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR	UACQR-P	UACQR-S
aileron	0.207 ± 0.017	<u>0.239 ± 0.017</u>	0.202 ± 0.019	0.208 ± 0.017	0.177 ± 0.014	0.207 ± 0.017
airfoil	0.210 ± 0.021	0.212 ± 0.020	0.230 ± 0.040	0.199 ± 0.013	0.365 ± 0.022	0.391 ± 0.029
allstate	0.282 ± 0.052	0.292 ± 0.061	0.279 ± 0.037	0.279 ± 0.052	0.285 ± 0.051	0.305 ± 0.055
ca_housing	0.317 ± 0.009	0.330 ± 0.013	0.344 ± 0.010	0.315 ± 0.010	0.366 ± 0.007	0.405 ± 0.007
computer	0.079 ± 0.003	0.083 ± 0.003	0.088 ± 0.004	0.080 ± 0.004	0.084 ± 0.003	0.101 ± 0.001
concrete	0.290 ± 0.037	0.273 ± 0.032	0.287 ± 0.037	0.278 ± 0.029	0.373 ± 0.025	0.403 ± 0.022
elevator	0.126 ± 0.008	0.153 ± 0.008	0.136 ± 0.008	0.127 ± 0.008	0.158 ± 0.011	0.200 ± 0.010
energy_efficiency	0.052 ± 0.007	0.043 ± 0.008	0.053 ± 0.007	0.043 ± 0.007	<u>inf ± nan</u>	0.162 ± 0.014
insurance	0.414 ± 0.094	0.376 ± 0.134	0.434 ± 0.086	0.397 ± 0.091	0.305 ± 0.046	0.311 ± 0.033
kin8nm	0.328 ± 0.015	<u>0.327 ± 0.012</u>	0.327 ± 0.015	0.325 ± 0.012	0.446 ± 0.018	0.460 ± 0.019
miami_housing	0.088 ± 0.003	0.096 ± 0.005	0.112 ± 0.019	0.088 ± 0.001	0.104 ± 0.003	0.113 ± 0.002
naval_propulsion	<u>1.6e-03 ± 3.6e-05</u>	1.7e-03 ± 6.5e-05	1.6e-03 ± 4.9e-05	1.6e-03 ± 3.2e-05	1.7e-03 ± 8.2e-05	3.6e-03 ± 8.5e-05
parkinsons	0.250 ± 0.015	0.262 ± 0.009	0.281 ± 0.015	0.250 ± 0.007	0.269 ± 0.020	0.313 ± 0.018
powerplant	0.158 ± 0.011	0.170 ± 0.007	0.162 ± 0.008	0.157 ± 0.007	0.193 ± 0.007	0.202 ± 0.009
qsar	0.354 ± 0.120	0.402 ± 0.143	0.349 ± 0.115	0.344 ± 0.117	0.410 ± 0.135	0.452 ± 0.152
sulfur	0.112 ± 0.011	0.126 ± 0.012	0.107 ± 0.016	0.111 ± 0.009	0.115 ± 0.012	0.126 ± 0.012
superconductor	0.196 ± 0.022	0.234 ± 0.026	0.208 ± 0.025	0.195 ± 0.020	0.220 ± 0.022	0.232 ± 0.026

3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Table 43: Conformalized Variant (c) Quantile Loss at 95% prediction intervals, aggregated across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red** values are more than 33% worse than the best result.

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR	UACQR-P	UACQR-S
aileron	9.6e-06 \pm 2.9e-07	1.1e-05 \pm 2.9e-07	9.8e-06 \pm 3.2e-07	9.6e-06 \pm 2.9e-07	1.0e-05 \pm 0.0e+00	1.0e-05 \pm 0.0e+00
airfoil	0.110 \pm 0.015	0.111 \pm 0.013	0.131 \pm 0.019	0.107 \pm 0.014	0.188 \pm 0.013	0.200 \pm 0.010
allstate	1.2e+02 \pm 6.810	1.4e+02 \pm 11.278	1.3e+02 \pm 22.506	1.2e+02 \pm 6.874	1.1e+02 \pm 7.356	1.2e+02 \pm 6.507
ca_housing	<u>2.8e+03</u> \pm 91.022	2.9e+03 \pm 88.973	3.2e+03 \pm 1.1e+02	2.8e+03 \pm 92.560	3.0e+03 \pm 58.564	3.0e+03 \pm 57.081
computer	0.138 \pm 0.012	0.140 \pm 0.012	0.163 \pm 0.013	0.137 \pm 0.011	0.147 \pm 0.006	0.151 \pm 0.004
concrete	0.343 \pm 0.033	0.334 \pm 0.031	0.381 \pm 0.058	0.337 \pm 0.032	0.413 \pm 0.037	0.425 \pm 0.022
elevator	<u>1.3e-04</u> \pm 3.3e-06	1.4e-04 \pm 3.9e-06	1.5e-04 \pm 3.5e-06	1.3e-04 \pm 3.2e-06	1.8e-04 \pm 5.4e-06	1.9e-04 \pm 4.9e-06
energy_efficiency	0.031 \pm 0.006	0.030 \pm 0.007	0.035 \pm 0.010	0.029 \pm 0.007	<u>inf</u> \pm <u>nan</u>	0.079 \pm 0.006
insurance	4.1e+02 \pm 73.015	<u>4.3e+02</u> \pm 61.342	3.9e+02 \pm 53.648	4.2e+02 \pm 80.269	3.4e+02 \pm 46.073	3.3e+02 \pm 34.606
kin8nm	6.7e-03 \pm 1.7e-04	6.9e-03 \pm 2.2e-04	6.8e-03 \pm 2.0e-04	6.7e-03 \pm 1.8e-04	8.8e-03 \pm 1.6e-04	9.0e-03 \pm 1.6e-04
miami_housing	<u>3.8e+03</u> \pm 1.9e+02	3.8e+03 \pm 2.2e+02	6.8e+03 \pm 1.2e+03	3.7e+03 \pm 1.4e+02	4.3e+03 \pm 1.3e+02	4.5e+03 \pm 1.3e+02
naval_propulsion	4.0e-05 \pm 1.0e-06	4.2e-05 \pm 1.3e-06	4.9e-05 \pm 1.6e-06	4.0e-05 \pm 1.0e-06	9.3e-05 \pm 9.0e-06	8.1e-05 \pm 3.0e-06
parkinsons	0.190 \pm 0.007	0.192 \pm 0.006	0.217 \pm 0.008	0.189 \pm 0.006	0.180 \pm 0.009	0.200 \pm 0.010
powerplant	0.204 \pm 0.012	0.210 \pm 0.013	0.209 \pm 0.013	0.203 \pm 0.012	0.226 \pm 0.011	0.234 \pm 0.010
qsar	0.049 \pm 0.002	0.054 \pm 0.001	0.051 \pm 0.003	0.048 \pm 0.002	0.051 \pm 0.003	0.054 \pm 0.002
sulfur	1.8e-03 \pm 8.0e-05	1.9e-03 \pm 8.7e-05	2.6e-03 \pm 2.6e-04	1.8e-03 \pm 6.3e-05	1.9e-03 \pm 1.2e-04	2.0e-03 \pm 1.5e-04
superconductor	0.488 \pm 0.020	0.573 \pm 0.026	0.563 \pm 0.047	0.489 \pm 0.020	0.507 \pm 0.017	0.527 \pm 0.016

Table 44: Conformalized Variant (c) NCIW at 95% prediction intervals, aggregated across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red** values are more than 33% worse than the best result.

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR	UACQR-P	UACQR-S
aileron	0.209 \pm 0.021	0.242 \pm 0.021	<u>0.203</u> \pm 0.021	0.210 \pm 0.020	0.188 \pm 0.030	0.207 \pm 0.017
airfoil	0.189 \pm 0.016	0.199 \pm 0.013	0.204 \pm 0.017	0.188 \pm 0.014	0.317 \pm 0.025	0.329 \pm 0.033
allstate	0.274 \pm 0.046	0.296 \pm 0.058	0.285 \pm 0.029	0.277 \pm 0.056	0.279 \pm 0.047	0.296 \pm 0.049
ca_housing	0.312 \pm 0.010	0.329 \pm 0.009	0.342 \pm 0.011	0.311 \pm 0.010	0.368 \pm 0.007	0.405 \pm 0.007
computer	0.080 \pm 0.003	0.083 \pm 0.003	0.090 \pm 0.004	0.081 \pm 0.004	0.087 \pm 0.005	0.101 \pm 0.001
concrete	0.255 \pm 0.032	<u>0.257</u> \pm 0.031	0.263 \pm 0.028	0.259 \pm 0.032	0.332 \pm 0.056	0.344 \pm 0.054
elevator	0.126 \pm 0.007	0.151 \pm 0.011	0.138 \pm 0.008	0.126 \pm 0.008	0.165 \pm 0.015	0.200 \pm 0.010
energy_efficiency	0.043 \pm 0.005	0.043 \pm 0.005	0.048 \pm 0.005	0.041 \pm 0.006	0.140 \pm 0.014	0.138 \pm 0.024
insurance	0.356 \pm 0.071	0.358 \pm 0.078	0.400 \pm 0.091	0.345 \pm 0.078	0.291 \pm 0.043	0.301 \pm 0.034
kin8nm	0.323 \pm 0.008	0.331 \pm 0.010	0.327 \pm 0.008	0.323 \pm 0.008	0.433 \pm 0.009	0.445 \pm 0.013
miami_housing	0.087 \pm 0.003	0.096 \pm 0.004	0.107 \pm 0.013	<u>0.088</u> \pm 0.002	0.102 \pm 0.004	0.110 \pm 0.004
naval_propulsion	1.6e-03 \pm 5.0e-05	1.7e-03 \pm 4.7e-05	1.6e-03 \pm 4.1e-05	1.6e-03 \pm 5.0e-05	1.7e-03 \pm 8.2e-05	3.6e-03 \pm 8.5e-05
parkinsons	0.250 \pm 0.010	0.259 \pm 0.009	0.279 \pm 0.013	0.250 \pm 0.012	0.273 \pm 0.019	0.313 \pm 0.018
powerplant	0.162 \pm 0.007	0.171 \pm 0.008	0.163 \pm 0.008	0.161 \pm 0.007	0.191 \pm 0.009	0.200 \pm 0.009
qsar	0.350 \pm 0.121	0.412 \pm 0.144	0.360 \pm 0.120	0.348 \pm 0.118	0.409 \pm 0.134	0.449 \pm 0.150
sulfur	0.111 \pm 0.010	0.124 \pm 0.008	0.107 \pm 0.005	0.109 \pm 0.008	0.114 \pm 0.010	0.126 \pm 0.010
superconductor	0.194 \pm 0.021	0.234 \pm 0.025	0.204 \pm 0.024	0.192 \pm 0.019	0.220 \pm 0.023	0.232 \pm 0.025

Table 45: Conformalized Variant (c) Interval Score Loss at 95% prediction intervals, aggregated across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into two parts, one for validation and one for calibration. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. **Bold** values (desirable) are the minimum for that dataset and metric, while the underlined values indicate the second-best result. **Red** values are more than 33% worse than the best result.

Dataset	CLEAR-c	PCS-EPISTEMIC-c	ALEATORIC-R-c	CLEAR	UACQR-P	UACQR-S
aileron	7.7e-04 \pm 2.3e-05	8.6e-04 \pm 2.3e-05	7.9e-04 \pm 2.6e-05	7.7e-04 \pm 2.3e-05	7.9e-04 \pm 3.1e-05	7.9e-04 \pm 2.3e-05
airfoil	8.780 \pm 1.202	8.857 \pm 1.035	10.504 \pm 1.503	8.569 \pm 1.099	15.052 \pm 1.025	15.999 \pm 0.776
allstate	9.4e+03 \pm 5.4e+02	1.1e+04 \pm 9.0e+02	1.0e+04 \pm 1.8e+03	9.2e+03 \pm 5.5e+02	9.0e+03 \pm 5.9e+02	9.3e+03 \pm 5.2e+02
ca_housing	<u>2.2e+05</u> \pm 7.3e+03	2.3e+05 \pm 7.1e+03	2.5e+05 \pm 8.6e+03	2.2e+05 \pm 7.4e+03	2.4e+05 \pm 4.7e+03	2.4e+05 \pm 4.6e+03
computer	11.040 \pm 0.933	11.164 \pm 0.938	13.042 \pm 1.009	10.978 \pm 0.911	11.757 \pm 0.463	12.103 \pm 0.323
concrete	27.403 \pm 2.641	26.754 \pm 2.444	30.441 \pm 4.624	26.928 \pm 2.529	33.077 \pm 2.941	33.990 \pm 1.797
elevator	0.011 \pm 0.000	0.012 \pm 0.000	0.012 \pm 0.000	0.010 \pm 0.000	0.014 \pm 0.000	0.015 \pm 0.000
energy_efficiency	2.463 \pm 0.488	<u>2.422</u> \pm 0.596	2.796 \pm 0.804	2.348 \pm 0.554	6.214 \pm 0.408	6.354 \pm 0.480
insurance	3.3e+04 \pm 5.8e+03	3.4e+04 \pm 4.9e+03	3.1e+04 \pm 4.3e+03	3.4e+04 \pm 6.4e+03	2.7e+04 \pm 3.7e+03	2.7e+04 \pm 2.8e+03
kin8nm	0.536 \pm 0.014	0.552 \pm 0.018	0.545 \pm 0.016	0.534 \pm 0.014	0.705 \pm 0.013	0.723 \pm 0.013
miami_housing	3.0e+05 \pm 1.5e+04	3.1e+05 \pm 1.7e+04	5.5e+05 \pm 9.6e+04	2.9e+05 \pm 1.1e+04	3.5e+05 \pm 1.0e+04	3.6e+05 \pm 1.0e+04
naval_propulsion	<u>3.2e-03</u> \pm 8.0e-05	3.4e-03 \pm 1.0e-04	3.9e-03 \pm 1.3e-04	3.2e-03 \pm 8.4e-05	7.5e-03 \pm 7.5e-04	6.6e-03 \pm 1.3e-04
parkinsons	15.231 \pm 0.540	15.327 \pm 0.476	17.375 \pm 0.656	15.149 \pm 0.518	14.384 \pm 0.700	15.978 \pm 0.779
powerplant	16.287 \pm 0.959	16.839 \pm 1.025	16.687 \pm 1.010	16.243 \pm 0.985	18.078 \pm 0.906	18.725 \pm 0.822
qsar	3.903 \pm 0.190	4.360 \pm 0.105	4.094 \pm 0.213	3.877 \pm 0.176	4.102 \pm 0.230	4.333 \pm 0.182
sulfur	0.145 \pm 0.006	0.148 \pm 0.007	0.209 \pm 0.021	0.143 \pm 0.005	0.153 \pm 0.010	0.158 \pm 0.012
superconductor	39.077 \pm 1.615	45.819 \pm 2.070	45.024 \pm 3.738	39.104 \pm 1.604	40.545 \pm 1.386	42.122 \pm 1.257

3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473

3474 Table 46: Conformalized Variant (c) CLEAR calibration parameters λ and γ_1 for 95% prediction
 3475 intervals across 10 seeds. Using all available variables. Showing median [min:max] values.

3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492

Dataset	λ	γ_1
ailerons	1.01 [0.26:1.75]	1.01 [0.87:1.32]
airfoil	1.04 [0.10:100.00]	1.45 [0.02:6.72]
allstate	0.72 [0.00:100.00]	1.10 [0.02:1.43]
ca_housing	1.93 [1.11:13.99]	0.67 [0.14:0.95]
computer	2.85 [1.39:10.47]	0.60 [0.18:0.95]
concrete	1.18 [0.25:100.00]	1.79 [0.02:5.83]
elevator	0.73 [0.45:1.29]	1.13 [0.86:1.43]
energy_efficiency	0.22 [0.02:100.00]	6.87 [0.02:19.92]
insurance	4.77 [0.37:100.00]	0.55 [0.03:5.83]
kin8nm	2.21 [0.39:3.27]	0.74 [0.61:1.02]
miami_housing	4.61 [1.23:100.00]	0.36 [0.02:1.09]
naval_propulsion	14.44 [10.01:22.37]	0.69 [0.52:0.85]
parkinsons	1.11 [0.53:15.09]	1.34 [0.12:2.31]
powerplant	0.96 [0.57:3.30]	1.12 [0.51:1.41]
qsar	0.59 [0.22:2.58]	1.45 [0.78:2.51]
sulfur	2.98 [0.90:100.00]	0.63 [0.02:1.25]
superconductor	0.73 [0.22:1.38]	1.17 [0.85:1.33]

3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509

3510
 3511 **H CASE STUDY: HOUSE PRICE PREDICTION WITH VARYING NUMBER OF**
 3512 **PREDICTORS**

3513
 3514 We illustrate our method using the Ames Housing dataset, which contains data on 2,930 residential
 3515 properties sold in Ames, Iowa, between 2006 and 2010. The target variable is the sale price of a
 3516 house, and the full dataset includes around 80 predictor variables describing various aspects such as
 3517 square footage, neighborhood, and building type. This dataset, originally collected by the Ames City
 3518 Assessor’s Office and curated by Cock (2011), was explored in detail in Chapter 13 of Yu & Barter
 3519 (2024).

3520 The PCS framework (Yu & Barter, 2024) involves quantifying all sources of extended epistemic
 3521 uncertainty stemming from the entire data-science cycle, such as uncertainty stemming from data
 3522 processing. An pipeline of PCS uncertainty quantification applied to the Ames Housing data can
 3523 be found in Chapter 13 in (Yu & Barter, 2024). We follow the same steps⁷ for estimating \hat{f} and
 3524 estimating epistemic uncertainty bounds $\hat{q}_{0.05}^{\text{epi}}, \hat{q}_{0.95}^{\text{epi}}$.

3525 To investigate how the amount of available information affects predictive uncertainty, we consider
 3526 two versions of the dataset:

- 3527
- **Full:** the original dataset with all ~ 80 variables,
 - **Top 2:** a further reduced dataset containing only the top two features (as determined by
 3529 either feature importance of a random forest, or by correlation with the outcome variable, as
 3530 both approaches lead to the same choice).
- 3531

3532 These settings simulate scenarios where fewer variables are available, reflecting different levels
 3533 of information accessibility. Reducing the number of predictors is expected to increase aleatoric
 3534 uncertainty (due to missing key predictive information) and decrease epistemic uncertainty (due to a
 3535 simpler model class and lower dimensionality).

3536 In each case, we applied the CLEAR procedure as described in Section 2.4. This involved: (1) data
 3537 cleaning and preprocessing (excluding irregular sales, imputing missing values, encoding categorical
 3538 variables), resulting in $N_1 = 438$ cleaned datasets; (2) fitting a predictive model \hat{f} and estimating
 3539 epistemic uncertainty bounds $\hat{q}_{0.05}^{\text{epi}}, \hat{q}_{0.95}^{\text{epi}}$; (3) estimating aleatoric uncertainty bounds $\hat{q}_{0.05}^{\text{ale}}, \hat{q}_{0.95}^{\text{ale}}$ via
 3540 quantile regression, as described in Section 2.3; (4) estimating λ and calibrating prediction intervals
 3541 on the validation set.

3542 Table 2 and the discussion in Section 4.3 summarize the results. In the reduced 2-variable setting,
 3543 CLEAR selected $\lambda = 0.6$, assigning more weight to aleatoric uncertainty. In contrast, in the
 3544 full-feature setting, $\lambda = 14.5$, emphasizing epistemic uncertainty. The corresponding calibrated
 3545 epistemic-to-aleatoric ratios were computed as $\frac{1}{n} \sum_{i=1}^n \frac{\gamma_1 \times \text{epistemic}(x_i)}{\gamma_2 \times \text{aleatoric}(x_i)}$ in (1), reflecting the final width
 3546 contributions from each component. They were 0.03 and 7.72, respectively. This ratio quantifies how
 3547 much of the interval width is attributed to epistemic versus aleatoric uncertainty after calibration. The
 3548 results demonstrate CLEAR’s ability to adaptively re-weight the two uncertainty sources in response
 3549 to the underlying information regime, producing intervals that are both sharp and well-calibrated
 3550 across heterogeneous settings.

3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561 ⁷Minor differences arise due to: (a) implementation differences in base models between R and Python, and
 3562 (b) manual calibration of PCS intervals, which was not part of the original implementation. Additionally, both
 3563 CQR and CLEAR were trained using only linear quantile regressors as the model selection step of PCS selected
 a linear model based on the RMSE on the validation dataset.

3564 **I ON THE ROLE OF RELATIVE AND ABSOLUTE UNCERTAINTY IN COVERAGE**
 3565 **GUARANTEES**
 3566

3567 In predictive inference, a fundamental distinction arises between *conditional* and *marginal* coverage—
 3568 closely related to what has been termed “relative vs. absolute uncertainty” (Heiss et al., 2022b) or
 3569 “adaptive vs. calibrated uncertainty.” Conditional coverage requires that prediction intervals achieve
 3570 the target coverage level at *every individual input*, thereby capturing *local* or *relative* uncertainty.
 3571 Formally, a prediction interval $C(X_{n+1})$ satisfies conditional coverage at level $1 - \alpha$ if

$$3572 \forall x \in \text{supp}(X) : \mathbb{P}[Y_{n+1} \in C(X_{n+1}) \mid X_{n+1} = x] \geq 1 - \alpha.$$

3573 By contrast, *marginal coverage* only guarantees coverage *on average* over the distribution of inputs:
 3574

$$3575 \mathbb{P}[Y_{n+1} \in C(X_{n+1})] \geq 1 - \alpha.$$

3576 While conditional coverage implies marginal coverage, the reverse does not hold. This distinction is
 3577 especially important in settings with *heteroskedasticity*, where the variability of $Y \mid X$ changes across
 3578 the input space, and under *distribution shift*, where the test distribution of X differs from the training
 3579 distribution. Distribution shift—such as covariate shift or domain adaptation—can render marginal
 3580 guarantees unreliable since they depend on the marginal \mathbb{P}_X . In contrast, conditional coverage ensures
 3581 that prediction intervals remain valid even when \mathbb{P}_X changes, provided the conditional distribution
 3582 $\mathbb{P}(Y \mid X)$ remains stable. In what follows, we explore the implications of these distinctions and how
 3583 they shape both the evaluation and design of uncertainty quantification methods.
 3584

3584 **I.1 METRICS: RELEVANCE**
 3585

3586 To assess the quality of predictive uncertainty, various metrics capture different aspects of coverage
 3587 and adaptivity:

- 3589 • **Quantile Loss**, **CRPS**, and **AISL** combine both relative and absolute components incentivizing
 3590 conditional coverage. These metrics penalize both poor ranking and miscalibration, rewarding
 3591 methods that adapt well to heteroskedasticity.
- 3592 • **NCIW** is invariant to the overall scale of the uncertainty but evaluates the ranking—whether
 3593 a method assigns wider intervals to more uncertain points. In practice, a low NCIW often
 3594 correlates with good relative uncertainty. However, a minimal NCIW theoretically
 3595 encourages suboptimal conditional coverage, as it can lead to under-coverage in high-
 3596 uncertainty regions and over-coverage in low-uncertainty regions. Consequently, good
 3597 conditional coverage typically requires a slightly higher NCIW than the minimum. Similar
 3598 to NCIW, Minimum Negative Log-Likelihood (NLL_{\min}) (Heiss et al., 2022b) also assesses
 3599 relative uncertainty by focusing on whether a method correctly ranks more versus less
 3600 uncertain inputs, independent of the predicted scale.
- 3601 • **PICP** and **NIW** each provide only partial information: PICP measures calibration but is
 3602 blind to adaptivity, while NIW captures the average scale of uncertainty.

3603 These metrics reflect different priorities in uncertainty quantification. Choosing among them (or
 3604 combining them) depends on whether the primary goal is calibration, adaptivity, or both.

3605 **I.2 APPLICATIONS**
 3606

3607 Understanding whether a method captures relative or absolute uncertainty has practical implications
 3608 across a range of applications. In **active learning**, the primary objective is to identify inputs x
 3609 for which the model is most uncertain, guiding efficient data acquisition. Here, only the ranking
 3610 of uncertainty matters—selecting the point with the highest epistemic uncertainty. Methods that
 3611 preserve good relative uncertainty, even if miscalibrated, often suffice. In **Bayesian optimization**,
 3612 many acquisition functions (such as upper confidence bound or entropy search) depend more on
 3613 relative than absolute uncertainty (De Ath et al., 2021; Weissteiner et al., 2023). Using upper bounds
 3614 of the form $\hat{f}(x) + c$ with constant c across all x does not improve over exploiting $\hat{f}(x)$ alone,
 3615 highlighting the centrality of uncertainty ranking over calibration in this setting. In **human-in-the-
 3616 loop automation**, relative uncertainty can guide prioritization—for instance, flagging uncertain
 3617 cases for expert review. While calibrated intervals may not always be necessary, correct ordering of
 3618 confidence can improve decision efficiency and safety.

3618 I.3 METHODS
36193620 Different uncertainty quantification methods prioritize and estimate relative and absolute uncertainty
3621 to varying degrees:

- 3622
-
- 3623
- **NOMU** (Heiss et al., 2022b) is explicitly designed to estimate only relative uncertainty. It
3624 does not attempt to calibrate the absolute scale, making it suitable for applications where
3625 ranking matters but calibrated intervals are unnecessary.
 - **Deep ensembles** (Lakshminarayanan et al., 2017) typically yield strong performance in
3626 capturing relative uncertainty, particularly through diversity in predictions across ensemble
3627 members. However, they often suffer from miscalibration in the absolute scale of uncertainty
3628 unless explicitly corrected.
 - **CLEAR** separately estimates relative epistemic and aleatoric uncertainty and combines
3629 them using a tunable parameter λ , which also refines the ranking of uncertainty—offering
3630 an alternative to standard calibration techniques. The absolute scale is then calibrated using
3631 a second parameter, γ_1 , allowing for flexible control over both adaptivity and calibration.
-
- 3632

3633 These methods highlight the spectrum of approaches to uncertainty quantification, from ranking-only
3634 models to fully calibrated systems.
36353636 I.4 CALIBRATION TECHNIQUES
36373638 The absolute scale of uncertainty is critical in applications where the expected risk or cost over a
3639 population matters (e.g., in probabilistic risk management, climate forecasting, or decision-making
3640 under uncertainty). However, as emphasized by pathological cases that achieve perfect PICP with no
3641 adaptivity, relative uncertainty remains essential for practicality. Several approaches can be taken to
3642 adjust the scale of uncertainty estimates while preserving different structures:
3643

- 3644
-
- 3645
- **Multiplicative calibration** scales all predictions by a constant factor, preserving the multi-
3646 plicative structure of uncertainty. This is appropriate when the model’s ranking is reliable.
 - **Additive calibration** shifts all intervals uniformly, preserving additive differences but
3647 potentially distorting proportional uncertainty.
 - **Isotonic calibration** applies a nonparametric monotonic transformation that preserves the
3648 ranking of uncertainty, suitable when only order is trusted. E.g., (Kuleshov et al., 2018) uses
3649 isotonic calibration for distributional uncertainty quantification.
 - **CLEAR** calibrates aleatoric and epistemic uncertainty separately, allowing independent yet
3650 coherent control of both components. This facilitates calibrated estimates of total predictive
3651 uncertainty while preserving the relative structure.
-
- 3652

3653 I.5 ACHIEVING CONDITIONAL COVERAGE
36543655 Achieving conditional coverage requires addressing both components of predictive uncertainty:
3656

- 3657
-
- 3658 1. Estimating relative uncertainty accurately—capturing how uncertainty varies across inputs.
-
- 3659 2. Calibrating the absolute scale to ensure the desired coverage level holds at each input.
-
- 3660

3661 Even when conditional coverage is not required, improving relative uncertainty tends to reduce
3662 average interval width and improve marginal calibration under distribution shifts. Thus, adaptivity
3663 and calibration are not mutually exclusive but can reinforce one another. **CLEAR** is explicitly
3664 designed to target both forms of uncertainty—modeling and calibrating relative and absolute epistemic,
3665 aleatoric, and total predictive uncertainty. As such, it provides a flexible and principled framework
3666 for applications demanding both adaptivity and reliability.
36673668
3669
3670
3671