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ABSTRACT

Accurate uncertainty quantification is critical for reliable predictive modeling.
Existing methods typically address either aleatoric uncertainty due to measurement
noise or epistemic uncertainty resulting from limited data, but not both in a balanced
manner. We propose CLEAR, a calibration method with two distinct parameters,
γ1 and γ2, to combine the two uncertainty components and improve the conditional
coverage of predictive intervals for regression tasks. CLEAR is compatible with
any pair of aleatoric and epistemic estimators; we show how it can be used with
(i) quantile regression for aleatoric uncertainty and (ii) ensembles drawn from the
Predictability–Computability–Stability (PCS) framework for epistemic uncertainty.
Across 17 diverse real-world datasets, CLEAR achieves an average improvement of
28.2% and 17.4% in the interval width compared to the two individually calibrated
baselines while maintaining nominal coverage. Similar improvements are observed
when applying CLEAR to Deep Ensembles (epistemic) and Simultaneous Quantile
Regression (aleatoric). The benefits are especially evident in scenarios dominated
by high aleatoric or epistemic uncertainty.

1 INTRODUCTION

Uncertainty quantification (UQ) is essential for building reliable machine learning systems (Abdar
et al., 2021; Gawlikowski et al., 2023). Despite their impressive capabilities, modern machine learning
methods can give a false sense of reliability; therefore, producing valid prediction intervals remains an
open problem. Calibration (Kuleshov et al., 2018) and conformal methods (Vovk et al., 2005; 2009;
Vovk, 2012; 2013; Angelopoulos et al., 2024) adjust prediction intervals to obtain marginal coverage
(that is, covering a certain percentage of the data on average). However, they may suffer from poor
conditional coverage, meaning well-calibrated coverage at the individual or subgroup level (Gibbs
et al., 2024). In particular, under distribution shift or model misspecification, conditional coverage
can degrade substantially, especially in extrapolation regions. Most conformal methods, such as
conformalized quantile regression (CQR) (Romano et al., 2019), only capture aleatoric uncertainty
while ignoring epistemic uncertainty.

It is important to distinguish between the two main sources of uncertainty, namely epistemic and
aleatoric. Epistemic uncertainty Hüllermeier & Waegeman (2021) arises from our limited under-
standing of the data generation process and the model, encompassing issues related to data collection,
preprocessing, transformation, and model specification. Notably, this uncertainty is typically large in
extrapolation regions where training data is sparse. In contrast, aleatoric uncertainty (Kirchhof et al.,
2025) reflects the inherent variability within the data (stemming from measurement errors, missing
covariates, randomness, or intrinsic noise) that cannot be reduced simply by gathering more observa-
tions or refining the model unless the data acquisition process itself is improved where more features
are measured. Separating the two sources can be beneficial for various applications (Tagasovska &
Lopez-Paz, 2019; Laves et al., 2021). For instance, in active learning, epistemic uncertainty helps in
selecting which samples to label, while aleatoric uncertainty is less relevant (Settles, 2012). However,
for prediction tasks, appropriately combining both epistemic and aleatoric parts is necessary to
account for the overall uncertainty in the model’s predictions (Marques & Berenson, 2024).

In this work, we contribute to the existing literature by combining aleatoric and epistemic uncertainties
in a data-driven manner. We consider prediction intervals C(x) of the form

C(x) =
[
f̂(x)±

(
γ1 × aleatoric±(x) + γ2 × epistemic±(x)

)]
, with γ2 = λγ1, (1)
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Figure 1: Left: Blue represents aleatoric uncertainty, which reflects randomness inherent in the data
such as measurement noise. Red represents epistemic uncertainty, which arises from limited sample
size. Right: Estimated prediction sets using the CLEAR method, which combines both sources of
uncertainty in a data-driven manner.

where f̂ is a point estimate, and γ1, γ2 ∈ [0,∞) are coefficients selected to 1) calibrate marginal
coverage and 2) optimally balance the two types of uncertainty (optimality is defined in terms of
a quantile loss metric introduced later). The parameter λ controls the trade-off between the two
uncertainty types: when λ = 0, the interval reflects only aleatoric uncertainty, while as γ1 → 0, λ =
γ2

γ1
→ ∞, it reflects only epistemic uncertainty. By allowing an adaptively chosen λ, we ensure a

more flexible and data-driven trade-off to the two components, leading to prediction intervals that are
both well-calibrated and more informative (Figure 1). Moreover, estimating λ can help practitioners
better understand which source of uncertainty is the dominant contributor to the overall uncertainty.

The combination of epistemic and aleatoric uncertainty is not new: Bayesian methods have long
incorporated both components (Kendall & Gal, 2017; Depeweg et al., 2018), and several recent
approaches have also explored this decomposition in the context of conformal prediction (Rossellini
et al., 2024; Hofman et al., 2024a; Cabezas et al., 2025). However, to the best of our knowledge,
existing methods either do not explicitly distinguish between the two types of uncertainty or implicitly
fix the combination ratio, for instance, setting λ = 1 (Lakshminarayanan et al., 2017; Kendall & Gal,
2017; Depeweg et al., 2018), or fixing γ1 = 1 (Rossellini et al., 2024). This fixed choice may be
suboptimal, as the relative importance of each uncertainty type varies with the data distribution and
prediction task (see Appendix A for more details on related work).

1.1 CONTRIBUTIONS

1. We are the first to introduce two calibration parameters γ1 and γ2, to balance the scales of
aleatoric and epistemic uncertainty on the validation dataset.

2. We demonstrate that fitting quantiles on the residuals provides much more sensible estimators
of aleatoric uncertainty than fitting the quantiles directly on the targets.

3. We are the first to combine the ensemble perturbation intervals of the PCS framework (Yu
& Kumbier, 2020) with the CQR aleatoric uncertainty estimator, and empirically show the
strengths of this combination.

4. We conduct large-scale UQ benchmarking for several models on 17 regression datasets.

The remainder of the paper is organized as follows: Section 2 introduces the CLEAR methodology.
Section 3 outlines the experimental setup, including synthetic simulations, real-world datasets,
baselines, and metrics. Section 4 presents results and a case study of the PCS pipeline. Section 5
concludes with limitations and future directions.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 METHOD

2.1 PROBLEM SCENARIO

Consider a classical setting, where an i.i.d. sample (Xi, Yi), i = 1, . . . , n is drawn from distribution
PX × PY |X . The goal of conformal inference is to construct a prediction set C(Xn+1) ⊆ supp(Y )
for a new data-point (Xn+1, Yn+1) satisfying marginal coverage

P
(
Yn+1 ∈ C(Xn+1)

)
≥ 1− α, (2)

where α ∈ (0, 1) is for instance α = 0.05. In order to construct C, data D = {(Xi, Yi), i = 1, . . . , n}
can be split into train and calibration subsets Dtrain,Dcal. On the training data, a first estimate of C
can be constructed, and then we can use data from Dcal to calibrate C such that (2) is satisfied.

In case of CQR, we first estimate conditional quantiles q̂α/2(x), q̂1−α/2(x) using Dtrain, and then
construct C(x) = [q̂α/2(x)− γ, q̂1−α/2(x) + γ], where the calibration parameter γ is chosen so that
the prediction interval C(Xi) contains Yi for exactly ⌈(1−α)(|Dcal|+1)⌉ points in the calibration set
Dcal. While this procedure guarantees finite-sample distribution-free marginal coverage Angelopoulos
et al. (2024), conditional coverage

P
(
Yn+1 ∈ C(Xn+1) | Xn+1 = x

)
≥ 1− α

does not need to hold. As pointed out in Lei & Wasserman (2014); Barber et al. (2020), any
algorithm with finite-sample distribution-free conditional coverage guarantees for all x must be trivial
C(x) = (−∞,∞). However, we aim to design estimators such that conditional coverage holds
approximately under reasonable real-world scenarios, even if exact finite-sample guarantees are
impossible in general.

2.2 EPISTEMIC UNCERTAINTY

The traditional machine learning approach trains a predictive algorithm on a single version of the
cleaned/preprocessed dataset and uses the best-performing algorithm (compared using the validation
set) for future predictions. While theoretically sound in the infinite-sample limit, this approach
ignores the uncertainty stemming from finite sample size and model choice (epistemic uncertainty).
Various methods have been proposed to estimate this uncertainty, including Deep Ensembles (Laksh-
minarayanan et al., 2017), MC dropout in NN (Gal & Ghahramani, 2016), Orthonormal Certificates
(Tagasovska & Lopez-Paz, 2019), NOMU (Heiss et al., 2022b), BNNs (MacKay, 1992) and Laplace
Approximation (Ritter et al., 2018), among others.

Estimating Epistemic Uncertainty via PCS: In practice, additional sources of uncertainty arise from
subjective choices in data cleaning, imputation, and dataset construction, which we also consider as
extended epistemic uncertainty. The Predictability, Computability, and Stability (PCS) framework
(Yu & Kumbier, 2020) offers a holistic point of view on the data-science-life-cycle, without explicitly
modeling aleatoric uncertainty. One can obtain an ensemble of m estimators f̂1, . . . , f̂m as follows:

1. Split the data into Dtrain,Dval.
2. Create N1 differently preprocessed versions of the data and define N2 different models (e.g.,

linear regression, random forest, neural networks). Then, train models for all N1 × N2

combinations on Dtrain and pick the top-k based on their performance on Dval.
3. Refit each of the top-k models on b bootstrap samples D1

train, . . . ,Db
train of Dtrain to obtain an

ensemble of m = k × b estimators f̂1, . . . , f̂m.

Taking the point-wise median of f̂1, . . . , f̂m, yields the final PCS estimate f̂ , and the point-wise α/2
and 1− α/2 quantiles (denoted f̂α/2 and f̂1−α/2, respectively) define the uncalibrated uncertainty
band. The widths of this interval, denoted as q̂epi

1−α/2(x) := f̂1−α/2(x) − f̂(x) and q̂epi
α/2(x) :=

f̂(x)− f̂α/2(x), quantifies the uncalibrated epistemic uncertainty. Agarwal et al. (2025) extends this
by using the combined data set Dtrain ∪ Dval for training and calibrating uncertainty based on out-of-
bag data. The focus is only on the modeling step of the framework. We later demonstrate—through a
case study in Section 4.3—that accounting for uncertainty from data cleaning and pre-processing
is also important, and how the uncertainty contributions can be adapted and improved using our
approach.
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2.3 ALEATORIC UNCERTAINTY

Aleatoric uncertainty can be estimated by modeling the conditional distribution of the outcome
given the inputs. Common approaches include direct conditional quantile regression (Koenker &
Bassett, 1978), either parametric or nonparametric, such as smooth quantile regression (Fasiolo
et al., 2020) and quantile random forests (QRF) (Meinshausen, 2006); heteroskedastic models that
estimate input-dependent noise levels σ(x) under Gaussian assumptions (Nix & Weigend, 1994); and
distributional regression techniques such as simultaneous quantile regression (Tagasovska & Lopez-
Paz, 2019). More flexible alternatives include conditional density estimation and deep generative
models such as conditional generative adversarial networks (Oberdiek et al., 2022), conditional
variational autoencoders (Han et al., 2020) and diffusion models (Chang et al., 2023).

In this work, we estimate aleatoric uncertainty using quantile regression models r̂α/2, r̂0.5, r̂1−α/2

(selected in Line 2 from PCS) trained on the residuals Yi − f̂(Xi). This approach offers improved
stability: underfitting quantile regression directly on the y-values can severely distort aleatoric
uncertainty estimates. In contrast, extreme underfitting on residuals, at worst, corresponds to assuming
homoskedastic noise, which can be an acceptable bias. This improves the stability with respect to
hyperparameters. To further improve the stability, we apply a PCS-inspired bagging strategy, by
taking the empirical median

q̂ale
1−α/2(x) := Median

[(
r̂1−α/2(x)− r̂0.5(x)

)+]
and q̂ale

α/2(x) := Median
[(
r̂0.5(x)− r̂α/2(x)

)+]
over the ensemble members. Overall, it is computationally efficient and straightforward to implement.

2.4 CLEAR: COMBINING ALEATORIC & EPISTEMIC UNCERTAINTY

To combine both aleatoric and epistemic uncertainties, we use a weighted scheme as in Equation (1).
Specifically, using a PCS-type estimator q̂epi

α and a quantile regression estimator q̂ale
α trained on the

residuals Yi − f̂(Xi), we define the prediction interval:

C =
[
f̂ − γ1q̂

ale
α/2 − γ2q̂

epi
α/2, f̂ + γ1q̂

ale
1−α/2 + γ2q̂

epi
1−α/2

]
. (3)

Given a fixed ratio λ = γ2

γ1
, we compute γ1 on a held-out calibration set using the standard split

conformal prediction procedure. While the natural choice γ1 = γ2 may seem appealing, it is often
suboptimal. The relative contribution of aleatoric and epistemic uncertainty can vary across datasets,
and the corresponding estimators may differ substantially in scale and precision when γ1 = γ2.

To choose λ from data, we evaluate a grid of positive values Λ. For each candidate λ ∈ Λ, we
construct the (calibrated) interval Cλ. To ensure the best trade-off between uncertainty sources, we
select λ⋆ such that Cλ⋆ performs best under the chosen metric on Dval. We have chosen quantile loss
(Koenker & Bassett, 1978) (defined in Algorithm 1, also known as pinball loss) as a simple metric to
balance both coverage and width. However, any other metric can also be used. As a proper scoring
rule, quantile loss incentivizes truthfulness from a theoretical perspective (see Appendix B.3). This
procedure is summarized in Algorithm 1.

Parameter λ⋆ balances aleatoric and epistemic uncertainties: if one estimator fails, λ⋆ compensates
by re-weighting the other. When both estimators q̂epi and q̂ale are reliable (up to scaling), λ⋆ is
interpretable. A large ratio

λ⋆ q̂epi
1−α/2

(x)+q̂epi
α/2

(x)

q̂ale
1−α/2

(x)+q̂ale
α/2

(x)
≫ 1

indicates that epistemic uncertainty dominates at x (reducible with more training observations
or stronger assumptions), while a small ratio ≪ 1 indicates aleatoric uncertainty dominates (not
reducible by adding more training observations, though sometimes reducible by adding covariates).

Lemma 2.1. Let Λ be compact. Suppose that at least k of the base models used in the PCS ensemble
are consistent for the true function f(x), and the quantile regression estimators q̂ale

τ are consistent
for both τ ∈ {α/2, 1− α/2}. Then we obtain asymptotic conditional validity: for any fixed x ∈ X ,
it holds that

lim inf
|Dtrain|,|Dcal|→∞

P
(
Yn+1 ∈ C(Xn+1) | Xn+1 = x

)
≥ 1− α.
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Algorithm 1 CLEAR: Calibrated Learning for Epistemic and Aleatoric Risk

1: Input: Data (Xi, Yi) for i = 1, . . . , n, split into training Dtrain, calibration Dcal, and validation
Dval (we consider Dcal = Dval); grid of λ values Λ; significance level α.

2: Step 1: Estimate epistemic uncertainty on Dtrain.
Example: Estimate stable point predictor f̂ and epistemic quantiles q̂epi

α/2, q̂
epi
1−α/2 using PCS

ensembles across data perturbations.
3: Step 2: Estimate aleatoric uncertainty on Dtrain.

Example: train a quantile regression model on the residuals Yi− f̂(Xi) to estimate conditional
quantiles q̂ale

α/2, q̂
ale
1−α/2.

4: Step 3: Define prediction intervals for each λ ∈ Λ.
Define Cλ by selecting the smallest value γ1 such that the prediction set

Cλ =
[
f̂ − γ1q̂

ale
α/2 − λγ1q̂

epi
α/2, f̂ + γ1q̂

ale
1−α/2 + λγ1q̂

epi
1−α/2

]
contains at least ⌈(1− α)(|Dcal|+ 1)⌉ of points in Dcal. See Appendix B.5 for implementation.

5: Step 4: Select λ⋆ that minimizes a chosen evaluation metric.
For any metric in Appendix D.5 (e.g., quantile loss), evaluate Cλ(x) on Dval and set

λ⋆ = argmin
λ∈Λ

QuantileLoss(Dval, Cλ),

where QuantileLoss(Dval, Cλ) :=
1

|Dval|
∑

i∈Dval

[
QLα/2

(
Yi, l(Xi)

)
+QL1−α/2

(
Yi, u(Xi)

)]
/2,

with l(x), u(x) denoting the bounds of Cλ(x), and QLτ (y, q) = (y − q)
(
τ − 1(−∞,q](y)

)
.

6: Output: λ⋆ and calibrated prediction interval Cλ⋆(x).

Proof. The consistency of the predictors implies q̂epi
τ (x) → 0, and the consistency of the quantile

estimators implies q̂ale
τ (x) → qale

τ (x) point-wise. Hence, the estimated pre-calibrated intervals
converge to their population analogues. Since supλ∈Λ λq̂epi

τ (x) → 0 converges to 0 uniformly over
λ ∈ Λ (due to compactness of Λ), therefore C(x) is asymptotically equal to true conditional quantiles
[rα/2(x), r1−α/2(x)]; and necessarily lim|Dcal|→∞ γ1 = 1, as is the case in classical CQR (see e.g.
(Angelopoulos et al., 2024, Section 5)).

Note that these assumptions are satisfied by the finite grid Λ used in our implementation and by many
base models, including tree-based methods and neural networks. We elaborate on the theoretical
implications in Appendix B, with formal guarantees for marginal coverage in Lemma B.2.

3 EXPERIMENTAL SETUP

3.1 DATA

We conduct experiments using both simulations and real-world data. The synthetic experiments assess
the theoretical guarantees of our approach. We sample X ∼ N (0d, Id) and compute the response
Y = µ(X) + σ(X) · ε, where ε ∼ N (0, 1). The mean function µ(X) introduces non-linearity
through transformations of input features (involving absolute values and fractional powers with
random coefficients); its explicit form, alongside σ(X), is detailed in Appendix C. The sample
size is fixed at n = 5000 and divided into 70-30% training and validation splits. In the univariate
case, we generate 100 datasets for d = 1, and in multivariate, 100 datasets randomly sampled for
d ∈ {2, 3, 20}. We then assess the conditional performance as a function of distance from [X],
where test points are randomly generated on the surfaces of spheres with varying radii. For the
real-world scenarios, we use 17 regression datasets curated by Agarwal et al. (2025), forming one
of the largest benchmarks for UQ (see Appendix D.1 for details). Categorical features are one-hot
encoded, with no further preprocessing. To ensure robustness, each dataset is evaluated over 10
random train-validation-test splits (60%-20%-20%). We conduct experiments in two configurations:
standard (using Dval also as Dcal) and conformalized (splitting the 20% validation into 10% Dval +
10% Dcal for stronger theoretical guarantees). Note that while the body of the paper only focuses on
the standard experiments, the conformalized results are provided in Appendix G.
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3.2 BASELINES

We compare CLEAR against its core components, CQR and PCS ensemble (for details, including
PCS implementation and further baselines that are relevant only to the appendices, see Appendix D).
Notably, the underlying uncertainty estimation models from CQR and PCS are reused within the
CLEAR framework. Our CQR follows the classical implementation (Romano et al., 2019) with the
difference that in our experiments, we primarily utilize an enhanced variant, termed ALEATORIC,
which uses bootstrapping (b = 100) on Yi and the model selection from PCS. We further improve
ALEATORIC in a new baseline called ALEATORIC-R, which models the residuals Yi − f̂(Xi)

instead, using f̂ from the corresponding PCS ensemble. The CLEAR method presented uses the
uncalibrated aleatoric uncertainty estimate from this ALEATORIC-R and the uncalibrated epistemic
uncertainty from PCS. For fairness and cross-comparison, the model type for quantile estimation
within the ALEATORIC-R model is determined by the best-chosen model for epistemic uncertainty.

We perform ablation studies by exploring three different variants of base models for PCS (epistemic)
and CQR (aleatoric). Our main approach, which we refer to as variant (a), uses a quantile PCS for
estimating epistemic uncertainty. We employ a diverse set of models designed to estimate conditional
quantiles, namely quantile random forests (QRF) (Meinshausen, 2006), quantile XGBoost (QXGB)
(Chen & Guestrin, 2016), and Expectile GAM (Servén & Brummitt, 2018). Then, the top-performing
model (k = 1) on the validation set is selected and bootstrapped (b = 100) to generate the epistemic
uncertainty estimate q̂epi and the median f̂ . CLEAR then combines this bootstrapped q̂epi with the
bootstrapped aleatoric estimate from ALEATORIC-R, ensuring ALEATORIC-R also uses the same
selected quantile model. The other two variants are explained in Appendix D.4, both using the same
b and k as above and only modifying the models. Variant (b) restricts quantile PCS as well as CQR
baselines to only QXGB to remove any impact on CLEAR’s evaluation due to the choice of the base
models. In contrast, variant (c) uses the standard PCS models to estimate the conditional mean. In
all cases, PCS intervals are calibrated using the multiplicative method.

To further validate the generalizability of CLEAR, we also apply and evaluate it to other uncertainty
estimators. This is a separate setup, where for epistemic uncertainty, we employ Deep Ensem-
bles (DE) (Lakshminarayanan et al., 2017)—an ensemble of neural networks trained with diverse
initializations—and for aleatoric uncertainty, we use Simultaneous Quantile Regression (SQR)
(Tagasovska & Lopez-Paz, 2019), which directly models multiple conditional quantiles (more de-
tail in Appendix D.3). These represent state-of-the-art deep learning approaches for uncertainty
quantification, complementing our primary PCS and CQR baselines.

In all cases, CLEAR parameters (λ, γ1) are optimized via quantile loss on the validation set. λ is
chosen from a dense grid combining linearly spaced values from 0 to 0.09 and logarithmically spaced
values from 0.1 to 100 (totaling over 4000 points), and γ1 is determined via conformal calibration
for the chosen λ. All intervals are evaluated at 95% nominal coverage. In our benchmarks, we only
address the model perturbations of PCS, not the data processing part, where we simplify the process
to a single dataset (N1 = 1), as in Agarwal et al. (2025). However, we show an example in Section 4.3
of how CLEAR can be applied in the N1 > 1 setting from Yu & Barter (2024, Chapter 13).

3.3 METRICS

To evaluate the quality of our prediction intervals, we employ interval coverage (PICP), normalized
interval width (NIW), average interval score loss and the quantile loss that are common in the interval
prediction literature (Pearce et al., 2018; V’yugin & Trunov, 2019; Azizi et al., 2025). We also
evaluate our work on Normalized Calibrated Interval Width (NCIW), defined as:

NCIW(f̂ , l, u) = NIW
(
f̂ − ctest-call, f̂ + ctest-calu

)
,

with a calibration constant

ctest-cal := argmin
c≥0

{
PICP

(
f̂ − cl, f̂ + cu

)
≥ 1− α

}
.

In the standard configuration, all methods are calibrated on the validation set; in the conformalized
configuration, calibration uses a separate 10% calibration split. In both cases the methods are already
calibrated before evaluation on the test set, resulting in ctest-cal ≈ 1. We primarily discuss NCIW and
quantile loss, but provide the results for all the available metrics.
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4 RESULTS

4.1 SIMULATIONS

Figure 2 shows conditional coverage and interval width for the univariate homoskedastic case. While
ALEATORIC-R achieve good coverage in high-density regions but under-cover in low-density or
extrapolation regions. When aleatoric and epistemic uncertainties are correlated, all methods perform
similarly in the data-rich region, but only CLEAR maintains correct conditional coverage throughout,
adapting interval width as needed. Additional results for heteroskedastic and multivariate settings in
Appendix C.2.2 show similar findings.
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Figure 2: Results for univariate homoskedastic case averaged over 100 simulations: On the left,
conditional coverage, and on the right, mean width, for X = x. It compares CLEAR, PCS, and
ALEATORIC-R (bootstrapped CQR trained on residuals Yi − f̂(Xi)). The dashed horizontal line is
the target coverage level of 0.9. CLEAR adapts to maintain target coverage across the input space.

4.2 REAL-WORLD DATA

Figure 3 shows the Normalized Calibrated Interval Width (NCIW) and Quantile Loss for 95%
prediction intervals across all datasets for our main approach, CLEAR (variant a), compared to
several baselines. CLEAR consistently demonstrates superior performance, achieving better or
comparable interval width and loss metrics while rigorously maintaining nominal coverage. The
inset boxplots show that CLEAR (a) compared to PCS, ALEATORIC, and ALEATORIC-R has
an improved quantile loss of 15.8%, 34.5%, and 9.4%, respectively. Similar relative increases are
observed for NCIW, with PCS, ALEATORIC, and ALEATORIC-R exhibiting increases of 17.4%,
28.2%, and 3%. Moreover, CLEAR (a) was, in fact, the top-performing method on 15 of the 17
datasets, while remaining the most stable compared to the baselines. These trends hold across our
other model variants as well (Appendix F for standard and Appendix G for conformalized results):
both CLEAR (b) and CLEAR (c) exhibit very similar relative improvements (Figures 7 and 8 in
Appendices F.2 and F.3), with variant (a) remaining the strongest and most robust configuration.

While we observed that setting λ = 1 or γ1 = 1 could marginally improve results if one had
prior knowledge of uncertainty components—an unlikely scenario in practice—fully optimizing
both parameters offers greater robustness. A limited size of the validation dataset can lead to
overfitting of the two parameters, and incorporating some prior on them could further improve the
results. Importantly, the absolute value of λ is relative to the pre-calibrated scales of the uncertainty
estimators and dataset noise; its interpretation is best contextualized by observing its behavior when
systematically varying dataset characteristics, such as the number of features or observations. While
fixed parameters (λ = 1 or γ1 = 1) could marginally improve results with prior knowledge, fully
optimizing both parameters offers greater robustness. CLEAR’s dual-parameter calibration enhances
stability by adaptively re-weighting potentially unreliable uncertainty components, as evidenced in
datasets like energy efficiency, where baselines show markedly larger NCIW. The dataset-
dependent variability in optimal λ underscores the need for adaptive selection over fixed heuristics.
The calibration runtime (grid-search) is also extremely negligible in practice (Appendix F.5).
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Figure 3: Results for real-world data: Quantile loss and NCIW performance of different methods
over 10 seeds normalized relative to CLEAR (baseline = 1.0) with error bars are ±1 σ. Lower values
are better. The inset boxplot shows the average (%) relative increase of the metric over CLEAR.
EPISTEMIC is PCS-UQ, ALEATORIC is bootstrapped CQR, and ALEATORIC-R uses residuals.

Empirical Comparison with UACQR When comparing against UACQR, we summarize the
results in Table X (table below, with a number in the camera-ready version), which shows the
percentage improvement of (standard/non-conformalized) CLEAR over both UACQR variants across
all 17 datasets and three metrics (detailed metric-specific tables are provided in Tables 43 to 45).
The performance of CLEAR is much more reliable across the considered datasets and metrics.
For example, on the airfoil, energy efficiency, and naval propulsion datasets,
CLEAR is significantly better (40-70%) in metrics such as Quantile Loss, NCIW, and Average
Interval Score Loss, while UACQR never outperforms CLEAR by more than 26% in any of the
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datasets in any of the considered metrics. Sometimes UACQR-P can also output infinitely wide
predictive intervals (Rossellini et al., 2024, p. 5), which we observed for energy efficiency in
our experiments. CLEAR performs better than both versions of UACQR in 14 out of 17 datasets.
These large differences in performance in Appendix G.3 can partially be explained by our approach
for fitting aleatoric uncertainty to the residuals. We hypothesize that CLEAR is more stable and
robust because it can more easily compensate for the shortcomings of the base models. If aleatoric
uncertainty is over- or underestimated, CLEAR can correct its scale by adjusting γ1.

Improvement (%) of standard CLEAR variant (c) over UACQR-S and UACQR-P for at 95% coverage
across 17 datasets. Bold values with + indicate CLEAR outperforms the s.

Dataset UACQR-S UACQR-P

NCIW QuantileLoss ScoreLoss NCIW QuantileLoss ScoreLoss

ailerons -1.6% 0.0% +3.4% -11.8% 0.0% +2.5%
airfoil +42.7% +46.5% +46.5% +40.5% +43.1% +43.1%
allstate +6.2% +1.3% +1.3% +0.2% -2.8% -2.8%
ca housing +23.4% +8.7% +8.7% +15.7% +5.8% +5.8%
computer +20.1% +9.3% +9.3% +6.9% +6.7% +6.7%
concrete +24.7% +21.2% +21.2% +22.0% +19.1% +19.1%
elevator +36.6% +30.6% +29.4% +23.3% +28.7% +27.3%
energy efficiency +69.8% +63.2% +63.2% +70.3% – +62.4%
insurance -15.3% -25.9% -25.9% -19.4% -24.3% -24.3%
kin8nm +27.6% +26.1% +26.1% +25.6% +24.2% +24.2%
miami housing +20.1% +19.0% +19.0% +14.1% +15.1% +15.1%
naval propulsion +55.9% +50.6% +52.0% +6.8% +57.0% +58.0%
parkinsons +19.9% +5.1% +5.1% +8.1% -5.4% -5.4%
powerplant +19.9% +13.3% +13.3% +15.9% +10.2% +10.2%
qsar +22.3% +11.1% +11.1% +14.7% +6.1% +6.1%
sulfur +13.3% +9.8% +9.8% +4.7% +6.9% +6.8%
superconductor +17.0% +7.3% +7.3% +12.6% +3.7% +3.7%

Empirical Comparison with DE and SQR Beyond PCS and CQR, CLEAR demonstrates substan-
tial improvements when applied to DE and SQR (Table 1). When using DE for epistemic uncertainty
and SQR for aleatoric uncertainty at 95% nominal coverage, CLEAR achieves average width re-
ductions (NCIW) of 28.6% and 13.4%, respectively, with similar improvements in quantile loss
(24.0% and 13.7%). The gains persist even after conformal calibration of the baselines, particularly
relevant to the aleatoric component (SQR). The results underscore CLEAR’s ability to balance the
two uncertainty sources well, regardless of the underlying estimators. This consistency across both
PCS and neural approaches validates the generality of CLEAR (full results in Appendix E).

Table 1: Mean (%) improvement of CLEAR over DE & SQR across 17 datasets (higher is better).

Metric DE SQR DE-conformal SQR-conformal

PICP +0.05% -0.66% -0.09% -0.15%
NIW +28.81% +17.38% +29.55% +14.07%
NCIW +28.57% +13.36% +27.90% +13.23%
QuantileLoss +23.98% +13.66% +24.08% +10.12%

4.3 CASE STUDY: ACCOUNTING FOR DATA UNCERTAINTY

We consider a case study on the Ames Housing dataset, detailed in Appendix H, where we demonstrate
the full PCS pipeline and vary the number of predictor variables used to model housing prices. Starting
from approximately 80 features, we construct a reduced version using only the top two predictors; this
setup naturally balances aleatoric uncertainty (increases due to limited information) and epistemic
uncertainty (decreases due to reduced model complexity). Table 2 reveals that while PCS performs
better with many predictors and CQR excels with fewer features, CLEAR adapts effectively to
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both scenarios through its calibrated uncertainty combination. CLEAR estimates λ = 0.6 in the 2-
variable case (prioritizing aleatoric uncertainty) versus λ = 14.5 in the full-feature case (emphasizing
epistemic uncertainty), with corresponding epistemic-to-aleatoric ratios of 0.03 and 7.72. This
adaptive weighting enables CLEAR to maintain sharp intervals across both scenarios, with nearly
halved average interval width when using all features.

Table 2: Ames Housing results (90% coverage target).

Experiment Method Coverage Average Width ($) Quantile Loss NCIW

2 features
PCS 0.87 107,880 3,818 0.213
CQR 0.89 104,741 3,448 0.186
CLEAR 0.89 98,571 3,191 0.179

All features
PCS 0.89 57,594 1,922 0.105
CQR 0.87 62,398 2,194 0.117
CLEAR 0.89 56,745 1,873 0.102

5 CONCLUSION, LIMITATIONS & FUTURE WORK

This paper introduces CLEAR, a novel framework for constructing prediction intervals by adaptively
balancing epistemic and aleatoric uncertainty. Through a calibration process involving two distinct
parameters, γ1 and γ2, CLEAR offers an improvement over classical methods that often address
these uncertainty types in isolation or rely on their fixed, non-adaptive combination. Our evaluations
using CQR (and SQR) for aleatoric uncertainty and PCS (and DE) for epistemic uncertainty show
that interval width and quantile loss improve on both simulated and the 17 real-world datasets.
CLEAR consistently achieves improved conditional coverage, notably by adapting interval widths
appropriately in extrapolation regions, while yielding narrower interval widths.

Limitations remain despite CLEAR’s significant advantages, and these warrant further discussion.
When scaling CLEAR to significantly larger datasets and models, specific hyperparameters (e.g.,
number of bootstraps) can be adjusted to save computational costs. The accuracy of CLEAR is
intrinsically linked to the quality of the base estimators for epistemic and aleatoric uncertainty. All our
calibration datasets contained at least 150 data points, but for smaller calibration datasets, overfitting
γ1 and λ could be a problem. Epistemic uncertainty, as demonstrated in the case study, must be
addressed through careful judgment calls, in line with the principles of the PCS framework. The
additive combination of scaled uncertainties, while powerful, is also a specific structural choice.

Future work could explore extension to classification tasks (Romano et al., 2020), alternative λ
selection techniques, integration with active learning, and more scalable epistemic UQ approaches
(Tagasovska et al., 2023). Extending CLEAR to time series settings could also be valuable, particularly
for capturing the dynamics of temporal uncertainty. Finally, a deeper study of the interpretability of
learned parameters could provide insights into the dominance of the two uncertainty sources.

REPRODUCIBILITY STATEMENT AND USAGE OF LARGE LANGUAGE MODELS

All code and datasets used in this work are provided in the supplementary material to ensure full
reproducibility of our results. We declare that we used a large language model for grammar and
language polishing, as well as for limited coding assistance (e.g., boilerplate code and debugging).
All conceptual and theoretical contributions, experimental designs, and conclusions are our own.
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P. Hofman, Y. Sale, and E. Hüllermeier. Quantifying aleatoric and epistemic uncertainty with proper
scoring rules, 2024a. URL https://arxiv.org/abs/2404.12215.

13

https://www.cs.toronto.edu/~delve/data/kin/desc.html
https://www.cs.toronto.edu/~delve/data/kin/desc.html
https://arxiv.org/abs/2305.12616
https://www.sciencedirect.com/science/article/pii/S0169207010000063
https://www.sciencedirect.com/science/article/pii/S0169207010000063
http://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf
http://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf
https://www.sciencedirect.com/science/article/pii/S0927025618304877
https://www.sciencedirect.com/science/article/pii/S0927025618304877
https://openreview.net/forum?id=OGg9XnKxFAH
https://www.research-collection.ethz.ch/handle/20.500.11850/699241
https://www.research-collection.ethz.ch/handle/20.500.11850/699241
https://proceedings.mlr.press/v162/heiss22a.html
http://proceedings.mlr.press/v37/hernandez-lobatoc15.pdf
https://arxiv.org/abs/2404.12215


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Paul Hofman, Yusuf Sale, and Eyke Hüllermeier. Quantifying aleatoric and epistemic uncertainty:
A credal approach. In ICML 2024 Workshop on Structured Probabilistic Inference & Generative
Modeling, 2024b. URL https://openreview.net/forum?id=MhLnSoWp3p.

N. Hollmann, S. Müller, L. Purucker, A. Krishnakumar, M. Körfer, S. B. Hoo, R. T. Schirrmeister,
and F. Hutter. Accurate predictions on small data with a tabular foundation model. Nature, 01
2025. doi: 10.1038/s41586-024-08328-6. URL https://www.nature.com/articles/
s41586-024-08328-6.

S. B. Hoo, S. Müller, D. Salinas, and F. Hutter. The tabular foundation model tabpfn outperforms
specialized time series forecasting models based on simple features, 2025. URL https://
arxiv.org/abs/2501.02945.
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Bojchevski, and Eyke Hüllermeier. Optimal conformal prediction under epistemic uncertainty,
2025. URL https://arxiv.org/abs/2505.19033.

R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Prob-
ability Letters, 33(3):291–297, 1997. ISSN 0167-7152. doi: https://doi.org/10.
1016/S0167-7152(96)00140-X. URL https://www.sciencedirect.com/science/
article/pii/S016771529600140X.

A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning for computer vision?,
2017. URL https://arxiv.org/abs/1703.04977.

kin8nm dataset. kin8nm dataset. https://www.openml.org/d/189, 2014. Accessed: 2025-
04-15.

M. Kirchhof, G. Kasneci, and E. Kasneci. Reexamining the aleatoric
and epistemic uncertainty dichotomy. In ICLR Blogposts 2025,
2025. URL https://iclr-blogposts.github.io/2025/blog/
reexamining-the-aleatoric-and-epistemic-uncertainty-dichotomy/.
https://iclr-blogposts.github.io/2025/blog/reexamining-the-aleatoric-and-epistemic-uncertainty-
dichotomy/.

R. Koenker. Quantile Regression. Number No. 38 in Econometric Society Monographs. Cambridge
University Press, Cambridge, 2005.

Roger Koenker and Gilbert Bassett. Regression quantiles. Econometrica, 46(1):33–50, 1978. ISSN
00129682, 14680262. URL http://www.jstor.org/stable/1913643.

Anastasis Kratsios. Universal regular conditional distributions via probabilistic transformers. Con-
structive Approximation, 57(3):1145–1212, 2023.

V. Kuleshov, N. Fenner, and S. Ermon. Accurate uncertainties for deep learning using calibrated
regression. In Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 2796–2804. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/kuleshov18a.html.

Volodymyr Kuleshov and Shachi Deshpande. Calibrated and sharp uncertainties in deep learning
via density estimation. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 11683–11693. PMLR, 17–
23 Jul 2022. URL https://proceedings.mlr.press/v162/kuleshov22a.html.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty estima-
tion using deep ensembles. In Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf.

14

https://openreview.net/forum?id=MhLnSoWp3p
https://www.nature.com/articles/s41586-024-08328-6
https://www.nature.com/articles/s41586-024-08328-6
https://arxiv.org/abs/2501.02945
https://arxiv.org/abs/2501.02945
https://doi.org/10.1007/s10994-021-05946-3
https://arxiv.org/abs/2505.19033
https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://arxiv.org/abs/1703.04977
https://www.openml.org/d/189
https://iclr-blogposts.github.io/2025/blog/reexamining-the-aleatoric-and-epistemic-uncertainty-dichotomy/
https://iclr-blogposts.github.io/2025/blog/reexamining-the-aleatoric-and-epistemic-uncertainty-dichotomy/
http://www.jstor.org/stable/1913643
https://proceedings.mlr.press/v80/kuleshov18a.html
https://proceedings.mlr.press/v162/kuleshov22a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

M. Laves, S. Ihler, J. F. Fast, L. A. Kahrs, and T. Ortmaier. Recalibration of aleatoric and epistemi-
cregression uncertainty in medical imaging. Machine Learning for Biomedical Imaging, 1:1–26,
2021. ISSN 2766-905X. doi: 10.59275/j.melba.2021-a6fd.

J. Lei and L. Wasserman. Distribution-free prediction bands for non-parametric regression. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 76, 2014.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-free
predictive inference for regression. Journal of the American Statistical Association, 113(523):
1094–1111, 2018.

Dan Levi, Liran Gispan, Niv Giladi, and Ethan Fetaya. Evaluating and calibrating uncertainty
prediction in regression tasks. Sensors, 22(15), 2022. ISSN 1424-8220. doi: 10.3390/s22155540.
URL https://www.mdpi.com/1424-8220/22/15/5540.

D. J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural Computation,
4(3):448–472, 05 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.3.448.

L. Marques and D. Berenson. Quantifying aleatoric and epistemic dynamics uncertainty via local
conformal calibration, 2024. URL https://arxiv.org/abs/2409.08249.

Michael Mayer, Steven C. Bourassa, Martin Hoesli, and Donato Scognamiglio. Machine learning
applications to land and structure valuation. Journal of Risk and Financial Management, 15
(5), 2022. ISSN 1911-8074. doi: 10.3390/jrfm15050193. URL https://www.mdpi.com/
1911-8074/15/5/193.

N. Meinshausen. Quantile regression forests. Journal of Machine Learning Research, 7(35):983–999,
2006. URL http://jmlr.org/papers/v7/meinshausen06a.html.

S. Müller, N. Hollmann, S. P. Arango, J. Grabocka, and F. Hutter. Transformers can do bayesian
inference. arXiv preprint arXiv:2112.10510, 2021.

Radford M. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture Notes in Statistics.
Springer New York, New York, NY, 1996.

Luong-Ha Nguyen and James-A. Goulet. Analytically tractable hidden-states inference in bayesian
neural networks. Journal of Machine Learning Research, 23(50):1–33, 2022a. URL http:
//jmlr.org/papers/v23/21-0758.html.

Luong-Ha Nguyen and James-A. Goulet. cuTAGI: a CUDA library for Bayesian neural networks
with tractable approximate Gaussian inference. https://github.com/lhnguyen102/cuTAGI, 2022b.

D.A. Nix and A.S. Weigend. Estimating the mean and variance of the target probability distribution.
In Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), volume 1,
pp. 55–60 vol.1, 1994. doi: 10.1109/ICNN.1994.374138.

P. Oberdiek, G. Fink, and M. Rottmann. Uqgan: A unified model for uncertainty quantification
of deep classifiers trained via conditional gans. In Advances in Neural Information Processing
Systems, volume 35, pp. 12345–12356, 2022.

T. Pearce, A. Brintrup, M. Zaki, and A. Neely. High-quality prediction intervals for deep learning:
A distribution-free, ensembled approach. In International conference on machine learning, pp.
4075–4084. PMLR, 2018.

PyCaret. Insurance dataset, n.d. URL https://raw.githubusercontent.com/pycaret/
datasets/main/data/common/insurance.csv. Accessed: 2025-04-15.

H. Ritter, A. Botev, and D. Barber. A scalable laplace approximation for neural networks. In
6th International Conference on Learning Representations (ICLR), 2018. URL https://
openreview.net/forum?id=Skdvd2xAZ. Conference Track Proceedings.

Y. Romano, E. Patterson, and E. Candès. Conformalized quantile regression. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

15

https://www.mdpi.com/1424-8220/22/15/5540
https://arxiv.org/abs/2409.08249
https://www.mdpi.com/1911-8074/15/5/193
https://www.mdpi.com/1911-8074/15/5/193
http://jmlr.org/papers/v7/meinshausen06a.html
http://jmlr.org/papers/v23/21-0758.html
http://jmlr.org/papers/v23/21-0758.html
https://raw.githubusercontent.com/pycaret/datasets/main/data/common/insurance.csv
https://raw.githubusercontent.com/pycaret/datasets/main/data/common/insurance.csv
https://openreview.net/forum?id=Skdvd2xAZ
https://openreview.net/forum?id=Skdvd2xAZ


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Y. Romano, M. Sesia, and E. Candès. Classification with valid and adaptive coverage. In Advances in
Neural Information Processing Systems, volume 33, pp. 3581–3591. Curran Associates, Inc., 2020.

R. Rossellini, R. Barber, and R. Willett. Integrating uncertainty awareness into conformalized quantile
regression, 2024. URL https://arxiv.org/abs/2306.08693.

Jonas Rothfuss, Fabio Ferreira, Simon Walther, and Maxim Ulrich. Conditional density estimation
with neural networks: Best practices and benchmarks, 2019. URL https://arxiv.org/
abs/1903.00954.

Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. Consistency of random forests. The Annals of
Statistics, 43(4):1716 – 1741, 2015. doi: 10.1214/15-AOS1321. URL https://doi.org/10.
1214/15-AOS1321.

D. Servén and C. Brummitt. pygam: Generalized additive models in python, March 2018. URL
https://doi.org/10.5281/zenodo.1208723.

B. Settles. Active Learning, volume 1 of Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning. Springer Cham, 1 edition, 2012. ISBN 978-3-031-00432-2. doi: 10.1007/
978-3-031-01560-1. URL https://doi.org/10.1007/978-3-031-01560-1. Syn-
thesis Collection of Technology (R0), eBColl Synthesis Collection 4.

Xinwei Shen and Nicolai Meinshausen. Engression: extrapolation through the lens of distributional
regression. Journal of the Royal Statistical Society Series B: Statistical Methodology, 87(3):
653–677, 11 2024. ISSN 1369-7412. doi: 10.1093/jrsssb/qkae108. URL https://doi.org/
10.1093/jrsssb/qkae108.

Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Bazan Clement Emile Mar-
cel Raoul, Rio Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, and Thomas
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A RELATED LITERATURE

In the main paper, Section 1 provides a high-level overview of uncertainty quantification in ML.
Section 2.2 contains an overview of epistemic uncertainty, and Section 2.3 discusses the aleatoric un-
certainty. In this appendix, we discuss these concepts in more depth. For an introduction to epistemic
and aleatoric uncertainty, see Hüllermeier & Waegeman (2021), which provides a comprehensive
overview.

A.1 LITERATURE THAT IMPLICITLY ASSUMES γ1 = 1

UACQR, introduced by Rossellini et al. (2024), is conceptually closest to CLEAR. Conceptually
on a high level, this method corresponds to a variant of CLEAR where γ1 = 1 is fixed, and only
λ is tuned. This is justified when aleatoric uncertainty is well-calibrated, which may often hold
asymptotically. When validation dataset is very small, setting γ1 = 1 can even bring small advantages
compared to tuning γ1. In practice, however, aleatoric uncertainty is often miscalibrated due to over-
or under-regularization. Tuning γ1 helps correct its scale. Furthermore, it can happen in practice that
the estimator of the aleatoric uncertainty has a much lower or much higher quality than the epistemic
uncertainty. In this case, optimizing both parameters γ1 and λ allows us to compensate for the failure
of one of the two uncertainties to some extent by putting more weight on the other type of uncertainty
without changing the marginal coverage. This results in a higher robustness and stability of CLEAR.

A.2 LITERATURE THAT IMPLICITLY ASSUMES λ = 1

Most of the literature that combines epistemic and aleatoric uncertainty implicitly assumes that λ = 1,
when they simply combine epistemic and aleatoric uncertainty in the ratio 1:1. On top of the resulting
uncertainty, one can use (conformal) calibration, which corresponds to CLEAR’s calibration of γ1.
However, in contrast to CLEAR, they do not rebalance the ratio of epistemic and aleatoric uncertainty
with λ.

In practice, it is possible to underestimate the aleatoric uncertainty and overestimate epistemic
uncertainty. This results in a one-dimensional calibration via γ1, and consequently, narrow intervals
in regions of dominating aleatoric uncertainty or in wide intervals in regions of dominating epistemic
uncertainty. γ1 alone cannot solve this. CLEAR can deal well with such situations by compensating
for such an imbalance via λ.

A.2.1 DEEP ENSEMBLES

While it is quite common to refer to deep ensembles (DE), whenever one uses an ensemble of neural
networks (NNs) for uncertainty estimation, it is important to note that Lakshminarayanan et al. (2017)
introduced DE as a method which both estimates epistemic and aleatoric uncertainty. For regression,
they train each NN with 2 outputs estimating µ and σ via a Gaussian Maximum-Likelihood-loss (as
in Nix & Weigend (1994)), where σ is responsible for the aleatoric uncertainty, which they refer
to as “ambiguity in targets y for a given x”. Moreover, they use the ensemble diversity to estimate
epistemic uncertainty, which they refer to as “model uncertainty”. Although DE is mainly known
for its ensembling approach, (Lakshminarayanan et al., 2017, Table 2 in Appendix A.1) clearly
shows that both the aleatoric and epistemic parts are crucial in terms of empirical performance. In
their paper, the authors do not apply any calibration on top, i.e., as it is implicitly assumed that
γ2 = γ1 = 1 = λ. However, it is common to apply (conformal) calibration on top. The commonly
used calibration techniques only calibrate γ1, while keeping λ = 1 fixed, in contrast to CLEAR. In
particular, for DE, both the diversity of the ensemble and the bias on aleatoric are very sensitive to
various hyperparameters. One type of uncertainty may be strongly underestimated. In contrast, the
other type is strongly overestimated, which motivates the need to explicitly calibrate λ in a data-driven
way.

Technical Details on Adversarial Attacks for Deep Ensembles. The original paper Lakshmi-
narayanan et al. (2017) is written as if applying adversarial attacks is an integral part of DEs and one
of the paper’s main contributions. However, to the best of our knowledge, many practitioners refer to
“DEs” without implying adversarial attacks during training, and adversarial attacks during training
are seen as an optional add-on to DEs, but not an important part of DEs. Furthermore, the regression
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results in (Lakshminarayanan et al., 2017, Table 2 in Appendix A.1) do not suggest that adversarial
attacks during training are particularly beneficial to the performance.

Technical Details on Measuring Deep Ensemble’s diversity. Intuitively, one should estimate high
epistemic uncertainty if there is a significant disagreement among the ensemble’s predictions and
small epistemic uncertainty if they agree. While (Yu & Barter, 2024, Chapter 13) and Agarwal et al.
(2025) suggest using quantiles, Lakshminarayanan et al. (2017) suggest using the empirical standard
deviation to estimate DE’s disagreement among ensemble members’ predictions. It seems plausible
that in Lakshminarayanan et al. (2017)’s case of 5 ensemble members, using the standard deviation
and some Gaussian assumptions can be more appropriate while in (Yu & Barter, 2024, Chapter 13)’s
and Agarwal et al. (2025)’s case of 100 or more ensemble members, quantiles can be more accurate.

Variations of Deep Ensembles. There exist several modifications of DE that, for example, promote
the ensemble’s diversity on the function space via an additional loss term during training (Wang
et al., 2019), ensemble over multiple different hyperparameters (Wenzel et al., 2020b), or reduce
the computational training cost (Kendall & Gal, 2017; Gal & Ghahramani, 2016; Wen et al., 2020;
Havasi et al., 2021; Rossellini et al., 2024; Chan et al., 2025; Agarwal et al., 2025).

A.2.2 MONTE CARLO DROPOUT

Gal & Ghahramani (2016) originally studied Monte Carlo Dropout (MC Dropout) without explicitly
modeling aleatoric uncertainty, which was then extended by Kendall & Gal (2017) to also explicitly
model aleatoric uncertainty. While Gal & Ghahramani (2016) see MC Dropout as an approximation
of a Bayesian neural network, one can also see it as another ensemble method. The main difference
to DE is that MC Dropout only trains one NN with dropout and obtains an ensemble after training by
randomly setting weights of the model to zero at inference time. Analogously to DE, MC Dropout
also adds epistemic and aleatoric uncertainty in the ratio 1:1 with the same disadvantages as described
before in Appendix A.2.1.

A.2.3 “A DEEPER LOOK INTO ALEATORIC AND EPISTEMIC UNCERTAINTY
DISENTANGLEMENT”

Valdenegro-Toro & Saromo (2022) empirically concludes that ensembles have the best uncertainty
and disentangling behavior of epistemic and aleatoric uncertainty. In their paper, the authors do not
use any form of calibration. This would correspond to γ2 = γ1 = 1 = λ in our notation. Their paper
suggests a different loss function, which they call β-NLL, for training to mitigate the underestimation
of aleatoric uncertainty to some extent in their experimental setting without comparing this approach
to calibration. In (Valdenegro-Toro & Saromo, 2022, Figure 6), one can observe that even without
the β-NLL, both epistemic and aleatoric uncertainty already have a good shape (that is, good relative
uncertainty, see Appendix I) for deep ensembles (DE). The main problem of DE in (Valdenegro-Toro
& Saromo, 2022, Figure 6) is that the epistemic uncertainty is too small by a very large factor (that is,
poor absolute scale of uncertainty, see Appendix I), while aleatoric uncertainty has already almost
the correct scaling. From our perspective, applying CLEAR on their DE would probably largely fix
their problem of DE if CLEAR chooses γ1 ≈ 1 and λ ≫ 1. However, they show that for this specific
experiment, β-NLL also fixes the problem. In general, where one suspects that the aleatoric or the
epistemic uncertainty might be too small or too large across the domain, we strongly recommend
simply applying CLEAR on top of the already trained ensemble instead of retraining all the models
with a new training pipeline. The concept of CLEAR can be implemented in a few minutes and
calibrates an already trained ensemble in a few seconds. We considered an interesting open problem
to study if β-NLL can improve the relative epistemic and aleatoric uncertainty (see Appendix I).

A.2.4 “RECALIBRATION OF ALEATORIC AND EPISTEMIC REGRESSION UNCERTAINTY IN
MEDICAL IMAGING”

Laves et al. (2021) also combines epistemic and aleatoric uncertainty in the ratio 1:1 and applies a
single constant (corresponding to γ1 in our notation) to scale the total predictive uncertainty, which
corresponds to fixing λ = 1, resulting in the same potential for problems as mentioned before.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.3 BAYESIAN MODELS

If one had access to a perfect prior, perfectly computed Bayesian inference, it would provide well-
calibrated epistemic and aleatoric uncertainty, at least in theory. However, in practice, the ratio
of estimated epistemic and aleatoric uncertainty can be very wrong, and the uncertainty can be
miscalibrated.

A.3.1 GAUSSIAN PROCESS REGRESSION (GPR)

Gaussian Process regression (Edward, 2003) provides a closed form for exact posterior epistemic
uncertainty for a given Gaussian process as a prior and for a given known noise Gaussian noise
distribution. If the (scale of the) prior or the scale (of the noise) is misspecified, the ratio of estimated
epistemic and aleatoric uncertainty can be arbitrarily bad, and the uncertainty can be miscalibrated.
Therefore, it is common to optimize hyperparameters like the noise scale and the prior scale (typically
in a non-Bayesian way). The main differences to CLEAR are that 1) for GPR, one has to refit the
model for every considered possibility of hyperparameters, while CLEAR optimizes γ1 and λ after
fitting the model, resulting in much lower computational costs; 2) CLEAR can be applied to other
base models as well such as tree-based models which are more popular in many applications; 3)
standard-implementations of GPR fit the hyperparameter on the training data rather than on the
validation data.

A.3.2 BAYESIAN NEURAL NETWORKS (BNNS)

Bayesian neural networks MacKay (1992); Neal (1996) offer a principled Bayesian framework for
quantifying both epistemic and aleatoric uncertainty through the placement of a prior distribution
on network weights. As for GPR, the ratio of estimated epistemic and aleatoric uncertainty in
BNNs is highly sensitive to the choice of prior. Consequently, we advocate applying CLEAR to an
already trained BNN, calibrating both uncertainty types via scaling factors γ1 and γ2 with negligible
additional computational overhead. While exact Bayesian inference in large BNNs is computationally
intractable, numerous approximation techniques have been proposed (Graves, 2011; Blundell et al.,
2015; Hernández-Lobato & Adams, 2015; Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017;
Ritter et al., 2018; Daxberger et al., 2021; Heiss et al., 2022b; Wenzel et al., 2020a; Nguyen & Goulet,
2022b;a; Cong et al., 2024; Shen et al., 2024). Interestingly, theoretical (Heiss et al., 2022a; Heiss,
2024) and empirical (Wenzel et al., 2020a) studies suggest that some of these approximations can
actually provide superior estimates compared to their exact counterparts, due to poor choices of
priors, such as i.i.d. Gaussian priors, in certain settings.

A.3.3 EPISCORE

The recent work by Cabezas et al. (2025) introduces EPICSCORE. Similar to our work, this method
addresses the limitations of standard conformal prediction in capturing epistemic uncertainty. EPIC-
SCORE focuses on enhancing existing conformal scores with Bayesian epistemic uncertainty. They
also compute the average interval score for 95% predictive intervals on the datasets airfoil (where
their best method out of 6 varaints performs more than 2 times worse than the worst of the 3 variants
of CLEAR), concrete (where their best method performs more than 1.5 times worse than the worst
variant of CLEAR) and Superconductivty (where their best method performs approximately
1.3 times worse than the worst variant of CLEAR).

A.3.4 TABPFN

TabPFN (Müller et al., 2021; Hollmann et al., 2025) is a transformer trained to emulate Bayesian
inference over a diverse prior of realistic tabular problems, achieving strong predictive uncertainty
estimates with a single forward pass. Its prior spans diverse noise structures and function classes,
yielding uncertainty estimates that inherently mix aleatoric and epistemic components. Although
recent variants such as TabPFN-TS (Hoo et al., 2025) extend its applicability to time series, the
method is limited to small tabular datasets and does not disentangle uncertainty types. In contrast, our
approach explicitly separates and calibrates epistemic and aleatoric uncertainty and scales to arbitrary
modalities and data sizes.
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A.4 CONFORMAL LITERATURE THAT DOES NOT ACCOUNT FOR EPISTEMIC AND ALEATORIC
UNCERTAINTY

The classical conformal prediction literature (Vovk et al., 2005; Vovk, 2012; Lei & Wasserman,
2014; Romano et al., 2019; Angelopoulos et al., 2024) primarily focuses on achieving marginal
coverage, often with attention to asymptotic conditional coverage. However, it often overlooks
epistemic uncertainty, which is especially critical in finite-sample settings. While Barber et al.
(2020) established the impossibility of achieving exact distribution-free conditional coverage in finite
samples, several recent works attempt to improve coverage guarantees in more restricted settings
under certain assumptions. For instance, Gibbs et al. (2024) propose coverage guarantees over a
subclass of distribution shifts, effectively interpolating between marginal and conditional coverage.
Others, such as Guan (2022) and Dwivedi et al. (2020), provide guarantees over a finite set of
prespecified subgroups. We argue that to obtain reliable conditional coverage, one must model
the uncertainty arising from each stage of the data science life cycle (Yu & Barter, 2024), and
appropriately integrate these uncertainties to achieve meaningful coverage guarantees.

A.5 OTHER CALIBRATION METHODS

Predictive uncertainty can be expressed either as a predictive set for a given level α, as a predictive
distribution, or as a numerical value quantifying the level of uncertainty (e.g., the entropy of the pre-
dictive distribution). Our implementation of CLEAR yields predictive intervals, making it compatible
with both base models that output intervals (such as QR) and with base models that output predictive
distributions from which one can easily obtain predictive intervals. Conceptually, CLEAR could also
be extended to predictive distributions or numerical values.

In the applied literature on predictive intervals, it is quite common to calibrate a constant factor
to rescale the width of predictive intervals (Laves et al., 2021; Heiss et al., 2022b; Yu & Barter,
2024; Agarwal et al., 2025). Independently, the conformal community came up with almost identical
methods based on theoretical considerations, as already discussed in Appendix A.4.

In the literature on predictive distributions, early works suggested more sophisticated non-linear
transformations for the predictive distributions (Kuleshov et al., 2018; Song et al., 2019; Kuleshov
& Deshpande, 2022). However, Levi et al. (2022) demonstrated that simply calibrating a constant
scaling factor performs on par with these more sophisticated calibration methods.

To summarize, there are multiple (slightly) different methods to calibrate uncertainty with similar em-
pirical performance. These methods only monotonically transform the uncertainty without changing
the ranking of the uncertainties (i.e., if one was more uncertain on x than on x̃ before the calibration
step, one will also be more uncertain on x than on x̃ afterwards; see Appendix I). In contrast, CLEAR
and UACQR can also change the ranking of the uncertainties (e.g., in the situation of Figure 1, a
small value of λ would assign more uncertainty to the center around x = 0 compared to the region
around x = −6, whereas a large value of λ would assign more uncertainty to x = −6 than to x = 0).

A.6 METHODS THAT MAINLY FOCUS ON DISTRBUTIONAL ALEATORIC UNCERTAINTY

In this section, we provide more details on the literature overview on aleatoric uncertainty from
Section 2.3.

One can directly estimate conditional quantiles for a given level α via quantile regression (QR)
(Koenker & Bassett, 1978), either parametric or nonparametric, such as smooth quantile regression
(Fasiolo et al., 2020) and quantile random forests (QRF) (Meinshausen, 2006). This is computationally
cheap if you a priori know which level α is of interest for your predictive intervals.

Alternatively, one can also try to estimate the conditional distribution. This can initially be
computationally more expensive, but once the conditional distributions are estimated, one can easily
obtain conditional quantiles for multiple different levels α. One of the computationally cheapest ways
to estimate conditional distributions is to estimate parameters of a specific distribution (e.g., µ(x) and
σ(x) of a Gaussian distribution) (Nix & Weigend, 1994). There are semi-parametric extensions of
this with universal approximation properties (Kratsios, 2023). There are many similar approaches to
estimate conditional densities (Rothfuss et al., 2019). Another way to obtain a conditional distribution
is to estimate the conditional quantiles for all levels α ∈ [0, 1] simultaneously, as in simultaneous
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quantile regression (SQR) (Tagasovska & Lopez-Paz, 2019) and its extension MAQR (Chung
et al., 2021). Especially for applications where the model output is high-dimensional (e.g., models
that output images), more modern deep generative models have become popular, e.g., conditional
generative adversarial networks (Oberdiek et al., 2022), conditional variational autoencoders (Han
et al., 2020), and diffusion models (Chang et al., 2023; Chan et al., 2025).

Limitations and Empirical Comparison The majority of these works fail to properly account
for epistemic uncertainty1, and don’t include a post-hoc calibration step. Each of these methods
could be incorporated into CLEAR as an alternative to our recommended ALEATORIC-R module.
For example, in some preliminary experiments combining SQR (Tagasovska & Lopez-Paz, 2019)
with ensemble-diversity (Lakshminarayanan et al., 2017) via CLEAR’s calibration step results in
significant improvements over the (calibrated versions) of the individual models. This shows the
applicability of CLEAR’s calibration step on pure deep-learning pipelines. Furthermore, when we
compare the results of our entire CLEAR pipeline reported in our paper with the results of the
entire SQR-pipeline and MAQR-pipeline reported in (Tagasovska & Lopez-Paz, 2019; Chung et al.,
2021), we can see that CLEAR massively outperforms their pipelines. This shows that our PCS-
based approach and our novel variant of QR are already highly recommendable choices, resulting in
state-of-the-art performance of the CLEAR-pipeline directly out of the box.

A.7 FURTHER RELATED LITERATURE

A.7.1 “BEYOND PINBALL LOSS: QUANTILE METHODS FOR CALIBRATED UNCERTAINTY
QUANTIFICATION”

Chung et al. (2021) explores the limitations of the pinball loss (which we call Quantile Loss),
criticizing that its direct minimization does not guarantee correct marginal coverage. In CLEAR,
we address this by framing the optimization of γ1 and λ as a constrained optimization problem (see
Equation (4) in Appendix B.3): we minimize the pinball loss on a calibration dataset Dcal (see Line 5
in Algorithm 1) while constraining the marginal coverage on Dcal (see Line 4 in Algorithm 1). This
constrained approach directly mitigates the criticism of Chung et al. (2021).

A.7.2 UNCERTAINTY QUANTIFICATION FOR CONDITIONAL IMAGE GENERATION

Chan et al. (2025) suggests combining a diffusion model for aleatoric uncertainty with a hyper-
network-generated ensemble for epistemic uncertainty to quantify the uncertainty in conditional
image generation. Diffusion models are particularly well-suited for conditional image generation, and
using a hyper-network can be a computationally more efficient way to obtain an ensemble. However,
they combine these two sources of uncertainty simply in the ratio 1:1 without any form of calibration
(corresponding to hard-coding λ = γ1 = γ2 = 1 in our notation). It would be interesting future work
to apply calibration in the spirit of CLEAR on top of Chan et al. (2025) to extend the idea of CLEAR
to conditional image generation.

A.7.3 UNCERTAINTY QUANTIFICATION FOR PRETRAINED MODELS

Wang & Ji (2024) estimates the epistemic uncertainty for pre-trained classification models, while
CLEAR focuses on both epistemic and aleatoric components for regression. It would be interesting
future work to extend CLEAR to also be applicable to already pre-trained models using techniques
presented in Wang & Ji (2024).

A.7.4 UNCERTAINTY QUANTIFICATION AS A BINARY CLASSIFICATION PROBLEM

Altieri et al. (2024) do not provide predictive intervals or distributions. Instead, they partition test
data into “good” (more certain) and “bad” (less certain) points. As future work, one could derive
a binary classifier from CLEAR by thresholding the predictive interval width, and then evaluate it
under their proposed metrics.

1Chan et al. (2025) include epistemic uncertainty in the ratio 1:1; Chung et al. (2021) conduct limited
experiments on including epistemic uncertainty in their appendix; Tagasovska & Lopez-Paz (2019) proposes
Orthonormal Certificates for estimating epistemic uncertainty, but explicitly leave the combination for future
work.
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A.7.5 CREDAL SETS

Hofman et al. (2024b) describe epistemic uncertainty via credal sets on the space of distributions.
This approach is quite natural for classification, where the space of distributions over K classes is
(K − 1)-dimensional. However, they do not provide any concrete algorithms for regression, where
the space of all distributions over a continuous set is infinite-dimensional. Hofman et al. (2024b)
suggest multiple ideas on how one can translate credal sets into two real/valued numbers describing
the magnitude of the epistemic and the aleatoric uncertainty. Javanmardi et al. (2025) proposes a
method that can provide conformal predictive sets for classification with guaranteed input-conditional
coverage under the assumption that one already has access to credal sets that guaranteeably cover
the true input/conditional distribution. They also briefly discuss that for real-world applications, this
assumption is not satisfied.

A.7.6 IN-SAMPLE CALIBRATION YIELDS CONFORMAL CALIBRATION GUARANTEES

For the ditributional regression, Allen et al. (2025) suggest using conformal binning or confor-
mal isotonic distributional regression and prove theoretical guarantees under the exchangability
assumption.

A.7.7 ENGRESSION

Shen & Meinshausen (2024) uses generative methods for uncertainty estimation that, in particular,
take advantage of pre-additive noise (i.e., noise that is directly added to x).
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B THEORY: COVERAGE GUARANTEES AND THEORETICAL JUSTIFICATIONS

B.1 FINITE-SAMPLE MARGINAL COVERAGE FOR CLEAR

While conformal methods typically offer finite-sample marginal coverage guarantees, our implemen-
tation of CLEAR does not strictly adhere to these guarantees for two reasons:

1. We reuse the validation dataset Dval as the calibration dataset, i.e., Dcal = Dval.
2. We optimize two parameters γ1 and λ on the calibration dataset Dcal.

However, our empirical results in Tables 12, 17 and 22 show that for reasonably sized datasets, this
theoretical discrepancy does not visibly impact our practical marginal coverage. From a theoretical
perspective, CLEAR still achieves asymptotic marginal coverage (as a consequence of asymptotic
conditional coverage, see Lemma 2.1).

By slightly modifying the CLEAR procedure, we can obtain a theoretical finite-sample guarantee for
marginal coverage under the standard exchangeability assumption, as in conformal inference, without
sacrificing asymptotic conditional coverage. The key idea is to optimize the parameter λ using only a
validation dataset Dval, and then calibrate γ1 using a separate, previously unseen calibration dataset
Dcal.
Definition B.1 (Conformalized CLEAR). Let the available data be split into a training set Dtrain and
an old validation set Dold

val . We first split Dold
val into two disjoint sets: a new validation set Dval and a

calibration set Dcal. The procedure is as follows:

1. Train and Optimize λ by running Algorithm 1 on Dtrain and Dval: The model f̂ and the
uncertainty estimators are trained on Dtrain (Step 2 and 3 of Algorithm 1). The optimal value
λ∗ is found by optimizing the QuantileLoss on Dval, without using any data from Dcal (Step
4 and 5 of Algorithm 1).

2. Compute Conformity Scores: For each data point (Xi, Yi) ∈ Dcal, compute the conformity
score Sλ∗

i :

Sλ∗

i = max

{
l̃λ∗(Xi)− Yi

f̂(Xi)− l̃λ∗(Xi)
,

Yi − ũλ∗(Xi)

ũλ∗(Xi)− f̂(Xi)

}
where l̃λ∗ := f̂ − q̂ale

α/2 − λ∗q̂epi
α/2 and ũλ∗ := f̂ + q̂ale

1−α/2 + λ∗q̂epi
1−α/2.

3. Calibrate the Prediction Interval: Set the calibration parameter γ∗
1 to be the ⌈(1 −

α)(|Dcal| + 1)⌉-th smallest value among the conformity scores Sλ∗

i from Dcal. If ⌈(1 −
α)(|Dcal|+ 1)⌉ > |Dcal|, set γ∗

1 = ∞.

4. Form the Final Prediction Interval: For a new test point xnew, the final (1− α)-prediction
interval is given by:

C(xnew) =
[
f̂(xnew)− γ∗

1

(
q̂ale
α/2 + λ∗q̂epi

α/2

)
, f̂(xnew) + γ∗

1

(
q̂ale
1−α/2 + λ∗q̂epi

1−α/2

)]
This modified version of CLEAR, which we call Conformalized CLEAR, satisfies the standard
finite-sample marginal coverage guarantee of conformal prediction.
Lemma B.2. Under the assumption that the data points in the calibration set Dcal and the test point
(Xnew, Ynew) are exchangeable, the prediction interval C(Xnew) generated by the Conformalized
CLEAR procedure satisfies:

P(Ynew ∈ C(Xnew)) ≥ 1− α.

Proof. The proof is a direct application of the standard theoretical guarantees for split conformal pre-
diction. Since λ∗ is determined using only data from Dval, it is fixed with respect to the calibration set
Dcal. The conformity scores Sλ∗

i are therefore exchangeable for all (Xi, Yi) ∈ Dcal ∪ {(Xnew, Ynew)}.
The choice of γ∗

1 as the empirical (1− α)(1 + 1/|Dcal|)-quantile of the calibration scores ensures
that the resulting prediction interval achieves at least 1 − α marginal coverage, as established by
(Angelopoulos et al., 2024, Theorem 1.4).
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However, in practice, we recommend using our default implementation of CLEAR, where the valida-
tion data is reused for calibration (Dcal = Dval). This improves data efficiency while still achieving
strong approximate marginal coverage in our experiments (see Tables 12, 17 and 22). Avoiding a split
allows more data for both validation and calibration, which improves model selection and stabilizes
marginal and conditional coverage. Even when marginal coverage P(Ynew ∈ C(Xnew)) ≥ 1− α is
satisfied, the actual coverage P(Ynew ∈ C(Xnew)|Dtrain,Dval,Dcal) can be significantly lower than the
target coverage 1− α for a fixed calibration dataset Dcal, due to the inherent variation of Dcal. Only
with sufficiently large calibration datasets Dcal can we expect P(Ynew ∈ C(Xnew)|Dtrain,Dval,Dcal) to
be reliably close to P(Ynew ∈ C(Xnew)).2

B.1.1 LIMITATIONS OF CONFORMAL MARGINAL COVERAGE GUARANTEES

The conformal theory heavily relies on the assumptions of exchangeability. Exchangability means
that the joint distribution of calibration and test observations is invariant to permutations (e.g.,
iid observations satisfy this assumption). While exchangeability is theoretically convenient, it is
unrealistic in many real-world settings. Models are typically trained on past data and deployed in the
future, where the distribution of Xnew usually shifts, i.e., P[Xnew] ̸= P[X]. Even if P[Ynew|Xnew] =
P[Y |X] remains fixed, such marginal shifts in Xnew can cause conformal methods to catastrophically
fail to provide valid marginal coverage. In Section 4.1 and Appendix C (Figures 2 and 4 to 6),
CLEAR empirically remains robust, while CQR and Naive-Conformal fail under distribution shifts in
Xnew. E.g., Figure 4, suggests P[Ynew ∈ CNaive(Xnew) | |Xnew| ≥ 2] ≤ 70% ≪ 90% = 1− α, thus
a marginal distribution shift of Xnew that strongly increases the probability of |Xnew| > 2, would
lead to a large drop of marginal coverage for (Xnew, Ynew). CLEAR likewise lacks formal guarantees
under extreme shifts, but consistently performs more reliably across our experiments. In the case
study (Section 4.3), a realistic temporal split (see (Yu & Barter, 2024, Section 8.4.3)) also violates
exchangeability, and CLEAR outperforms conformal baselines in marginal coverage. Caution is
required when trusting conformal guarantees, as the assumption of exchangeability is often not
met in practice, and some conformal methods catastrophically fail for slight deviations from the
exchangeability assumption.

Even under the assumption of exchangeability, conformal guarantees have further weaknesses:

1. The conformal marginal coverage guarantee

P[Ynew ∈ C(Xnew)] = EDtrain,Dcal [P[Ynew ∈ C(Xnew)|Dtrain,Dcal]] ≥ 1− α

does not imply that P[Ynew ∈ C(Xnew)|Dtrain,Dcal] ≥ 1 − α for a fixed realization of the
calibration set Dcal, as already discussed before. If the calibration residuals are small by
chance, conformal intervals may be too narrow, especially with tiny calibration datasets.
Reliable calibration is generally unattainable with tiny calibration datasets: Even if the
exchangeability assumption is satisfied, even methods with conformal guarantees often
strongly undercover, i.e., PDtrain,Dcal [P[Ynew ∈ Cconformal(Xnew)|Dtrain,Dcal] ≪ 1− α] ≫ 0.
Therefore, caution is required when communicating conformal guarantees to practitioners.

2. Beyond marginal coverage, CLEAR is designed to improve conditional calibration:
P[Ynew ∈ C(Xnew)|Xnew] ≈ 1 − α. This is crucial in human-in-the-loop settings, where
interventions are prioritized based on an accurate ranking of predictive uncertainty across
data points (see Appendix I). Marginal coverage guarantees offer no guarantees for such
rankings nor for conditional coverage. A method could have perfect marginal coverage but
rank uncertainties arbitrarily. In other words, marginal coverage guarantees only address
one specific metric (marginal coverage), while ignoring many other metrics that are often
more important in practice.

To summarize, conformal marginal coverage guarantees (such as Lemma B.2) say very little about the
overall quality of an uncertainty quantification method. Conformal marginal coverage guarantees only
shed light on a very specific aspect of uncertainty quantification and only under the quite unrealistic
assumption of exchangability.

2Conformal theory provides theoretical guarantees for P(Ynew ∈ C(Xnew)) ≥ 1 − α and P(Ynew ∈
C(Xnew)|Dtrain,Dval) ≥ 1 − α under the standard exchangeability assumption. However, it does not pro-
vide finite-sample guarantees for P(Ynew ∈ C(Xnew)|Dtrain,Dval,Dcal) and P(Ynew ∈ C(Xnew)|Dcal) for a fixed
calibration dataset, even under the standard exchangeability assumption.
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B.2 ASYMPTOTIC CONDITIONAL COVERAGE FOR CLEAR: LEMMA 2.1 ASSUMPTIONS

The assumptions underlying Lemma 2.1 are generally mild and often satisfied in practice. The
assumption that Λ is compact is particularly mild. In our experiments, we use a finite grid; for
example, a combination of linearly spaced values from 0 to 0.09 and logarithmically spaced values
from 0.1 to 100, resulting in approximately 4010 points. Intuitively, we believe that even if Λ were
unbounded, the result of Lemma 2.1 would still hold, since QuantileLoss is a strictly proper scoring
rule and thus would not lead to excessively large values of λ∗ in the limit.

Lemma 2.1 also assumes consistency of the estimators. Many estimators satisfy this condition for
both regression and quantile regression tasks:

1. Quantile Random Forests have been shown to consistently estimate quantiles under rea-
sonable conditions, such as by regularizing the minimum number of samples per leaf
(Meinshausen, 2006). Similarly, classical Random Forests are known to be consistent under
standard assumptions (Scornet et al., 2015). Both QRF and Random Forests are available in
our implementation of CLEAR.

2. Boosting methods trained on general loss functions can be made consistent under certain
conditions, especially when regularized through early stopping (Zhang & Yu, 2005). This
suggests that XGBoost and its quantile version, QXGB, can be consistent for suitable choices
of hyperparameters. Both are included in our implementation of CLEAR.

3. More generally, regularized minimization of QuantileLoss over a sufficiently expressive
function class on Dtrain yields consistent quantile estimators under broad assumptions
(Steinwart & Christmann, 2011).

In our experiments, we set k = 1, so Lemma 2.1 requires only one of the base models to be consistent.

Finally, note that Lemma 2.1 implicitly assumes i.i.d. data, as described in Section 2.1. For real-world
datasets, this i.i.d. assumption is often the most difficult to justify in practice and may pose a greater
challenge than the other assumptions in the lemma.

B.3 PROPERTIES OF THE QUANTILELOSS

We define the QuantileLoss(D, C) := 1
|D|

∑
(x,y)∈D

[
QLα/2

(
y, l(x)

)
+QL1−α/2

(
y, u(x)

)]
/2

(also denoted as “pinball loss”, “quantile loss”, “asymmetric piecewise linear loss”, “linlin loss”,
“hinge loss”, “tick loss”, or “newsvendor loss” (Gneiting, 2011)), with l(x), u(x) denoting the bounds
of C(x), and QLτ (y, q) = (y − q)

(
τ − 1(−∞,q](y)

)
. Note that the majority of the literature defines

the quantile loss as QLτ , whereas our QuantileLoss already aggregates QLτ over both the upper and
the lower bound of the intervals C and over the data points in D.

We use the QuantileLoss for three different purposes in this paper:

1. Some QR-methods in Step 2 of Algorithm 1 use the QuantileLoss to train their models.
2. In Step 4 of Algorithm 1 we minimize the QuantileLoss to determine λ∗. In other words,

Step 3 and 4 of Algorithm 1 together (approximately) solve

(γ⋆
1 , λ

⋆) = argmin
(γ1,λ)∈(0,∞)×Λ

s.t. |{(x,y)∈Dcal:y∈Cγ1,λ(x)}|≥⌈(1−α)(|Dcal|+1)⌉

QuantileLoss(Dval, Cγ1,λ), (4)

where Cγ1,λ =
[
f̂ − γ1q̂

ale
α/2 − λγ1q̂

epi
α/2, f̂ + γ1q̂

ale
1−α/2 + λγ1q̂

epi
1−α/2

]
.

3. We use the QuantileLoss as an evaluation metric on the test dataset Dtest.

In the following, we will discuss multiple favorable properties of the QuantileLoss (many of these
properties also hold for the Interval Score Loss).

B.3.1 INTUITION BEHIND THE QUANTILELOSS

In many real-world applications, the severity of a prediction error often depends on the magnitude of
the deviation from the predictive interval. For example, in financial portfolio management, a massive
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drop below the predicted lower bound can be significantly more damaging than a slight deviation.
Similarly, for flood protection systems where dam heights are based on an upper predictive bound,
a large amount of overflow causes substantially more damage than a small overflow. Traditional
metrics like PICP treat coverage as a binary outcome, distinguishing only between points that are
covered and those that are not. The QuantileLoss, however, offers a more nuanced evaluation by
penalizing the magnitude of a data point’s distance from the predictive interval when it is not covered.

Intuitively, the QuantileLoss strongly penalizes the distance to the predictive intervals for data points
outside the predictive interval, and gently penalizes the width of the predictive intervals that do not
cover the data points. This incentivizes the predictive intervals to widen in regions of large uncertainty
and to adaptively narrow down in regions of low uncertainty, incentivizing good relative uncertainty
(see Appendix I). Simultaneously, the QuantileLoss incentivizes good absolute uncertainty (i.e.,
marginal calibration, see Appendix I): If the proportion of data points below the upper bounds is
less than 1− α

2 , then increasing the upper bounds by a constant improves the QuantileLoss until the
proportion reaches 1− α

2 , i.e., for all c > 0,

|{(x, y) ∈ Dcal : y ≤ u(x) + c}| < (1− α

2
)|Dcal|

=⇒ QuantileLoss(D, [l, u]) > QuantileLoss(D, [l, u+ c]),

and vice versa if the proportion of data points below the upper bounds is more than 1− α
2 , i.e., for all

c > 0,

|{(x, y) ∈ Dcal : y ≤ u(x)}| > (1− α

2
)|Dcal|

=⇒ QuantileLoss(D, [l, u]) < QuantileLoss(D, [l, u+ c]),

and analogously, the QuantileLoss incentivizes the lower bound to be above α
2 |Dcal| data points

and below (1− α
2 )|Dcal| data points. The QuantileLoss simultaneously evaluates multiple different

properties of predictive intervals and cannot be easily tricked, in contrast to other metrics: PCIP can
be easily maximized by infinitely wide intervals, which are completely useless in practice; NIW
can be minimized by zero-width intervals, which are useless in practice; NCIW only measures the
relative uncertainty while completely ignoring the marginal coverage.

B.3.2 THE QUANTILELOSS MEASURES INPUT-CONDITIONAL CALIBRATION

In the following, we will mathematically argue why the QuantileLoss measures input-conditional
calibration. Within this paper, we denote input conditional calibration P[Ynew ∈ C(Xnew)|Xnew] =
1− α simply as conditional calibration.

The true input conditional quantiles minimize the expected QuantileLoss, i.e.,

(qα/2, q1−α/2) ∈ argmin
(l,u)∈YX×YX

E(Xnew,Ynew)

[
QuantileLoss

(
{(Xnew, Ynew)}, [l, u]

)]
. (5)

Any minimizer of the QuantileLoss satisfies input-conditional coverage almost surely (a.s.)3, i.e.,
any solution (l∗, u∗) of the minimization problem (5) satisfies that l∗(X) is an input-conditional
α/2-quantile a.s. and u∗(X) is an input-conditional 1 − α/2-quantile a.s., thus, P[Ynew ∈
[l(Xnew), u(Xnew)]|Xnew]

a.s.
≥ 1 − α. In other words, any deviation from the true quantiles gets

penalized by the expected QuantileLoss, as it is a strictly proper scoring rule (Koenker, 2005). If the
true conditional CDF is a.s. continuous, then any solution (l∗, u∗) of (5) satisfies input-conditional
calibration P[Ynew ∈ [l(Xnew), u(Xnew)]|Xnew]

a.s.
= 1− α. In other words, any deviation from input-

conditional coverage gets penalized. Applying the QuantileLoss on a finite dataset D can be seen as
a Monte-Carlo approximation of the expected QuantileLoss.

Another common evaluation method is to compare the average interval width NIW (or NCIW)
among methods that approximately obtain the targeted marginal coverage. However, this evaluation
method can be exploited: Even if you perfectly know the true distribution, reporting intervals that do
not satisfy input-conditional coverage would be optimal. This evaluation method prefers intervals

3A statement holds almost surely if it holds a probability of 100%. E.g., a standard normally distributed

random variable X ∼ N (0, 1) is a.s. not exactly equal to
√
2, i.e., X

a.s.
̸=

√
2.
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that over-cover in regions with low uncertainty and under-cover in regions of high uncertainty, as
demonstrated in the following examples (Examples B.3 and B.4 are easier to derive, but Examples B.5
and B.6 are slightly more insightful).
Example B.3. Let X ∈ {1, 2}, with P[X = 1] = 0.5 and P[X = 2] = 0.5. Let Y |X = 1 ∼ U(−1, 1)
and Y |X = 2 ∼ U(−2, 2). For a target coverage of 1− α = 0.9, the true conditional intervals are:

• [−0.9, 0.9] when X = 1 (width=1.8, coverage=0.9)

• [−1.8, 1.8] when X = 2 (width=3.6, coverage=0.9)

The average width of the true intervals is E[width] = 0.5×2 ·0.9+0.5×2 ·1.8 = 2.7. The marginal
coverage is exactly 0.9. Now, consider an alternative method that sacrifices conditional calibration to
minimize average width. This method could report the following intervals:

• [−1, 1] when X = 1 (width=2, coverage=1)

• [−1.6, 1.6] when X = 2 (width=3.2, coverage=0.8)

The marginal coverage of this method is P[covered] = 0.5× 1+ 0.5× 0.8 = 0.9. It still achieves the
target marginal coverage of 90%, but its average width is E[width] = 0.5× 2 + 0.5× 2 · 1.6 = 2.6.
Since 2.6 < 2.7, this method would be preferred, demonstrating that NIW can incentivize deviations
from input-conditional calibration. ⋄
Example B.4. Under the setting of Example B.3, the situation gets even more extreme if we change
to α = 0.5: For a target coverage of 1− α = 0.5, the true conditional intervals are:

• [−0.5, 0.5] when X = 1 (width=1, coverage=0.5)

• [−1, 1] when X = 2 (width=2, coverage=0.5)

The average width of the true intervals is E[width] = 0.5×1+0.5×2 = 1.5. The marginal coverage
is exactly 0.5. Now, consider an alternative method that sacrifices conditional calibration to minimize
average width. This method could report the following intervals:

• [−1, 1] when X = 1 (width=2, coverage=1)

• [127, 127] when X = 2 (width=0, coverage=0)

The marginal coverage of this untruthful method is P[covered] = 0.5× 1 + 0.5× 0 = 0.5. It still
achieves the target marginal coverage, but its average width is E[width] = 0.5 × 2 + 0.5 × 0 = 1.
Since 15 < 1.5, this untruthful method would be preferred, demonstrating that NIW can incentivize
strong deviations from input-conditional calibration. Here, the interval that minimizes NIW (and
NCIW) under the constraint of maintaining marginal coverage, outputs a much wider interval for
X = 1 than for X = 2, while there is obviously more uncertainty for X = 2 than for X = 1. ⋄
Example B.5. Let P[X = 1] = 0.5 = P[X = 2], and Y |X = x ∼ N (µ = 0, σ = x). Then
for α = 5%, the true conditional quintiles would be q0.975(x) = Φ−1(0.975)x ≈ 1.96x and
q0.025(x) = Φ−1(0.025)x ≈ −1.96x, thus [q0.025, q0.975] exactly satisfy input-conditional calibra-
tion P [Ynew ∈ [q0.025(Xnew), q0.975(Xnew)] | Xnew]

a.s.
= 95%. However, the on average narrowest

intervals satisfying marginal coverage would be approximately

• [−2.16357, 2.16357] when X = 1 (width = 2 · 2.16357, coverage ≈ 0.969502)

• [−1.81514 · 2, 1.81514 · 2] when X = 2 (width = 2 · 1.81514 · 2, coverage ≈ 0.930498).

These intervals fail input-conditional coverage while maintaining marginal coverage and result in a
narrower average width 5.79385 < 5.88 than the true intervals [q0.025, q0.975]. ⋄
Example B.6. Let P[X = 1] = 9

19 = P[X = 2], P[X = 11] = 1
19 , and Y |X = x ∼ N (µ = 0, σ =

x). Then for α = 10%, the true conditional quintiles would be q0.9(x) = Φ−1(0.95)x ≈ 1.645x and
q0.05(x) = Φ−1(0.05)x ≈ −1.645x, thus [q0.5, q0.95] exactly satisfy input-conditional calibration
P [Ynew ∈ [q0.05(Xnew), q0.95(Xnew)] | Xnew]

a.s.
= 90%. However, the on average narrowest intervals

satisfying marginal coverage would be approximately
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• [−2.16357, 2.16357] when X = 1 (width = 2 · 2.16357, coverage ≈ 0.969502)

• [−1.81514 · 2, 1.81514 · 2] when X = 2 (width = 2 · 1.81514 · 2, coverage ≈ 0.930498).

• [12345, 12345] when X = 11 (width = 0, coverage = 0).

These intervals fail input-conditional coverage while maintaining marginal coverage and result in a
narrower average width 5.48891 < 6.705263 than the true intervals [q0.5, q0.95]. ⋄

Interpretation of Examples B.3 to B.6. While QuantileLoss is only minimized for intervals
consisting of the true quantiles [qα

2
, q1−α

2
], the Examples B.3 to B.6 showed that metrics like PCIP,

NIW, NCIW, and their combinations can be misaligned with input-conditional coverage. This
misalignment can be very severe in Examples B.4 and B.6, whereas it is less severe in Examples B.3
and B.5. Intuitively, the malalignment can be particularly extreme for large values of α (as in
Example B.3) or for inputs that are much more uncertain than the average uncertainty (as for x = 11
in Example B.5). In our experiments on real-world data in Sections 4.2 and 4.3 and Appendix F,
compared to these extreme examples, the different metrics are more aligned, in the sense that CLEAR
shows superior performance across all considered metrics. Reasons for this empirically observed
alignment could be that 1st none of the compared methods actively tries to exploit the weaknesses of
PCIP, NIW, NCIW; 2nd in our experiments, we use only small values of α = 5% (and α = 10%); 3rd

there might not be many regions of extremely high uncertainty in these dataset.

Now we have concluded that under the QuantileLoss, it is optimal always to report the true quantiles
if the true underlying distributions are known. In the next subsection, we will discuss how this
translates to situations where the true distributions are not known.

B.3.3 THE QUANTILELOSS INCENTIVIZES TRUTHFULNESS EVEN UNDER INCOMPLETE
INFORMATION (FROM A BAYESIAN POINT OF VIEW)

Proper scoring rules are mathematically guaranteed to incentivize reporting the true distribution, but
their application to uncertainty quantification requires care in interpreting what kind of uncertainty
they incentivize. Buchweitz et al. (2025) show that some proper scoring rules impose asymmetric
penalties for over- versus under-estimation. While this may appear to induce bias, we argue that
such asymmetry faithfully captures epistemic uncertainty rather than distorting the estimate of total
predictive uncertainty.

In our case, the relevant scoring rule is the QuantileLoss. For a given quantile, e.g., q0.975, the loss
penalizes underestimation more heavily than overestimation. This asymmetry is not a flaw; rather, it
incentivizes appropriately wider predictive intervals in the presence of epistemic uncertainty. Specifi-
cally, this asymmetry encourages intervals to widen more in regions of high epistemic uncertainty
than in regions of low epistemic uncertainty.

This phenomenon can be described more quantitatively from a Bayesian perspective. The posterior
predictive distribution,

P[Ynew | Xnew,Dtrain, π] = E
[
P[Ynew | Xnew, θ] | Dtrain, π

]
optimally reflects both aleatoric uncertainty P[Ynew | Xnew, θ] (e.g., noise) and epistemic uncertainty
P[θ | Dtrain, π] (e.g., over parameters) given a prior π.4 Marginalizing over the posterior naturally
yields a wider distribution than relying on a single point estimate, with a greater widening effect in
regions of high epistemic uncertainty. Let qτ,P denote the τ -quantile of a distribution P . The posterior
predictive quantiles (qα/2,P[Ynew|Xnew,Dtrain,π], q1−α/2,P[Ynew|Xnew,Dtrain,π]) minimize the expected quantile
loss:

E
[
QuantileLoss

(
{(Xnew, Ynew)}, [l, u]

)
| Dtrain, π

]
.

Since the posterior predictive distribution includes epistemic uncertainty, its quantiles also appropri-
ately include this component. This stands in contrast to other estimators, such as q1−α/2,P[Ynew|Xnew,θ̂]

,
E
[
q1−α/2,P[Ynew|Xnew,θ] | Dtrain, π

]
, or Median

[
q1−α/2,P[Ynew|Xnew,θ] | Dtrain, π

]
(similar to how we es-

timate the pure aleatoric uncertainty in Section 2.3), which ignore epistemic uncertainty.

4Mathematicians (with a background in measure-theory) should read “P[Y | X]” as “P[Y ∈ (·) | X]”.
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Example B.7. Let Y |X = x ∼ N (θ(x), σ = 1) with an unknown mean θ(x) ∈ R and a known
standard deviation of 1. Further, assume that the posterior distribution of θ(x) is N (0, σ = 10)
due to large epistemic uncertainty. Then, the predictive posterior distribution of Y |X = x is
N

(
0, σ =

√
102 + 1

)
, which includes both aleatoric and epistemic uncertainty.

• q0.975,P[Ynew|Xnew,Dtrain,π]) = q0.975,N(0,σ=
√
102+1) ≈ 1.96 ·

√
102 + 1 appropriately takes

epistemic uncertainty into account.

• q0.975,P[Ynew|Xnew,θ̂]
= q0.975,N(θ̂(x),σ=1) ≈ θ̂(x) + 1.96 ignores the large epistemic uncer-

tainty (with an interval width of 2 · 1.96 as q0.025,P[Ynew|Xnew,θ̂]
≈ θ̂(x)− 1.96).

• E
[
q0.975,P[Ynew|Xnew,θ] | Dtrain, π

]
= E

[
q0.975,N (θ(x),σ=1) | Dtrain, π

]
≈

E [θ(x) + 1.96 | Dtrain, π] = 1.96 ignores the large epistemic uncertainty.

• Median
[
q0.975,P[Ynew|Xnew,θ] | Dtrain, π

]
= Median

[
q0.975,N (θ(x),σ=1) | Dtrain, π

]
≈

Median [θ(x) + 1.96 | Dtrain, π] = 1.96 ignores the large epistemic uncertainty.

⋄

We fully agree with Buchweitz et al. (2025), that minimizing the QuantileLoss leads to a biased
estimator of aleatoric uncertainty alone (as in Example B.7, the aleatoric uncertainty corresponds to
an interval width of 2 · 1.96). However, minimizing the QuantileLoss yields a principled estimator
for total predictive uncertainty, as it is optimal from a Bayesian point of view, taking epistemic
uncertainty into account. An unbiased estimator for total predictive uncertainty must also incorporate
the epistemic uncertainty and is therefore naturally biased for estimating aleatoric uncertainty.

Thus, the asymmetry of the QuantileLoss is precisely what makes it appropriate for evaluating models
that estimate total predictive uncertainty. This justifies its use both in Step 4 of our Algorithm 1 and
as an evaluation metric on the unseen test dataset Dtest.

B.4 INTUITIVE THEORETICAL MOTIVATION OF CLEAR

PCS achieves empirically good results and nicely captures common sense, with limited theoretical
guarantees, while CQR satisfies theoretical guarantees, but misses crucial common sense. In our
work, we combine practical experience, theoretical insights, common sense, and empirical results,
always with the goal in mind to obtain a useful, verdicial, reliable, stable, high-performing method
for practical real-world applications.

Note that the original version of PCS did not have any theoretical guarantees for uncertainty quantifi-
cation Yu & Barter (2024), and Agarwal et al. (2025) mentioned a modified version of PCS-UQ that
satisfies conformal marginal coverage guarantees. However, no version of PCS offered a theoretical
guarantee for asymptotic input-conditional coverage.

Via CLEAR, we are the first to propose an extension of PCS-UQ that provably satisfies asymptotic
input-conditional coverage guarantees (see Lemma 2.1). All previous versions of PCS, did not only
lack a proof for input-conditional coverage guarantees, but actually do not satisfy input-conditional
coverage guarantees. Pure PCS-UQ has the systematic bias of under-coverage in regions with many
observations and large noise. This was a central motivation for CLEAR. While this theoretical
bias is quite obvious from a theoretical common sense point of view, we conducted our large-scale
experimental evaluation to see that this bias can actually have a significant impact on the performance,
which can be substantially mitigated by CLEAR.

On the other hand, CQR (or QR) has major problems based on common sense. If one looks deep into
the proof of the asymptotic input-conditional coverage of CQR (or QR), one can see that the main idea
of the proof is that, asymptotically, you will have infinitely many training data points around every
point x, resulting in accurate quantile predictions. However, for finitely many data points, there will
always be regions in the input space with too few data points. In this region (C)QR cannot accurately
estimate the quantiles. However, (C)QR will sometimes output very narrow intervals in these regions,
which are absolutely not trustworthy and will undercover substantially in these regions. We can
see this phenomenon across all different synthetic data-generating processes that we’ve tried (see
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Sections 3.1 and 4.1 and Appendix C). When we sample X ∼ N (0, Id) standard Gaussian, we can see
that even for n = 5000 training data points P [Y ∈ CCQR | ∥X∥2 > 4] ≪ 1− α. Based on common
sense it is strongly expected that for ∀n ∈ N : ∃r(n) : P [Y ∈ CCQR | ∥X∥2 > r(n)] ≪ 1 − α, as
the intervals of (C)QR do not have any reason to become wider out-of-sample while their predictions
become more unreliable the further you move away from the training data.
Hypothesis B.8. We hypothesize that under some fairly general and mild assumptions, for every

“non-trivial” data-generating process,

∃c > 0 : ∀n ∈ N : ∃R(n) ∈ (0,∞) : ∀r > R(n)P [Y ∈ CCQR | ∥X∥2 > r] < 1− α− c

holds. We think that this claim strongly agrees with basic intuition, and all our empirical results
strongly support this hypothesis. However, we leave the proof for future work. The main technical
challenge is probably to define “non-trivial” appropriately.

This does not contradict asymptotic input-conditional coverage guarantees as limn→∞ r(n) = ∞.
However, for any finite sample size n, this is a huge problem both from a common-sense perspective
and from what you can see from our empirical results. In other words, even in regions where the
ensemble members heavily disagree on the predictions (usually in regions with few training data),
(C)QR would be way too over-confident. CQR tries to compensate for this overconfidence in the
calibration step, which results in CQR over-covering in regions with many training data points and
under-covering in regions with few training data points (see Figures 1, 2 and 4 to 6).

This is the reason why PCS-UQ and CQR form a wonderful symbiosis. In regions with many
training data points, the ensemble predictions coming from different bootstraps of the training data
will be close to each other. PCS-UQ has a systematic basis to under-cover in regions with many
training data points and to overcover in regions with few training data points, whereas for CQR,
it is exactly the other way around. If you apply any monotonic transformation of the uncertainty
of PCS (multiplicative (conformal) calibration, additive (conformal) calibration, or the calibration
methods suggested by Kuleshov et al. (2018); Song et al. (2019); Kuleshov & Deshpande (2022);
Levi et al. (2022)), you will always have the systematic bias that any monotonically calibrated version
of PCS-UQ will under-cover in regions with many training data points and will over-cover in regions
with few training data points, whereas it is exactly the other way around for any monotonically
calibrated version of CQR. By combining the two of them, we can mitigate this bias (see Figures 1,
2 and 4 to 6). This aligns very well with classical statistical results, telling us that for predictive
intervals, one needs to combine the estimated noise structure with epistemic uncertainty on the
parameters (confidence intervals).

B.5 CLEAR ALGORITHM: DETAILS

Algorithm 2 Fast Conformal Implementation of Step 3 from Algorithm 1

1: Input: Data (Xi, Yi) for i = 1, . . . , n, split into training Dtrain, calibration Dcal, and validation
Dval (we consider Dcal = Dval); grid of λ values Λ; significance level α.

2: Step 3: Define prediction intervals for each λ ∈ Λ.
First, define a preliminary (non-calibrated) interval:

C̃λ =
[
f̂ − q̂ale

α/2 − λq̂epi
α/2, f̂ + q̂ale

1−α/2 + λq̂epi
1−α/2

]
Then, compute conformity scores Sλ

i = max
{

l̃λ(Xi)−Yi

f̂(Xi)−l̃λ(Xi)
, Yi−ũλ(Xi)

ũλ(xi)−f̂(Xi)

}
, where l̃λ(x), ũλ(x)

are the lower and upper bounds of C̃λ(x). Let γ1 be the ⌈(1− α)(|Dcal|+ 1)⌉-th smallest score
among {Sλ

i } (if ⌈(1 − α)(|Dcal| + 1)⌉ > |Dcal|, take the largest score). Define the calibrated
interval:

Cλ =
[
f̂ − γ1q̂

ale
α/2 − λγ1q̂

epi
α/2, f̂ + γ1q̂

ale
1−α/2 + λγ1q̂

epi
1−α/2

]
3: Output: calibrated prediction intervals Cλ for each λ from the grid Λ.
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C SIMULATIONS: DETAILS

For each simulation run, the coefficients β1, . . . , βd are drawn independently from a Gaussian distri-
bution N (1, 0.52). The mean function µ(X) is then defined as µ(X) = 5.0+

∑d
i=1(−1)i+1βi|Xi|ei ,

where the exponent ei = 1.5 if i is odd, and ei = 1.25 if i is even.

C.1 HETEROSKEDASTIC CASE

In Section 3.1, we focused on the univariate homoskedastic setting (d = 1 and σ(x) = 1). Here,
we briefly report results for heteroskedastic data, which show similar patterns. Figures 4 and 5
illustrate the conditional coverage and interval width of the algorithms under two heteroskedastic
noise structures: σ2(x) = 1+ |x| and σ3(x) = 1+ 1

1+x2 . As mentioned, the results are analogous to
the homoskedastic setting in Section 3.1.

C.2 MULTIVARIATE CASE

C.2.1 TEST POINT GENERATION

Following setup in (Bodik & Chavez-Demoulin, 2025), let r1 < r2 < · · · < rK denote a set of
predetermined distances. For each radius rk, we sample points uniformly from the surface of the
unit d-dimensional sphere as follows. First, we draw a vector v ∈ Rd whose entries are independent
standard normal random variables. We then normalize v to obtain a unit vector u = v/∥v∥2. Finally,
we scale u by rk to obtain the test point x = rk · u. In the one-dimensional case, this procedure
reduces to selecting x = rk or x = −rk with equal probability. This mechanism ensures that, for
each rk, the generated points are uniformly distributed on the surface of the sphere of radius rk,
thereby allowing a precise evaluation of prediction intervals as a function of distance from the origin.
Finally, we generate Y with the same data-generating mechanism as in the train set.

C.2.2 RESULTS

Figure 6 illustrates the conditional coverage and interval width of the evaluated algorithms in the
multivariate setting, where X is drawn from an independent multivariate Gaussian distribution and
Y = µ(X) + ε, with ε ∼ N (0, 1). The regression function µ(X), as previously defined, involves a
sum of randomly weighted power transformations of the absolute values of the input features.

Consistent with the univariate homoskedastic results in Section 3.1, Figure 6 shows that both CQR and
naive conformal prediction achieve reliable coverage in high-density regions but tend to under-cover
in low-density or extrapolation areas. In contrast, CLEAR maintains valid conditional coverage
across the entire input space by appropriately adjusting interval widths.

6 4 2 0 2 4 6
x

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
on

di
tio

na
l C

ov
er

ag
e

6 4 2 0 2 4 6
x

0

5

10

15

20

25

30

Av
er

ag
e 

w
id

th

CLEAR PCS-EPISTEMIC ALEATORIC-R Naive

Figure 4: Univariate conditional coverage and average width of the prediction intervals for a het-
eroskedastic case where σ2(x) = 1 + |x|.
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Figure 5: Univariate conditional coverage and average width of the prediction intervals for a het-
eroskedastic case where σ3(x) = 1 + 1

1+x2 .
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Figure 6: Multivariate conditional coverage and average width (distance from the origin is shown) of
the prediction intervals for a homoskedastic case where d ∈ {1, 2, 3, 20} was randomly selected.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL SETUP: DETAILS

D.1 REAL-WORLD DATA

To evaluate our method in real-world scenarios, we apply it to 17 publicly available regression
datasets curated by Agarwal et al. (2025) that includes various domains such as housing, energy,
materials science, and healthcare Kelley Pace & Barry (1997); Mayer et al. (2022); Tüfekci (2014);
Tsanas & Xifara (2012); Hamidieh (2018); Camacho & Torgo (2014); Tsanas et al. (2009); Coraddu
et al. (2016); Yeh (1998); Cassotti et al. (2015); Brooks et al. (1989); PyCaret (n.d.); Torgo (2014);
Computer Activity; Allstate Claims Severity; Grinsztajn et al. (2022); Ghahramani (1996); kin8nm
dataset; sulfur dataset. Description of the datasets can be found in Table 11.

D.2 BASELINES FOR VARIANTS (A), (B), (C)

The following baselines provide further context and comparisons, omitted from the main paper for
brevity. All compared methods (except UACQR) use the same median f̂(x) = f̂PCS(x) obtained
from PCS. The results from Appendix F.1 use PCS variant (a), Appendix F.2 uses PCS variant (b),
and Appendix F.3 uses PCS variant (c). This allows us to isolate the effect of different UQ methods.

1. Conformalized PCS median (Naive): For the PCS ensemble, we compute the median
prediction f̂(x) = f̂PCS(x) for each x. On the calibration set, absolute residuals ai =

|yi − f̂(xi)| are computed. The (1− α)-th quantile γnaive of these absolute residuals is then
used to define the interval:

CNaive(x) = [f̂(x)− γnaive, f̂(x) + γnaive]

This method applies a constant, symmetric width adjustment to the point predictions. The
result of this baseline has been presented for the simulations. We omit it from the real-world
data for brevity. However, all the baselines can be found in the supplementary code.

2. CLEAR with fixed λ = 1: This is a variant of the main CLEAR methodology where the
ratio λ = γ2/γ1 is fixed to 1. This implies γ1 = γ2. The prediction interval, based on
Equation (3), becomes:

Cλ=1(x) =
[
f̂(x)− γ1

(
q̂ale
α/2(x) + q̂epi

α/2(x)
)
, f̂(x) + γ1

(
q̂ale
1−α/2(x) + q̂epi

1−α/2(x)
)]

.

In this configuration, the single parameter γ1 is calibrated using the standard split conformal
procedure on the validation set. It effectively learns a single scaling factor for the sum of the
pre-calibrated aleatoric and epistemic uncertainty widths, without adjusting their ratio.

3. CLEAR with fixed γ1 = 1: Another variant of CLEAR where γ1 is fixed to 1. With γ1 = 1,
then γ2 = λ and the prediction interval from Equation (3) reads as:

Cγ1=1(x) =
[
f̂(x)− q̂ale

α/2(x)− λq̂epi
α/2(x), f̂(x) + q̂ale

1−α/2(x) + λq̂epi
1−α/2(x)

]
.

Here, λ (or equivalently γ2) is the parameter calibrated on the calibration set through a
coverage-based adjustment. This approach fixes the contribution of the (pre-calibrated)
aleatoric uncertainty component and adaptively scales the epistemic uncertainty component.

4. UACQR-S and UACQR-P For variant (c), instead of computing Cγ1=1(x) and Cλ=1(x)
with CLEAR, we directly use the implementation from Rossellini et al. (2024) to assess our
performance against this alternative. Since this is only relevant for variant (c), we use the
exact same configuration as the aleatoric part for QRF (see Appendix D.4 and Table 4).

D.3 DEEP ENSEMBLES AND SIMULTANEOUS QUANTILE REGRESSION IMPLEMENTATION

To demonstrate CLEAR’s versatility beyond tree-based methods, we implement state-of-the-art deep
learning approaches for uncertainty quantification.
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D.3.1 DEEP ENSEMBLES FOR EPISTEMIC UNCERTAINTY

Our deep ensemble implementation follows Lakshminarayanan et al. (2017) with several enhance-
ments for improved diversity and calibration. Each ensemble consists of M = 5 neural networks
(adaptive based on dataset size), with the following specifications:

• Architecture: Each network employs a fully-connected architecture with hidden layers
of sizes (256, 128), ReLU activations, batch normalization, and dropout (rate=0.1). Skip
connections are incorporated to stabilize training.

• Diversity strategies: To promote ensemble diversity, we employ: (i) different random
initializations, (ii) bootstrap sampling where each member trains on different subsamples,
(iii) varied learning rates, (iv) different learning rate schedules, and (v) small input noise
augmentation.

• Training: Each network is trained for up to 1500 epochs using Adam optimizer with
learning rate 10−3, early stopping (patience=50), weight decay (10−5), and batch size 64.

• Calibration: Following training, we apply a multiplicative calibration factor computed on
the validation set using a grid search over c-values to ensure the ensemble achieves target
coverage.

The epistemic uncertainty is quantified through the empirical quantiles of the ensemble predictions:
q̂epi
α/2(x) = f̂(x) − Qα/2({f̂m(x)}Mm=1) and q̂epi

1−α/2(x) = Q1−α/2({f̂m(x)}Mm=1) − f̂(x), where

f̂(x) is the ensemble median and Qτ denotes the empirical quantile function.

D.3.2 SIMULTANEOUS QUANTILE REGRESSION FOR ALEATORIC UNCERTAINTY

For aleatoric uncertainty, we implement simultaneous quantile regression (SQR) following
Tagasovska & Lopez-Paz (2019), which directly models multiple conditional quantiles through
a single neural network with specialized architecture:

• Architecture: The network uses hidden layers of sizes (256, 256, 128) with LeakyReLU
activations (negative slope=0.01), layer normalization, and dropout (rate=0.2). The output
layer produces three values corresponding to the α/2, 0.5, and 1− α/2 quantiles.

• Loss function: We minimize a combined loss consisting of: (i) the pinball loss for
each quantile, and (ii) a crossing penalty term that encourages monotonicity of quantiles:
Lcrossing = ReLU(qα/2 − q0.5) + ReLU(q0.5 − q1−α/2).

• Training: The model is trained for up to 3000 epochs using Adam optimizer with learning
rate 5 × 10−4, cosine annealing schedule, and early stopping (patience=200). Gradient
clipping (max norm=1.0) prevents training instabilities.

• Ensemble averaging: To improve stability, we train an ensemble of SQR models with
different random seeds and average their quantile predictions.

The aleatoric uncertainty estimates are computed as q̂ale
α/2(x) = q0.5(x)− qα/2(x) and q̂ale

1−α/2(x) =

q1−α/2(x)− q0.5(x), ensuring consistency with the median prediction.

D.3.3 INTEGRATION WITH CLEAR

The DE and SQR components are integrated into CLEAR using the same calibration procedure as our
PCS-UQ (model selection and tree-based methods). The epistemic estimates from DE and aleatoric
estimates from SQR are combined using the optimized parameters λ and γ1 according to Equation (3).
The conformal calibration step ensures approximate marginal coverage while the adaptive λ selection
balances the relative contributions of epistemic and aleatoric uncertainties, accounting for potential
scale differences between neural network and tree-based estimators.

D.4 PCS IMPLEMENTATION: DETAILS

This section outlines the specific implementation details for generating the PCS ensembles, which
provide the point predictor f̂ and the raw epistemic uncertainty estimates q̂epi used as input for the
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CLEAR method (Section 2.4), and also form the basis for the standalone calibrated PCS baseline
intervals. We explicitly opted for experimenting with three variants of CLEAR to assess the frame-
work’s performance and robustness across different modeling choices for epistemic and aleatoric
uncertainty components, as discussed in the main text. The core methodology, involving model
selection and model perturbations via bootstrapping to capture epistemic uncertainty, follows the
principles described in Section 2.

The process begins with data partitioning and bootstrapping. For each dataset and unique random
seed, the data is divided into training (60%), validation (20%), and test (20%) sets. Subsequently,
nboot = 100 bootstrap resamples are drawn from this designated training set to construct the PCS
ensemble. Then, for our variants, two distinct pools of base models were developed to generate these
PCS ensembles, catering to the different CLEAR variants. Table 4 details the quantile estimators
used for CLEAR variant (a). Variant (b) only uses QXGB from Table 4. Table 5 describes the mean
estimators utilized for CLEAR variant (c).

Table 4: Base models and key hyperparameters for the quantile models used in CLEAR variants (a).
Variant (b) uses only QXGB from this table. All models target the conditional median (τ = 0.5).

Model Key Hyperparameters Ref.

QRF 100 trees, min. leaf size: 10 Meinshausen
(2006)

QXGB 100 trees, tree method: histogram, min. child weight: 10 Chen &
Guestrin
(2016)

Expectile GAM 10 P-splines (order 3), smoothing parameter optimized via
CV (5 min. timeout)∗

Servén &
Brummitt
(2018)

∗Included only if hyperparameter optimization converged successfully, otherwise using the default values.

Table 5: Base models and key hyperparameters for the mean estimators (used in CLEAR variant
c). All models target the conditional mean and are from Scikit-learn (Buitinck et al., 2013), except
XGBoost, which is from (Chen & Guestrin, 2016). All unspecified hyperparameters use the Scikit-
learn defaults.

Category Model Key Hyperparameters

Linear Models

Ordinary Least Squares Default
Ridge Default alphas (CV)
Lasso 3-fold CV
ElasticNet 3-fold CV

Tree Ensembles

Random Forest 100 trees, min. leaf size: 5, max. features: 0.33
Extra Trees Same hyperparameters as random forest
AdaBoost Default
XGBoost Default

Neural Network MLP Single hidden layer (64 neurons)

Ensemble Construction and Model Selection: For each of the nboot = 100 bootstrap samples,
all models within the relevant pool (median estimators for variants a/b, mean estimators for variant
c) were trained. The single best-performing model type (k = 1) was then identified based on the
lowest RMSE achieved on the held-out validation set. Consequently, the final PCS ensemble for
each random seed comprised 100 instances of this selected top-performing model type. Specifically,
CLEAR variant (a) considered all models from Table 4 for this selection process, variant (b) was
restricted to selecting always QXGB from this pool, and variant (c) considered all the models from
Table 4 instead. All models used default parameters from their respective libraries unless otherwise
specified in the tables, and random states were fixed to ensure reproducibility.
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Derivation of f̂ and q̂epi for CLEAR: The point predictor f̂(x) and the raw epistemic uncertainty
contributions q̂epi

α/2(x) and q̂epi
1−α/2(x) supplied to the CLEAR method are derived from this final

ensemble of 100 model instances. As detailed in Section 2.2, f̂(x) is the pointwise empirical median
of the ensemble’s predictions. The epistemic uncertainty terms represent the pointwise distances
from this median to the ensemble’s empirical α/2 and 1− α/2 quantiles, respectively.

Calibration of the Standalone PCS Baseline: The standalone PCS baseline method involves a
distinct calibration process. From the ensemble’s raw pointwise α/2 and 1−α/2 quantile predictions
(f̂α/2(x) and f̂1−α/2(x)), a single, global multiplicative calibration factor, γPCS, is computed. This
γPCS is the smallest value ensuring that prediction intervals, formed by scaling the raw epistemic
uncertainty around f̂(x) (i.e., [f̂(x) − γPCS(f̂(x) − f̂α/2(x)), f̂(x) + γPCS(f̂1−α/2(x) − f̂(x))]),
achieve the target 1 − α coverage on the validation set, incorporating the standard finite-sample
correction. This γPCS is then applied to generate the PCS baseline intervals on the test set. It is
important to reiterate that this γPCS is separate and computed independently from γ1 and λ parameters
optimized within the CLEAR framework.

D.5 METRICS

This appendix provides detailed definitions for the evaluation metrics used in the main paper. We
consider test data (Xi, Yi)

N
i=1 and prediction intervals [Li, Ui].

• Prediction Interval Coverage Probability (PICP): Measures the proportion of true values
falling within the predicted intervals, calculated as:

PICP(L,U) =
1

N

N∑
i=1

1[Li,Ui](Yi)

where 1[Li,Ui](Yi) is the indicator function; it equals 1 if Yi ∈ [Li, Ui] and 0 otherwise.
• Normalized Interval Width (NIW): Quantifies the average width of prediction intervals

normalized by the range of the target variable:

NIW(L,U) =
1
N

∑N
i=1(Ui − Li)

max(Y )−min(Y )

• Quantile Loss (also known as pinball loss): Evaluates the accuracy of predicted quantiles
by penalizing both under- and overestimation. It reflects a trade-off between coverage (PICP)
and interval width (NIW), rewarding narrow intervals that still maintain proper coverage and
penalizing data points that are far outside the intervals (see Appendix B.3 for more details).
For a given quantile level τ , the quantile loss function is:

QLτ (y, q) = (y − q)
(
τ − 1(−∞,q](y)

)
,

where q is the predicted τ -quantile. For prediction intervals at level 1− α, we evaluate this
at both τ = α/2 and τ = 1− α/2 using

QuantileLoss(L,U) =

N∑
i=1

[
QLα/2(Yi, L(Xi)) +QL1−α/2(Yi, U(Xi))

]
/2.

• Average Interval Score Loss (AISL) (Gneiting & Raftery, 2007): This score balances
interval width with coverage penalties (with similar properties as the quantile loss explained
in Appendix B.3), defined as

AISL(L,U) =
1

N

N∑
i=1

[
(Ui − Li) +

2

α
(Li − Yi)1{Yi < Li}+

2

α
(Yi − Ui)1{Yi > Ui}

]
,

where 1{·} is the indicator function.
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E CLEAR WITH DE AND SQR: RESULTS ON REAL-WORLD DATA

This section presents the comprehensive experimental results of CLEAR when combined with
deep learning-based uncertainty estimators: deep ensembles (DE) for epistemic uncertainty and
simultaneous quantile regression (SQR) for aleatoric uncertainty. The experiments further validate
CLEAR’s generality beyond the PCS and CQR methods that are presented in the body of our paper.
The results demonstrate that CLEAR remains effective across different modeling paradigms. We
evaluate both the neural baselines individually and their integration through CLEAR, comparing
against conformalized versions to assess the added value of our dual-parameter calibration approach.
Results are reported across all 17 datasets with 95% nominal coverage, using up to 10 random seeds
for robustness.

Table 6: DE-SQR PICP at 95% prediction intervals, aggregated across 10 seeds. CLEAR consists
of the deep ensemble (DE) and the simultaneous quantile regressor (SQR). DE-conformal is the
conformalized (calibrated) deep ensemble and SQR-conformal is the conformalized simultaneous
quantile regressor.

Dataset CLEAR DE SQR DE-conformal SQR-conformal

ailerons 0.95 ± 0.00 0.95 ± 0.00 0.94 ± 0.01 0.95 ± 0.00 0.95 ± 0.00
airfoil 0.96 ± 0.02 0.95 ± 0.02 0.98 ± 0.01 0.95 ± 0.02 0.96 ± 0.01
allstate 0.95 ± 0.01 0.95 ± 0.01 0.91 ± 0.01 0.95 ± 0.01 0.94 ± 0.01
ca housing 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00
computer 0.95 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
concrete 0.94 ± 0.02 0.95 ± 0.02 0.98 ± 0.01 0.96 ± 0.02 0.95 ± 0.03
elevator 0.95 ± 0.00 0.95 ± 0.00 0.94 ± 0.01 0.95 ± 0.00 0.95 ± 0.00
energy efficiency 0.96 ± 0.01 0.95 ± 0.02 0.99 ± 0.01 0.95 ± 0.02 0.96 ± 0.03
insurance 0.96 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.02
kin8nm 0.95 ± 0.01 0.95 ± 0.01 0.98 ± 0.00 0.95 ± 0.01 0.95 ± 0.01
miami housing 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00
naval propulsion 0.95 ± 0.01 0.95 ± 0.01 1.00 ± 0.00 0.95 ± 0.01 0.95 ± 0.01
parkinsons 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
powerplant 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00
qsar 0.95 ± 0.01 0.96 ± 0.01 0.93 ± 0.01 0.96 ± 0.01 0.95 ± 0.01
sulfur 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01
superconductor 0.95 ± 0.00 0.95 ± 0.00 0.96 ± 0.00 0.95 ± 0.00 0.95 ± 0.00

Table 7: DE-SQR NIW at 95% prediction intervals, aggregated across 10 seeds. CLEAR consists
of the deep ensemble (DE) and the simultaneous quantile regressor (SQR). DE-conformal is the
conformalized (calibrated) deep ensemble and SQR-conformal is the conformalized simultaneous
quantile regressor. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place.
Bold values are the minimum (best) for that dataset, while underlined values indicate the second-best
result.

Dataset CLEAR DE SQR DE-conformal SQR-conformal

ailerons 0.201 ± 0.017 0.284 ± 0.025 0.196 ± 0.014 0.285 ± 0.025 0.203 ± 0.015
airfoil 0.185 ± 0.023 0.223 ± 0.023 0.349 ± 0.025 0.226 ± 0.023 0.311 ± 0.025
allstate 0.333 ± 0.061 0.380 ± 0.073 0.283 ± 0.043 0.383 ± 0.075 0.324 ± 0.058
ca housing 0.357 ± 9.1e-03 0.502 ± 0.020 0.378 ± 8.0e-03 0.502 ± 0.020 0.374 ± 4.0e-03
computer 0.087 ± 3.2e-03 0.121 ± 6.3e-03 0.104 ± 8.9e-03 0.122 ± 6.1e-03 0.106 ± 5.7e-03
concrete 0.264 ± 0.033 0.365 ± 0.068 0.441 ± 0.041 0.369 ± 0.067 0.392 ± 0.069
elevator 0.117 ± 6.6e-03 0.174 ± 0.011 0.114 ± 0.011 0.174 ± 0.011 0.117 ± 8.8e-03
energy efficiency 0.085 ± 0.012 0.115 ± 0.020 0.480 ± 0.059 0.120 ± 0.020 0.368 ± 0.036
insurance 0.393 ± 0.044 0.523 ± 0.135 0.397 ± 0.073 0.558 ± 0.141 0.406 ± 0.085
kin8nm 0.197 ± 8.2e-03 0.260 ± 9.5e-03 0.246 ± 8.7e-03 0.261 ± 9.6e-03 0.208 ± 8.8e-03
miami housing 0.093 ± 2.9e-03 0.131 ± 5.6e-03 0.101 ± 2.8e-03 0.131 ± 5.7e-03 0.100 ± 1.8e-03
naval propulsion 1.5e-03 ± 4.2e-04 5.4e-03 ± 1.1e-03 3.7e-03 ± 1.3e-04 5.4e-03 ± 1.1e-03 1.7e-03 ± 1.5e-04
parkinsons 0.378 ± 0.014 0.476 ± 0.027 0.419 ± 0.021 0.479 ± 0.027 0.403 ± 0.017
powerplant 0.186 ± 6.7e-03 0.266 ± 0.012 0.204 ± 6.8e-03 0.267 ± 0.013 0.202 ± 7.3e-03
qsar 0.410 ± 0.136 0.508 ± 0.178 0.402 ± 0.135 0.509 ± 0.179 0.456 ± 0.153
sulfur 0.105 ± 8.5e-03 0.199 ± 0.015 0.120 ± 7.4e-03 0.200 ± 0.015 0.120 ± 8.3e-03
superconductor 0.208 ± 0.024 0.295 ± 0.038 0.247 ± 0.027 0.295 ± 0.038 0.245 ± 0.028
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Table 8: DE-SQR Quantile Loss at 95% prediction intervals, aggregated across 10 seeds. CLEAR
consists of the deep ensemble (DE) and the simultaneous quantile regressor (SQR). DE-conformal is
the conformalized (calibrated) deep ensemble and SQR-conformal is the conformalized simultaneous
quantile regressor. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place.
Bold values are the minimum (best) for that dataset, while underlined values indicate the second-best
result.

Dataset CLEAR DE SQR DE-conformal SQR-conformal

ailerons 9.6e-06 ± 3.1e-07 1.3e-05 ± 3.5e-07 9.6e-06 ± 4.0e-07 1.3e-05 ± 3.5e-07 9.5e-06 ± 3.7e-07
airfoil 0.097 ± 6.8e-03 0.117 ± 0.010 0.162 ± 0.017 0.117 ± 0.010 0.153 ± 0.018
allstate 1.4e+02 ± 9.329 1.5e+02 ± 8.112 1.5e+02 ± 9.210 1.5e+02 ± 8.106 1.4e+02 ± 8.368
ca housing 3.0e+03 ± 63.719 3.9e+03 ± 1.2e+02 3.0e+03 ± 54.590 3.9e+03 ± 1.2e+02 3.0e+03 ± 53.118
computer 0.146 ± 5.5e-03 0.183 ± 6.8e-03 0.162 ± 8.3e-03 0.183 ± 6.8e-03 0.162 ± 7.9e-03
concrete 0.348 ± 0.049 0.427 ± 0.056 0.467 ± 0.031 0.428 ± 0.057 0.458 ± 0.051
elevator 1.2e-04 ± 1.9e-06 1.6e-04 ± 3.5e-06 1.1e-04 ± 2.5e-06 1.6e-04 ± 3.5e-06 1.1e-04 ± 2.4e-06
energy efficiency 0.052 ± 9.5e-03 0.067 ± 0.012 0.221 ± 0.023 0.067 ± 0.012 0.188 ± 0.020
insurance 3.9e+02 ± 42.155 5.3e+02 ± 97.010 3.9e+02 ± 37.867 5.4e+02 ± 93.793 3.9e+02 ± 45.372
kin8nm 4.1e-03 ± 4.4e-05 5.2e-03 ± 8.2e-05 4.5e-03 ± 5.7e-05 5.2e-03 ± 8.2e-05 4.2e-03 ± 7.1e-05
miami housing 4.5e+03 ± 2.1e+02 5.4e+03 ± 1.7e+02 4.4e+03 ± 1.2e+02 5.4e+03 ± 1.7e+02 4.4e+03 ± 1.2e+02
naval propulsion 3.6e-05 ± 9.4e-06 1.3e-04 ± 2.7e-05 8.2e-05 ± 2.9e-06 1.3e-04 ± 2.7e-05 4.4e-05 ± 4.3e-06
parkinsons 0.298 ± 0.014 0.343 ± 9.8e-03 0.291 ± 5.7e-03 0.343 ± 9.8e-03 0.289 ± 5.8e-03
powerplant 0.227 ± 0.013 0.301 ± 0.014 0.234 ± 0.012 0.301 ± 0.014 0.234 ± 0.013
qsar 0.055 ± 3.2e-03 0.064 ± 3.5e-03 0.061 ± 3.7e-03 0.064 ± 3.5e-03 0.060 ± 3.6e-03
sulfur 1.7e-03 ± 1.0e-04 2.7e-03 ± 1.9e-04 1.8e-03 ± 1.3e-04 2.7e-03 ± 1.9e-04 1.8e-03 ± 1.3e-04
superconductor 0.545 ± 0.024 0.707 ± 0.024 0.560 ± 0.017 0.707 ± 0.024 0.559 ± 0.018

Table 9: DE-SQR NCIW at 95% prediction intervals, aggregated across 10 seeds. CLEAR consists
of the deep ensemble (DE) and the simultaneous quantile regressor (SQR). DE-conformal is the
conformalized (calibrated) deep ensemble and SQR-conformal is the conformalized simultaneous
quantile regressor. Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place.
Bold values are the minimum (best) for that dataset, while underlined values indicate the second-best
result.

Dataset CLEAR DE SQR DE-conformal SQR-conformal

ailerons 0.205 ± 0.017 0.292 ± 0.027 0.205 ± 0.017 0.291 ± 0.026 0.204 ± 0.017
airfoil 0.173 ± 0.016 0.220 ± 0.025 0.290 ± 0.026 0.217 ± 0.025 0.293 ± 0.026
allstate 0.328 ± 0.048 0.384 ± 0.062 0.342 ± 0.051 0.381 ± 0.060 0.330 ± 0.045
ca housing 0.354 ± 8.1e-03 0.501 ± 0.021 0.372 ± 7.1e-03 0.501 ± 0.021 0.373 ± 7.8e-03
computer 0.088 ± 1.7e-03 0.120 ± 5.0e-03 0.106 ± 6.5e-03 0.120 ± 5.1e-03 0.106 ± 7.1e-03
concrete 0.274 ± 0.026 0.345 ± 0.053 0.371 ± 0.036 0.339 ± 0.051 0.376 ± 0.040
elevator 0.117 ± 7.0e-03 0.172 ± 0.010 0.117 ± 9.0e-03 0.172 ± 0.010 0.116 ± 9.4e-03
energy efficiency 0.079 ± 7.4e-03 0.114 ± 0.017 0.351 ± 0.049 0.106 ± 0.014 0.346 ± 0.046
insurance 0.364 ± 0.060 0.465 ± 0.125 0.351 ± 0.064 0.460 ± 0.122 0.350 ± 0.061
kin8nm 0.194 ± 6.6e-03 0.255 ± 5.6e-03 0.205 ± 6.3e-03 0.254 ± 5.3e-03 0.208 ± 6.3e-03
miami housing 0.092 ± 3.5e-03 0.129 ± 7.8e-03 0.100 ± 2.6e-03 0.129 ± 7.7e-03 0.100 ± 2.9e-03
naval propulsion 1.5e-03 ± 4.2e-04 5.4e-03 ± 1.2e-03 1.7e-03 ± 2.0e-04 5.4e-03 ± 1.2e-03 1.6e-03 ± 1.7e-04
parkinsons 0.382 ± 0.015 0.473 ± 0.025 0.398 ± 0.013 0.470 ± 0.022 0.398 ± 0.013
powerplant 0.190 ± 6.0e-03 0.272 ± 9.5e-03 0.202 ± 8.1e-03 0.272 ± 9.5e-03 0.202 ± 8.1e-03
qsar 0.407 ± 0.134 0.477 ± 0.150 0.450 ± 0.151 0.476 ± 0.150 0.441 ± 0.146
sulfur 0.104 ± 6.2e-03 0.198 ± 0.016 0.120 ± 7.1e-03 0.197 ± 0.015 0.120 ± 7.2e-03
superconductor 0.209 ± 0.024 0.303 ± 0.036 0.242 ± 0.027 0.302 ± 0.036 0.245 ± 0.027
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Table 10: DE-SQR Interval Score Loss at 95% prediction intervals, aggregated across 10 seeds.
CLEAR consists of the deep ensemble (DE) and the simultaneous quantile regressor (SQR). DE-
conformal is the conformalized (calibrated) deep ensemble and SQR-conformal is the conformalized
simultaneous quantile regressor. Values ≥ 100 or < 0.01 are presented in scientific notation with 1
decimal place. Bold values are the minimum (best) for that dataset, while underlined values indicate
the second-best result.

Dataset CLEAR DE SQR DE-conformal SQR-conformal

ailerons 7.7e-04 ± 2.5e-05 1.0e-03 ± 2.8e-05 7.7e-04 ± 3.2e-05 1.0e-03 ± 2.8e-05 7.6e-04 ± 2.9e-05
airfoil 7.761 ± 0.546 9.368 ± 0.826 12.937 ± 1.386 9.370 ± 0.813 12.279 ± 1.418
allstate 1.1e+04 ± 7.5e+02 1.2e+04 ± 6.5e+02 1.2e+04 ± 7.4e+02 1.2e+04 ± 6.5e+02 1.2e+04 ± 6.7e+02
ca housing 2.4e+05 ± 5.1e+03 3.1e+05 ± 9.2e+03 2.4e+05 ± 4.4e+03 3.1e+05 ± 9.2e+03 2.4e+05 ± 4.2e+03
computer 11.669 ± 0.436 14.633 ± 0.543 12.938 ± 0.662 14.634 ± 0.545 12.926 ± 0.634
concrete 27.850 ± 3.946 34.179 ± 4.507 37.343 ± 2.464 34.203 ± 4.564 36.678 ± 4.051
elevator 9.2e-03 ± 1.5e-04 0.013 ± 2.8e-04 9.0e-03 ± 2.0e-04 0.013 ± 2.8e-04 9.0e-03 ± 1.9e-04
energy efficiency 4.154 ± 0.758 5.369 ± 0.965 17.719 ± 1.871 5.387 ± 0.974 15.020 ± 1.595
insurance 3.1e+04 ± 3.4e+03 4.2e+04 ± 7.8e+03 3.1e+04 ± 3.0e+03 4.3e+04 ± 7.5e+03 3.1e+04 ± 3.6e+03
kin8nm 0.327 ± 3.5e-03 0.417 ± 6.5e-03 0.358 ± 4.6e-03 0.417 ± 6.6e-03 0.340 ± 5.7e-03
miami housing 3.6e+05 ± 1.7e+04 4.3e+05 ± 1.4e+04 3.5e+05 ± 9.5e+03 4.3e+05 ± 1.4e+04 3.5e+05 ± 9.5e+03
naval propulsion 2.9e-03 ± 7.5e-04 0.011 ± 2.2e-03 6.5e-03 ± 2.3e-04 0.011 ± 2.2e-03 3.5e-03 ± 3.5e-04
parkinsons 23.860 ± 1.124 27.437 ± 0.787 23.297 ± 0.456 27.449 ± 0.784 23.159 ± 0.461
powerplant 18.145 ± 1.005 24.110 ± 1.141 18.714 ± 0.990 24.106 ± 1.140 18.706 ± 1.002
qsar 4.419 ± 0.255 5.152 ± 0.278 4.875 ± 0.294 5.154 ± 0.278 4.800 ± 0.286
sulfur 0.134 ± 8.1e-03 0.213 ± 0.015 0.144 ± 0.010 0.213 ± 0.015 0.144 ± 0.010
superconductor 43.610 ± 1.937 56.594 ± 1.943 44.763 ± 1.388 56.591 ± 1.943 44.731 ± 1.406
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F CLEAR WITH PCS AND CQR: RESULTS ON REAL-WORLD DATA

This appendix presents the detailed quantitative results from the benchmark experiments conducted
on the 17 real-world datasets, complementing the summary findings in the main paper (Section 4.2).
As a reminder, we evaluate three distinct configurations (variants) of our proposed CLEAR method
alongside the baseline approaches (PCS, ALEATORIC, ALEATORIC-R). The differences among
these 3 variants are considered base models. For each variant, CLEAR is applied on the already
trained PCS and uncalibrated ALEATORIC-R. To recap these variants:

• Variant (a): Employs a quantile PCS approach using a diverse pool of quantile estimators
(QRF, QXGB, Expectile GAM5) for estimating the conditional medians based on the
bootstraps. The top-performing model type (k = 1) on the validation set is selected. 1)
Based on the slected model type, we compute the epistemic component q̂epi (via emprical
quantiles over the estimated medians from the b = m bootstraps) and the median f̂ (as
emprical median over the estimated medians). 2) Using the same selected quantile model
type, the aleatoric component q̂ale is derived from a bootstrapped ALEATORIC-R model.

• Variant (b): Similar to (a), but restricts the model pool for both PCS and the paired
ALEATORIC-R exclusively to QXGB.

• Variant (c): Uses a standard PCS approach with mean-based regression models (e.g.,
Random Forest, XGBoost) for the epistemic component (via empirical quantiles over the
estimated medians) and median prediction f̂ (as empirical median over the estimated means),
selecting the top model (k = 1). The aleatoric component is derived from a bootstrapped
ALEATORIC-R model using QRF.

The subsequent subsections present the comprehensive results for each variant (a, b, c). All exper-
iments were run across 10 different random seeds6, and the results on the test set are presented.
The subsequent tables report the average performance metric across these 10 seeds, along with the
standard deviation (±σ), to indicate the variability associated with data splitting. For each variant, we
provide tables detailing the metrics presented in Appendix D.5 for all methods across all datasets at a
95% nominal coverage level. Lower values are preferable for all metrics except PICP, which should
ideally be close to the target of 0.95. Additionally, summary plots (Figures 3, 7 and 8) visualize the
relative NCIW and Quantile Loss performance normalized against the respective CLEAR variant
baseline. Additionally, only for variant (c), we provide Table 27 with the values of λ and γ1 to provide
some insights into the aleatoric/epistemic allocations of CLEAR. Finally, Figure 9 (Appendix F.4)
provides a direct comparison of the NCIW and Quantile Loss between the three CLEAR variants
themselves, using variant (a) as the reference baseline.

Appendix F.4 shows that the primary configuration of CLEAR presented in the main text, variant (a),
leverages a diverse set of quantile models for robust epistemic uncertainty estimation and generally
delivers the most consistent and superior performance. As detailed in Figure 9 in the appendix,
CLEAR in variant (a) tends to marginally outperform the model in variant (b), which is restricted to
QXGB, and variant (c), which utilizes standard mean-based PCS models. For instance, in variant
(a), QXGB was selected in approximately 64% of cases, QRF in 24%, and ExpectileGAM in the
remainder of cases. In variant (c), XGBoost was chosen about 70% of the time, with other models
(excluding Ridge) sharing the rest. The importance of this dynamic model selection is evident in
datasets like naval propulsion, where variants (b) and (c) can struggle due to their fixed model
choices (QXGB and QRF for the aleatoric part, respectively), whereas variant (a) can adapt by
selecting, for example, ExpectileGAM. This highlights the stability advantage of CLEAR (a) and
the benefit of PCS’s dynamic model choice, especially when the aleatoric component can also adapt.
Nevertheless, the CLEAR framework overall demonstrates considerable robustness even with these
alternative model choices. For instance, variant (b) still provides NCIW reductions of approximately
17.3% and 4.9% over its corresponding PCS and ALEATORIC-R baselines, respectively (Figure 7). A
similar advantage is observed for variant (c) (Figure 8), which reduces NCIW by about 7.6% against
ALEATORIC-R, the best-performing variant of CQR that uses our novel residual-based technique.

5Strictly speaking, Expectile GAM estimates expectiles rather than quantiles. While it is not a consistent
estimator for quantiles in theory, mixing expectiles and quantiles may still be practical in applications.

6Due to a bug in pygam’s Expectile GAM Servén & Brummitt (2018), for the naval propulsion data
in variant (c), one of the runs failed; hence, there are 9 runs available instead of 10.
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Detailed motivation behind variant (a). Overall, variant (a) archives the best results (see Figure 9).
Therefore, we recommend to use CLEAR variant (a). The experiments in variant (a) are fair, since
each of the competing methods uses the same base model, which is selected per data set based on the
RMSE on the validation data set. See Appendix F.1 for the results.

Detailed motivation behind variant (b). Variant (b) is the simplest to understand, easiest to imple-
ment, and computationally cheapest variant and provides maximal fairness, making it particularly
scientifically sound. Each method simply uses QXGB as base model without any model selection
step. Strictly speaking, variant (b) is the only variant where ALEATORIC and ALEATORIC-R are
fully conformal, since variant (b) uses the calibration data set only for calibration, while variant (a)
and (c) reuse the validation set used for model selection as calibration data set. However, in practice,
we observe this re-usage does not hurt calibration in any significant way (Table 12 and Table 22). See
Appendix F.2 for the results of variant (b).

Detailed motivation behind variant (c). Variant (c) uses the same set of base models as suggested
by the authors of PCS uncertainty quantification as Agarwal et al. (2025). They conducted extensive
experiments showing that PCS uncertainty quantification substantially outperforms popular conformal
baselines such as split conformal regression (Lei et al., 2018), Studentized conformal regression
(Lei et al., 2018), and Majority Vote (Gasparin & Ramdas, 2024) (by more than 20% on average
in terms of interval width). Our experiments showing that CLEAR (a) outperforms CLEAR (c)
(Figure 9) and CLEAR (c) outperforms PCS uncertainty quantification (c) (Appendix F.3), together
with the experiments by Agarwal et al. (2025), strongly suggests that CLEAR clearly outperforms
these popular conformal baselines. See Appendix F.3 for the results of variant (c).

Overall, CLEAR shows the strongest performance across all variants (a), (b) and (c), demonstrating
CLEAR’s stability across different settings, data sets, and metrics.

Table 11: Dataset statistics where d represents the number of variables, n represents the number of
observations, followed by the minimum, maximum, and range values for y.

Dataset n d ymin ymax yrange

ailerons 13,750 40 -0.0036 0.00e+00 0.0036
airfoil 1,503 5 104.2040 140.1580 35.9540
allstate 5,000 1037 200.0000 3.31e+04 3.29e+04
ca housing 20,640 8 1.50e+04 5.00e+05 4.85e+05
computer 8,192 21 0.00e+00 99.0000 99.0000
concrete 1,030 8 2.3300 81.7500 79.4200
elevator 16,599 18 0.0120 0.0780 0.0660
energy efficiency 768 10 6.0100 43.1000 37.0900
insurance 1,338 8 1121.8739 6.26e+04 6.15e+04
kin8nm 8,192 8 0.0632 1.4585 1.3953
miami housing 13,932 28 7.20e+04 2.65e+06 2.58e+06
naval propulsion 11,934 24 0.0690 1.8320 1.7630
parkinsons 5,875 18 7.0000 54.9920 47.9920
powerplant 9,568 4 420.2600 495.7600 75.5000
qsar 5,742 500 -6.2400 11.0000 17.2400
sulfur 10,081 5 0.00e+00 1.0000 1.0000
superconductor 21,263 79 3.25e-04 185.0000 184.9997
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F.1 VARIANT (A)

Table 12: Variant (a) PICP at 95% prediction intervals, aggregated across 10 seeds.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00
airfoil 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.01
allstate 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
ca housing 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
computer 0.95 ± 0.01 0.97 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.96 ± 0.01
concrete 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.95 ± 0.01 0.94 ± 0.03 0.95 ± 0.01 0.95 ± 0.01
elevator 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00
energy efficiency 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.96 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 0.96 ± 0.01
insurance 0.95 ± 0.02 0.96 ± 0.01 0.96 ± 0.02 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 0.96 ± 0.01
kin8nm 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
miami housing 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00
naval propulsion 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
parkinsons 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
powerplant 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01
qsar 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01
sulfur 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
superconductor 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00

Table 13: Variant (a) NIW at 95% prediction intervals, aggregated across 10 seeds.Values ≥ 100
or < 0.01 are presented in scientific notation with 1 decimal place. Bold values (desirable) are the
minimum for that dataset and metric, while the underlined values indicate the second-best result. Red
values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 0.193 ± 0.016 0.208 ± 0.017 0.195 ± 0.017 0.215 ± 0.016 0.220 ± 0.021 0.193 ± 0.016 0.193 ± 0.016
airfoil 0.207 ± 0.012 0.367 ± 0.018 0.215 ± 0.018 0.215 ± 0.012 0.246 ± 0.024 0.205 ± 0.012 0.206 ± 0.012
allstate 0.260 ± 0.037 0.266 ± 0.045 0.259 ± 0.045 0.259 ± 0.044 0.327 ± 0.056 0.246 ± 0.042 0.247 ± 0.042
ca housing 0.339 ± 0.008 0.760 ± 0.006 0.350 ± 0.006 0.354 ± 0.011 0.434 ± 0.020 0.333 ± 0.006 0.331 ± 0.007
computer 0.091 ± 0.008 0.099 ± 0.001 0.091 ± 0.010 18.269 ± 11.847 0.115 ± 0.007 0.091 ± 0.010 0.091 ± 0.007
concrete 0.249 ± 0.025 0.486 ± 0.028 0.265 ± 0.029 0.249 ± 0.017 0.263 ± 0.028 0.251 ± 0.022 0.253 ± 0.023
elevator 0.156 ± 0.009 0.144 ± 0.007 0.149 ± 0.007 0.178 ± 0.012 0.144 ± 0.008 0.156 ± 0.009 0.160 ± 0.008
energy efficiency 0.047 ± 0.005 0.212 ± 0.015 0.050 ± 0.007 0.062 ± 0.006 0.062 ± 0.013 0.051 ± 0.004 0.053 ± 0.004
insurance 0.309 ± 0.032 0.332 ± 0.049 0.329 ± 0.056 0.585 ± 0.167 0.478 ± 0.070 0.331 ± 0.077 0.295 ± 0.044
kin8nm 0.360 ± 0.012 0.490 ± 0.020 0.374 ± 0.014 0.373 ± 0.014 0.397 ± 0.017 0.359 ± 0.012 0.360 ± 0.011
miami housing 0.085 ± 0.002 0.105 ± 0.001 0.086 ± 0.004 0.098 ± 0.003 0.126 ± 0.006 0.084 ± 0.002 0.085 ± 0.002
naval propulsion 6.1e-04 ± 6.3e-06 6.2e-04 ± 6.5e-06 6.0e-04 ± 6.4e-06 7.2e-04 ± 1.3e-05 6.0e-04 ± 7.0e-06 6.2e-04 ± 5.7e-06 6.1e-04 ± 5.6e-06
parkinsons 0.227 ± 0.010 0.321 ± 0.013 0.249 ± 0.014 0.312 ± 0.021 0.303 ± 0.022 0.228 ± 0.008 0.225 ± 0.008
powerplant 0.170 ± 0.007 0.196 ± 0.009 0.180 ± 0.009 0.178 ± 0.007 0.183 ± 0.006 0.173 ± 0.007 0.172 ± 0.007
qsar 0.363 ± 0.121 0.486 ± 0.160 0.386 ± 0.126 0.388 ± 0.131 0.420 ± 0.139 0.362 ± 0.121 0.362 ± 0.121
sulfur 0.109 ± 0.010 0.112 ± 0.010 0.107 ± 0.010 0.131 ± 0.017 0.122 ± 0.015 0.108 ± 0.011 0.108 ± 0.011
superconductor 0.196 ± 0.022 0.233 ± 0.025 0.196 ± 0.023 0.248 ± 0.028 0.329 ± 0.042 0.194 ± 0.022 0.194 ± 0.021

Table 14: Variant (a) Quantile Loss at 95% prediction intervals, aggregated across 10 seeds.Values
≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. Bold values (desirable)
are the minimum for that dataset and metric, while the underlined values indicate the second-best
result. Red values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 9.2e-06 ± 2.3e-07 1.0e-05 ± 2.8e-07 9.7e-06 ± 2.8e-07 1.0e-05 ± 2.2e-07 1.1e-05 ± 3.7e-07 9.2e-06 ± 2.3e-07 9.2e-06 ± 2.3e-07
airfoil 0.109 ± 0.011 0.183 ± 0.013 0.123 ± 0.016 0.117 ± 0.012 0.147 ± 0.019 0.109 ± 0.011 0.109 ± 0.011
allstate 1.1e+02 ± 7.835 1.3e+02 ± 8.197 1.3e+02 ± 7.925 1.2e+02 ± 7.770 1.7e+02 ± 13.696 1.1e+02 ± 7.563 1.1e+02 ± 7.631
ca housing 2.8e+03 ± 59.700 4.8e+03 ± 25.753 3.0e+03 ± 73.283 3.2e+03 ± 93.396 4.0e+03 ± 1.2e+02 2.8e+03 ± 66.414 2.8e+03 ± 70.545
computer 0.147 ± 0.022 0.150 ± 0.012 0.160 ± 0.029 22.643 ± 14.662 0.192 ± 0.010 0.146 ± 0.020 0.147 ± 0.023
concrete 0.338 ± 0.040 0.546 ± 0.061 0.359 ± 0.053 0.327 ± 0.036 0.376 ± 0.058 0.330 ± 0.037 0.331 ± 0.037
elevator 1.5e-04 ± 2.0e-06 1.4e-04 ± 2.9e-06 1.5e-04 ± 2.4e-06 1.7e-04 ± 5.6e-06 1.6e-04 ± 5.1e-06 1.5e-04 ± 2.4e-06 1.5e-04 ± 2.0e-06
energy efficiency 0.031 ± 0.004 0.102 ± 0.008 0.033 ± 0.005 0.038 ± 0.003 0.041 ± 0.005 0.033 ± 0.003 0.034 ± 0.003
insurance 3.5e+02 ± 61.616 3.6e+02 ± 39.928 3.6e+02 ± 54.512 5.8e+02 ± 1.0e+02 4.4e+02 ± 38.440 3.6e+02 ± 68.243 3.5e+02 ± 62.851
kin8nm 7.2e-03 ± 1.7e-04 9.5e-03 ± 1.6e-04 7.7e-03 ± 2.7e-04 7.6e-03 ± 9.7e-05 8.3e-03 ± 2.5e-04 7.2e-03 ± 1.6e-04 7.2e-03 ± 1.7e-04
miami housing 3.9e+03 ± 1.9e+02 5.1e+03 ± 3.1e+02 5.2e+03 ± 3.4e+02 4.2e+03 ± 1.6e+02 8.1e+03 ± 3.6e+02 3.9e+03 ± 1.9e+02 3.9e+03 ± 1.8e+02
naval propulsion 1.5e-05 ± 2.1e-07 1.5e-05 ± 2.6e-07 1.5e-05 ± 2.6e-07 1.7e-05 ± 2.7e-07 1.6e-05 ± 3.5e-07 1.5e-05 ± 2.1e-07 1.5e-05 ± 2.3e-07
parkinsons 0.178 ± 0.010 0.202 ± 0.007 0.215 ± 0.012 0.224 ± 0.012 0.251 ± 0.014 0.185 ± 0.011 0.178 ± 0.010
powerplant 0.212 ± 0.012 0.228 ± 0.011 0.220 ± 0.011 0.221 ± 0.012 0.231 ± 0.010 0.213 ± 0.012 0.213 ± 0.012
qsar 0.049 ± 0.003 0.060 ± 0.003 0.052 ± 0.003 0.053 ± 0.003 0.057 ± 0.003 0.049 ± 0.003 0.049 ± 0.003
sulfur 2.0e-03 ± 1.4e-04 2.1e-03 ± 1.3e-04 2.3e-03 ± 1.1e-04 2.3e-03 ± 1.9e-04 3.5e-03 ± 2.0e-04 2.0e-03 ± 1.4e-04 2.0e-03 ± 1.4e-04
superconductor 0.490 ± 0.018 0.511 ± 0.014 0.538 ± 0.023 0.608 ± 0.023 0.861 ± 0.036 0.490 ± 0.018 0.491 ± 0.018
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Table 15: Variant (a) NCIW at 95% prediction intervals, aggregated across 10 seeds.Values ≥ 100
or < 0.01 are presented in scientific notation with 1 decimal place. Bold values (desirable) are the
minimum for that dataset and metric, while the underlined values indicate the second-best result. Red
values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 0.195 ± 0.017 0.209 ± 0.019 0.196 ± 0.017 0.217 ± 0.021 0.220 ± 0.020 0.195 ± 0.017 0.195 ± 0.017
airfoil 0.203 ± 0.006 0.356 ± 0.016 0.216 ± 0.012 0.211 ± 0.007 0.246 ± 0.019 0.200 ± 0.007 0.200 ± 0.006
allstate 0.252 ± 0.037 0.264 ± 0.042 0.262 ± 0.042 0.266 ± 0.051 0.328 ± 0.051 0.245 ± 0.042 0.245 ± 0.041
ca housing 0.336 ± 0.008 0.760 ± 0.009 0.348 ± 0.010 0.354 ± 0.012 0.440 ± 0.016 0.331 ± 0.007 0.328 ± 0.007
computer 0.091 ± 0.008 0.099 ± 0.001 0.091 ± 0.011 0.112 ± 0.028 0.113 ± 0.008 0.092 ± 0.009 0.091 ± 0.007
concrete 0.246 ± 0.033 0.421 ± 0.079 0.259 ± 0.035 0.241 ± 0.025 0.264 ± 0.037 0.238 ± 0.027 0.240 ± 0.026
elevator 0.155 ± 0.010 0.143 ± 0.008 0.148 ± 0.008 0.177 ± 0.011 0.145 ± 0.010 0.155 ± 0.010 0.159 ± 0.010
energy efficiency 0.046 ± 0.005 0.196 ± 0.032 0.050 ± 0.005 0.057 ± 0.004 0.060 ± 0.006 0.050 ± 0.005 0.051 ± 0.004
insurance 0.303 ± 0.029 0.284 ± 0.049 0.308 ± 0.043 0.530 ± 0.178 0.454 ± 0.102 0.282 ± 0.049 0.271 ± 0.046
kin8nm 0.354 ± 0.008 0.482 ± 0.014 0.371 ± 0.009 0.371 ± 0.009 0.396 ± 0.013 0.355 ± 0.008 0.355 ± 0.008
miami housing 0.084 ± 0.003 0.106 ± 0.004 0.085 ± 0.003 0.098 ± 0.002 0.124 ± 0.006 0.083 ± 0.002 0.084 ± 0.002
naval propulsion 6.1e-04 ± 7.9e-06 6.1e-04 ± 7.4e-06 6.0e-04 ± 5.5e-06 7.1e-04 ± 1.5e-05 5.9e-04 ± 6.1e-06 6.1e-04 ± 9.3e-06 6.1e-04 ± 6.4e-06
parkinsons 0.225 ± 0.012 0.321 ± 0.013 0.247 ± 0.007 0.316 ± 0.032 0.302 ± 0.013 0.227 ± 0.007 0.224 ± 0.008
powerplant 0.173 ± 0.007 0.197 ± 0.009 0.182 ± 0.007 0.182 ± 0.007 0.187 ± 0.008 0.176 ± 0.007 0.174 ± 0.007
qsar 0.360 ± 0.119 0.479 ± 0.156 0.389 ± 0.130 0.389 ± 0.134 0.421 ± 0.142 0.360 ± 0.120 0.360 ± 0.120
sulfur 0.109 ± 0.010 0.111 ± 0.008 0.106 ± 0.009 0.128 ± 0.013 0.129 ± 0.011 0.108 ± 0.011 0.107 ± 0.010
superconductor 0.195 ± 0.021 0.231 ± 0.025 0.194 ± 0.021 0.247 ± 0.028 0.314 ± 0.035 0.194 ± 0.021 0.194 ± 0.021

Table 16: Variant (a) Interval Score Loss at 95% prediction intervals, aggregated across 10
seeds.Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. Bold
values (desirable) are the minimum for that dataset and metric, while the underlined values indicate
the second-best result. Red values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 7.4e-04 ± 1.8e-05 8.1e-04 ± 2.2e-05 7.8e-04 ± 2.2e-05 8.0e-04 ± 1.8e-05 9.1e-04 ± 2.9e-05 7.4e-04 ± 1.8e-05 7.4e-04 ± 1.8e-05
airfoil 8.717 ± 0.870 14.669 ± 1.007 9.843 ± 1.249 9.397 ± 0.977 11.761 ± 1.548 8.727 ± 0.902 8.730 ± 0.892
allstate 9.1e+03 ± 6.3e+02 1.1e+04 ± 6.6e+02 1.0e+04 ± 6.3e+02 9.9e+03 ± 6.2e+02 1.3e+04 ± 1.1e+03 9.2e+03 ± 6.1e+02 9.2e+03 ± 6.1e+02
ca housing 2.2e+05 ± 4.8e+03 3.9e+05 ± 2.1e+03 2.4e+05 ± 5.9e+03 2.6e+05 ± 7.5e+03 3.2e+05 ± 9.7e+03 2.2e+05 ± 5.3e+03 2.2e+05 ± 5.6e+03
computer 11.741 ± 1.723 12.023 ± 0.924 12.761 ± 2.285 1.8e+03 ± 1.2e+03 15.360 ± 0.785 11.667 ± 1.598 11.761 ± 1.841
concrete 27.020 ± 3.202 43.690 ± 4.842 28.684 ± 4.251 26.165 ± 2.857 30.054 ± 4.640 26.365 ± 2.976 26.445 ± 2.996
elevator 0.012 ± 0.000 0.011 ± 0.000 0.012 ± 0.000 0.014 ± 0.000 0.013 ± 0.000 0.012 ± 0.000 0.012 ± 0.000
energy efficiency 2.465 ± 0.347 8.199 ± 0.672 2.671 ± 0.416 3.058 ± 0.217 3.253 ± 0.388 2.667 ± 0.280 2.721 ± 0.270
insurance 2.8e+04 ± 4.9e+03 2.9e+04 ± 3.2e+03 2.8e+04 ± 4.4e+03 4.7e+04 ± 8.1e+03 3.6e+04 ± 3.1e+03 2.9e+04 ± 5.5e+03 2.8e+04 ± 5.0e+03
kin8nm 0.577 ± 0.014 0.760 ± 0.013 0.616 ± 0.021 0.607 ± 0.008 0.666 ± 0.020 0.577 ± 0.013 0.577 ± 0.013
miami housing 3.1e+05 ± 1.5e+04 4.1e+05 ± 2.5e+04 4.2e+05 ± 2.7e+04 3.3e+05 ± 1.3e+04 6.5e+05 ± 2.9e+04 3.1e+05 ± 1.5e+04 3.1e+05 ± 1.5e+04
naval propulsion 1.2e-03 ± 1.7e-05 1.2e-03 ± 2.1e-05 1.2e-03 ± 2.1e-05 1.4e-03 ± 2.2e-05 1.3e-03 ± 2.8e-05 1.2e-03 ± 1.7e-05 1.2e-03 ± 1.8e-05
parkinsons 14.221 ± 0.792 16.142 ± 0.582 17.188 ± 0.985 17.947 ± 0.957 20.088 ± 1.130 14.762 ± 0.882 14.259 ± 0.786
powerplant 16.993 ± 0.937 18.211 ± 0.897 17.577 ± 0.884 17.715 ± 0.965 18.501 ± 0.815 17.064 ± 0.951 17.027 ± 0.954
qsar 3.951 ± 0.230 4.795 ± 0.219 4.187 ± 0.231 4.249 ± 0.217 4.558 ± 0.216 3.950 ± 0.225 3.953 ± 0.224
sulfur 0.161 ± 0.011 0.172 ± 0.011 0.187 ± 0.008 0.186 ± 0.015 0.280 ± 0.016 0.161 ± 0.011 0.161 ± 0.011
superconductor 39.217 ± 1.419 40.851 ± 1.157 43.049 ± 1.848 48.630 ± 1.867 68.891 ± 2.882 39.182 ± 1.438 39.296 ± 1.444

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

F.2 VARIANT (B)
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Figure 7: Quantile loss and NCIW performance of different methods (CLEAR, PCS, ALEATORIC,
ALEATORIC-R) for variant (b), over 10 seeds normalized relative to CLEAR (baseline = 1.0).
Lower values indicate better performance. The inset boxplot shows the % improvement relative to
the CLEAR baseline ±1σ. Values inside each subplot represent the mean improvement across all
datasets.
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Table 17: Variant (b) PICP at 95% prediction intervals, aggregated across 10 seeds.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00
airfoil 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.01
allstate 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
ca housing 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
computer 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
concrete 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.95 ± 0.01 0.94 ± 0.03 0.95 ± 0.01 0.95 ± 0.01
elevator 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00
energy efficiency 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.96 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 0.96 ± 0.01
insurance 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.02 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 0.96 ± 0.01
kin8nm 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
miami housing 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00
naval propulsion 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 1.00 ± 0.00 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.00
parkinsons 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
powerplant 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01
qsar 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01
sulfur 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
superconductor 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00

Table 18: Variant (b) NIW at 95% prediction intervals, aggregated across 10 seeds.Values ≥ 100
or < 0.01 are presented in scientific notation with 1 decimal place. Bold values (desirable) are the
minimum for that dataset and metric, while the underlined values indicate the second-best result. Red
values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 0.193 ± 0.016 0.208 ± 0.017 0.195 ± 0.017 0.215 ± 0.016 0.220 ± 0.021 0.193 ± 0.016 0.193 ± 0.016
airfoil 0.207 ± 0.012 0.367 ± 0.018 0.215 ± 0.018 0.215 ± 0.012 0.246 ± 0.024 0.205 ± 0.012 0.206 ± 0.012
allstate 0.256 ± 0.045 0.265 ± 0.047 0.260 ± 0.047 0.263 ± 0.053 0.325 ± 0.055 0.243 ± 0.044 0.245 ± 0.046
ca housing 0.339 ± 0.008 0.760 ± 0.006 0.350 ± 0.006 0.354 ± 0.011 0.434 ± 0.020 0.333 ± 0.006 0.331 ± 0.007
computer 0.099 ± 0.006 0.143 ± 0.029 0.104 ± 0.005 0.142 ± 0.009 0.113 ± 0.006 0.101 ± 0.005 0.104 ± 0.005
concrete 0.249 ± 0.025 0.486 ± 0.028 0.265 ± 0.029 0.249 ± 0.017 0.263 ± 0.028 0.251 ± 0.022 0.253 ± 0.023
elevator 0.137 ± 0.007 0.171 ± 0.010 0.146 ± 0.008 0.193 ± 0.013 0.169 ± 0.010 0.136 ± 0.008 0.137 ± 0.008
energy efficiency 0.047 ± 0.005 0.212 ± 0.015 0.050 ± 0.007 0.062 ± 0.006 0.062 ± 0.013 0.051 ± 0.004 0.053 ± 0.004
insurance 0.329 ± 0.045 0.407 ± 0.064 0.381 ± 0.055 0.434 ± 0.179 0.478 ± 0.070 0.339 ± 0.104 0.306 ± 0.058
kin8nm 0.360 ± 0.012 0.490 ± 0.020 0.374 ± 0.014 0.373 ± 0.014 0.397 ± 0.017 0.359 ± 0.012 0.360 ± 0.011
miami housing 0.085 ± 0.002 0.105 ± 0.001 0.086 ± 0.004 0.098 ± 0.003 0.126 ± 0.006 0.084 ± 0.002 0.085 ± 0.002
naval propulsion 1.9e-03 ± 7.3e-05 0.222 ± 0.003 1.9e-03 ± 9.7e-05 8.1e-03 ± 4.1e-04 2.4e-03 ± 1.4e-04 2.1e-03 ± 8.1e-05 2.8e-03 ± 1.3e-04
parkinsons 0.281 ± 0.009 0.483 ± 0.006 0.302 ± 0.012 0.325 ± 0.011 0.345 ± 0.011 0.282 ± 0.009 0.281 ± 0.009
powerplant 0.170 ± 0.007 0.196 ± 0.009 0.180 ± 0.009 0.178 ± 0.007 0.183 ± 0.006 0.173 ± 0.007 0.172 ± 0.007
qsar 0.366 ± 0.123 0.486 ± 0.160 0.387 ± 0.127 0.393 ± 0.134 0.421 ± 0.139 0.362 ± 0.121 0.362 ± 0.121
sulfur 0.108 ± 0.009 0.110 ± 0.008 0.107 ± 0.011 0.129 ± 0.014 0.122 ± 0.015 0.106 ± 0.009 0.106 ± 0.009
superconductor 0.219 ± 0.023 0.309 ± 0.033 0.228 ± 0.026 0.243 ± 0.027 0.354 ± 0.042 0.223 ± 0.025 0.216 ± 0.024

Table 19: Variant (b) Quantile Loss at 95% prediction intervals, aggregated across 10 seeds.Values
≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. Bold values (desirable)
are the minimum for that dataset and metric, while the underlined values indicate the second-best
result. Red values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 9.2e-06 ± 2.3e-07 1.0e-05 ± 2.8e-07 9.7e-06 ± 2.8e-07 1.0e-05 ± 2.2e-07 1.1e-05 ± 3.7e-07 9.2e-06 ± 2.3e-07 9.2e-06 ± 2.3e-07
airfoil 0.109 ± 0.011 0.183 ± 0.013 0.123 ± 0.016 0.117 ± 0.012 0.147 ± 0.019 0.109 ± 0.011 0.109 ± 0.011
allstate 1.1e+02 ± 7.318 1.4e+02 ± 8.321 1.3e+02 ± 8.046 1.3e+02 ± 8.557 1.7e+02 ± 10.782 1.2e+02 ± 7.533 1.2e+02 ± 7.762
ca housing 2.8e+03 ± 59.700 4.8e+03 ± 25.753 3.0e+03 ± 73.283 3.2e+03 ± 93.396 4.0e+03 ± 1.2e+02 2.8e+03 ± 66.414 2.8e+03 ± 70.545
computer 0.159 ± 0.007 0.214 ± 0.041 0.206 ± 0.015 0.207 ± 0.009 0.234 ± 0.019 0.159 ± 0.007 0.161 ± 0.008
concrete 0.338 ± 0.040 0.546 ± 0.061 0.359 ± 0.053 0.327 ± 0.036 0.376 ± 0.058 0.330 ± 0.037 0.331 ± 0.037
elevator 1.4e-04 ± 2.0e-06 1.8e-04 ± 3.0e-06 1.6e-04 ± 3.1e-06 1.9e-04 ± 6.2e-06 2.1e-04 ± 5.5e-06 1.4e-04 ± 2.0e-06 1.4e-04 ± 2.1e-06
energy efficiency 0.031 ± 0.004 0.102 ± 0.008 0.033 ± 0.005 0.038 ± 0.003 0.041 ± 0.005 0.033 ± 0.003 0.034 ± 0.003
insurance 3.2e+02 ± 31.593 3.9e+02 ± 36.904 3.7e+02 ± 35.107 4.9e+02 ± 88.647 4.4e+02 ± 34.159 3.7e+02 ± 62.380 3.4e+02 ± 40.487
kin8nm 7.2e-03 ± 1.7e-04 9.5e-03 ± 1.6e-04 7.7e-03 ± 2.7e-04 7.6e-03 ± 9.7e-05 8.3e-03 ± 2.5e-04 7.2e-03 ± 1.6e-04 7.2e-03 ± 1.7e-04
miami housing 3.9e+03 ± 1.9e+02 5.1e+03 ± 3.1e+02 5.2e+03 ± 3.4e+02 4.2e+03 ± 1.6e+02 8.1e+03 ± 3.6e+02 3.9e+03 ± 1.9e+02 3.9e+03 ± 1.8e+02
naval propulsion 5.4e-05 ± 1.9e-06 4.9e-03 ± 7.0e-05 6.4e-05 ± 2.7e-06 1.8e-04 ± 9.1e-06 8.8e-05 ± 5.9e-06 6.0e-05 ± 1.8e-06 7.5e-05 ± 2.7e-06
parkinsons 0.209 ± 0.010 0.319 ± 0.009 0.228 ± 0.014 0.237 ± 0.008 0.265 ± 0.013 0.209 ± 0.010 0.209 ± 0.009
powerplant 0.212 ± 0.012 0.228 ± 0.011 0.220 ± 0.011 0.221 ± 0.012 0.231 ± 0.010 0.213 ± 0.012 0.213 ± 0.012
qsar 0.049 ± 0.003 0.060 ± 0.003 0.052 ± 0.003 0.053 ± 0.003 0.057 ± 0.003 0.049 ± 0.003 0.049 ± 0.003
sulfur 1.9e-03 ± 9.6e-05 2.2e-03 ± 1.1e-04 2.3e-03 ± 1.4e-04 2.2e-03 ± 8.6e-05 3.5e-03 ± 2.4e-04 1.9e-03 ± 8.2e-05 1.9e-03 ± 8.6e-05
superconductor 0.523 ± 0.018 0.648 ± 0.020 0.573 ± 0.024 0.611 ± 0.025 0.892 ± 0.035 0.522 ± 0.018 0.523 ± 0.020
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Table 20: Variant (b) NCIW at 95% prediction intervals, aggregated across 10 seeds.Values ≥ 100
or < 0.01 are presented in scientific notation with 1 decimal place. Bold values (desirable) are the
minimum for that dataset and metric, while the underlined values indicate the second-best result. Red
values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 0.195 ± 0.017 0.209 ± 0.019 0.196 ± 0.017 0.217 ± 0.021 0.220 ± 0.020 0.195 ± 0.017 0.195 ± 0.017
airfoil 0.203 ± 0.006 0.356 ± 0.016 0.216 ± 0.012 0.211 ± 0.007 0.246 ± 0.019 0.200 ± 0.007 0.200 ± 0.006
allstate 0.250 ± 0.043 0.265 ± 0.043 0.266 ± 0.044 0.270 ± 0.052 0.329 ± 0.053 0.245 ± 0.045 0.244 ± 0.044
ca housing 0.336 ± 0.008 0.760 ± 0.009 0.348 ± 0.010 0.354 ± 0.012 0.440 ± 0.016 0.331 ± 0.007 0.328 ± 0.007
computer 0.098 ± 0.005 0.144 ± 0.034 0.103 ± 0.003 0.142 ± 0.008 0.111 ± 0.005 0.101 ± 0.004 0.105 ± 0.004
concrete 0.246 ± 0.033 0.421 ± 0.079 0.259 ± 0.035 0.241 ± 0.025 0.264 ± 0.037 0.238 ± 0.027 0.240 ± 0.026
elevator 0.137 ± 0.008 0.173 ± 0.011 0.147 ± 0.009 0.192 ± 0.012 0.168 ± 0.012 0.137 ± 0.007 0.137 ± 0.007
energy efficiency 0.046 ± 0.005 0.196 ± 0.032 0.050 ± 0.005 0.057 ± 0.004 0.060 ± 0.006 0.050 ± 0.005 0.051 ± 0.004
insurance 0.320 ± 0.059 0.344 ± 0.069 0.339 ± 0.066 0.346 ± 0.076 0.455 ± 0.090 0.292 ± 0.058 0.275 ± 0.054
kin8nm 0.354 ± 0.008 0.482 ± 0.014 0.371 ± 0.009 0.371 ± 0.009 0.396 ± 0.013 0.355 ± 0.008 0.355 ± 0.008
miami housing 0.084 ± 0.003 0.106 ± 0.004 0.085 ± 0.003 0.098 ± 0.002 0.124 ± 0.006 0.083 ± 0.002 0.084 ± 0.002
naval propulsion 1.8e-03 ± 5.6e-05 0.195 ± 0.011 1.9e-03 ± 8.0e-05 3.2e-03 ± 1.2e-04 2.4e-03 ± 1.4e-04 2.1e-03 ± 7.2e-05 2.8e-03 ± 1.1e-04
parkinsons 0.284 ± 0.010 0.473 ± 0.016 0.309 ± 0.018 0.324 ± 0.008 0.349 ± 0.019 0.285 ± 0.011 0.285 ± 0.011
powerplant 0.173 ± 0.007 0.197 ± 0.009 0.182 ± 0.007 0.182 ± 0.007 0.187 ± 0.008 0.176 ± 0.007 0.174 ± 0.007
qsar 0.363 ± 0.121 0.480 ± 0.157 0.390 ± 0.130 0.393 ± 0.131 0.423 ± 0.142 0.362 ± 0.120 0.362 ± 0.120
sulfur 0.106 ± 0.007 0.109 ± 0.006 0.105 ± 0.006 0.125 ± 0.009 0.127 ± 0.008 0.105 ± 0.006 0.104 ± 0.006
superconductor 0.218 ± 0.022 0.308 ± 0.032 0.226 ± 0.022 0.241 ± 0.028 0.347 ± 0.036 0.223 ± 0.024 0.216 ± 0.024

Table 21: Variant (b) Interval Score Loss at 95% prediction intervals, aggregated across 10
seeds.Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. Bold
values (desirable) are the minimum for that dataset and metric, while the underlined values indicate
the second-best result. Red values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 7.4e-04 ± 1.8e-05 8.1e-04 ± 2.2e-05 7.8e-04 ± 2.2e-05 8.0e-04 ± 1.8e-05 9.1e-04 ± 2.9e-05 7.4e-04 ± 1.8e-05 7.4e-04 ± 1.8e-05
airfoil 8.717 ± 0.870 14.669 ± 1.007 9.843 ± 1.249 9.397 ± 0.977 11.761 ± 1.548 8.727 ± 0.902 8.730 ± 0.892
allstate 9.2e+03 ± 5.9e+02 1.1e+04 ± 6.7e+02 1.0e+04 ± 6.4e+02 1.0e+04 ± 6.8e+02 1.3e+04 ± 8.6e+02 9.3e+03 ± 6.0e+02 9.3e+03 ± 6.2e+02
ca housing 2.2e+05 ± 4.8e+03 3.9e+05 ± 2.1e+03 2.4e+05 ± 5.9e+03 2.6e+05 ± 7.5e+03 3.2e+05 ± 9.7e+03 2.2e+05 ± 5.3e+03 2.2e+05 ± 5.6e+03
computer 12.707 ± 0.575 17.102 ± 3.298 16.503 ± 1.199 16.547 ± 0.692 18.684 ± 1.517 12.707 ± 0.591 12.897 ± 0.602
concrete 27.020 ± 3.202 43.690 ± 4.842 28.684 ± 4.251 26.165 ± 2.857 30.054 ± 4.640 26.365 ± 2.976 26.445 ± 2.996
elevator 0.011 ± 0.000 0.014 ± 0.000 0.013 ± 0.000 0.015 ± 0.000 0.017 ± 0.000 0.012 ± 0.000 0.012 ± 0.000
energy efficiency 2.465 ± 0.347 8.199 ± 0.672 2.671 ± 0.416 3.058 ± 0.217 3.253 ± 0.388 2.667 ± 0.280 2.721 ± 0.270
insurance 2.6e+04 ± 2.5e+03 3.1e+04 ± 3.0e+03 3.0e+04 ± 2.8e+03 3.9e+04 ± 7.1e+03 3.5e+04 ± 2.7e+03 3.0e+04 ± 5.0e+03 2.8e+04 ± 3.2e+03
kin8nm 0.577 ± 0.014 0.760 ± 0.013 0.616 ± 0.021 0.607 ± 0.008 0.666 ± 0.020 0.577 ± 0.013 0.577 ± 0.013
miami housing 3.1e+05 ± 1.5e+04 4.1e+05 ± 2.5e+04 4.2e+05 ± 2.7e+04 3.3e+05 ± 1.3e+04 6.5e+05 ± 2.9e+04 3.1e+05 ± 1.5e+04 3.1e+05 ± 1.5e+04
naval propulsion 4.4e-03 ± 1.5e-04 0.391 ± 0.006 5.1e-03 ± 2.2e-04 0.014 ± 0.001 7.1e-03 ± 4.7e-04 4.8e-03 ± 1.4e-04 6.0e-03 ± 2.2e-04
parkinsons 16.697 ± 0.794 25.497 ± 0.692 18.270 ± 1.122 18.931 ± 0.600 21.220 ± 1.011 16.688 ± 0.771 16.680 ± 0.750
powerplant 16.993 ± 0.937 18.211 ± 0.897 17.577 ± 0.884 17.715 ± 0.965 18.501 ± 0.815 17.064 ± 0.951 17.027 ± 0.954
qsar 3.956 ± 0.218 4.802 ± 0.219 4.193 ± 0.227 4.270 ± 0.220 4.562 ± 0.217 3.946 ± 0.222 3.946 ± 0.223
sulfur 0.155 ± 0.008 0.174 ± 0.009 0.186 ± 0.012 0.180 ± 0.007 0.277 ± 0.020 0.156 ± 0.007 0.155 ± 0.007
superconductor 41.801 ± 1.407 51.826 ± 1.568 45.860 ± 1.883 48.899 ± 2.037 71.323 ± 2.803 41.747 ± 1.460 41.821 ± 1.571
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Figure 8: Quantile loss and NCIW performance of different methods (CLEAR, PCS, ALEATORIC,
ALEATORIC-R) for variant (c), over 10 seeds normalized relative to CLEAR (baseline = 1.0).
Lower values indicate better performance. The inset boxplot shows the % improvement relative to
the CLEAR baseline ±1σ. Values inside each subplot represent the mean improvement across all
datasets.
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Table 22: Variant (c) PICP at 95% prediction intervals, aggregated across 10 seeds.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
airfoil 0.96 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.96 ± 0.01 0.96 ± 0.01
allstate 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
ca housing 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
computer 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
concrete 0.96 ± 0.01 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 0.96 ± 0.01
elevator 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01
energy efficiency 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.02 0.95 ± 0.01 0.97 ± 0.01 0.96 ± 0.01
insurance 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
kin8nm 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
miami housing 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
naval propulsion 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01
parkinsons 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
powerplant 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
qsar 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
sulfur 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
superconductor 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00

Table 23: Variant (c) NIW at 95% prediction intervals, aggregated across 10 seeds.Values ≥ 100
or < 0.01 are presented in scientific notation with 1 decimal place. Bold values (desirable) are the
minimum for that dataset and metric, while the underlined values indicate the second-best result. Red
values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 0.208 ± 0.017 0.227 ± 0.017 0.202 ± 0.018 0.237 ± 0.024 0.229 ± 0.020 0.208 ± 0.016 0.208 ± 0.017
airfoil 0.199 ± 0.013 0.286 ± 0.016 0.223 ± 0.024 0.204 ± 0.019 0.214 ± 0.024 0.205 ± 0.018 0.202 ± 0.014
allstate 0.279 ± 0.052 0.317 ± 0.065 0.277 ± 0.047 0.299 ± 0.065 0.315 ± 0.059 0.274 ± 0.053 0.272 ± 0.051
ca housing 0.315 ± 0.010 0.425 ± 0.005 0.345 ± 0.013 0.332 ± 0.011 0.400 ± 0.016 0.312 ± 0.008 0.311 ± 0.008
computer 0.080 ± 0.004 0.102 ± 0.001 0.089 ± 0.004 0.084 ± 0.004 0.091 ± 0.006 0.079 ± 0.004 0.078 ± 0.004
concrete 0.278 ± 0.029 0.315 ± 0.019 0.284 ± 0.027 0.273 ± 0.031 0.276 ± 0.028 0.279 ± 0.029 0.281 ± 0.029
elevator 0.127 ± 0.008 0.192 ± 0.010 0.137 ± 0.008 0.152 ± 0.008 0.144 ± 0.010 0.127 ± 0.007 0.127 ± 0.007
energy efficiency 0.043 ± 0.007 0.138 ± 0.007 0.051 ± 0.005 0.045 ± 0.007 0.049 ± 0.005 0.047 ± 0.007 0.046 ± 0.007
insurance 0.397 ± 0.091 0.421 ± 0.049 0.459 ± 0.050 0.395 ± 0.096 0.423 ± 0.083 0.440 ± 0.092 0.475 ± 0.109
kin8nm 0.325 ± 0.012 0.415 ± 0.018 0.330 ± 0.014 0.329 ± 0.011 0.344 ± 0.012 0.328 ± 0.014 0.326 ± 0.013
miami housing 0.088 ± 0.001 0.112 ± 0.002 0.113 ± 0.008 0.093 ± 0.002 0.123 ± 0.008 0.078 ± 0.002 0.078 ± 0.002
naval propulsion 1.6e-03 ± 3.2e-05 4.1e-03 ± 8.9e-05 1.6e-03 ± 4.3e-05 1.7e-03 ± 5.4e-05 1.8e-03 ± 3.9e-05 1.6e-03 ± 1.9e-05 1.6e-03 ± 3.0e-05
parkinsons 0.250 ± 0.007 0.371 ± 0.011 0.281 ± 0.011 0.260 ± 0.008 0.285 ± 0.010 0.251 ± 0.008 0.248 ± 0.007
powerplant 0.157 ± 0.007 0.175 ± 0.008 0.161 ± 0.008 0.169 ± 0.006 0.164 ± 0.007 0.158 ± 0.007 0.158 ± 0.007
qsar 0.344 ± 0.117 0.464 ± 0.153 0.353 ± 0.117 0.399 ± 0.138 0.386 ± 0.131 0.352 ± 0.120 0.346 ± 0.118
sulfur 0.111 ± 0.009 0.124 ± 0.010 0.109 ± 0.014 0.124 ± 0.009 0.114 ± 0.013 0.105 ± 0.009 0.104 ± 0.009
superconductor 0.195 ± 0.020 0.250 ± 0.025 0.210 ± 0.029 0.235 ± 0.027 0.308 ± 0.035 0.193 ± 0.020 0.193 ± 0.020

Table 24: Variant (c) Quantile Loss at 95% prediction intervals, aggregated across 10 seeds.Values
≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. Bold values (desirable)
are the minimum for that dataset and metric, while the underlined values indicate the second-best
result. Red values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 9.6e-06 ± 2.9e-07 1.0e-05 ± 2.7e-07 9.9e-06 ± 3.6e-07 1.1e-05 ± 2.7e-07 1.2e-05 ± 3.7e-07 9.6e-06 ± 2.9e-07 9.6e-06 ± 2.9e-07
airfoil 0.107 ± 0.014 0.140 ± 0.007 0.129 ± 0.019 0.110 ± 0.013 0.130 ± 0.019 0.108 ± 0.014 0.108 ± 0.014
allstate 1.2e+02 ± 6.874 1.2e+02 ± 4.960 1.2e+02 ± 19.401 1.4e+02 ± 9.737 1.6e+02 ± 10.679 1.2e+02 ± 7.379 1.2e+02 ± 7.410
ca housing 2.8e+03 ± 92.560 3.2e+03 ± 71.387 3.2e+03 ± 1.0e+02 2.9e+03 ± 87.120 3.6e+03 ± 1.2e+02 2.8e+03 ± 88.458 2.8e+03 ± 87.820
computer 0.137 ± 0.011 0.152 ± 0.013 0.160 ± 0.012 0.140 ± 0.012 0.164 ± 0.013 0.137 ± 0.011 0.138 ± 0.011
concrete 0.337 ± 0.032 0.374 ± 0.044 0.381 ± 0.059 0.336 ± 0.032 0.384 ± 0.056 0.336 ± 0.032 0.337 ± 0.032
elevator 1.3e-04 ± 3.2e-06 1.7e-04 ± 2.2e-06 1.5e-04 ± 3.3e-06 1.4e-04 ± 3.7e-06 1.6e-04 ± 3.1e-06 1.3e-04 ± 2.9e-06 1.3e-04 ± 2.9e-06
energy efficiency 0.029 ± 0.007 0.068 ± 0.005 0.034 ± 0.010 0.030 ± 0.007 0.034 ± 0.010 0.030 ± 0.007 0.030 ± 0.007
insurance 4.2e+02 ± 80.269 3.9e+02 ± 33.576 4.0e+02 ± 53.283 4.4e+02 ± 65.348 4.1e+02 ± 41.712 4.3e+02 ± 77.643 4.5e+02 ± 67.994
kin8nm 6.7e-03 ± 1.8e-04 8.4e-03 ± 2.6e-04 6.8e-03 ± 1.9e-04 6.9e-03 ± 2.2e-04 7.4e-03 ± 2.8e-04 6.7e-03 ± 1.6e-04 6.7e-03 ± 1.7e-04
miami housing 3.7e+03 ± 1.4e+02 4.2e+03 ± 1.2e+02 7.3e+03 ± 4.2e+02 3.7e+03 ± 1.2e+02 7.7e+03 ± 4.2e+02 4.0e+03 ± 2.4e+02 4.0e+03 ± 2.3e+02
naval propulsion 4.0e-05 ± 1.0e-06 9.5e-05 ± 2.1e-06 4.9e-05 ± 1.6e-06 4.2e-05 ± 1.2e-06 5.7e-05 ± 1.2e-06 4.1e-05 ± 1.2e-06 4.5e-05 ± 1.6e-06
parkinsons 0.189 ± 0.006 0.249 ± 0.007 0.216 ± 0.008 0.191 ± 0.006 0.220 ± 0.008 0.189 ± 0.006 0.190 ± 0.007
powerplant 0.203 ± 0.012 0.213 ± 0.014 0.208 ± 0.012 0.211 ± 0.013 0.211 ± 0.012 0.203 ± 0.012 0.203 ± 0.012
qsar 0.048 ± 0.002 0.057 ± 0.003 0.051 ± 0.002 0.054 ± 0.002 0.055 ± 0.003 0.049 ± 0.002 0.049 ± 0.002
sulfur 1.8e-03 ± 6.3e-05 1.9e-03 ± 1.2e-04 2.7e-03 ± 1.6e-04 1.8e-03 ± 6.2e-05 2.9e-03 ± 1.7e-04 1.8e-03 ± 6.8e-05 1.8e-03 ± 7.1e-05
superconductor 0.489 ± 0.020 0.553 ± 0.018 0.568 ± 0.042 0.568 ± 0.025 0.792 ± 0.035 0.490 ± 0.020 0.489 ± 0.021
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Table 25: Variant (c) NCIW at 95% prediction intervals, aggregated across 10 seeds.Values ≥ 100
or < 0.01 are presented in scientific notation with 1 decimal place. Bold values (desirable) are the
minimum for that dataset and metric, while the underlined values indicate the second-best result. Red
values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 0.210 ± 0.020 0.231 ± 0.023 0.204 ± 0.021 0.239 ± 0.021 0.230 ± 0.021 0.209 ± 0.020 0.210 ± 0.019
airfoil 0.188 ± 0.014 0.258 ± 0.034 0.204 ± 0.017 0.199 ± 0.013 0.204 ± 0.014 0.190 ± 0.012 0.188 ± 0.010
allstate 0.277 ± 0.056 0.316 ± 0.065 0.281 ± 0.041 0.305 ± 0.070 0.319 ± 0.051 0.271 ± 0.054 0.270 ± 0.053
ca housing 0.311 ± 0.010 0.419 ± 0.014 0.343 ± 0.010 0.329 ± 0.009 0.401 ± 0.018 0.309 ± 0.009 0.309 ± 0.009
computer 0.081 ± 0.004 0.104 ± 0.007 0.090 ± 0.004 0.084 ± 0.005 0.092 ± 0.005 0.079 ± 0.004 0.080 ± 0.004
concrete 0.259 ± 0.032 0.303 ± 0.054 0.263 ± 0.029 0.257 ± 0.031 0.265 ± 0.027 0.258 ± 0.033 0.259 ± 0.032
elevator 0.126 ± 0.008 0.192 ± 0.008 0.138 ± 0.008 0.151 ± 0.011 0.144 ± 0.010 0.127 ± 0.007 0.127 ± 0.007
energy efficiency 0.041 ± 0.006 0.116 ± 0.015 0.048 ± 0.005 0.043 ± 0.005 0.049 ± 0.005 0.042 ± 0.006 0.042 ± 0.006
insurance 0.345 ± 0.078 0.413 ± 0.043 0.424 ± 0.074 0.343 ± 0.087 0.385 ± 0.112 0.367 ± 0.100 0.407 ± 0.137
kin8nm 0.323 ± 0.008 0.420 ± 0.018 0.327 ± 0.008 0.331 ± 0.010 0.341 ± 0.012 0.325 ± 0.009 0.324 ± 0.009
miami housing 0.088 ± 0.002 0.113 ± 0.004 0.111 ± 0.007 0.094 ± 0.003 0.122 ± 0.007 0.077 ± 0.003 0.076 ± 0.003
naval propulsion 1.6e-03 ± 5.0e-05 4.0e-03 ± 2.4e-04 1.6e-03 ± 4.1e-05 1.7e-03 ± 4.7e-05 1.8e-03 ± 5.8e-05 1.6e-03 ± 5.2e-05 1.6e-03 ± 6.2e-05
parkinsons 0.250 ± 0.012 0.366 ± 0.017 0.279 ± 0.013 0.259 ± 0.009 0.284 ± 0.013 0.251 ± 0.011 0.250 ± 0.011
powerplant 0.161 ± 0.007 0.176 ± 0.009 0.163 ± 0.008 0.171 ± 0.008 0.166 ± 0.007 0.161 ± 0.007 0.161 ± 0.007
qsar 0.348 ± 0.118 0.465 ± 0.156 0.361 ± 0.124 0.407 ± 0.142 0.395 ± 0.134 0.359 ± 0.124 0.354 ± 0.122
sulfur 0.109 ± 0.008 0.124 ± 0.008 0.108 ± 0.006 0.124 ± 0.008 0.115 ± 0.007 0.104 ± 0.007 0.102 ± 0.007
superconductor 0.192 ± 0.019 0.251 ± 0.025 0.206 ± 0.027 0.232 ± 0.025 0.297 ± 0.029 0.191 ± 0.019 0.191 ± 0.019

Table 26: Variant (c) Interval Score Loss at 95% prediction intervals, aggregated across 10
seeds.Values ≥ 100 or < 0.01 are presented in scientific notation with 1 decimal place. Bold
values (desirable) are the minimum for that dataset and metric, while the underlined values indicate
the second-best result. Red values are more than 33% worse than the best result.

Dataset CLEAR ALEATORIC ALEATORIC-R PCS-EPISTEMIC Naive γ1 = 1 λ = 1

ailerons 7.7e-04 ± 2.3e-05 8.2e-04 ± 2.2e-05 7.9e-04 ± 2.9e-05 8.5e-04 ± 2.2e-05 9.4e-04 ± 3.0e-05 7.7e-04 ± 2.3e-05 7.7e-04 ± 2.3e-05
airfoil 8.569 ± 1.099 11.217 ± 0.549 10.341 ± 1.548 8.799 ± 1.034 10.361 ± 1.499 8.675 ± 1.116 8.624 ± 1.105
allstate 9.2e+03 ± 5.5e+02 9.6e+03 ± 4.0e+02 1.0e+04 ± 1.6e+03 1.1e+04 ± 7.8e+02 1.3e+04 ± 8.5e+02 9.2e+03 ± 5.9e+02 9.3e+03 ± 5.9e+02
ca housing 2.2e+05 ± 7.4e+03 2.5e+05 ± 5.7e+03 2.5e+05 ± 8.1e+03 2.3e+05 ± 7.0e+03 2.9e+05 ± 9.7e+03 2.2e+05 ± 7.1e+03 2.2e+05 ± 7.0e+03
computer 10.978 ± 0.911 12.134 ± 1.001 12.827 ± 0.945 11.204 ± 0.996 13.130 ± 1.051 10.986 ± 0.873 11.030 ± 0.866
concrete 26.928 ± 2.529 29.955 ± 3.544 30.449 ± 4.693 26.855 ± 2.535 30.720 ± 4.505 26.882 ± 2.568 26.962 ± 2.581
elevator 0.010 ± 0.000 0.014 ± 0.000 0.012 ± 0.000 0.011 ± 0.000 0.013 ± 0.000 0.010 ± 0.000 0.010 ± 0.000
energy efficiency 2.348 ± 0.554 5.407 ± 0.418 2.759 ± 0.822 2.397 ± 0.573 2.756 ± 0.822 2.392 ± 0.564 2.395 ± 0.588
insurance 3.4e+04 ± 6.4e+03 3.1e+04 ± 2.7e+03 3.2e+04 ± 4.3e+03 3.5e+04 ± 5.2e+03 3.3e+04 ± 3.3e+03 3.4e+04 ± 6.2e+03 3.6e+04 ± 5.4e+03
kin8nm 0.534 ± 0.014 0.673 ± 0.021 0.544 ± 0.015 0.552 ± 0.017 0.591 ± 0.022 0.536 ± 0.013 0.535 ± 0.013
miami housing 2.9e+05 ± 1.1e+04 3.3e+05 ± 9.5e+03 5.9e+05 ± 3.4e+04 3.0e+05 ± 9.6e+03 6.1e+05 ± 3.4e+04 3.2e+05 ± 1.9e+04 3.2e+05 ± 1.9e+04
naval propulsion 3.2e-03 ± 8.4e-05 7.6e-03 ± 1.7e-04 3.9e-03 ± 1.3e-04 3.4e-03 ± 9.6e-05 4.6e-03 ± 9.6e-05 3.2e-03 ± 9.3e-05 3.6e-03 ± 1.3e-04
parkinsons 15.149 ± 0.518 19.899 ± 0.576 17.316 ± 0.634 15.312 ± 0.459 17.596 ± 0.621 15.150 ± 0.499 15.161 ± 0.537
powerplant 16.243 ± 0.985 17.062 ± 1.128 16.673 ± 0.987 16.846 ± 1.029 16.874 ± 0.975 16.231 ± 0.984 16.231 ± 0.983
qsar 3.877 ± 0.176 4.521 ± 0.225 4.086 ± 0.193 4.334 ± 0.125 4.390 ± 0.205 3.927 ± 0.146 3.892 ± 0.151
sulfur 0.143 ± 0.005 0.156 ± 0.010 0.213 ± 0.013 0.146 ± 0.005 0.228 ± 0.013 0.143 ± 0.005 0.145 ± 0.006
superconductor 39.104 ± 1.604 44.230 ± 1.428 45.479 ± 3.358 45.456 ± 2.039 63.347 ± 2.824 39.224 ± 1.613 39.119 ± 1.642

Table 27: Variant (c) CLEAR calibration parameters λ and γ1 for 95% prediction intervals across 10
seeds. Using all available variables. Showing median [min:max] values.

Dataset λ γ1

ailerons 0.89 [0.17:4.47] 0.98 [0.87:1.58]
airfoil 0.76 [0.23:5.25] 1.70 [0.25:4.30]
allstate 0.21 [0.00:14.06] 1.14 [0.16:1.93]
ca housing 1.90 [1.14:5.08] 0.70 [0.33:0.93]
computer 2.21 [1.63:8.87] 0.74 [0.21:0.96]
concrete 1.33 [0.06:100.00] 1.65 [0.01:16.73]
elevator 0.94 [0.67:1.43] 1.04 [0.82:1.22]
energy efficiency 0.12 [0.01:100.00] 7.96 [0.02:24.25]
insurance 5.07 [0.14:100.00] 0.38 [0.02:27.45]
kin8nm 1.87 [1.64:3.82] 0.76 [0.58:0.83]
miami housing 7.06 [4.84:19.45] 0.23 [0.09:0.33]
naval propulsion 16.16 [12.48:21.17] 0.63 [0.53:0.76]
parkinsons 1.16 [0.72:8.42] 1.26 [0.22:1.84]
powerplant 1.05 [0.73:3.26] 1.05 [0.51:1.36]
qsar 0.51 [0.32:1.70] 1.45 [0.96:2.37]
sulfur 2.41 [1.53:7.16] 0.71 [0.29:0.91]
superconductor 0.91 [0.34:1.39] 1.07 [0.80:1.34]
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F.4 COMPARING VARIANTS OF CLEAR
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Figure 9: Quantile loss and NCIW performance of different variants of CLEAR (a, b and c) over 10
seeds normalized relative to CLEAR (a) (baseline = 1.0). Lower values indicate better performance.
The inset boxplot shows the % improvement relative to the CLEAR (a) baseline ±1σ. Values inside
each subplot represent the mean improvement across all datasets.

F.5 RUNTIME

The grid search for finding the optimal parameter is extremely fast and negligible compared to the
baselines, despite using a grid with 4000 points, which is finer and larger than necessary. In Tables 28
to 30, we provide the average training time for each variant on a given real-world dataset, computed
on a machine with an Intel® Core™ i9-13900KF CPU (with maximum 20+ threads used in parallel).
For experiments involving SQR and DEs, we had access to an NVIDIA® GeForce RTX™ 4090 GPU.
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All results are computed using 32 GB of memory. The times are provided in seconds and have been
averaged over 10 seeds. For CLEAR, the required computation is the calibration time (computation
of λ and γ1, denoted as Grid Search in the tables). Only the runtimes for the methods included in the
paper are provided. The experiments were run exactly as described in the paper (particularly for the
100 bootstraps).

As stated previously, CLEAR is highly modular, allowing the modules and their components (such
as the choice of base models within the PCS module) to be replaced or modified to adhere to
computational budget limitations. For example, if the dataset is very large, base models that scale
well with the training data size can be used (such as deep learning models, trained via stochastic
gradient descent). Alternatively, if training each model is expensive, one might want to use fewer than
100 different bootstraps per dataset, or maybe even use techniques (such as Monte-Carlo Dropout) to
obtain an ensemble from a single trained model (Kendall & Gal, 2017; Gal & Ghahramani, 2016;
Wen et al., 2020; Havasi et al., 2021; Rossellini et al., 2024; Chan et al., 2025; Agarwal et al., 2025).

Note that ALEATORIC-R cannot be computed without first computing PCS, as it utilizes the residuals
from PCS. In practice, the total computational costs of ALEATORIC-R would be equal to the costs
of PCS plus the additional costs of the residual approach. Thus, the minimal total computational
costs necessary to obtain CLEAR results are equal to the minimal total computational costs required
to obtain ALEATORIC-R results (up to a few seconds of the grid search).
Remark F.1 (Parallelization and Scalability). Every step in the entire CLEAR pipeline is parallelizable
and distributable. The most expensive part is fitting multiple models to multiple bootstraps of the data
for PCS. However, these models can be trained perfectly in parallel on different distributed nodes,
as they do not have to communicate with each other. Similar parallelization (distributed) is also
possible for ALEATORIC-R, where multiple models are fitted independently. The computational
costs of CLEAR’s calibration step (Grid-Search), albeit negligible, could be further reduced by
distributing the exploration of the grid across multiple servers. The computations necessary for each
grid point are fully vectorized and are highly suited for GPUs (in the case of a large calibration
dataset). In other words, regardless of whether the user has access to many weak CPU servers, a
powerful GPU, or multiple powerful GPU servers, the calibration step can efficiently utilize all these
different infrastructures (when tuning the implementation accordingly). For all these reasons, CLEAR
is highly scalable.

⋄

Table 28: Variant (a) average runtime (over 10 seeds) in seconds for base components and the
CLEAR’s grid search. The grid search includes any other overhead for CLEAR.

Dataset PCS ALEATORIC-R Grid-Search Total
ailerons 13.46 6.80 0.27 20.53
airfoil 3.10 1.92 0.17 5.19
allstate 1124.47 22.93 0.19 1147.59
ca housing 8.51 7.79 0.54 16.84
computer 61.92 76.09 0.16 138.16
concrete 1.10 2.16 0.17 3.43
elevator 18.79 122.16 0.60 141.54
energy efficiency 0.81 1.65 0.16 2.62
insurance 3.48 17.23 0.11 20.82
kin8nm 3.25 5.43 0.21 8.89
miami housing 7.31 7.66 0.72 15.68
naval propulsion 19.83 81.32 0.29 101.44
parkinsons 39.53 60.99 0.14 100.66
powerplant 3.08 4.92 0.21 8.22
qsar 348.59 10.00 0.20 358.78
sulfur 21.55 16.56 0.21 38.32
superconductor 561.84 795.45 12.70 1369.99

Total 2240.60 1241.06 17.06 3498.71
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Table 29: Variant (b) average runtime (over 10 seeds) in seconds for base components and the
CLEAR’s grid search. The grid search includes any other overhead for CLEAR.

Dataset PCS ALEATORIC-R Grid-Search Total
ailerons 4.51 6.89 0.26 11.66
airfoil 0.78 1.64 0.16 2.59
allstate 27.73 14.22 0.20 42.15
ca housing 5.42 7.69 0.39 13.50
computer 3.46 5.97 0.21 9.65
concrete 0.86 1.82 0.17 2.85
elevator 4.43 6.71 0.79 11.93
energy efficiency 0.68 1.40 0.17 2.25
insurance 0.80 1.65 0.17 2.62
kin8nm 2.61 4.96 0.21 7.78
miami housing 4.61 7.70 0.70 13.01
naval propulsion 3.72 6.38 0.55 10.64
parkinsons 2.71 5.37 0.20 8.28
powerplant 2.73 4.32 0.22 7.26
qsar 5.00 9.67 0.20 14.86
sulfur 2.89 4.64 0.23 7.76
superconductor 13.81 22.74 1.00 37.55

Total 86.77 113.76 5.81 206.34

Table 30: Variant (c) average runtime (over 10 seeds) in seconds for base components and the
CLEAR’s grid search. The grid search includes any other overhead for CLEAR.

Dataset PCS ALEATORIC-R Grid-Search Total
ailerons 10.20 104.32 0.65 115.17
airfoil 0.88 17.82 0.11 18.81
allstate 651.02 125.77 0.14 776.93
ca housing 3.63 130.87 4.16 138.66
computer 4.55 65.28 0.16 69.98
concrete 1.16 17.49 0.11 18.76
elevator 3.25 98.73 1.97 103.95
energy efficiency 0.95 15.42 0.10 16.47
insurance 0.90 19.80 0.11 20.81
kin8nm 16.89 69.17 0.16 86.22
miami housing 5.34 123.32 0.92 129.58
naval propulsion 1.14 115.41 0.74 117.28
parkinsons 3.71 53.43 0.14 57.27
powerplant 2.37 60.99 0.17 63.52
qsar 21.48 93.84 0.14 115.46
sulfur 2.43 67.41 0.17 70.01
superconductor 60.63 644.13 8.10 712.86

Total 790.52 1823.18 18.05 2631.75
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G CONFORMALIZED CLEAR WITH PCS AND CQR: RESULTS ON
REAL-WORLD DATA

This section presents results from our conformalized experimental configuration, where we split
the 20% validation set into separate 10% validation and 10% calibration sets. This approach
provides stronger finite-sample distribution-free marginal coverage guarantees following conformal
prediction principles, as the calibration set remains completely unseen during model selection and
hyperparameter optimization. While the conformalized approach may sacrifice some performance
due to reduced data availability for validation, it offers theoretical rigor by ensuring the conformal
calibration step operates on the held-out data. Similar to the standard results, CLEAR adapts to this
more stringent experimental setting while maintaining its advantages over baseline methods across
all three variants (a), (b), and (c).

G.1 VARIANT (A) CONFORMALIZED

Table 31: Conformalized Variant (a) PICP at 95% prediction intervals, aggregated across 10 seeds.
Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into
two parts, one for validation and one for calibration.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR

ailerons 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00
airfoil 0.96 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.01
allstate 0.96 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
ca housing 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
computer 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01
concrete 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.02 0.95 ± 0.02
elevator 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00
energy efficiency 0.97 ± 0.02 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.02
insurance 0.96 ± 0.02 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.02
kin8nm 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
miami housing 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
naval propulsion 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
parkinsons 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
powerplant 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
qsar 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
sulfur 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
superconductor 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00
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Table 32: Conformalized Variant (a) NIW at 95% prediction intervals, aggregated across 10 seeds.
Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided
into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are presented in
scientific notation with 1 decimal place. Bold values (desirable) are the minimum for that dataset and
metric, while the underlined values indicate the second-best result. Red values are more than 33%
worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR

ailerons 0.193 ± 0.016 0.217 ± 0.017 0.195 ± 0.018 0.193 ± 0.016
airfoil 0.215 ± 0.019 0.217 ± 0.022 0.227 ± 0.031 0.207 ± 0.012
allstate 0.267 ± 0.041 0.263 ± 0.060 0.259 ± 0.046 0.260 ± 0.037
ca housing 0.339 ± 0.006 0.355 ± 0.012 0.349 ± 0.008 0.339 ± 0.008
computer 0.091 ± 0.006 8.020 ± 11.958 0.094 ± 0.016 0.091 ± 0.008
concrete 0.272 ± 0.030 0.260 ± 0.050 0.266 ± 0.038 0.249 ± 0.025
elevator 0.157 ± 0.009 0.177 ± 0.014 0.149 ± 0.008 0.156 ± 0.009
energy efficiency 0.053 ± 0.009 0.058 ± 0.009 0.053 ± 0.009 0.047 ± 0.005
insurance 0.338 ± 0.063 0.535 ± 0.315 0.379 ± 0.089 0.309 ± 0.032
kin8nm 0.362 ± 0.014 0.373 ± 0.013 0.370 ± 0.011 0.360 ± 0.012
miami housing 0.085 ± 0.003 0.097 ± 0.002 0.087 ± 0.005 0.085 ± 0.002
naval propulsion 6.2e-04 ± 5.9e-06 7.1e-04 ± 1.5e-05 6.0e-04 ± 9.6e-06 6.1e-04 ± 6.3e-06
parkinsons 0.227 ± 0.017 0.315 ± 0.034 0.253 ± 0.020 0.227 ± 0.010
powerplant 0.171 ± 0.010 0.179 ± 0.008 0.183 ± 0.008 0.170 ± 0.007
qsar 0.369 ± 0.123 0.388 ± 0.132 0.381 ± 0.125 0.363 ± 0.121
sulfur 0.112 ± 0.009 0.136 ± 0.014 0.108 ± 0.010 0.109 ± 0.010
superconductor 0.197 ± 0.022 0.249 ± 0.032 0.195 ± 0.023 0.196 ± 0.022

Table 33: Conformalized Variant (a) Quantile Loss at 95% prediction intervals, aggregated across
10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation
set divided into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are
presented in scientific notation with 1 decimal place. Bold values (desirable) are the minimum for
that dataset and metric, while the underlined values indicate the second-best result. Red values are
more than 33% worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR

ailerons 9.2e-06 ± 2.3e-07 1.0e-05 ± 2.1e-07 9.7e-06 ± 2.7e-07 9.2e-06 ± 2.3e-07
airfoil 0.110 ± 0.013 0.119 ± 0.012 0.126 ± 0.015 0.109 ± 0.011
allstate 1.1e+02 ± 8.530 1.3e+02 ± 8.381 1.3e+02 ± 7.926 1.1e+02 ± 7.835
ca housing 2.8e+03 ± 56.920 3.2e+03 ± 91.466 3.0e+03 ± 73.272 2.8e+03 ± 59.700
computer 0.142 ± 0.013 9.961 ± 14.797 0.157 ± 0.021 0.147 ± 0.022
concrete 0.342 ± 0.039 0.337 ± 0.047 0.355 ± 0.047 0.338 ± 0.040
elevator 1.5e-04 ± 2.0e-06 1.7e-04 ± 6.3e-06 1.5e-04 ± 2.5e-06 1.5e-04 ± 2.0e-06
energy efficiency 0.033 ± 0.005 0.038 ± 0.003 0.034 ± 0.005 0.031 ± 0.004
insurance 3.5e+02 ± 55.800 5.8e+02 ± 1.7e+02 3.8e+02 ± 49.983 3.5e+02 ± 61.616
kin8nm 7.2e-03 ± 1.7e-04 7.6e-03 ± 1.1e-04 7.7e-03 ± 2.7e-04 7.2e-03 ± 1.7e-04
miami housing 3.9e+03 ± 2.1e+02 4.2e+03 ± 1.7e+02 5.2e+03 ± 3.4e+02 3.9e+03 ± 1.9e+02
naval propulsion 1.5e-05 ± 1.9e-07 1.7e-05 ± 2.9e-07 1.5e-05 ± 2.7e-07 1.5e-05 ± 2.1e-07
parkinsons 0.179 ± 0.008 0.226 ± 0.016 0.216 ± 0.012 0.178 ± 0.010
powerplant 0.213 ± 0.011 0.222 ± 0.011 0.220 ± 0.011 0.212 ± 0.012
qsar 0.050 ± 0.003 0.053 ± 0.003 0.052 ± 0.003 0.049 ± 0.003
sulfur 2.0e-03 ± 1.7e-04 2.4e-03 ± 2.2e-04 2.3e-03 ± 1.6e-04 2.0e-03 ± 1.4e-04
superconductor 0.490 ± 0.018 0.609 ± 0.021 0.538 ± 0.023 0.490 ± 0.018
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Table 34: Conformalized Variant (a) NCIW at 95% prediction intervals, aggregated across 10 seeds.
Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided
into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are presented in
scientific notation with 1 decimal place. Bold values (desirable) are the minimum for that dataset and
metric, while the underlined values indicate the second-best result. Red values are more than 33%
worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR

ailerons 0.195 ± 0.018 0.217 ± 0.021 0.196 ± 0.017 0.195 ± 0.017
airfoil 0.203 ± 0.007 0.211 ± 0.007 0.216 ± 0.011 0.203 ± 0.006
allstate 0.255 ± 0.040 0.272 ± 0.057 0.263 ± 0.043 0.252 ± 0.037
ca housing 0.336 ± 0.006 0.354 ± 0.012 0.348 ± 0.011 0.336 ± 0.008
computer 0.091 ± 0.008 0.108 ± 0.016 0.090 ± 0.008 0.091 ± 0.008
concrete 0.262 ± 0.038 0.259 ± 0.047 0.264 ± 0.040 0.246 ± 0.033
elevator 0.155 ± 0.010 0.177 ± 0.011 0.148 ± 0.008 0.155 ± 0.010
energy efficiency 0.046 ± 0.006 0.057 ± 0.004 0.050 ± 0.005 0.046 ± 0.005
insurance 0.299 ± 0.037 0.480 ± 0.181 0.312 ± 0.036 0.303 ± 0.029
kin8nm 0.355 ± 0.008 0.371 ± 0.009 0.371 ± 0.009 0.354 ± 0.008
miami housing 0.084 ± 0.004 0.098 ± 0.002 0.085 ± 0.003 0.084 ± 0.003
naval propulsion 6.1e-04 ± 7.3e-06 7.1e-04 ± 1.5e-05 6.0e-04 ± 5.4e-06 6.1e-04 ± 7.9e-06
parkinsons 0.226 ± 0.012 0.316 ± 0.032 0.248 ± 0.007 0.225 ± 0.012
powerplant 0.173 ± 0.008 0.182 ± 0.007 0.182 ± 0.007 0.173 ± 0.007
qsar 0.361 ± 0.120 0.389 ± 0.134 0.389 ± 0.131 0.360 ± 0.119
sulfur 0.110 ± 0.007 0.127 ± 0.008 0.105 ± 0.005 0.109 ± 0.010
superconductor 0.195 ± 0.021 0.247 ± 0.028 0.194 ± 0.021 0.195 ± 0.021

Table 35: Conformalized Variant (a) Interval Score Loss at 95% prediction intervals, aggregated
across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation
set divided into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are
presented in scientific notation with 1 decimal place. Bold values (desirable) are the minimum for
that dataset and metric, while the underlined values indicate the second-best result. Red values are
more than 33% worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR

ailerons 7.4e-04 ± 1.8e-05 8.1e-04 ± 1.7e-05 7.8e-04 ± 2.2e-05 7.4e-04 ± 1.8e-05
airfoil 8.794 ± 1.047 9.523 ± 0.959 10.075 ± 1.227 8.717 ± 0.870
allstate 9.2e+03 ± 6.8e+02 1.0e+04 ± 6.7e+02 1.0e+04 ± 6.3e+02 9.1e+03 ± 6.3e+02
ca housing 2.2e+05 ± 4.6e+03 2.6e+05 ± 7.3e+03 2.4e+05 ± 5.9e+03 2.2e+05 ± 4.8e+03
computer 11.388 ± 1.051 8.0e+02 ± 1.2e+03 12.535 ± 1.698 11.741 ± 1.723
concrete 27.347 ± 3.094 26.963 ± 3.739 28.402 ± 3.793 27.020 ± 3.202
elevator 0.012 ± 0.000 0.014 ± 0.001 0.012 ± 0.000 0.012 ± 0.000
energy efficiency 2.609 ± 0.417 3.019 ± 0.237 2.681 ± 0.431 2.465 ± 0.347
insurance 2.8e+04 ± 4.5e+03 4.6e+04 ± 1.3e+04 3.0e+04 ± 4.0e+03 2.8e+04 ± 4.9e+03
kin8nm 0.578 ± 0.014 0.607 ± 0.009 0.615 ± 0.022 0.577 ± 0.014
miami housing 3.2e+05 ± 1.7e+04 3.3e+05 ± 1.4e+04 4.2e+05 ± 2.7e+04 3.1e+05 ± 1.5e+04
naval propulsion 1.2e-03 ± 1.6e-05 1.4e-03 ± 2.3e-05 1.2e-03 ± 2.1e-05 1.2e-03 ± 1.7e-05
parkinsons 14.332 ± 0.644 18.091 ± 1.263 17.266 ± 0.988 14.221 ± 0.792
powerplant 17.066 ± 0.919 17.724 ± 0.919 17.567 ± 0.899 16.993 ± 0.937
qsar 3.967 ± 0.222 4.251 ± 0.212 4.194 ± 0.234 3.951 ± 0.230
sulfur 0.161 ± 0.013 0.189 ± 0.018 0.182 ± 0.013 0.161 ± 0.011
superconductor 39.234 ± 1.418 48.702 ± 1.695 43.062 ± 1.835 39.217 ± 1.419
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G.2 VARIANT (B) CONFORMALIZED

Table 36: Conformalized Variant (b) PICP at 95% prediction intervals, aggregated across 10 seeds.
Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into
two parts, one for validation and one for calibration.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR

ailerons 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00
airfoil 0.96 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.01
allstate 0.95 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
ca housing 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
computer 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
concrete 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02
elevator 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00
energy efficiency 0.97 ± 0.02 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.02
insurance 0.96 ± 0.02 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.01
kin8nm 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
miami housing 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
naval propulsion 0.95 ± 0.01 1.00 ± 0.00 0.95 ± 0.01 0.95 ± 0.01
parkinsons 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
powerplant 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
qsar 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
sulfur 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
superconductor 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00

Table 37: Conformalized Variant (b) NIW at 95% prediction intervals, aggregated across 10 seeds.
Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided
into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are presented in
scientific notation with 1 decimal place. Bold values (desirable) are the minimum for that dataset and
metric, while the underlined values indicate the second-best result. Red values are more than 33%
worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR

ailerons 0.193 ± 0.016 0.217 ± 0.017 0.195 ± 0.018 0.193 ± 0.016
airfoil 0.215 ± 0.019 0.217 ± 0.022 0.227 ± 0.031 0.207 ± 0.012
allstate 0.257 ± 0.044 0.263 ± 0.057 0.258 ± 0.046 0.256 ± 0.045
ca housing 0.339 ± 0.006 0.355 ± 0.012 0.349 ± 0.008 0.339 ± 0.008
computer 0.099 ± 0.006 0.142 ± 0.010 0.104 ± 0.005 0.099 ± 0.006
concrete 0.268 ± 0.023 0.247 ± 0.040 0.271 ± 0.044 0.249 ± 0.025
elevator 0.137 ± 0.009 0.194 ± 0.012 0.145 ± 0.008 0.137 ± 0.007
energy efficiency 0.053 ± 0.009 0.058 ± 0.009 0.053 ± 0.009 0.047 ± 0.005
insurance 0.357 ± 0.070 0.461 ± 0.292 0.408 ± 0.102 0.329 ± 0.045
kin8nm 0.362 ± 0.014 0.373 ± 0.013 0.370 ± 0.011 0.360 ± 0.012
miami housing 0.085 ± 0.003 0.097 ± 0.002 0.087 ± 0.005 0.085 ± 0.002
naval propulsion 1.9e-03 ± 9.1e-05 8.1e-03 ± 4.1e-04 1.9e-03 ± 1.0e-04 1.9e-03 ± 7.3e-05
parkinsons 0.279 ± 0.014 0.325 ± 0.016 0.305 ± 0.012 0.281 ± 0.009
powerplant 0.171 ± 0.010 0.179 ± 0.008 0.183 ± 0.008 0.170 ± 0.007
qsar 0.371 ± 0.126 0.395 ± 0.134 0.386 ± 0.127 0.366 ± 0.123
sulfur 0.111 ± 0.010 0.129 ± 0.016 0.106 ± 0.011 0.108 ± 0.009
superconductor 0.220 ± 0.025 0.240 ± 0.027 0.227 ± 0.025 0.219 ± 0.023
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Table 38: Conformalized Variant (b) Quantile Loss at 95% prediction intervals, aggregated across
10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation
set divided into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are
presented in scientific notation with 1 decimal place. Bold values (desirable) are the minimum for
that dataset and metric, while the underlined values indicate the second-best result. Red values are
more than 33% worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR

ailerons 9.2e-06 ± 2.3e-07 1.0e-05 ± 2.1e-07 9.7e-06 ± 2.7e-07 9.2e-06 ± 2.3e-07
airfoil 0.110 ± 0.013 0.119 ± 0.012 0.126 ± 0.015 0.109 ± 0.011
allstate 1.2e+02 ± 7.662 1.3e+02 ± 8.290 1.3e+02 ± 7.774 1.1e+02 ± 7.318
ca housing 2.8e+03 ± 56.920 3.2e+03 ± 91.466 3.0e+03 ± 73.272 2.8e+03 ± 59.700
computer 0.159 ± 0.007 0.207 ± 0.009 0.206 ± 0.015 0.159 ± 0.007
concrete 0.340 ± 0.037 0.327 ± 0.039 0.356 ± 0.048 0.338 ± 0.040
elevator 1.4e-04 ± 2.4e-06 1.9e-04 ± 6.7e-06 1.6e-04 ± 3.0e-06 1.4e-04 ± 2.0e-06
energy efficiency 0.033 ± 0.005 0.038 ± 0.003 0.034 ± 0.005 0.031 ± 0.004
insurance 3.3e+02 ± 28.437 5.2e+02 ± 1.4e+02 3.8e+02 ± 43.883 3.2e+02 ± 31.593
kin8nm 7.2e-03 ± 1.7e-04 7.6e-03 ± 1.1e-04 7.7e-03 ± 2.7e-04 7.2e-03 ± 1.7e-04
miami housing 3.9e+03 ± 2.1e+02 4.2e+03 ± 1.7e+02 5.2e+03 ± 3.4e+02 3.9e+03 ± 1.9e+02
naval propulsion 5.5e-05 ± 1.9e-06 1.8e-04 ± 9.1e-06 6.4e-05 ± 2.7e-06 5.4e-05 ± 1.9e-06
parkinsons 0.209 ± 0.008 0.237 ± 0.008 0.228 ± 0.013 0.209 ± 0.010
powerplant 0.213 ± 0.011 0.222 ± 0.011 0.220 ± 0.011 0.212 ± 0.012
qsar 0.050 ± 0.003 0.053 ± 0.003 0.052 ± 0.003 0.049 ± 0.003
sulfur 2.0e-03 ± 1.1e-04 2.3e-03 ± 8.5e-05 2.3e-03 ± 1.5e-04 1.9e-03 ± 9.6e-05
superconductor 0.523 ± 0.018 0.611 ± 0.026 0.573 ± 0.024 0.523 ± 0.018

Table 39: Conformalized Variant (b) NCIW at 95% prediction intervals, aggregated across 10 seeds.
Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided
into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are presented in
scientific notation with 1 decimal place. Bold values (desirable) are the minimum for that dataset and
metric, while the underlined values indicate the second-best result. Red values are more than 33%
worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR

ailerons 0.195 ± 0.018 0.217 ± 0.021 0.196 ± 0.017 0.195 ± 0.017
airfoil 0.203 ± 0.007 0.211 ± 0.007 0.216 ± 0.011 0.203 ± 0.006
allstate 0.248 ± 0.041 0.270 ± 0.052 0.266 ± 0.044 0.250 ± 0.043
ca housing 0.336 ± 0.006 0.354 ± 0.012 0.348 ± 0.011 0.336 ± 0.008
computer 0.098 ± 0.005 0.142 ± 0.008 0.103 ± 0.003 0.098 ± 0.005
concrete 0.248 ± 0.032 0.241 ± 0.025 0.261 ± 0.039 0.246 ± 0.033
elevator 0.137 ± 0.008 0.192 ± 0.012 0.147 ± 0.009 0.137 ± 0.008
energy efficiency 0.046 ± 0.006 0.057 ± 0.004 0.050 ± 0.005 0.046 ± 0.005
insurance 0.314 ± 0.052 0.346 ± 0.076 0.335 ± 0.059 0.320 ± 0.059
kin8nm 0.355 ± 0.008 0.371 ± 0.009 0.371 ± 0.009 0.354 ± 0.008
miami housing 0.084 ± 0.004 0.098 ± 0.002 0.085 ± 0.003 0.084 ± 0.003
naval propulsion 1.8e-03 ± 4.7e-05 3.2e-03 ± 1.2e-04 1.9e-03 ± 8.4e-05 1.8e-03 ± 5.6e-05
parkinsons 0.284 ± 0.011 0.324 ± 0.008 0.309 ± 0.018 0.284 ± 0.010
powerplant 0.173 ± 0.008 0.182 ± 0.007 0.182 ± 0.007 0.173 ± 0.007
qsar 0.363 ± 0.122 0.393 ± 0.131 0.390 ± 0.131 0.363 ± 0.121
sulfur 0.108 ± 0.008 0.125 ± 0.009 0.105 ± 0.006 0.106 ± 0.007
superconductor 0.218 ± 0.023 0.241 ± 0.028 0.226 ± 0.022 0.218 ± 0.022
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Table 40: Conformalized Variant (b) Interval Score Loss at 95% prediction intervals, aggregated
across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation
set divided into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are
presented in scientific notation with 1 decimal place. Bold values (desirable) are the minimum for
that dataset and metric, while the underlined values indicate the second-best result. Red values are
more than 33% worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR

ailerons 7.4e-04 ± 1.8e-05 8.1e-04 ± 1.7e-05 7.8e-04 ± 2.2e-05 7.4e-04 ± 1.8e-05
airfoil 8.794 ± 1.047 9.523 ± 0.959 10.075 ± 1.227 8.717 ± 0.870
allstate 9.2e+03 ± 6.1e+02 1.0e+04 ± 6.6e+02 1.0e+04 ± 6.2e+02 9.2e+03 ± 5.9e+02
ca housing 2.2e+05 ± 4.6e+03 2.6e+05 ± 7.3e+03 2.4e+05 ± 5.9e+03 2.2e+05 ± 4.8e+03
computer 12.704 ± 0.571 16.543 ± 0.706 16.505 ± 1.190 12.707 ± 0.575
concrete 27.168 ± 2.969 26.195 ± 3.142 28.509 ± 3.874 27.020 ± 3.202
elevator 0.011 ± 0.000 0.015 ± 0.001 0.013 ± 0.000 0.011 ± 0.000
energy efficiency 2.609 ± 0.417 3.019 ± 0.237 2.681 ± 0.431 2.465 ± 0.347
insurance 2.6e+04 ± 2.3e+03 4.2e+04 ± 1.1e+04 3.1e+04 ± 3.5e+03 2.6e+04 ± 2.5e+03
kin8nm 0.578 ± 0.014 0.607 ± 0.009 0.615 ± 0.022 0.577 ± 0.014
miami housing 3.2e+05 ± 1.7e+04 3.3e+05 ± 1.4e+04 4.2e+05 ± 2.7e+04 3.1e+05 ± 1.5e+04
naval propulsion 4.4e-03 ± 1.5e-04 0.014 ± 0.001 5.1e-03 ± 2.2e-04 4.4e-03 ± 1.5e-04
parkinsons 16.712 ± 0.669 18.967 ± 0.645 18.250 ± 1.030 16.697 ± 0.794
powerplant 17.066 ± 0.919 17.724 ± 0.919 17.567 ± 0.899 16.993 ± 0.937
qsar 3.960 ± 0.207 4.277 ± 0.215 4.195 ± 0.229 3.956 ± 0.218
sulfur 0.157 ± 0.008 0.180 ± 0.007 0.186 ± 0.012 0.155 ± 0.008
superconductor 41.818 ± 1.464 48.902 ± 2.063 45.854 ± 1.910 41.801 ± 1.407
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G.3 VARIANT (C) CONFORMALIZED

Table 41: Conformalized Variant (c) PICP at 95% prediction intervals, aggregated across 10 seeds.
Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided into
two parts, one for validation and one for calibration.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR UACQR-P UACQR-S

ailerons 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.00
airfoil 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.01 0.95 ± 0.01 0.96 ± 0.01
allstate 0.95 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
ca housing 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.96 ± 0.00
computer 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.97 ± 0.00
concrete 0.96 ± 0.02 0.96 ± 0.01 0.96 ± 0.02 0.96 ± 0.01 0.96 ± 0.02 0.96 ± 0.02
elevator 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.97 ± 0.00
energy efficiency 0.97 ± 0.01 0.95 ± 0.03 0.96 ± 0.01 0.95 ± 0.01 0.97 ± 0.02 0.96 ± 0.02
insurance 0.96 ± 0.02 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
kin8nm 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
miami housing 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
naval propulsion 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.99 ± 0.00
parkinsons 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 0.97 ± 0.01
powerplant 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
qsar 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
sulfur 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.01
superconductor 0.95 ± 0.01 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.01

Table 42: Conformalized Variant (c) NIW at 95% prediction intervals, aggregated across 10 seeds.
Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided
into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are presented in
scientific notation with 1 decimal place. Bold values (desirable) are the minimum for that dataset and
metric, while the underlined values indicate the second-best result. Red values are more than 33%
worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR UACQR-P UACQR-S

ailerons 0.207 ± 0.017 0.239 ± 0.017 0.202 ± 0.019 0.208 ± 0.017 0.177 ± 0.014 0.207 ± 0.017
airfoil 0.210 ± 0.021 0.212 ± 0.020 0.230 ± 0.040 0.199 ± 0.013 0.365 ± 0.022 0.391 ± 0.029
allstate 0.282 ± 0.052 0.292 ± 0.061 0.279 ± 0.037 0.279 ± 0.052 0.285 ± 0.051 0.305 ± 0.055
ca housing 0.317 ± 0.009 0.330 ± 0.013 0.344 ± 0.010 0.315 ± 0.010 0.366 ± 0.007 0.405 ± 0.007
computer 0.079 ± 0.003 0.083 ± 0.003 0.088 ± 0.004 0.080 ± 0.004 0.084 ± 0.003 0.101 ± 0.001
concrete 0.290 ± 0.037 0.273 ± 0.032 0.287 ± 0.037 0.278 ± 0.029 0.373 ± 0.025 0.403 ± 0.022
elevator 0.126 ± 0.008 0.153 ± 0.008 0.136 ± 0.008 0.127 ± 0.008 0.158 ± 0.011 0.200 ± 0.010
energy efficiency 0.052 ± 0.007 0.043 ± 0.008 0.053 ± 0.007 0.043 ± 0.007 inf ± nan 0.162 ± 0.014
insurance 0.414 ± 0.094 0.376 ± 0.134 0.434 ± 0.086 0.397 ± 0.091 0.305 ± 0.046 0.311 ± 0.033
kin8nm 0.328 ± 0.015 0.327 ± 0.012 0.327 ± 0.015 0.325 ± 0.012 0.446 ± 0.018 0.460 ± 0.019
miami housing 0.088 ± 0.003 0.096 ± 0.005 0.112 ± 0.019 0.088 ± 0.001 0.104 ± 0.003 0.113 ± 0.002
naval propulsion 1.6e-03 ± 3.6e-05 1.7e-03 ± 6.5e-05 1.6e-03 ± 4.9e-05 1.6e-03 ± 3.2e-05 1.7e-03 ± 8.2e-05 3.6e-03 ± 8.5e-05
parkinsons 0.250 ± 0.015 0.262 ± 0.009 0.281 ± 0.015 0.250 ± 0.007 0.269 ± 0.020 0.313 ± 0.018
powerplant 0.158 ± 0.011 0.170 ± 0.007 0.162 ± 0.008 0.157 ± 0.007 0.193 ± 0.007 0.202 ± 0.009
qsar 0.354 ± 0.120 0.402 ± 0.143 0.349 ± 0.115 0.344 ± 0.117 0.410 ± 0.135 0.452 ± 0.152
sulfur 0.112 ± 0.011 0.126 ± 0.012 0.107 ± 0.016 0.111 ± 0.009 0.115 ± 0.012 0.126 ± 0.012
superconductor 0.196 ± 0.022 0.234 ± 0.026 0.208 ± 0.025 0.195 ± 0.020 0.220 ± 0.022 0.232 ± 0.026
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Table 43: Conformalized Variant (c) Quantile Loss at 95% prediction intervals, aggregated across
10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation
set divided into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are
presented in scientific notation with 1 decimal place. Bold values (desirable) are the minimum for
that dataset and metric, while the underlined values indicate the second-best result. Red values are
more than 33% worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR UACQR-P UACQR-S

ailerons 9.6e-06 ± 2.9e-07 1.1e-05 ± 2.9e-07 9.8e-06 ± 3.2e-07 9.6e-06 ± 2.9e-07 1.0e-05 ± 0.0e+00 1.0e-05 ± 0.0e+00
airfoil 0.110 ± 0.015 0.111 ± 0.013 0.131 ± 0.019 0.107 ± 0.014 0.188 ± 0.013 0.200 ± 0.010
allstate 1.2e+02 ± 6.810 1.4e+02 ± 11.278 1.3e+02 ± 22.506 1.2e+02 ± 6.874 1.1e+02 ± 7.356 1.2e+02 ± 6.507
ca housing 2.8e+03 ± 91.022 2.9e+03 ± 88.973 3.2e+03 ± 1.1e+02 2.8e+03 ± 92.560 3.0e+03 ± 58.564 3.0e+03 ± 57.081
computer 0.138 ± 0.012 0.140 ± 0.012 0.163 ± 0.013 0.137 ± 0.011 0.147 ± 0.006 0.151 ± 0.004
concrete 0.343 ± 0.033 0.334 ± 0.031 0.381 ± 0.058 0.337 ± 0.032 0.413 ± 0.037 0.425 ± 0.022
elevator 1.3e-04 ± 3.3e-06 1.4e-04 ± 3.9e-06 1.5e-04 ± 3.5e-06 1.3e-04 ± 3.2e-06 1.8e-04 ± 5.4e-06 1.9e-04 ± 4.9e-06
energy efficiency 0.031 ± 0.006 0.030 ± 0.007 0.035 ± 0.010 0.029 ± 0.007 inf ± nan 0.079 ± 0.006
insurance 4.1e+02 ± 73.015 4.3e+02 ± 61.342 3.9e+02 ± 53.648 4.2e+02 ± 80.269 3.4e+02 ± 46.073 3.3e+02 ± 34.606
kin8nm 6.7e-03 ± 1.7e-04 6.9e-03 ± 2.2e-04 6.8e-03 ± 2.0e-04 6.7e-03 ± 1.8e-04 8.8e-03 ± 1.6e-04 9.0e-03 ± 1.6e-04
miami housing 3.8e+03 ± 1.9e+02 3.8e+03 ± 2.2e+02 6.8e+03 ± 1.2e+03 3.7e+03 ± 1.4e+02 4.3e+03 ± 1.3e+02 4.5e+03 ± 1.3e+02
naval propulsion 4.0e-05 ± 1.0e-06 4.2e-05 ± 1.3e-06 4.9e-05 ± 1.6e-06 4.0e-05 ± 1.0e-06 9.3e-05 ± 9.0e-06 8.1e-05 ± 3.0e-06
parkinsons 0.190 ± 0.007 0.192 ± 0.006 0.217 ± 0.008 0.189 ± 0.006 0.180 ± 0.009 0.200 ± 0.010
powerplant 0.204 ± 0.012 0.210 ± 0.013 0.209 ± 0.013 0.203 ± 0.012 0.226 ± 0.011 0.234 ± 0.010
qsar 0.049 ± 0.002 0.054 ± 0.001 0.051 ± 0.003 0.048 ± 0.002 0.051 ± 0.003 0.054 ± 0.002
sulfur 1.8e-03 ± 8.0e-05 1.9e-03 ± 8.7e-05 2.6e-03 ± 2.6e-04 1.8e-03 ± 6.3e-05 1.9e-03 ± 1.2e-04 2.0e-03 ± 1.5e-04
superconductor 0.488 ± 0.020 0.573 ± 0.026 0.563 ± 0.047 0.489 ± 0.020 0.507 ± 0.017 0.527 ± 0.016

Table 44: Conformalized Variant (c) NCIW at 95% prediction intervals, aggregated across 10 seeds.
Methods with suffix ‘-c’ denote conformalized variants obtained using the validation set divided
into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are presented in
scientific notation with 1 decimal place. Bold values (desirable) are the minimum for that dataset and
metric, while the underlined values indicate the second-best result. Red values are more than 33%
worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR UACQR-P UACQR-S

ailerons 0.209 ± 0.021 0.242 ± 0.021 0.203 ± 0.021 0.210 ± 0.020 0.188 ± 0.030 0.207 ± 0.017
airfoil 0.189 ± 0.016 0.199 ± 0.013 0.204 ± 0.017 0.188 ± 0.014 0.317 ± 0.025 0.329 ± 0.033
allstate 0.274 ± 0.046 0.296 ± 0.058 0.285 ± 0.029 0.277 ± 0.056 0.279 ± 0.047 0.296 ± 0.049
ca housing 0.312 ± 0.010 0.329 ± 0.009 0.342 ± 0.011 0.311 ± 0.010 0.368 ± 0.007 0.405 ± 0.007
computer 0.080 ± 0.003 0.083 ± 0.003 0.090 ± 0.004 0.081 ± 0.004 0.087 ± 0.005 0.101 ± 0.001
concrete 0.255 ± 0.032 0.257 ± 0.031 0.263 ± 0.028 0.259 ± 0.032 0.332 ± 0.056 0.344 ± 0.054
elevator 0.126 ± 0.007 0.151 ± 0.011 0.138 ± 0.008 0.126 ± 0.008 0.165 ± 0.015 0.200 ± 0.010
energy efficiency 0.043 ± 0.005 0.043 ± 0.005 0.048 ± 0.005 0.041 ± 0.006 0.140 ± 0.014 0.138 ± 0.024
insurance 0.356 ± 0.071 0.358 ± 0.078 0.400 ± 0.091 0.345 ± 0.078 0.291 ± 0.043 0.301 ± 0.034
kin8nm 0.323 ± 0.008 0.331 ± 0.010 0.327 ± 0.008 0.323 ± 0.008 0.433 ± 0.009 0.445 ± 0.013
miami housing 0.087 ± 0.003 0.096 ± 0.004 0.107 ± 0.013 0.088 ± 0.002 0.102 ± 0.004 0.110 ± 0.004
naval propulsion 1.6e-03 ± 5.0e-05 1.7e-03 ± 4.7e-05 1.6e-03 ± 4.1e-05 1.6e-03 ± 5.0e-05 1.7e-03 ± 8.2e-05 3.6e-03 ± 8.5e-05
parkinsons 0.250 ± 0.010 0.259 ± 0.009 0.279 ± 0.013 0.250 ± 0.012 0.273 ± 0.019 0.313 ± 0.018
powerplant 0.162 ± 0.007 0.171 ± 0.008 0.163 ± 0.008 0.161 ± 0.007 0.191 ± 0.009 0.200 ± 0.009
qsar 0.350 ± 0.121 0.412 ± 0.144 0.360 ± 0.120 0.348 ± 0.118 0.409 ± 0.134 0.449 ± 0.150
sulfur 0.111 ± 0.010 0.124 ± 0.008 0.107 ± 0.005 0.109 ± 0.008 0.114 ± 0.010 0.126 ± 0.010
superconductor 0.194 ± 0.021 0.234 ± 0.025 0.204 ± 0.024 0.192 ± 0.019 0.220 ± 0.023 0.232 ± 0.025

Table 45: Conformalized Variant (c) Interval Score Loss at 95% prediction intervals, aggregated
across 10 seeds. Methods with suffix ‘-c’ denote conformalized variants obtained using the validation
set divided into two parts, one for validation and one for calibration.Values ≥ 100 or < 0.01 are
presented in scientific notation with 1 decimal place. Bold values (desirable) are the minimum for
that dataset and metric, while the underlined values indicate the second-best result. Red values are
more than 33% worse than the best result.

Dataset CLEAR-c PCS-EPISTEMIC-c ALEATORIC-R-c CLEAR UACQR-P UACQR-S

ailerons 7.7e-04 ± 2.3e-05 8.6e-04 ± 2.3e-05 7.9e-04 ± 2.6e-05 7.7e-04 ± 2.3e-05 7.9e-04 ± 3.1e-05 7.9e-04 ± 2.3e-05
airfoil 8.780 ± 1.202 8.857 ± 1.035 10.504 ± 1.503 8.569 ± 1.099 15.052 ± 1.025 15.999 ± 0.776
allstate 9.4e+03 ± 5.4e+02 1.1e+04 ± 9.0e+02 1.0e+04 ± 1.8e+03 9.2e+03 ± 5.5e+02 9.0e+03 ± 5.9e+02 9.3e+03 ± 5.2e+02
ca housing 2.2e+05 ± 7.3e+03 2.3e+05 ± 7.1e+03 2.5e+05 ± 8.6e+03 2.2e+05 ± 7.4e+03 2.4e+05 ± 4.7e+03 2.4e+05 ± 4.6e+03
computer 11.040 ± 0.933 11.164 ± 0.938 13.042 ± 1.009 10.978 ± 0.911 11.757 ± 0.463 12.103 ± 0.323
concrete 27.403 ± 2.641 26.754 ± 2.444 30.441 ± 4.624 26.928 ± 2.529 33.077 ± 2.941 33.990 ± 1.797
elevator 0.011 ± 0.000 0.012 ± 0.000 0.012 ± 0.000 0.010 ± 0.000 0.014 ± 0.000 0.015 ± 0.000
energy efficiency 2.463 ± 0.488 2.422 ± 0.596 2.796 ± 0.804 2.348 ± 0.554 6.214 ± 0.408 6.354 ± 0.480
insurance 3.3e+04 ± 5.8e+03 3.4e+04 ± 4.9e+03 3.1e+04 ± 4.3e+03 3.4e+04 ± 6.4e+03 2.7e+04 ± 3.7e+03 2.7e+04 ± 2.8e+03
kin8nm 0.536 ± 0.014 0.552 ± 0.018 0.545 ± 0.016 0.534 ± 0.014 0.705 ± 0.013 0.723 ± 0.013
miami housing 3.0e+05 ± 1.5e+04 3.1e+05 ± 1.7e+04 5.5e+05 ± 9.6e+04 2.9e+05 ± 1.1e+04 3.5e+05 ± 1.0e+04 3.6e+05 ± 1.0e+04
naval propulsion 3.2e-03 ± 8.0e-05 3.4e-03 ± 1.0e-04 3.9e-03 ± 1.3e-04 3.2e-03 ± 8.4e-05 7.5e-03 ± 7.5e-04 6.6e-03 ± 1.3e-04
parkinsons 15.231 ± 0.540 15.327 ± 0.476 17.375 ± 0.656 15.149 ± 0.518 14.384 ± 0.700 15.978 ± 0.779
powerplant 16.287 ± 0.959 16.839 ± 1.025 16.687 ± 1.010 16.243 ± 0.985 18.078 ± 0.906 18.725 ± 0.822
qsar 3.903 ± 0.190 4.360 ± 0.105 4.094 ± 0.213 3.877 ± 0.176 4.102 ± 0.230 4.333 ± 0.182
sulfur 0.145 ± 0.006 0.148 ± 0.007 0.209 ± 0.021 0.143 ± 0.005 0.153 ± 0.010 0.158 ± 0.012
superconductor 39.077 ± 1.615 45.819 ± 2.070 45.024 ± 3.738 39.104 ± 1.604 40.545 ± 1.386 42.122 ± 1.257
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Table 46: Conformalized Variant (c) CLEAR calibration parameters λ and γ1 for 95% prediction
intervals across 10 seeds. Using all available variables. Showing median [min:max] values.

Dataset λ γ1

ailerons 1.01 [0.26:1.75] 1.01 [0.87:1.32]
airfoil 1.04 [0.10:100.00] 1.45 [0.02:6.72]
allstate 0.72 [0.00:100.00] 1.10 [0.02:1.43]
ca housing 1.93 [1.11:13.99] 0.67 [0.14:0.95]
computer 2.85 [1.39:10.47] 0.60 [0.18:0.95]
concrete 1.18 [0.25:100.00] 1.79 [0.02:5.83]
elevator 0.73 [0.45:1.29] 1.13 [0.86:1.43]
energy efficiency 0.22 [0.02:100.00] 6.87 [0.02:19.92]
insurance 4.77 [0.37:100.00] 0.55 [0.03:5.83]
kin8nm 2.21 [0.39:3.27] 0.74 [0.61:1.02]
miami housing 4.61 [1.23:100.00] 0.36 [0.02:1.09]
naval propulsion 14.44 [10.01:22.37] 0.69 [0.52:0.85]
parkinsons 1.11 [0.53:15.09] 1.34 [0.12:2.31]
powerplant 0.96 [0.57:3.30] 1.12 [0.51:1.41]
qsar 0.59 [0.22:2.58] 1.45 [0.78:2.51]
sulfur 2.98 [0.90:100.00] 0.63 [0.02:1.25]
superconductor 0.73 [0.22:1.38] 1.17 [0.85:1.33]
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H CASE STUDY: HOUSE PRICE PREDICTION WITH VARYING NUMBER OF
PREDICTORS

We illustrate our method using the Ames Housing dataset, which contains data on 2,930 residential
properties sold in Ames, Iowa, between 2006 and 2010. The target variable is the sale price of a
house, and the full dataset includes around 80 predictor variables describing various aspects such as
square footage, neighborhood, and building type. This dataset, originally collected by the Ames City
Assessor’s Office and curated by Cock (2011), was explored in detail in Chapter 13 of Yu & Barter
(2024).

The PCS framework (Yu & Barter, 2024) involves quantifying all sources of extended epistemic
uncertainty stemming from the entire data-science cycle, such as uncertainty stemming from data
processing. An pipeline of PCS uncertainty quantification applied to the Ames Housing data can
be found in Chapter 13 in (Yu & Barter, 2024). We follow the same steps7 for estimating f̂ and
estimating epistemic uncertainty bounds q̂epi

0.05, q̂
epi
0.95.

To investigate how the amount of available information affects predictive uncertainty, we consider
two versions of the dataset:

• Full: the original dataset with all ∼80 variables,
• Top 2: a further reduced dataset containing only the top two features (as determined by

either feature importance of a random forest, or by correlation with the outcome variable, as
both approaches lead to the same choice).

These settings simulate scenarios where fewer variables are available, reflecting different levels
of information accessibility. Reducing the number of predictors is expected to increase aleatoric
uncertainty (due to missing key predictive information) and decrease epistemic uncertainty (due to a
simpler model class and lower dimensionality).

In each case, we applied the CLEAR procedure as described in Section 2.4. This involved: (1) data
cleaning and preprocessing (excluding irregular sales, imputing missing values, encoding categorical
variables), resulting in N1 = 438 cleaned datasets; (2) fitting a predictive model f̂ and estimating
epistemic uncertainty bounds q̂epi

0.05, q̂
epi
0.95; (3) estimating aleatoric uncertainty bounds q̂ale

0.05, q̂
ale
0.95 via

quantile regression, as described in Section 2.3; (4) estimating λ and calibrating prediction intervals
on the validation set.

Table 2 and the discussion in Section 4.3 summarize the results. In the reduced 2-variable setting,
CLEAR selected λ = 0.6, assigning more weight to aleatoric uncertainty. In contrast, in the
full-feature setting, λ = 14.5, emphasizing epistemic uncertainty. The corresponding calibrated
epistemic-to-aleatoric ratios were computed as 1

n

∑n
i=1

γ1×epistemic(xi)
γ2×aleatoric(xi)

in (1), reflecting the final width
contributions from each component. They were 0.03 and 7.72, respectively. This ratio quantifies how
much of the interval width is attributed to epistemic versus aleatoric uncertainty after calibration. The
results demonstrate CLEAR’s ability to adaptively re-weight the two uncertainty sources in response
to the underlying information regime, producing intervals that are both sharp and well-calibrated
across heterogeneous settings.

7Minor differences arise due to: (a) implementation differences in base models between R and Python, and
(b) manual calibration of PCS intervals, which was not part of the original implementation. Additionally, both
CQR and CLEAR were trained using only linear quantile regressors as the model selection step of PCS selected
a linear model based on the RMSE on the validation dataset.
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I ON THE ROLE OF RELATIVE AND ABSOLUTE UNCERTAINTY IN COVERAGE
GUARANTEES

In predictive inference, a fundamental distinction arises between conditional and marginal coverage—
closely related to what has been termed “relative vs. absolute uncertainty” (Heiss et al., 2022b) or
“adaptive vs. calibrated uncertainty.” Conditional coverage requires that prediction intervals achieve
the target coverage level at every individual input, thereby capturing local or relative uncertainty.
Formally, a prediction interval C(Xn+1) satisfies conditional coverage at level 1− α if

∀x ∈ supp(X) : P [Yn+1 ∈ C(Xn+1) | Xn+1 = x] ≥ 1− α.

By contrast, marginal coverage only guarantees coverage on average over the distribution of inputs:
P [Yn+1 ∈ C(Xn+1)] ≥ 1− α.

While conditional coverage implies marginal coverage, the reverse does not hold. This distinction is
especially important in settings with heteroskedasticity, where the variability of Y | X changes across
the input space, and under distribution shift, where the test distribution of X differs from the training
distribution. Distribution shift—such as covariate shift or domain adaptation—can render marginal
guarantees unreliable since they depend on the marginal PX . In contrast, conditional coverage ensures
that prediction intervals remain valid even when PX changes, provided the conditional distribution
P(Y | X) remains stable. In what follows, we explore the implications of these distinctions and how
they shape both the evaluation and design of uncertainty quantification methods.

I.1 METRICS: RELEVANCE

To assess the quality of predictive uncertainty, various metrics capture different aspects of coverage
and adaptivity:

• Quantile Loss, CRPS, and AISL combine both relative and absolute components incen-
tivizing conditional coverage. These metrics penalize both poor ranking and miscalibration,
rewarding methods that adapt well to heteroskedasticity.

• NCIW is invariant to the overall scale of the uncertainty but evaluates the ranking—whether
a method assigns wider intervals to more uncertain points. In practice, a low NCIW
often correlates with good relative uncertainty. However, a minimal NCIW theoretically
encourages suboptimal conditional coverage, as it can lead to under-coverage in high-
uncertainty regions and over-coverage in low-uncertainty regions. Consequently, good
conditional coverage typically requires a slightly higher NCIW than the minimum. Similar
to NCIW, Minimum Negative Log-Likelihood (NLLmin) (Heiss et al., 2022b) also assesses
relative uncertainty by focusing on whether a method correctly ranks more versus less
uncertain inputs, independent of the predicted scale.

• PICP and NIW each provide only partial information: PICP measures calibration but is
blind to adaptivity, while NIW captures the average scale of uncertainty.

These metrics reflect different priorities in uncertainty quantification. Choosing among them (or
combining them) depends on whether the primary goal is calibration, adaptivity, or both.

I.2 APPLICATIONS

Understanding whether a method captures relative or absolute uncertainty has practical implications
across a range of applications. In active learning, the primary objective is to identify inputs x
for which the model is most uncertain, guiding efficient data acquisition. Here, only the ranking
of uncertainty matters—selecting the point with the highest epistemic uncertainty. Methods that
preserve good relative uncertainty, even if miscalibrated, often suffice. In Bayesian optimization,
many acquisition functions (such as upper confidence bound or entropy search) depend more on
relative than absolute uncertainty (De Ath et al., 2021; Weissteiner et al., 2023). Using upper bounds
of the form f̂(x) + c with constant c across all x does not improve over exploiting f̂(x) alone,
highlighting the centrality of uncertainty ranking over calibration in this setting. In human-in-the-
loop automation, relative uncertainty can guide prioritization—for instance, flagging uncertain
cases for expert review. While calibrated intervals may not always be necessary, correct ordering of
confidence can improve decision efficiency and safety.
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I.3 METHODS

Different uncertainty quantification methods prioritize and estimate relative and absolute uncertainty
to varying degrees:

• NOMU (Heiss et al., 2022b) is explicitly designed to estimate only relative uncertainty. It
does not attempt to calibrate the absolute scale, making it suitable for applications where
ranking matters but calibrated intervals are unnecessary.

• Deep ensembles (Lakshminarayanan et al., 2017) typically yield strong performance in
capturing relative uncertainty, particularly through diversity in predictions across ensemble
members. However, they often suffer from miscalibration in the absolute scale of uncertainty
unless explicitly corrected.

• CLEAR separately estimates relative epistemic and aleatoric uncertainty and combines
them using a tunable parameter λ, which also refines the ranking of uncertainty—offering
an alternative to standard calibration techniques. The absolute scale is then calibrated using
a second parameter, γ1, allowing for flexible control over both adaptivity and calibration.

These methods highlight the spectrum of approaches to uncertainty quantification, from ranking-only
models to fully calibrated systems.

I.4 CALIBRATION TECHNIQUES

The absolute scale of uncertainty is critical in applications where the expected risk or cost over a
population matters (e.g., in probabilistic risk management, climate forecasting, or decision-making
under uncertainty). However, as emphasized by pathological cases that achieve perfect PICP with no
adaptivity, relative uncertainty remains essential for practicality. Several approaches can be taken to
adjust the scale of uncertainty estimates while preserving different structures:

• Multiplicative calibration scales all predictions by a constant factor, preserving the multi-
plicative structure of uncertainty. This is appropriate when the model’s ranking is reliable.

• Additive calibration shifts all intervals uniformly, preserving additive differences but
potentially distorting proportional uncertainty.

• Isotonic calibration applies a nonparametric monotonic transformation that preserves the
ranking of uncertainty, suitable when only order is trusted. E.g., (Kuleshov et al., 2018) uses
isotonic calibration for distributional uncertainty quantification.

• CLEAR calibrates aleatoric and epistemic uncertainty separately, allowing independent yet
coherent control of both components. This facilitates calibrated estimates of total predictive
uncertainty while preserving the relative structure.

I.5 ACHIEVING CONDITIONAL COVERAGE

Achieving conditional coverage requires addressing both components of predictive uncertainty:

1. Estimating relative uncertainty accurately—capturing how uncertainty varies across inputs.
2. Calibrating the absolute scale to ensure the desired coverage level holds at each input.

Even when conditional coverage is not required, improving relative uncertainty tends to reduce
average interval width and improve marginal calibration under distribution shifts. Thus, adaptivity
and calibration are not mutually exclusive but can reinforce one another. CLEAR is explicitly
designed to target both forms of uncertainty—modeling and calibrating relative and absolute epistemic,
aleatoric, and total predictive uncertainty. As such, it provides a flexible and principled framework
for applications demanding both adaptivity and reliability.
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