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Abstract001

Large language models (LLMs) have demon-002
strated exceptional performance in text gen-003
eration within current NLP research. How-004
ever, the lack of factual accuracy is still a dark005
cloud hanging over the LLM skyscraper. Struc-006
tural knowledge prompting (SKP) is a promi-007
nent paradigm to integrate external knowledge008
into LLMs by incorporating structural repre-009
sentations, achieving state-of-the-art results in010
many knowledge-intensive tasks. However, ex-011
isting methods often focus on specific prob-012
lems, lacking a comprehensive exploration013
of the generalization and capability bound-014
aries of SKP. This paper aims to evaluate015
and rethink the generalization capability of the016
SKP paradigm from four perspectives includ-017
ing Granularity, Transferability, Scalability,018
and Universality. To provide a thorough eval-019
uation, we introduce a novel multi-granular,020
multi-level benchmark called SUBARU, con-021
sisting of 9 different tasks with varying levels022
of granularity and difficulty. Through extensive023
experiments, we draw key conclusions regard-024
ing the generalization of SKP, offering insights025
to guide the future development and extension026
of the SKP paradigm. Our code and data are027
available at this anonymous github link.028

1 Introduction029

Large language models (LLMs) (Zhao et al., 2023)030

have sparked a new wave in the natural language031

processing (NLP) field. By pre-training on mas-032

sive corpus with billion-scale decoder transformers033

(Vaswani et al., 2017), LLMs achieve exceptional034

capabilities in text generation, and are widely used035

in current researches and applications (Zhang et al.,036

2024a; Chen et al., 2024; Yin et al., 2023).037

However, the lack of factual accuracy in LLMs038

(Zhang et al., 2023) remains a significant issue,039

leading to unreliable and untrustworthy outputs that040

limit their applications. To address this, external041

knowledge bases are widely used (Gao et al., 2023)042
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Figure 1: An intuition of the structural knowledge
prompting paradigm in current LLM research.

to incorporate reliable knowledge into LLMs for 043

a fact-grounded generation. Among these, knowl- 044

edge graphs (KGs) (Liang et al., 2024) are a spe- 045

cialized form of semi-structured knowledge base, 046

organizing vast amounts of factual knowledge as 047

triples within graph structures. Numerous works 048

(Wen et al., 2024) propose different KG-oriented 049

methods to incorporate the KGs into the LLMs 050

for specific tasks such as question answering (Tian 051

et al., 2024), knowledge graph reasoning (Zhang 052

et al., 2024b). As illustrated in Figure 1, struc- 053

tural knowledge prompting (SKP) is a widely used 054

paradigm that integrates pre-trained structural in- 055

formation in the KGs to the LLMs with an adapter. 056

The structural information is learned in the struc- 057

tural encoder, while the adapter is an extra neural 058

network to bridge the representation gap. This ap- 059

proach is consistent with many Multi-modal LLMs 060

(MLLMs) (Yin et al., 2023), where a pre-trained en- 061

coder is used to bridge the non-textual information 062

to the textual representation space of the LLMs. 063

However, existing SKP methods typically adapt 064

the paradigm directly to specific tasks with the 065

ready-to-use principle, without thoroughly exam- 066

ining the paradigm itself. This raises several im- 067

portant questions: What makes SKP successful on 068
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specific tasks? What level of knowledge granu-069

larity does SKP provide to LLMs, and how can070

it enhance generalization across tasks of varying071

difficulty? Furthermore, it is crucial to re-assess072

the full spectrum of SKP methods to better guide073

the future development of this research field.074

To fill the gaps in current research, we ex-075

plore the generalization capability of the SKP076

paradigm in this paper. We first construct a new077

StrUctural Prompting BenchmArk with Reasoning078

and Understanding tasks (SUBARU for short), con-079

sisting of 9 tasks with varying granularity and dif-080

ficulty, which are captured from large-scale ency-081

clopedic knowledge graphs. We design a complete082

training evaluation protocol to adequately assess083

the generalization of SKP across four dimensions:084

Granularity, Transferability, Scalability, Univer-085

sality. Finally, we conduct extensive experiments086

with 16 different SKP settings, exploring these four087

dimensions and drawing key conclusions to explain088

the success of current SKP methods, while offer-089

ing insights to guide future developments aimed090

at enhancing the factual accuracy of LLMs. Our091

contribution can be summarized as:092

• We examine the widely used SKP paradigm in093

current LLM research. Rather than applying094

it to specific tasks, we provide a systematic095

evaluation and explore its generalization po-096

tential.097

• We introduce a new benchmark, SUBARU,098

consisting of 9 tasks with varying granularity099

and difficulty levels, designed to assess the100

generalization of the SKP paradigm.101

• We conduct a comprehensive evaluation on102

the generalization of existing SKP modules103

from four dimensions, exploring the granular-104

ity, transferability, scalability, and universality.105

We make several interesting conclusions after106

the explorations.107

2 Related Works108

The combination of KGs and LLMs (Zhang et al.,109

2024b; Guo et al., 2024a,b; Gutiérrez et al., 2024;110

Lyu et al., 2024) is an important topic in nowa-111

days research. In addition to the factual knowl-112

edge contained in KGs, many methods try to aug-113

ment the LLMs with the rich structural informa-114

tion present in the KG to achieve knowledge in-115

fusion capabilities. DrugChat (Liang et al., 2023)116

and GNP (Tian et al., 2024) employ a graph neu- 117

ral network to extract structural information from 118

the retrieved knowledge subgraph to enhance the 119

question-answering (QA) ability of LLMs. KoPA 120

(Zhang et al., 2024b) incorporates the pre-trained 121

structural knowledge embeddings into LLMs with a 122

project layer to enhance the knowledge graph com- 123

pletion (KGC) ability of LLMs. Their paradigm 124

lies in the use of various structural encoders to ex- 125

tract non-textual features and for enhancing the 126

textual inference capability of LLM, a concept bor- 127

rowed from multi-modal LLMs. While adaptations 128

are made for specific tasks, there is a lack of in- 129

depth exploration on the rationale of this paradigm. 130

In this paper, we provide a comprehensive evalua- 131

tion and analysis of its generalization ability. 132

3 Preliminary 133

In this paper, we focus on the evaluation of the 134

structural knowledge promptings (SKP) in the 135

LLMs. The LLM is denoted as M. and the general 136

prediction process of the LLM can be denoted as: 137

A∗ = max
A

PM(A|Q) (1) 138

where A is the answer to the question Q, and A∗ 139

is the optimal answer decoded by the LLMs. 140

Many recent works aim to enhance the reason- 141

ing ability of LLMs by incorporating structural 142

knowledge. A common approach involves retriev- 143

ing relevant entities and relations from an external 144

KG, extracting and embedding them as prompt to- 145

kens for the LLM. We denote an external KG as 146

KG = (E ,R, T ), where E ,R, T are the entity set, 147

relation set and triple set respectively. A triple 148

(h, r, t) means that there is a relation r between 149

head entity h and tail entity t. An entity or a re- 150

lation would be treated as one basic element si in 151

such a SKP process. For a given element ei, the 152

input prompt token can be denoted as: 153

S(ei) = P(ENC(ei|KG)) (2) 154

where ENC(ei|KG) is the structural encoder learned 155

self-supervisedly on the given KG and P is the 156

adapter for bridging two representation spaces of 157

the structural embeddings and LLMs. Several clas- 158

sic implementations of the adapter P exist, such 159

as a simple MLP (Tian et al., 2024), Qformer (Li 160

et al., 2023), etc. Depending on the specific task, 161

the SKP tokens would be organized as a sequence 162

S = (S1, . . . ,Sn), which can represent a single 163
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Figure 2: An overview of the construction pipeline of SUBARU benchmark and the evaluation process. In SUBARU,
we construct 9 different tasks with multiple granularity (entity/triple/subgraph) and multiple difficulty levels for
comprehensive evaluation of the generalization capability of the structural knowledge prompting paradigm.

entity, a triple, or a subgraph. It is further concate-164

nated with the input tokens of the LLMs, resulting165

in the final prediction process:166

A∗ = max
A

PM(A|Q,S) (3)167

This basic setting and formulation for SKP are168

widely used in existing works. However, current169

approaches often this paradigm directly to specific170

downstream tasks without a deeper exploration of171

the paradigms themselves. In this paper, we will172

dive deep into this problem by conducting a com-173

prehensive evaluation with our proposed bench-174

mark to address this gap.175

4 Our Evaluation Framework176

4.1 The General Motivation177

In the previous section, we introduce the basic178

paradigm of SKP, which is widely used by cur-179

rent KG-enhanced LLM applications. While these180

methods have achieved state-of-the-art results in181

knowledge-intensive tasks such as QA and KGC,182

the generalization capabilities of the SKP paradigm183

remain under-explored. In this paper, we will ex-184

plore the following four research questions (RQ)185

about the generalization ability of SKP:186

• RQ1. Granularity: What levels of structural187

knowledge from KGs can the SKP paradigm188

integrate to LLMs?189

• RQ2. Transferability: Is the SKP paradigm190

transferable across different tasks? Can SKP191

process new elements haven’t seen before?192

Table 1: The statistical information of SUBARU. We
have 3 granularity and 3 levels resulting in 9 tasks.

Task # Train # Valid # Test

Entity (EG)
CLS 32122 4016 4016
MC 16096 2012 2013

DESC 16061 2008 2008

Triple (TG)
CLS 371168 20620 20622
MC 185584 10310 10311

DESC 185584 10310 10311

Subgraph (SG)
CLS 29454 3998 5142
MC 14727 1999 2571

DESC 7453 931 939

• RQ3. Scalability: Does the SKP paradigm 193

exhibit scaling laws? 194

• RQ4. Universality: Can the SKP paradigm 195

be applied to different LLMs? 196

Existing SKP methods lack the exploration of the 197

above four questions, and no suitable benchmarks 198

exist for such exploration. To facilitate a more 199

thorough investigation, we start by introducing a 200

new benchmark containing various new datasets 201

and tasks to facilitate better nature exploration in 202

the experimental section. 203

4.2 The SUBARU Benchmark 204

To better explore the mentioned four key RQs 205

about the SKP paradigm. We propose the 206

StrUctural Prompting BenchmArk with Reasoning 207

and Understanding tasks (SUBARU for short). In 208

this section, we we briefly introduce SUBARU, 209

outlining its general principles and the process of 210
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its construction. An overview of the SUBARU211

framework is presented in Figure 2.212

4.2.1 General Principle of SUBARU213

Existing SKP applications typically target the spe-214

cific tasks requiring varying granularity of struc-215

tural knowledge from KGs. For instance, the QA216

task needs subgraph-level knowledge, while the217

KGC task only requires triple-level knowledge.218

Although these applications have made signifi-219

cant progress using the same paradigm, they do220

not fully capture the capabilities of SKP. In221

the SUBARU framework, we aim to evaluate the222

SKP paradigm more comprehensively by designing223

tasks with different levels of structural knowledge224

granularity. These include entity-granularity (EG),225

triple-granularity (TG), and subgraph-granularity226

tasks (SG), which assess the model’s ability to rea-227

son and understand entities, triples, and subgraphs228

from KGs.229

Additionally, depending on the difficulty of rea-230

soning and comprehension, we introduce three231

more difficulty levels in our SUBARU: binary clas-232

sification (CLS), multiple choice (MC), and de-233

scription (DESC). These tasks correspond to the234

model’s ability to perform binary classification,235

answer multiple-choice questions, or generate de-236

tailed descriptions based on the input structural237

prompts. By combining the three granularity with238

three levels of difficulty, we create 9 different239

tasks as shown in Figure 2. Next, we describe240

how our dataset was constructed.241

4.2.2 Construction Process of SUBARU242

We present an overview of the SUBARU in Table243

1. We employ CoDeX (Safavi and Koutra, 2020), a244

large-scale KG extract from WikiData (Vrandecic245

and Krötzsch, 2014) as our data source. CoDeX246

contains approximately 110K triples. The construc-247

tion process involves two key steps:248

Instance Sampling. First, we sample entity/triple/-249

subgraph instances at different granularity from250

the KG to prepare for different tasks. For the EG251

task, we sample approximately 20K entities with252

adequate descriptions with an 8:1:1 split. For the253

TG task, we employ the split of CoDeX-M triples254

to build the datasets. For the SG task, we start255

with the entities selected in the EG task and then256

randomly sample their 1-hop and 2-hop neighbor-257

hoods to construct the subgraphs. Meanwhile, each258

task has specific settings. For the CLS task, we259

treat an entity ID with its real short name as a pos-260

Task Prompt Template in SUBARU

Input: <Structural Knowledge Promptings
S>, <Task-specific Prompt Qtask>
Output: Task-specific Answers A

Figure 3: A general prompt template for all tasks.

itive instance. For TG and SG, we consider each 261

triple and subgraph sampled from the existing KG 262

as positive instances. We further generate negative 263

samples maintaining a 1:1 ratio by random per- 264

turbing. In the MC task, we sample four choices 265

for each instance: for EG, we predict the entity 266

name, and for TG and SG, we predict the missing 267

entity. The missing entity prediction in TG-MC is 268

similar to the traditional KGC task to predict the 269

missing tail entity in the given query (h, r, ?). For 270

SG, the query provides a subgraph with one core 271

entity missing and ask for the missing entity in the 272

subgraph. For the DESC task, the entity, triple, 273

and subgraph descriptions serve as the target for 274

generation. Entity and triple descriptions are taken 275

directly from the CoDeX dataset, while subgraph 276

descriptions are generated using GPT-3.5-turbo. 277

Due to the page limit, we present a more detailed 278

description of the 9 tasks in Appendix A.1. 279

Prompt Generation. After sampling from the 280

CoDeX KG, we create task-specific instances by 281

applying a hand-crafted instruction prompt, Itask, 282

for each task, transforming the instances into the 283

text format for further evaluation. Following the 284

existing paradigms, we put the SKP in the front 285

of the input sequence to inform the LLMs with 286

structural information from KGs. To objectively 287

assess the model’s ability to utilize these SKPs, we 288

remove the important textual information of the 289

relevant elements in the instruction template, al- 290

lowing the model to complete the tasks using 291

mainly the SKPs rather than the texts to assess 292

the utilization of the SKPs.. We present a general 293

prompt template used in our evaluation in Figure 3. 294

Here we present a general prompt template during 295

our evaluation. We present the detailed prompt 296

templates and data samples in Appendix A.2. 297

4.2.3 The Evaluation Process of SUBARU 298

In the following experiments section, we provide 299

a comprehensive evaluation of the four general- 300

ization properties of the SKP paradigm using the 301

SUBARU. As SKP is an external module added 302

to knowledge-intensive task adaption, it must be 303
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Table 2: The main experiment results on the 9 tasks of SUBARU benchmark. We colored the top-3 results under
each task with a different green color from shallow to deep.

Entity Granularity Triple Granularity Subgraph GranularityMethod L-1 (Acc) L-2 (Acc) L-3 (EM) L-1 (Acc) L-2 (Acc) L-3 (EM) L-1 (Acc) L-2 (Acc) L-3 (B-4) L-3 (GPT)

Random Choice 50.00 25.00 - 50.00 25.00 - 50.00 25.00 - -

TransE 55.85 39.49 0.00 55.41 87.42 2.77 82.43 57.95 9.85 14.97
DistMult 52.61 34.02 0.00 47.23 89.60 21.21 87.10 78.99 4.32 35.42
RotatE 57.34 51.16 0.00 55.59 66.77 6.88 70.12 62.54 2.12 22.20

FC

R-GCN 52.44 41.97 0.00 52.53 90.50 27.90 86.75 54.49 5.64 19.57

TransE 84.76 91.01 0.00 53.92 86.51 41.83 91.71 89.34 12.67 45.61
DistMult 57.71 61.84 0.00 55.64 93.53 97.91 65.46 90.35 26.72 55.56
RotatE 85.43 54.94 0.00 53.71 88.21 83.74 89.14 90.43 24.74 55.80

MLP

R-GCN 66.85 44.46 0.00 53.68 90.45 94.59 76.70 91.05 16.08 49.25

TransE 58.66 38.89 0.00 65.24 92.07 19.72 88.46 80.32 19.50 46.93
DistMult 55.35 27.37 0.00 54.49 92.92 8.38 86.98 81.60 9.75 35.57
RotatE 56.47 29.30 0.00 59.47 89.09 7.32 90.31 88.44 19.68 47.05

MoE

R-GCN 54.23 38.15 0.00 53.59 92.09 27.46 54.90 78.91 4.04 20.39

TransE 59.48 92.50 0.00 54.77 94.42 38.90 78.97 27.14 11.32 41.19
DistMult 75.34 60.40 0.00 52.95 94.11 17.77 78.59 37.53 9.25 32.74
RotatE 82.96 79.50 0.00 50.84 94.02 6.23 80.35 26.33 14.43 42.41

Q-former

R-GCN 81.77 41.11 0.00 51.18 93.94 16.23 73.60 27.42 4.73 21.82

trained on the training set before its performance304

can be evaluated on the test set. The training pro-305

cess, based on classic next-word prediction, is de-306

fined as:307

LSKP = − logPM(A|Qtask,S) (4)308

where Q,A is an question-answering pair from the309

training data. S is the corresponding structural310

prompt for the given question, which can be an311

entity, a triple, or a sequential subgraph. During312

training, the LLM M is frozen, and the adapter313

P is trained to bridge the pre-trained structural314

encoder ENC() and the LLM. Meanwhile, for the315

four RQs, we will present the detailed evaluation316

protocols and implementation in the next section.317

5 Evaluation Results318

In this section, we first introduce the experimental319

setup, including implementation details and the320

evaluation protocol. Then, we present the results of321

the experiments to explore the four significant RQs322

(mentioned in Section 4.1) about the Granularity,323

Transferability, Scalability, and Universality of the324

SKP paradigm. We further provide some intuitive325

cases to analysis the competency boundary of SKP.326

5.1 Experimental Setup327

Implementation Details. TransE (Bordes et al.,328

2013), DistMult (Yang et al., 2015), RotatE (Sun329

et al., 2019), and R-GCN (Schlichtkrull et al.,330

2018). We implement the structural encoders based331

on NeuralKG (Zhang et al., 2022). Among these332

structural encoders, R-GCN is a graph neural net- 333

work method and others are classic KG embed- 334

ding methods. For the adapter P , we choose 4 335

mainstream architectures used by recent works, in- 336

cluding single fully-connected layer (FC) (Zhang 337

et al., 2024b), multi-layer perceptron (MLP) 338

(Liang et al., 2023), MoE (Ma et al., 2024), and 339

Qformer (Li et al., 2023). For LLMs, we mainly 340

employ Llama3-8B-Instruct (Dubey et al., 2024) 341

as the backbone model for experiments. We also 342

evaluate the performance of other LLMs (Touvron 343

et al., 2023) on the SUBARU in further explo- 344

ration. All the experiments are conducted on a 345

Linux server with NVIDIA A800 GPUs. We set 346

the LLMs in FP16 precision and optimized the 347

SKP with AdamW (Loshchilov and Hutter, 2019) 348

optimizer. For detailed backbone selection, hyper- 349

parameter settings, and training efficiency of all the 350

tasks, we present a summary in Appendix B.1. 351

Evaluation Protocol. For the CLS and MC tasks, 352

we use the accuracy (ACC) for evaluation. For the 353

description tasks, we use different metrics for dif- 354

ferent granularity levels. For the entity-level and 355

triple-level tasks, we use the exact match (EM) rate 356

as the evaluation metric, which needs the LLMs 357

to generate the exact entity name and triple infor- 358

mation. For the subgraph-level description, we 359

use BLEU-4 (B-4) (Papineni et al., 2002) and 360

GPTScore as the evaluation metrics. BLEU is a 361

traditional metric for text generation evaluation. 362

GPTScore follows the LLM-as-a-judge paradigm 363

(Li et al., 2024) and employs GPT-3.5-tubor as the 364

judger to score the generated descriptions against 365
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the golden answer. A more detailed introduction366

of our evaluation protocol and the prompt template367

for GPT scoring can be found in Appendix B.2.368

5.2 Multi-Granularity Knowledge Evaluation369

(RQ1)370

The main evaluation results are presented in Table371

2. Based on these results, we make the following372

observations regarding the granularity of structural373

knowledge learned by the models:374

Observation 1. Simple MLP is surprisingly ef-375

fective. Despite recent efforts to use complex376

adapters for SKP, the simple MLP architecture377

achieves the best performance on most tasks in378

SUBARU. As presented in Table 2, the MLP-based379

results dominate in most of the colored cells com-380

pared to other adapters. Complex SKP architec-381

tures like Qformer and MoE don’t perform well on382

certain tasks like SG.383

Observation 2. SKP excels in coarse-grained384

reasoning tasks. The three granularities in SUB-385

ARU correspond to progressively coarser reasoning386

tasks (MC). For EG, LLMs must precisely under-387

stand the input SKP to make the correct choice.388

However, for TG and SG, the MC task becomes389

more coarse-grained, with the LLM only needing390

to grasp the correlation between the input SKP and391

the options, as the SKP provides more semantic392

richness and auxiliary information. We can observe393

that SKP performs well in the MC tasks of TG and394

SG than EG. This suggests that SKP demonstrates395

some coarse-grained reasoning ability, but lacks396

sufficient fine-grained understanding for EG.397

Observation 3. SKP struggles to understand398

new entities accurately, failing in the EG DESC399

task. As we mentioned before, the smallest ele-400

ments in SKP are entities or relations. Therefore,401

in the EG task, all the tasks require LLMs to under-402

stand the unseen entities during training and make403

predictions or descriptions. We observe that SKP404

performs poorly in the EG task, especially in the405

DESC task. This suggests that SKP struggles to406

accurately understand new entities and lacks induc-407

tive reasoning ability at EG. This is because the408

current SKP modeling approach is still relatively409

lacking in extrapolation capabilities. The encoder’s410

characterization ability is inadequate for effective411

extrapolation when bridged with the LLM, high-412

lighting a gap between SKP and classical MLLM413

in terms of generalization.414

Based on these observations, we conclude that415

current SKP methods are not perfect across all416
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Figure 4: The transferability experiments among differ-
ent granularities and levels with MLP adapter.

granularities and have their limitations. How- 417

ever, mainstream SKP applications typically focus 418

on triple or subgraph reasoning tasks, where these 419

methods excel. The format of these downstream 420

tasks closely resembles the TG/SG MC tasks. Addi- 421

tionally, to better understand the description ability 422

of SKP models, we further conduct a case study in 423

Figure 5.6. 424

5.3 Transferability Evaluation (RQ2) 425

To further validate the transferability of SKP meth- 426

ods, we conduct an additional evaluation to answer 427

the following two sub-issues: (1). Can SKP learn 428

positive transfer from the tasks in different granu- 429

larities and levels? (2). How well does SKP handle 430

new entities under different scenarios? These is- 431

sues relate to the transferability of SKP across 432

tasks and elements. 433

5.3.1 Transferability among Tasks 434

Settings. We conduct four sets of experiments to 435

explore this issue by training SKP models with the 436

dataset from the single task (Base), all tasks in the 437

same level, same granularity, and whole benchmark 438
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Figure 5: The inductive transfer experiments.

(w/ Tasks, w/ Granularity, w/ All). The model’s439

performance is then evaluated on each task to inves-440

tigate whether it benefits from knowledge transfer441

across tasks.442

Analysis. The results are shown in Figure 4 reveal443

that SKP does not exhibit strong transferability on444

CLS and MC tasks. In most cases,training on tasks445

across different granularities or difficulty levels446

does not yield a significant improvement in model447

performance on the target task. However, SKP448

models perform better on the DESC task when449

trained with additional data, likely due to the nature450

of the task. SG DESC is a relatively coarse-grained451

generation task that can benefit from extra training452

data containing more structural information.453

Overall, this experiment suggest that the current454

SKP architecture faces challenges in transferability.455

5.3.2 Transferability in New Elements456

To explore SKP’s ability to handle new entities,457

we conduct experiments in an inductive transfer458

scenario for TG tasks. As we mentioned before, the459

entity is the basic element in SKP, making EG tasks460

naturally inductive. While SG Task will inevitably461

have overlapping elements, TG is the best scenario462

for inductive experiments.463

Settings. We re-split the datasets by preserving464

a certain ratio (%) of entities in the training set.465

In the test set, there will be some unseen entities.466

This allows us to further divide the test triples into467

two categories: triples with unseen entities (U)468

and those without (S). We evaluate the model’s469

performance on these two subsets separately.470

Analysis. The results in Figure 5 suggest that SKP471

performs well with new entities in the TG MC task.472

Specifically, the performance on the unseen triples473

is nearly identical to that on the seen triples. Be-474

sides, training on more entities can improve the475

model’s ability to inductive reasoning. This raises476

an interesting question: why does SKP perform477

(2). Triple MC

(5). Subgraph CLS (6). Subgraph MC

(3). Triple CLS (4). Triple MC

(1). Entity MC

(2). Entity MC(1). Entity CLS

(3). Triple CLS (4). Triple MC

(6). Subgraph MC(5). Subgraph CLS

Base Model         w/ Tasks         w/ Granularity       w/ All

(1). Entity CLS (2). Entity MC

(7). Subgraph DESC (BLEU / GPTScore)

Figure 6: The scalability experiments on the entity /
triple MC tasks. We use MLP as the adapter.

better in terms of transferability on TG tasks com- 478

pared to EG tasks? We believe this is due to a 479

combination of task difficulty and granularity. The 480

SKPs in TG and SG tasks provide more structural 481

context, which reduces the difficulty for the model 482

in understanding the key elements, making it easier 483

to generate correct predictions. 484

5.4 Scalability Evaluation (RQ3) 485

To verify the scalability, we conducted the follow- 486

ing experiment. 487

Settings. We dedicate research to the MLP adapter, 488

constantly deepening its layers from 1 to 6 for ex- 489

periments on the SUBARU benchmark. 490

Analysis. The results presented in Figure 6 reveal 491

that adapters in SKP models undergo an upward 492

and then downward change in performance. An 493

MLP with 3-4 layers is strong enough to achieve 494

state-of-the-art performance. This law is confirmed 495

on different structural encoders. Of course, the scal- 496

ability of the adapter is also related to the amount 497

of data required for training, which is currently 498

limited, and the scalability at larger data volumes 499

needs to be further explored. 500

5.5 Universality Evaluation (RQ4) 501

Settings. To further evaluate the universality of 502

SKP, we conduct experiments with more different 503

LLM backbones such as Llama2-7B-chat (Touvron 504

et al., 2023), Llama3.1-8B-Instruct (Dubey et al., 505

2024), and Mistral-7B (Jiang et al., 2023). We 506

report the results of them on the MLP adapter. 507

Analysis. As shown in Figure 7, we can find that 508

SKP is a universal framework that can be adapted 509

in various decoder LLMs. The performance varia- 510

tion across different backbones on the same task is 511

minimal, and a consistent trend is observed across 512

models. However, there is a slight performance 513

drop when combining certain backbones, likely 514

due to differences in the LLM architectures. More 515
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Table 3: A case study for subgraph description task. We colored the key words of the sentence.

(Golden Answer) Franz Grashof was a university teacher in the field of mechanics, who spoke, wrote, or signed in German.
He was buried at Hauptfriedhof Karlsruhe.

(Good Prediction) Friedrich Ernst Petersen was a German engineer who worked in the field of engineering. He was employed at the
University of Göttingen, where he was also educated. Friedrich Ernst Petersen spoke, wrote, or signed in German. (GPTScore: 90)

(Neutral Prediction) Friedrich August von Hayek was a university teacher who specialized in the field of economics. He was fluent
in German, which he spoke, wrote, and signed. After his death, he was buried in the cemetery of the village of Zermatt. (GPTScore: 60)

(Bad Prediction) Karl-Heinz Rummeny, a notable alpine skier, was born in Garmisch-Partenkirchen.
He was also a member of the German Alpine Club and was also a member of the German Ski Association. (GPTScore: 25)
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Figure 7: Experiments on more different LLMs.

additional results about LlaMA2 and LlaMA3.1 are516

presented in Appendix B.4.517

5.6 Case Study and Further Analysis518

In the three difficulty levels we designed in SUB-519

ARU benchmark, the CLS and MC tasks provide520

clear answers and quantitative metrics, allowing for521

precise comparisons of model performance. How-522

ever, for the task of subgraph DESC, assessing the523

quality of generated text is more subjective. There-524

fore, we conduct case studies in this section to525

analyze the ability of the SKP model to describe526

the subgraph structures. The goal of this case527

study is not to compare the differences in the528

performance of different SKP models, but to529

identify the commonalities that exist in descrip-530

tions. As shown in Figure 3, we present a simple531

case with a golden answer and several predictions532

from different SKP models, which would be a per-533

sonal description. We can observe the following534

two points:535

(1). None of the SKP models were able to ac-536

curately identify the central entity, highlighting537

the inability to include particularly precise and538

personalized information in the SKPs. This also539

explains why all the SKP models fail in the EG540

DESC task in Table 2, which requires precise en- 541

tity identification. 542

(2). The SKP models demonstrate an under- 543

standing of some coarse-grained entities and 544

relations in the input SKP, capturing their connec- 545

tions and reflecting semantic understanding in the 546

generated text. A good prediction can understand 547

more hidden information encoded in SKP such as 548

profession, major, nationality, and skills. 549

Combining these insights, we can conclude that 550

SKP can inform LLMs coarse-grained informa- 551

tion for understanding some subgraph structures 552

roughly, , but struggles with detailed information 553

like specific names, places, or specialized terms. 554

While SKP excels at recognizing broad knowledge 555

such as entity attributes, it lacks the cognitive abil- 556

ity to handle finer details. As text generation and 557

deep-level understanding are key capabilities for 558

LLMs, we think that future improvements to SKP 559

should focus on activating more precise and de- 560

tailed information through additional prompt 561

tokens. 562

6 Conclusion 563

In this paper, we investigate a popular paradigm 564

SKP which aims to integrate external structural 565

knowledge into LLMs. We conduct a thorough 566

evaluation of its generalization capabilities using 567

a new benchmark, SUBARU, which encompasses 568

multiple levels of granularity and difficulty. We de- 569

tail the construction process and evaluation proto- 570

col of SUBARU. After conducting sufficient experi- 571

ments in four perspectives, we draw several insight- 572

ful conclusions. Our findings suggest that SKP ef- 573

fectively provides LLMs with coarse-grained infor- 574

mation across different granularities and task types. 575

However, achieving fine-grained, precise factual 576

awareness remains a significant challenge. This 577

evaluation will guide the future development of the 578

SKP to incorporate multiple granularity structural 579

knowledge and task-solving abilities into LLMs. 580
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Limitations581

In this paper, we make a deep exploration of the582

generalization of the structural knowledge prompt-583

ing paradigm. Our work has the following three584

limitations:585

The scale of the SUBARU benchmark. The586

benchmark constructed by us has some limitations587

in terms of scale. SUBARU does not consist of588

million-scale training and evaluation data, which589

limits the exploration of the scalability.590

The exploration on larger LLMs. Due to the591

limited computational resources, we mainly con-592

duct experiments on LLMs with 7B-8B parameters.593

Though most of the SKP works are based on LLMs594

with the same scale, our exploration lacks results595

on larger LLMs such as 13B and 70B LlaMA.596

Lack of explanation of internal mechanisms.597

We mainly evaluate the SKP paradigm by the tasks598

and metrics defined by the SUBARU benchmark,599

lacking further exploration of the internal mecha-600

nisms in LLMs, such as the layer-wise attention601

weights analysis.602

We will continue to solve these limitations.603

Ethical Considerations604

In this paper, all of our research and experiments605

are conducted on publicly available open-source606

datasets and models. We construct our evaluation607

benchmark from open-source data and we will re-608

lease them for open research. Therefore, there is609

no ethical consideration in this paper.610
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A Details in SUBARU benchmark798

A.1 Detailed Task Settings799

In this section, we provide a detailed description800

of the 9 task settings in the SUBARU benchmark.801

Note that we have 3 different granularity (EG/T-802

G/SG) and 3 different levels (CLS/MC/DESC) in803

the SUBARU benchmark.804

• Task 1: EG CLS. This task needs the LLM805

to predict the true or false of a given ques-806

tion about whether a given embedding and an807

entity name are a pair.808

• Task 2: EG MC. This task needs the LLM to809

select the true answer in the given 4 options810

to answer the question about a given entity811

embedding.812

• Task 3: EG DESC. This task needs the LLM813

to generate a short entity name to answer what814

the entity is based on the input SKP.815

• Task 4: TG CLS. This task needs the LLM816

to predict the true or false of a given ques-817

tion about whether the SKP of the triple is a818

positive one.819

• Task 5: TG MC. This task needs the LLM to820

select the true answer in the given 4 options to821

complete the given query in the form of SKP.822

The query can be a head prediction (?, r, t), a823

relation prediction (h, ?, t), or a tail prediction824

(h, r, ?). Here, we denote ? as the missing825

entity/relation that needs to be completed by826

the model.827

• Task 6: TG DESC. This task needs the LLM828

to generate the head/tail entity name and the829

relation to answer what the triple is based on830

the input SKP.831

• Task 7: SG CLS. This task needs the LLM832

to predict the true or false of a given question833

about whether the SKP of the subgraph is a834

positive one.835

• Task 8: SG MC. This task needs the LLM to836

select the true answer in the given 4 options837

to complete the given query in the form of838

SKP. The query is a subgraph that removes a839

key entity, which should be predicted by the840

model.841

• Task 9: SG DESC. This task needs the LLM 842

to generate a paragraph to describe what the 843

SKP is in the given input. The subgraph is 844

extracted from the KGs by random sampling. 845

Note that, for CLS tasks, an entity-short name 846

pair/triple/subgraph sampled from the KG is re- 847

garded as a positive sample. We generate negative 848

samples by randomly replacing the positive sam- 849

ples in a 1:1 manner. For the EG DESC and TG 850

DESC tasks, the golden label for each entity and 851

relation is their short name in the given KG. For the 852

SG task, we employ GPT-3.5 to generate golden 853

answers. The prompt template we used is presented 854

in Figure 8. We manually verified the generated 855

results and found that the generated golden answer 856

is of acceptable quality and can be used to train 857

models of around 7B. 858

A.2 The Prompt Templates 859

We present the prompt templates we used in the 860

SUBARU benchmark in Figure 10 to Figure 18. 861

For each task, the instruction is consistent and the 862

input would be changed by different data instances. 863

We present one case for each task. 864

B Experiments 865

B.1 Experimental Details 866

In our experiments, we implement the training and 867

evaluation process with PyTorch (Paszke et al., 868

2019) and hugging-face transformers (Vaswani 869

et al., 2017) library. We train 3 epochs for each 870

SKP model with a fixed context length of 384. The 871

batch size is set to 16. We tune the learning rate in 872

{1e−4, 3e−4, 5e−4}. 873

For the structural encoders, we set the embed- 874

ding dimensions of four different backbones to 512. 875

We implement them using NeuralKG (Zhang et al., 876

2022), with a 3000 epoch training until coverage. 877

The KG embedding methods (TransE/DistMult/Ro- 878

tatE/RGCN) are classic backbones to train struc- 879

tural embedding for a given KG. Besides, R-GCN 880

(Schlichtkrull et al., 2018) employs a relational 881

graph convolution layer for message aggregation 882

in the KG. The training process is self-supervised. 883

The training objective can be denoted as: 884

L =
1

|T |
∑

(h,r,t)∈T

(
− log σ(γ −F(h, r, t))

−
K∑
i=1

pi log σ(F(h′i, r
′
i, t

′
i)− γ)

) (5) 885
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Prompt for Golden Answer Generation

Given several triples in an extracted subgraph from a knowledge graph, you need to organize them
into text paragraphs to describe the information contained in this graph.
The given triple:
<head_1, relation_1, tail_1>
<head_2, relation_2, tail_2>
. . . . . .
<head_n, relation_n, tail_n>
Your Answer:

Figure 8: The prompt template used to generate the golden answer of SG DESC task.

GPT Evaluation Prompt Template

Score the given model-generated text against the ground truth on a scale from 0 to 100, focusing
on the alignment of meanings rather than the formatting.
The ground truth text: <Golden Label>
The model output: <Model Prediction>
Provide your score as a number and do not provide any other text in the response.

Figure 9: The prompt template used for GPT evaluation.

where (h, r, t) ∈ T is a positive triple. σ is the sig-886

moid function and γ is a margin hyper-parameter.887

pi is the self-adversarial training weights proposed888

by RotatE (Sun et al., 2019). F is the score func-889

tion defined specifically by different methods. For890

example, the score function of TransE is:891

F(h, r, t) = −||h+ r− t||1 (6)892

For the four kinds of adapters, we implement893

them with the following setting:894

• FC. It is implemented by a single linear layer895

in PyTorch in the form of de × dl, where de is896

the structural embedding dimension and dl is897

the token embedding dimension of LLMs.898

• MLP. It is implemented by several linear lay-899

ers with ReLU (Glorot et al., 2011) as an acti-900

vation function. The intermediate dimension901

of the MLPs is 3× de. In most of the experi-902

ments, we use a two-layer MLP. In the scala-903

bility experiments, we explore deeper MLPs.904

• MoE. We follow the implementation in XRec905

(Chen et al., 2024) for the MoE adapter layers.906

We set the expert number to 4 with adaptive907

gated fusion.908

• Qformer. We follow the implementation in 909

BLIP-2 (Li et al., 2023). The number of trans- 910

former layers in Qformer is set to 2 with 2 911

attention heads. The readout layer is set to be 912

a two-layer MLP. 913

Now we can explain why we chose these four 914

kinds of adapters in our evaluation. Note that the 915

paradigm of SKP and MLLMs have certain ideas 916

in common, which is bridging heterogeneous in- 917

formation into LLM with adapters and employ- 918

ing texts as a core expression to solve different 919

tasks. Therefore, existing SKP models are heavily 920

informed by MLLMs. 921

Overall, they are all popular architectures used 922

by existing methods. FC and MLP are fundamental 923

neural networks used by GNP (Tian et al., 2024) 924

and KoPA (Zhang et al., 2024b). MoE network 925

is used by XRec, a work that attempts to inform 926

LLMs with the structural information in user-item 927

interaction graphs. Though different from the struc- 928

tural information in KGs, it is also worth a try. 929

Qformer is a classic adapter widely used in Multi- 930

modal LLMs such as BLIP-2, which is more com- 931

plex than vanilla FC and MLP. Though no current 932

work employs Qformer, we think Qformer is a rep- 933

resentative design with amazing ideas. Therefore, 934

we also evaluate it in our experiments. 935
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Table 4: A further exploration on the influence of textual
query in the TG MC task. We use the MLP as the adapter
for SKP.

Method w/ text w/o text

TransE 86.51 49.09
DistMult 97.91 90.94
RotatE 83.74 83.51
R-GCN 94.59 78.45

Table 5: Results on LlaMA3.1-8B.
Method Entity MC Triple MC Subgraph MC

FC

TransE 51.86 88.26 49.35
DistMult 30.15 90.25 78.10
RotatE 35.67 72.65 46.28
R-GCN 40.04 89.12 65.61

MLP

TransE 94.83 93.04 85.05
DistMult 75.31 93.67 90.19
RotatE 45.65 88.84 91.59
R-GCN 67.81 93.78 90.93

MoE

TransE 44.16 89.94 78.56
DistMult 37.31 91.50 76.93
RotatE 61.00 91.60 81.83
R-GCN 46.24 90.54 68.84

Q-former

TransE 88.47 90.95 20.34
DistMult 75.21 93.14 44.18
RotatE 72.67 92.67 28.54
R-GCN 69.64 92.83 22.59

The training process task about 20 to 30 minutes936

for EG and SG tasks in our experiment environment937

while TG takes about 4 hours. Some of our code938

implementation is under the help of AI assitant like939

ChatGPT.940

B.2 Evaluation Details941

In our evaluation protocol, we have several dif-942

ferent metrics for different tasks. The CLS tasks943

and MC tasks have deterministic results, which can944

be measured by the quantitative accuracy metric.945

For the DESC, the situation becomes more com-946

plex. This is caused by the different settings in947

the DESC tasks. For EG DESC, we expect the948

model to generate a precise entity name. For TG949

DESC, we expect the model to generate the entities950

and relations properly in the given triple. For the951

SG DESC, the target is to create a paragraph to952

describe the given subgraph context. We can find953

that among these tasks, EG and TG require high954

accuracy and need to use Exact Match (EM) as an955

evaluation metric. SG, although also requires high956

accuracy, is not suitable for EM due to the gener-957

ation of long text, so we adopt the current model958

of combining BLEU and GPTScore to evaluate the959

semantic similarity of the generated texts and the960

golden labels. The prompt template we used in the961

GPT evaluation is presented in Figure 9.962

Table 6: Results on LlaMA2-7B-chat.
Method Entity MC Triple MC Subgraph MC

FC

TransE 34.72 46.77 43.29
DistMult 26.08 61.75 70.75
RotatE 23.00 67.21 52.66
R-GCN 18.18 64.62 50.91

MLP

TransE 83.38 91.32 69.38
DistMult 29.01 71.51 89.03
RotatE 72.37 72.88 55.73
R-GCN 37.06 89.01 79.19

MoE

TransE 42.42 60.62 63.78
DistMult 42.37 61.05 71.64
RotatE 25.73 58.37 62.15
R-GCN 22.75 63.04 64.56

Q-former

TransE 77.20 62.73 31.73
DistMult 37.04 89.93 40.80
RotatE 39.84 91.96 22.83
R-GCN 40.73 87.41 25.86

B.3 The influence of textual query in TG-MC 963

task. 964

As we presented in the task definitions of SUBARU, 965

we provide text-based descriptions of the given 966

query in the TG MC task. For example, ([MASK] | 967

occupation | romanist) in Figure 14. Besides, the 968

options are also in the form of texts which means 969

many questions can make text-based predictions 970

without SKP as well. To better investigate LLM’s 971

ability to understand SKP on the task TG MC, we 972

performed some additional implementations to val- 973

idate the experiments in the absence of text. As 974

shown in Figure 4, it is obvious that the model per- 975

forms better in the presence of text, because the 976

query present in the form of text greatly simplifies 977

LLM’s understanding of the problem and makes 978

the whole thing easier. But on the other hand, in 979

the absence of text, the LLM still has some SKP 980

comprehension and it can make the right choices 981

relying on SKP alone. 982

B.4 Additional results on LlaMA3.1 and 983

LlaMA2 984

We present more detailed experimental results in 985

Figure 5 and Figure 6 about the SUBARU bench- 986

mark of LlaMA3.1-8B-Instruct and LlaMA2-7B- 987

chat. These results are complementary to the uni- 988

versality experiment. We can observe that the 989

model based on LlaMA3.1 performs relatively bet- 990

ter in general compared to the model based on 991

LlaMA2. 992
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Entity Classification (EG-CLS)

<Structural Knowledge Prompting Se >
### Instruction: Given an entity embedding in the front and answer the following question.
### Question: Is this entity Bonnie Owens?
### Output: Yes.

Figure 10: The prompt template for EG-CLS.

Entity Multiple Choice (EG-MC)

<Structural Knowledge Prompting Se >
### Instruction: Given an entity embedding in the front and select the true answer.
### Question: Which is the possible type of entity? A. bell tower B. congestive heart failure C.
academic major D. wall hanging
### Output: Your Answer is: D

Figure 11: The prompt template for EG-MC.

Entity Description (EG-DESC)

<Structural Knowledge Prompting Se >
### Instruction: Given an entity embedding in the front and describe this entity.
### Output: Bonnie Owens. ### Dessctiption: Bonnie Owens , born Bonnie Campbell, was an
American country music singer who was married to Buck Owens and later Merle Haggard.

Figure 12: The prompt template for EG-DESC.

Triple Classification (TG-CLS)

<Structural Knowledge Prompting Sh, Sr, St >
### Instruction: Given the embeddings of an knowledge triple in the front. Please answer the
following question.
### Question: Is this a positive triple?
### Output: No

Figure 13: The prompt template for TG-CLS.

Triple Multiple Choice (TG-MC)

<Structural Knowledge Prompting Sr, St > # Note that the masked answer does not appear in SKP
### Instruction: Given the embeddings of a query and four candidates in the front. Select a
correct answer to fill the [MASK] and complete the triple.
### Question: ([MASK] | occupation | romanist) A. László András B. Rebekah Brooks C. Franz
Konwitschny D. Francisco Rodríguez Marín
### Output: A

Figure 14: The prompt template for TG-MC.
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Triple Description (TG-DESC)

<Structural Knowledge Prompting Sh, Sr, St >
### Instruction: Given the embeddings of an knowledge triple in the front and describe the head
entity, relation, and tail entity of the triple.
### Output: Billy Idol###languages spoken, written, or signed###English

Figure 15: The prompt template for TG-DESC.

Subgraph Classification (SG-CLS)

<Structural Knowledge Prompting Sh,Sr1 ,St1 , · · · ,Srk ,Stk>
### Instruction: Given embeddings from a subgraph in the front and answer the following
question.
### Question: Is there any anomaly in this subgraph?
### Output: No

Figure 16: The prompt template for SG-CLS.

Subgraph Multiple Choice (SG-MC)

<Structural Knowledge Prompting Sr1 ,St1 , · · · ,Srk ,Stk> # The center entity does not appear.
### Instruction: Given an entity embedding in the front and select the true answer.
### Question: Which is the center entity descripted by this subgraph? A. The Lord of the Rings:
The Fellowship of the Ring B. Christian Reimers C. Harry Fett D. Manuel Acevedo
### Output: Your Answer is: D

Figure 17: The prompt template for SG-MC.

Subgraph Description (SG-DESC)

<Structural Knowledge Prompting Sh,Sr1 ,St1 , · · · ,Srk ,Stk>
### Instruction: Given embeddings from a subgraph in the front and answer the following
question.
### Output: Dominic Howard is a musician from the United Kingdom, known for playing the
drum kit in the genre of alternative rock. He primarily works in the field of music.

Figure 18: The prompt template for SG-DESC.
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