
Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

Akhiad Bercovich * Tomer Ronen * Talor Abramovich Nir Ailon Nave Assaf Mohammad Dabbah Ido Galil
Amnon Geifman Yonatan Geifman Izhak Golan Netanel Haber Ehud Karpas Roi Koren Itay Levy
Pavlo Molchanov Shahar Mor Zach Moshe Najeeb Nabwani Omri Puny Ran Rubin Itamar Schen

Ido Shahaf Oren Tropp Omer Ullman Argov Ran Zilberstein Ran El-Yaniv

Abstract

Large language models (LLMs) offer remark-
able capabilities, yet their high inference costs
restrict wider adoption. While increasing parame-
ter counts improves accuracy, it also broadens the
gap between state-of-the-art capabilities and prac-
tical deployability. We present Puzzle, a hardware-
aware framework that accelerates the inference of
LLMs while preserving their capabilities. Using
neural architecture search (NAS) at a large-scale,
Puzzle optimizes models with tens of billions of
parameters. Our approach utilizes blockwise local
knowledge distillation (BLD) for parallel archi-
tecture exploration and employs mixed-integer
programming for precise constraint optimization.

We showcase our framework’s impact via Llama-
3.1-Nemotron-51B-Instruct (Nemotron-51B) and
Llama-3.3-Nemotron-49B, two publicly available
models derived from Llama-70B-Instruct. Both
models achieve a 2.17× inference throughput
speedup, fitting on a single NVIDIA H100 GPU
while retaining 98.4% of the original model’s
benchmark accuracies. These are the most ac-
curate models supporting single H100 GPU infer-
ence with large batch sizes, despite training on
45B tokens at most, far fewer than the 15T used to
train Llama-70B. Lastly, we show that lightweight
alignment on these derived models allows them to
surpass the parent model in specific capabilities.
Our work establishes that powerful LLM models
can be optimized for efficient deployment with
only negligible loss in quality, underscoring that
inference performance, not parameter count alone,
should guide model selection.

*Equal contribution . Correspondence to: Akhiad Bercovich,
Tomer Ronen, Ran El-Yaniv <{abercovich, tronen,
relyaniv}@nvidia.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
With remarkable advancements in the capability and accu-
racy of LLMs, these models are increasingly adopted in
various domains, ranging from virtual assistants to sophis-
ticated enterprise solutions. This adoption trend is accom-
panied by a growing appetite for larger and more powerful
models, as evidenced by the industry’s push toward increas-
ingly larger-scale LLMs (OpenAI, 2023; Anil et al., 2023;
cla; Dubey et al., 2024) and Inference-time compute scal-
ing (GPT-o1, (Wei et al., 2022; Yao et al., 2023; Hardt &
Sun, 2024)). However, the high computational costs associ-
ated with these models and their projected future iterations
– particularly during inference – restrict their accessibility
and scalability, thus presenting a significant challenge for
widespread personal and commercial applications.

LLMs require a substantial amount of parameters for their
training process to converge easily and achieve better gen-
eralization (Kaplan et al., 2020; Hoffmann et al., 2024;
Allen-Zhu et al., 2019; Belkin et al., 2018). This over-
parameterization not only facilitates optimization, but also
provides greater capacity to store knowledge and learn com-
plex patterns across diverse tasks, explaining why larger
models consistently demonstrate superior performance (Ka-
plan et al., 2020; Hoffmann et al., 2024). However, once
trained, many parameters and computations turn out to be
redundant for inference, as evidenced by the success of com-
putational efficiency techniques (He et al., 2024; Beltagy
et al., 2020; Hu et al., 2022). Yet, LLM architectures re-
main largely uniform, comprising repeated identical layers,
with little consideration given to balancing each block’s
computational cost against its contribution to overall model
predictive performance—a design choice primarily driven
by training stability and ease of scaling rather than inference
efficiency. This work addresses how to transform a trained
LLM from a structure suited for training into one optimized
for efficient inference on specific hardware (such as H100),
while preserving its accumulated knowledge and predictive
performance. Given a “parent model”, our approach ex-
plores a large search space of architecture configurations
to identify efficient options tailored to meet specific hard-
ware and task-related constraints. This exploration requires

1

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

M
H

A

FFN
M

H
A

Linear
no-op

FFN

M
Q

A

Linear

G
Q

A

FFN
G

Q
A

Linear

G
Q

A

Linear
M

Q
A

FFN

Step 1: Crafting the “puzzle pieces”
Applying block-wise local distillation to every
alternative subblock replacement in parallel and
scoring its quality and inference cost to build a
“library” of blocks.

Step 2: Assembling the puzzle architecture
Utilizing Mixed-Integer-Programming to assemble
a heterogeneous architecture that optimizes
quality under constraints such as throughput,
latency and memory usage.

Step 3: Uptraining
The reassembled architecture is
trained with global Knowledge-
Distillation to strengthen inter-
block compatibility.

M
H

A

no-op

Teacher

KD
Loss

Figure 1. An overview of the three stages of our Puzzle framework.

a method to reliably estimate the performance of each po-
tential configuration, allowing us to identify models that
balance efficiency and accuracy for deployment.

In this paper, we introduce the Puzzle framework, summa-
rized in Figure 1, which pioneers a decomposed neural
architecture search (NAS) strategy for LLMs to explore and
optimize a vast search space of possible model architectures
for the target hardware. Inspired by methods in computer
vision NAS, and LANA (Molchanov et al., 2022) especially,
we define design spaces that include alternative attention
and feed-forward network (FFN) layers of varying efficiency
degrees, up to a complete layer skip in the extreme case. We
then use a blockwise local distillation (BLD) (See Section 3)
framework to train all these block variants for all layers of
the parent LLM in parallel. Next, we efficiently score each
alternative replacement “puzzle piece” and search an enor-
mous design space for the most accurate models, while
adhering to a set of inference constraints (e.g., memory size,
latency, and throughput). This is done by using a Mixed-
Integer-Programming (MIP) algorithm. Lastly, the reassem-
bled model is trained with Global Knowledge Distillation
(GKD) (Hinton et al., 2015). Unlike traditional uniform
transformer architectures, our NAS framework produces
non-uniform models with adapted computation allocation,
optimizing each layer’s expressivity based on the model’s
overall requirements to focus resources where they matter
most. This leads to significant gains in efficiency without
compromising model expressivity. By focusing on parent
models with SOTA performance, we derive child models
pushing the efficient frontier (see Figure 5 and Table 5), e.g.,
models which provide the best accuracy per dollar.

Our framework offers several advantages. First, it enjoys ex-
tremely low costs relative to training a model from scratch.
For instance, the entire training—BLD before the MIP
stage and GKD afterward—required 45B tokens to run
on Llama-3.1-70B-Instruct (henceforth Llama-70B), com-
pared to more than 15T tokens used to train the parent
model. Even smaller budgets are possible—down to 4B
tokens—while still preserving strong performance (see Ta-
ble 6). Additionally, our method requires only the parent
model’s weights—not its training data—making it ideal for

“open-weights, closed-data” scenarios where training data of
the parent model is not publicly available. This allows prac-
titioners to take any freely-available model and tailor it to
their specific hardware or use case. To demonstrate the effec-
tiveness of our framework, we present Llama-3.1-Nemotron-
51B-Instruct (Nemotron-51B), derived from the Llama-70B
parent model using Puzzle. Nemotron-51B breaks the effi-
cient frontier of LLMs on a single NVIDIA H100 GPU, es-
tablishing a new state-of-the-art for commercial applications
by achieving unmatched throughput and memory efficiency
on this hardware. Interestingly, the Nemotron-51B result-
ing architecture is unique and irregular, with many layers
featuring reduced or skipped attention and FFN operations.
This design enhances NVIDIA H100 utilization under FP8
quantization while preserving accuracy. We also introduce
a derivative of Llama-3.1-8B-Instruct, which breaks the
efficient frontier for its throughput slice. While Nemotron-
51B also leads within its parameter range, we argue that
categorizing models solely by parameter count—such as
50B or 70B—is inadequate for real-world applications. In-
stead, inference performance under specific hardware, in-
ference engine, quantization levels, budget constraints, and
usage profiles—such as varying sequence lengths and batch
sizes—should guide model selection.

Conventional approaches to designing LLMs for inference,
such as training from scratch or knowledge distillation,
present significant challenges. Training a model from
scratch is impractical for evaluating multiple configurations.
Knowledge distillation, while generally faster due to guid-
ance from a teacher model, remains prohibitively costly
when evaluating multiple candidates from a large search
space. Puzzle circumvents these limitations by conduct-
ing architecture search immediately after BLD, during the
search stage (MIP, Stage 2 in Figure 1). These stages effi-
ciently identify promising configurations for multiple levels
(slices) of inference constraints, without requiring GKD
for each candidate. The computationally intensive GKD
process is reserved for the final stage, after the optimal ar-
chitectures have been reassembled. This enables Puzzle to
focus resources on refining a single optimized model for
each slice while maintaining low overall costs.

2

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

Our contributions: (1) We introduce Puzzle, a framework
that applies decomposed NAS to distill an LLM into hard-
ware and inference scenario optimized models. Our frame-
work flexibly supports optimization across ranges of multi-
ple constraints, including throughput, latency, and memory
usage. Our work pioneers the large-scale use of blockwise
distillation and MIP-based architecture search for LLMs,
successfully scaling these techniques to tens of billions of
parameters while requiring only a fraction of the original
training compute. We are the first to present NAS-derived
models at the scale of tens of billions of parameters. Puzzle
is designed to be low-cost, enabling the efficient creation of
multiple child models from a single parent LLM, each tai-
lored to different hardware and inference requirements. This
scalability makes it feasible to publish optimized variants
for diverse use cases and deployment environments.

(2) Using Puzzle, we introduce Nemotron-51B and
Nemotron-49B, both optimized for a single H100 GPU,
thus setting a new benchmark for commercial applications.
We show Nemotron-49B preserves its parent’s 128K con-
text via short uptraining and benefits from RLHF align-
ment—outperforming Nemotron-51B on some tasks. Puz-
zle’s robustness is demonstrated throughout the paper by
applying it numerous times with varied constraints, datasets,
budgets and parent models.

(3) Our method focuses on optimization for real world sce-
narios, running on actual inference engines and efficient
quantization levels (FP8). We therefore enhance TensorRT-
LLM to efficiently support non-uniform blocks and atten-
tion mechanisms with varying numbers of key-value heads
across layers. This results in models that can directly im-
prove the costs and usability of running LLM inference in
practical applications (see Appendix C).

(4) We provide a comprehensive empirical analysis of the
relationship between architectural choices and hardware
efficiency, offering insights to guide the design of future
hardware-aware LLM architectures.

2. Search Space
The motivation for applying NAS in our work lies in the re-
dundancy found in many trained LLMs. Numerous studies
have shown that a significant portion of computations and
parameters in LLMs become redundant post-training, during
inference (Sanyal et al., 2024; Hu et al., 2022; Aghajanyan
et al., 2021). Prior studies tried to solve these issues with
techniques such as pruning (Muralidharan et al., 2024; Men
et al., 2024; Ma et al., 2023; Xia et al., 2024; 2022), remov-
ing entire layers (He et al., 2024; Gromov et al., 2024), local
attention methods (e.g., window and sink attention) (Belt-
agy et al., 2020; Xiao et al., 2024), reducing the number of
key-value (KV) heads (Shazeer, 2019; Ainslie et al., 2023)

and many more. Given the high computational and mone-
tary cost associated with running LLMs, optimizing these
models to eliminate inefficiencies becomes a critical goal.
NAS methods are defined by the search space, the search
strategy and evaluation metric of candidate architectures.
NAS offers a systematic approach to exploring architectural
changes that balances performance and resource constraints.

We define a vast search space that encompasses different
operations for each layer of the parent LLM model. A block
is composed of smaller components called subblocks. While
blocks are user-defined, in LLMs, a block typically refers to
a transformer layer, with the subblocks being the attention
module and the feed-forward network (FFN). For each trans-
former layer i, the search space combines options for the
attention subblock (denoted Ai = {aj}mj=1, where m is the
number of possible attention subblocks) and FFN subblock
(denoted Fi = {fk}nk=1 for n subblocks). The attention
subblock options could include mechanisms such as stan-
dard multi-head attention (MHA), grouped query attention
(GQA) (Ainslie et al., 2023) with varying numbers of key-
value heads, replacing the attention layer with a single linear
layer, or no-op (i.e., entirely skipping the subblock). The
FFN options include full or reduced intermediate dimen-
sions (which could be obtained with pruning techniques),
linear layers, or no-ops. The combined search space for each
transformer layer (or parent block), represented as Ai ×Fi,
captures all possible pairings of attention and FFN configu-
rations. In this work, each parent transformer layer can be
replaced by a single corresponding child transformer layer
(block), although theoretically, multiple parent layers could
be grouped and replaced by a different number of child
blocks (i.e., P parent layers to L child blocks). Specifically:
(1) Attention subblocks: For Ai, we consider different
variants of GQA with varying numbers of key-value heads
(8, 4, 2, and 1). We also include the option to replace the
entire attention subblock with a single linear layer or skip it
entirely using a no-op operation. (2) FFN subblocks: For
Fi, we consider the full intermediate-dimension expansion
factor of the parent model, along with reduced dimensions
of approximately: 87%, 75%, 50%, 25%, 20% and 10% of
the original intermediate size. Furthermore, linear layers
and no-op options are also included.

These variants offer a tradeoff between memory efficiency,
computational cost, and representational power, allowing
for flexibility based on specific resource constraints and
performance needs. For example, reducing the number of
key-value heads (by using GQA with fewer heads) not only
speeds up the attention computation, but also helps decrease
memory usage by reducing the KV-cache size, which can be
crucial for meeting memory constraints or enabling larger
batch sizes for better throughput (as GPUs operate more
efficiently with larger batches). Using linear layers or re-
duced FFN dimensions can similarly lower computational

3

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

requirements, whereas keeping full dimensions maintains
higher representational power for better accuracy. Lastly,
in this work, we require that all subblocks within a layer
have the same input and output dimensions as their parent.
However, a scheme with subblocks of varying embedding
dimensions could be developed in future work.

To illustrate the scale of the search space, consider Llama
3.1-70B (Dubey et al., 2024), a model with 80 transformer
layers. For the specific instantiation of our framework pre-
sented in this work, we defined each transformer layer to
have 6 potential alternatives for the attention subblock and
9 alternatives for the FFN subblock, resulting in 54 possible
configurations per layer. Consequently, the total number of
potential child model architectures is 5480, which is approx-
imately 10138 different architectures. This number greatly
exceeds the estimated number of atoms in the observable
universe (1082). Given such an immense number of pos-
sibilities, and considering the costs of partially training or
even measuring the accuracy of a single LLM architecture,
evaluating any representative subset of the search space is
computationally infeasible. Therefore, designing a tradi-
tional search strategy and evaluation scheme for NAS in
such a vast space is challenging. To address this, we devised
an efficient decomposed local distillation and evaluation
framework, and our decomposed search strategy (described
in Section 3 and Section 4). These strategies allow feasible
navigation of the search space to find configurations that bal-
ance expressivity and efficiency with practical constraints
like latency, memory usage, and throughput.

3. Blockwise Local Distillation
G
Q
A

Linear

Parent

Child

loss

M
Q
A

FFN

no-op

FFN

loss loss

Figure 2. BLD: blocks are trained in parallel and independently.

To create capable “puzzle pieces”-a set of trained block vari-
ants forming a block library for architectural exploration-we
need to set effective weights for each child block. Our
method involves efficient and training-free initializations for
these blocks (see Appendix A). While these initialization
techniques are beneficial for low-budget experiments, perfor-
mance can be significantly improved by distilling knowledge
from each parent block to its corresponding child block.

Our approach decomposes the crafting process to operate

on individual blocks rather than full child models, which
drastically decreases the computational cost. Since gradi-
ents do not need to propagate across blocks, each child
block can be trained independently and in parallel to lo-
cally mimic its corresponding parent block. Only the parent
activations are transferred between layers, as illustrated in
Figure 2. This local distillation approach offers several ad-
vantages. First, because each child block relies solely on
its corresponding parent block, activations and gradients
are isolated from other child blocks. This independence
enables training blocks separately, leveraging pipeline paral-
lelism across multiple GPUs. Second, each child subblock
is trained to mimic a relatively simple function—a single
parent subblock—making the process considerably simpler
and more stable than training an entire child model. This
focused training facilitates faster convergence and allows
higher learning rates compared to standard language mod-
eling or GKD methods. Additionally, we find that this
approach requires only a small dataset (approximately one
billion tokens). Third, each child subblock benefits from
high-quality outputs from its preceding parent subblock,
rather than the lower-quality outputs typical in global model
training, which further enhances convergence speed.

To optimize the performance of each child block, we feed
parent activations into the current block and compute a
normalized mean squared error (MSE) loss (Kurtic et al.,
2023). Specifically, we define the loss as L =

MSE(op,oc)
MSE(op,0)

,
where op and oc represent the outputs of the original parent
block and the modified child block, respectively.

A primary limitation of BLD is that it does not ensure com-
patibility between different blocks. This issue arises because
each block is trained with inputs from the preceding parent
blocks rather than from the outputs of its predecessor blocks
within the child model. This prevents later blocks from
adapting to the errors of earlier blocks, and may lead to er-
rors propagating and compounding through the child model.
To mitigate this, we introduce GKD as a final training phase
in our framework (see Section 4.3). Nonetheless, empirical
results show that the BLD stage alone recovers much of
the parent model’s performance (see Table 16).

To ensure broad coverage of diverse data domains within
limited training schedules, we curated a dataset mixture,
termed Distillation Mix, for all our distillation training runs.
This mixture includes source code repositories, Wikipedia
articles, books, news websites, and several other domains.
The dataset comprises 224 billion tokens collected from
three public datasets: FineWeb (Penedo et al., 2024),
Dolma (Soldaini et al., 2024), and Buzz-V1.2 (Hive-Digital-
Technologies). In our BLD experiments, we used 1 billion
training tokens. We discuss the effect of varying BLD train-
ing lengths on downstream tasks in Appendix F.1.3.

4

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

3.1. Building a Block Library with Decoupled Blockwise
Local Distillation

The first stage of our decomposed NAS framework (further
discussed in Section 4) is building a “library” of trained
blocks. In order to cover the entire search space defined in
Section 2, we need to obtain trained weights for each atten-
tion variant aj and each FFN variant fk in each transformer
layer i. We consider two methods to train the block library:
coupled BLD and decoupled BLD. For each transformer
layer i, coupled BLD constructs each possible block variant
[aj , fk]i and trains it to emulate the corresponding parent
block [aparent, fparent]i. Given the significantly higher compu-
tational costs of LLMs compared to CV models, and noting
the inherent structure of the transformer layer, we propose
decoupled BLD to drastically reduce the cost of building a
block library: training [aj , f

(frozen)
parent]i and [a

(frozen)
parent , fk]i sep-

arately to emulate [aparent, fparent]i while freezing the child
subblock that is identical to the parent, and composing the
trained subblocks into a full block [aj , fk]i after training.

Given m attention variants, n FFN variants, and l trans-
former layers, coupled BLD requires training m · n · l vari-
ants, while decoupled BLD requires only (m+n)·l variants,
significantly speeding up library construction, visualized in
Figure 3. This efficiency becomes especially critical with a
large toolbox for Ai and Fi. For instance, with m = n = 20
and l = 80 layers, decoupled BLD would require training
3,200 blocks compared to 32,000 for coupled BLD. Decou-
pled BLD enables us to explore a large search space and
produce high quality models. In Appendix F.1.1 we present
a technique to combine coupled BLD and decoupled BLD.

Coupled training: train every block combination. Decoupled training: train every subblock option together with a
frozen parent subblock and then compose them to create an entire
block. Block scores are computed on composed blocks, just as
they are in coupled training.

#𝐹𝐹𝑁 𝑂𝑝𝑡𝑖𝑜𝑛𝑠

#𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑂𝑝𝑡𝑖𝑜𝑛𝑠

+

#𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑂𝑝𝑡𝑖𝑜𝑛𝑠
×

 #𝐹𝐹𝑁 𝑂𝑝𝑡𝑖𝑜𝑛𝑠

Figure 3. Coupled BLD requires training |Ai| × |Fi| variants per
transformer layer, while decoupled BLD requires only |Ai|+ |Fi|
variants per layer, significantly speeding up library construction.

4. Decomposed Search Algorithm for LLMs
Our decomposed NAS framework is similar to earlier de-
composed NAS methods used in computer vision (CV) such
as DNA (Li et al., 2019), DONNA (Moons et al., 2020),
and LANA (Molchanov et al., 2022): (1) Build a block
library: construct a diverse block library using BLD (see
Section 3.1). (2) Estimate block resource requirements:
estimate the runtime and memory requirements of each
block variant across different scenarios. (3) Score blocks:
score each block variant across the network to estimate

its quality relative to the parent block in that location. (4)
Search architectures: use a search algorithm to construct
“Puzzle architectures” that have the best estimated quality
under specified runtime and memory constraints. While
these steps mirror established NAS approaches, their ap-
plication to LLMs presents unique challenges due to the
massive scale of the models. Our innovations in scaling
these techniques to multi-billion-parameter models are de-
tailed in the following subsections.

4.1. Estimating Resource Requirements

Accurate estimation of computational costs is crucial for
optimizing LLM architectures for real-world deployment.
While theoretical metrics like FLOPs or parameter count
are commonly used to approximate cost, they often fail
to capture the complexities of hardware acceleration. The
actual runtime of neural network operations depends on nu-
merous hardware-specific factors: the number of streaming
multiprocessors (SMs), tensor cores, memory bandwidth,
and I/O patterns all significantly impact performance. For
instance, operations with fewer FLOPs might run slower
in practice due to poor hardware utilization. This disparity
between theoretical and actual performance makes direct
measurement on target hardware essential for optimization.

Memory requirements during inference comprise two dis-
tinct components with different scaling behaviors. Parame-
ter memory, while substantial, remains constant regardless
of the input size. In contrast, the key-value cache memory
scales linearly with both batch size and sequence length,
often becoming the dominant factor in long-sequence sce-
narios. For example, in a model with 32 attention heads
and 128-dimensional head size, each token requires 8KB of
KV-cache per layer using FP16 precision. For an 8K-token
sequence with batch size 64, this amounts to 4GB per layer
for the KV-cache, possibly exceeding parameter memory.

LLM inference has two phases with different performance
characteristics. The prefill phase processes the input with
high parallelization, using fewer passes than decoding.
While efficient, the computational cost is significant for
long contexts. In contrast, the generation phase processes
one query token at a time auto-regressively, requiring re-
peated forward passes, and often employing paged attention
to manage memory efficiently. This difference between
phases makes it crucial to actually measure both prefill and
generation runtime in the target scenarios (see Table 2).

Batch size plays a critical role in hardware efficiency, espe-
cially during the generation phase. During prefill, even small
batches process substantial amounts of data due to sequence
length, allowing efficient hardware utilization. However,
generation with small batch sizes processes minimal data
per layer while still performing all the IO needed to load the
layer parameters, causing severe hardware under-utilization.

5

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

Increasing the batch size creates larger tensors that better
utilize the GPU, often significantly improving throughput.

Given these complexities, our approach measures resource
requirements directly on target hardware across various sce-
narios. For each block variant, we collect prefill and genera-
tion latencies across different sequence lengths and batch
sizes at a chosen quantization level. These measurements
define the constraints in our MIP optimization (Appendix B),
enabling the search algorithm to find architectures optimized
for actual deployment rather than in theory.

4.2. Scoring Architecture Solutions

A key advantage of decomposed NAS is its ability to es-
timate the quality of an assembled model based on met-
rics gathered from its individual blocks. This capability
allows search algorithms to explore an enormous search
space very efficiently, as the quality of each candidate ar-
chitecture encountered during the search can be estimated
within less than a second, instead of having to actually re-
alize the candidate model and calculate some measure that
requires performing forward passes on the entire model
such as validation accuracy. Traditional NAS methods in
CV, such as those in (Zoph & Le, 2016) and (Real et al.,
2017), typically rely on full model evaluation, which is com-
putationally prohibitive for LLMs, where both search spaces
and inference costs are substantially larger.

We score each block variant at each network location by
measuring the impact of replacing only that specific block in
the parent model. To do this, we construct a model identical
to the parent but with a single block replaced by a trained
block from our library, then calculate a performance mea-
sure on the entire model. For efficient I/O, when scoring
multiple variants, we load onto the GPU only the blocks
that differ from the previously evaluated model. We call
these scores replace-1-block scores. During architecture
search, we estimate the quality of a constructed architecture
as the sum of its individual replace-1-block scores (see Ap-
pendix B). Note that scoring is not performed on candidate
models during the search phase – we estimate the quality of
each block only once, then use its replace-1-block score to
estimate the quality of any candidate that contains it.

We consider several metrics as potential replace-1-block
scores: (1) downstream accuracy: accuracy on downstream
tasks such as MMLU (Hendrycks et al., 2021). While down-
stream accuracy is popular in CV applications, it can be very
costly to measure in LLMs, especially given the number of
block variants requiring scoring. (2) LM loss: causal lan-
guage modeling loss, defined as the average log-likelihood
of a validation corpus under the model’s next-token predic-
tion distribution. (3) KL divergence: Kullback–Leibler di-
vergence between the next-token prediction distributions of
the evaluated model and the parent model, averaged across

tokens in a validation corpus. KL divergence is widely used
in KD setups as a statistical distance measure but has not
been explored for decomposed NAS scoring before. Our
analysis in Appendix F.1.4 highlights its effectiveness.

Search Algorithm: Mixed-integer Programming. We
treat the process of choosing a block variant for each trans-
former layer as a grouped Knapsack problem, imposing
constraints on memory (parameters plus key-value cache),
throughput (tokens generated per second), and latency (time
per batch). Specifically, we employ a mixed-integer pro-
gramming (MIP) formulation that maximizes a global qual-
ity score while satisfying these hardware-driven require-
ments. This approach allows us to efficiently navigate enor-
mous search spaces (on the order of ∼ 10138 possible archi-
tectures) and find solutions tailored to the usage needs and
target hardware. Optimization details, including the formal
problem definition, are provided in Appendix B.

4.3. Post-Puzzle Inter-Block Uptraining

As mentioned in Section 3, our BLD step trains each child
block on parent-produced distributions, not on the outputs
of the preceding child block. Consequently, block compat-
ibility may be suboptimal post-BLD. To address this, we
perform a short end-to-end global knowledge distillation
(GKD) phase, also called Knowledge Distillation, in which
the child (student) aligns with the parent (teacher) (Hinton
et al., 2015; Muralidharan et al., 2024; Lu et al., 2022). In
particular, we minimize:

LGKD =

L∑
l=1

(
1− hl

c·h
l
p

∥hl
c∥∥hl

p∥
)

︸ ︷︷ ︸
(1) Cosine Similarity Loss

+

N∑
i=1

pi log
(
pi

qi

)
︸ ︷︷ ︸

(2) KL Divergence Loss

, (1)

where (1) measures how well the student matches the
teacher’s representations, and (2) aligns output distributions.

We find that explicitly including language-modeling loss
here is not beneficial, as it can degrade downstream tasks
(see Appendix F.3.1). The effectiveness of this GKD step is
further demonstrated in Appendix F.3.

5. Main Results
Using our Puzzle framework, we generated Nemotron-51B
as a child derivative of the Llama-70B model. Nemotron-
51B achieves a significant improvement in inference effi-
ciency while retaining nearly all the accuracy of its parent,
demonstrating the effectiveness of our approach.

Evaluating Model Performance: To evaluate Puzzle-
derived child models like Nemotron-51B, two performance
metrics are of primary interest: 1) Accuracy Preservation:
This measures how much of the parent model’s accuracy is
retained by the child. A high retention percentage indicates

6

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

that Puzzle produces high-performing children. 2) Compu-
tational Efficiency: This reflects the child model’s ability
to adhere to the constraints it was optimized for. In our case,
the focus is on throughput, showing how we improved the
model’s suitability for reducing inference cost.

These metrics demonstrate the balance between model qual-
ity and achieving optimization for deployment needs.

Accuracy comparison: Table 1 compares the accuracy of
Nemotron-51B with its parent across several benchmarks.
On average, Nemotron-51B retains 98.4% of its parent’s
accuracy, even exceeding it on certain benchmarks such as
MT-Bench and GSM8K Chat. This underscores the robust-
ness of the Puzzle framework in maintaining model quality
despite significant architectural modifications.

Table 1. Accuracy comparison of Nemotron-51B with Llama-70B
across several benchmarks. Accuracy preserved is the ratio of
child to parent accuracy. *Chat prompt as defined in Adler et al.
(2024). **version by CodeParrot.
Benchmark Llama-3.1-70B-Instruct Nemotron-51B Accuracy Preserved (%)

Winogrande (Sakaguchi et al., 2020) 85.08 84.53 99.35
ARC Challenge (Clark et al., 2018) 70.39 69.20 98.30
MMLU (Hendrycks et al., 2021) 81.66 80.20 98.21
HellaSwag (Zellers et al., 2019) 86.44 85.58 99.01
GSM8K (Cobbe et al., 2021) 92.04 91.43 99.34
TruthfulQA (Lin et al., 2022) 59.86 58.63 97.94
XLSum English (Hasan et al., 2021) 33.86 31.61 93.36
MMLU Chat* 81.76 80.58 98.55
GSM8K Chat* 81.58 81.88 100.37
Instruct HumanEval (n=20) (Chen et al., 2021)** 75.85 73.84 97.35
MT-Bench (Zheng et al., 2023) 8.93 8.99 100.67

Human evaluation: We complement the above accuracy
performance benchmarks with a human evaluation compar-
ing the parent and child models. A blind test comparison
of the models was conducted on a general purpose test set
that includes tasks such as reasoning, longform text gen-
eration, knowledge and more. Results show comparable
performance between the models (Figure 4), strengthening
the claim that the accuracy degradation is minimal. For
more details about the evaluation see Appendix D.

Nemotron
-51B
(21%)

Llama-3.1
-70B-

Instruct
(22%)

Both good
(34%)

Neither
good
(23%)

Figure 4. In a blind test, human annotators rated Llama-70B and
Nemotron-51B comparably.

Throughput comparison: Table 2 specifies the throughput
performance of Nemotron-51B against its parent across
diverse input-output sequence lengths. Nemotron-51B
achieves speedups up to 2.17x, enabling larger workloads
per GPU and making it highly efficient for deployment. For
each model and hardware configuration, we automatically

selected the optimal TP and batch size to maximize through-
put per GPU. The inference engine handled this selection
dynamically for each run. For example, Nemotron-51B
achieved optimal throughput with TP=1 and batch size 256,
while Llama-3.1-70B performed best with TP=4 and batch
size 384.

Table 2. Throughput comparison of Nemotron-51B and Llama-
70B across various scenarios. Throughput is measured in tokens
per second per GPU (NVIDIA H100). TP# indicates the num-
ber of GPUs used in tensor parallelism. Note: Results were ob-
tained on NVIDIA H100 SXM GPUs with FP8 quantization for
weights, activations and KV cache using TensorRT-LLM. Optimal
tensor parallelism was used for each model. Input/output sequence
lengths indicate the prefill (input) and decode (output) operations
performed by the LLM. *TP=1 is not the optimal configuration for
Llama-3.1-70B and is included for equal-resource comparison.
Scenario Input/Output Nemotron-51B (TP#) Llama-3.1-70B-Instruct (TP#) Speedup

Chatbot 128/128 5478 (TP1) 2645 (TP1) 2.07
Text Generation 128/1024 6472 (TP1) 2975 (TP4) / 1274 (TP1*) 2.17 / 5.08
Long Text Generation 128/2048 4910 (TP2) 2786 (TP4) 1.76
Inference-time compute 128/4096 3855 (TP2) 1828 (TP4) 2.11
Summarization/RAG 2048/128 653 (TP1) 339 (TP4) / 301 (TP1*) 1.92 / 2.17
Stress Test 2048/2048 2622 (TP2) 1336 (TP4) 1.96

Accuracy vs. throughput frontier: The tradeoff between
accuracy and efficiency is key for model selection, impact-
ing deployment costs. Nemotron-51B is designed to balance
the two and push beyond the current efficient frontier. Be-
cause throughput directly affects cost, Nemotron-51B pro-
vides the best accuracy per dollar, as shown in Figure 5. To
account for both knowledge and conversational capabilities,
accuracy is measured as a weighted combination of MMLU
and MT-Bench scores: (MT-Bench × 10 + MMLU) / 2.

Llama-3.1-
Nemotron-51B

Llama-3.1-
70B-Instruct

Llama-3.1-8B-
Instruct

Mixtral 8X22B

76

77

78

79

80

81

82

83

84

85

86

0 2000 4000 6000 8000 10000 12000

Ac
cu

ra
cy

Throughput

Llama-3.1-
Nemotron-51B

Llama-3.1-
70B-Instruct

Llama-3.1-8B-
Instruct

Mixtral 8X22B

75

76

77

78

79

80

81

82

83

84

85

86

0 2000 4000 6000 8000 10000 12000

Ac
cu

ra
cy

Throughput

Figure 5. Accuracy vs. Throughput performance of Nemotron-51B
compared to state-of-the-art models. Throughput measured on
NVIDIA H100 GPUs with optimal TP setting, running in FP8 on
a “text generation” scenario (see Table 2). The red line represents
the efficient frontier, highlighting models with the best accuracy-
to-throughput tradeoff. Accuracy=(MT-Bench ×10 + MMLU) / 2

The Nemotron-51B architecture achieves substantial compu-
tational savings through strategic reduction of computation

7

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

across many layers, as shown in Figure 6. Observing the
figure it is evident that our framework discovered signifi-
cant optimization opportunities in both early layers (0-15)
and later layers (45-70), with computed savings shown in
green. Different regions exhibit distinct optimization pat-
terns: early layers show balanced reduction in attention
and FFN components, while later layers demonstrate more
aggressive attention optimization. Notably, the framework
identifies a central region (layers 16-42) that maintains
full computational capacity, suggesting these middle layers
are critical for performance. This automatically discovered
structure demonstrates that large efficiency gains are achiev-
able through careful targeting of computational reduction,
while maintaining computation where it matters most.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Attention Runtime

FFN Runtime

Saved Runtime
(relative to parent)

Layer Index

E
st

im
at

ed
 R

un
tim

e

Figure 6. The runtime of the attention and FFN subblocks of
Nemotron-51B, relative to the original Llama-70B subblocks.

5.1. Additional Evaluations and Puzzle derivatives

Long-Context Performance: We evaluated Nemotron-51B
on a subset of the RULER benchmark (Hsieh et al., 2024).
Notably, although Nemotron-51B was trained only on se-
quences up to 8K tokens, it retained over 96% of its parent’s
accuracy at 16K tokens, showing Puzzle’s ability to preserve
performance beyond the direct training length. Performance
degraded beyond 64K tokens, suggesting that fine tuning on
longer contexts could extend the effective context length.

To demonstrate this extension, we produced Llama-
3.3-Nemotron-49B-Super-Base (henceforth Nemotron-49B-
Base, the base version of Llama-3.3-Nemotron-Super-49B1)
from Llama-3.3-70B-Instruct with identical constraints to
Nemotron-51B and uptrained on an additional 5B tokens at
64K context and 5B at 128K. Table 3 shows that Nemotron-
49B-Base maintains or exceeds its parent’s performance
up to 16K tokens, retains over 98% at 64K, and remains
above 94% at 128K. Full performance details are provided
in Appendix E.

Alignment: We further aligned Nemotron-49B-Base by
following the RLHF and instruction-tuning recipe of Wang
et al. (2024), using 25M tokens. Table 4 compares results
before and after alignment, showing that Puzzle derivatives
can undergo RLHF-based alignment to boost their accuracy.

1https://huggingface.co/nvidia/Llama-3_
3-Nemotron-Super-49B-v1

Table 3. Comparison of Llama-3.3-70B-Instruct (parent) and
Nemotron-49B-Base (child) on RULER for context lengths up
to 128K.
Context Parent Average Score Child Average Score Accuracy Preserved (%)

4K 96.77 97.40 100.65
8K 96.46 96.59 100.13

16K 95.98 96.09 100.11
32K 94.70 94.30 99.57
64K 88.91 87.39 98.29
128K 52.25 49.62 94.96

Table 4. The performance of Nemotron-49B-Base before and after
alignment, even surpassing its parent in certain benchmarks.
Model MMLU MT-Bench Arena Hard (Li et al., 2024)

Nemotron-49B-Base (after alignment) 80.98 9.21 82.1
Nemotron-49B-Base (before alignment) 81.03 8.77 65.8

Llama-3.3-70B-Instruct (parent) 81.66 8.84 71.70

Compact model: We applied Puzzle to produce a child
derivative of Llama-3.1-8B-Instruct, optimized for through-
put specifically on an RTX 4090 GPU. This model breaks
the efficient frontier for its throughput range, demonstrating
Puzzle’s ability to deliver highly efficient architectures also
on consumer-grade hardware, while preserving the balance
between accuracy and performance. Table 5 highlights this
model’s superior tradeoff in accuracy and efficiency.

Table 5. Accuracy and throughput of our high-throughput child
derivative of Llama-3.1-8B-Instruct, which achieves equivalent
throughput to Llama-3.2-3B-Instruct and far better accuracy.
Throughput is estimated via the sum of measured block runtimes on
a single NVIDIA RTX 4090 GPU, measured with an input-output
sequence length of 1024 tokens each, the scenario for which this
model was optimized. Accuracy = (MT-Bench ×10 + MMLU) / 2.

Model Throughput* Accuracy

Ours (child) 5856 73.98
Llama-3.2-3B-Instruct 5737 70.36

Llama-3.1-8B-Instruct (parent) 3385 76.40

Additional Puzzle derivatives: Beyond the aforementioned
models, Puzzle was also used in the development of the
following derivatives: (1) Puzzle was applied to Llama-
3.1-405B-Instruct with constraints requiring a 1.5× latency
speedup and compatibility with a single NVIDIA 8×H100
node (640 GB) or a single B100 GPU (192 GB). The re-
sulting model retained 99.5% of the parent model’s accu-
racy (averaged across MMLU, MT-Bench, MMLU-Pro, Hu-
manEval, and Arena Hard). FFN Fusion (Bercovich et al.,
2025) was subsequently applied to further improve latency,
followed by continued pretraining—resulting in Llama-3.1-
Nemotron-Ultra-253B-CPT, which serves as the base for the
publicly released Llama-3.1-Nemotron-Ultra-253B 2. (2) In
Blakeman et al. (2025), a variation of Puzzle—referred to as

2https://huggingface.co/nvidia/Llama-3_
1-Nemotron-Ultra-253B-v1

8

https://huggingface.co/nvidia/Llama-3_3-Nemotron-Super-49B-v1
https://huggingface.co/nvidia/Llama-3_3-Nemotron-Super-49B-v1
https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1
https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

“miniPuzzle”—was applied to Nemotron-H-56B-Base under
constraints targeting RTX 5090 deployment with a 1M con-
text window. The resulting 47B model retained 99.94%
of the parent model’s accuracy (averaged over MMLU,
MMLU-Pro, GSM8K, and HellaSwag). The key distinction
between miniPuzzle and Puzzle is that miniPuzzle enforces
a homogeneous block design across all layers.

Training Token Budget: The GKD phase described ear-
lier utilized 45B tokens, which might exceed practical bud-
gets for some users. However, in practice, our method
can achieve substantial accuracy recovery with significantly
fewer tokens. Our experiments, summarized in Table 6,
demonstrate that notable accuracy recovery can be real-
ized with reduced token usage. After only 3.7B tokens of
GKD, Nemotron-51B recovered 98.8% of its parent’s ac-
curacy on MMLU and MT-Bench benchmarks. Similarly,
Nemotron-49B regained 99.63% of its parent’s accuracy
after only 8.68B tokens, and even 98.47% after just 2.9B
tokens. These results indicate that while 45B tokens are
modest compared to full model training from scratch, users
can flexibly adjust GKD token counts based on available
resources without severely compromising accuracy.

Table 6. Effectiveness of GKD training with reduced token bud-
gets. The table shows the performance recovery relative to the
parent model for Nemotron-51B and Nemotron-49B using various
amounts of tokens in GKD.

Model GKD Tokens (B) Performance (MMLU / MT-Bench) Accuracy Preserved (%)

Nemotron-49B-Base 8.68 80.73 / 8.87 99.63
Nemotron-49B-Base 2.9 80.72 / 8.675 98.47
Nemotron-49B-Base 0.72 80.4 / 8.59 97.79

5.2. Ablation Studies Highlights:

We performed a series of ablations to examine how local
distillation, block search strategies, data composition, and
search space design each contribute to Puzzle’s accuracy–
efficiency tradeoffs. See Appendix F for full details. Below
we summarize some of the most interesting findings:

(1) Decoupled BLD: A decoupled construction of
the block library—training block alternatives indepen-
dently—significantly reduces cost by converting the search
space from multiplicative to additive. This enables the con-
struction of a large block library at a fraction of the compute
cost. Interestingly, adding a coupled training pass over
a narrowed subspace of promising combinations provides
an additional performance boost, suggesting hybrid BLD
strategies can be beneficial (Appendix F.1.1).

(2) Data Composition and Scale: We studied the effects
of dataset scale and composition on BLD quality. Accuracy
improves with more tokens, but saturates beyond 0.5B to-
kens. Moreover, domain-diverse data improves robustness;
however, training on even a narrow domain retains over 93%
of full performance, highlighting the robustness of block-

level supervision and indicating diminishing returns past
moderate data sizes (Appendices F.1.2, F.1.3).

(3) Block Scoring Metrics: We evaluated various scoring
metrics to guide architecture search. KL divergence gener-
ally yields the best results across tasks, outperforming LM
loss and task-specific metrics. However, in specialized set-
tings, such as instruction tuning benchmarks, task-grounded
scores may offer an advantage. These results emphasize
the importance of choosing scoring functions aligned with
target deployment scenarios (Appendix F.1.4).

(4) Search Space Diversity: We examined the impact of
restricting the search space. Replacing all layer blocks with
their original counterparts or limiting substitutions to no-op
variants significantly degrades performance. This confirms
that diversity in architectural choices is critical for discover-
ing high-quality configurations and validates the necessity
of block-level flexibility in Puzzle (Appendix F.1.5).

(5) MIP Global Search vs. Greedy and Random Base-
lines: We compared MIP-based global search with a simpler
greedy algorithm that selects blocks layer-wise under fixed
budgets. Despite meeting the same throughput constraints,
greedy search yields significantly worse architectures, high-
lighting the need for joint optimization across layers. Ad-
ditional baselines, such as random-from-library selection,
show that naı̈ve strategies even using trained blocks fall well
short of MIP (Appendix F.2.2, F.2.4).

6. Conclusions and Future Directions
In this work we present Puzzle, a framework that modifies
LLMs from their over-parameterized training configurations
to optimized, inference-efficient architectures tailored for
specific hardware. Puzzle achieves these improvements with
remarkable efficiency in training resources. Requiring fewer
than 50B tokens—compared to the trillions needed to train
models from scratch—Puzzle produces high-performing
models at a fraction of the usual cost. This extreme search
and training efficiency still results in drastic inference per-
formance improvements of Puzzle optimized models.

The success of Puzzle opens several promising directions for
future research. Our introduction of decoupled BLD, which
is significantly more efficient than coupled BLD, makes it
feasible to evaluate a much larger set of potential blocks
within a single optimization run. This efficiency enables
exploration of novel operations as alternative Puzzle blocks,
such as variable window attention mechanisms (Beltagy
et al., 2020), state-space models (Gu et al., 2022; Gu & Dao,
2024), or other architectural innovations. The framework
could also be extended to optimize models for specific capa-
bilities, such as Chain-of-Thought reasoning or multimodal
tasks, including vision-language models (Liu et al., 2023)
and retrieval-augmented generation (Lewis et al., 2020).

9

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

Impact Statement
The Puzzle framework’s ability to adapt state-of-the-art
models to hardware constraints, while maintaining high
performance, can help make powerful AI systems more af-
fordable and broadly deployable across diverse use cases.
This broader adoption could expand the societal benefits of
generative AI but also amplify its inherent risks (Solaiman
et al., 2023; Capraro et al., 2024; Baldassarre et al., 2023).
At the same time, by reducing energy consumption and
hardware requirements needed for inference, Puzzle may
alleviate some of the resource-intensive challenges of large-
scale AI deployments, contributing to a more sustainable
approach to generative AI.

Acknowledgments
We thank Saurav Muralidharan and Sharath Turuvekere
Sreenivas for fruitful discussions.

References
The claude 3 model family: Opus, sonnet, haiku.

URL https://api.semanticscholar.org/
CorpusID:268232499.

Adler, B., Agarwal, N., Aithal, A., Anh, D. H., Bhattacharya,
P., Brundyn, A., Casper, J., Catanzaro, B., Clay, S., Co-
hen, J. M., Das, S., Dattagupta, A., Delalleau, O., Der-
czynski, L., Dong, Y., Egert, D., Evans, E., Ficek, A.,
Fridman, D., Ghosh, S., Ginsburg, B., Gitman, I., Grze-
gorzek, T., Hero, R., Huang, J., Jawa, V., Jennings, J.,
Jhunjhunwala, A., Kamalu, J., Khan, S., Kuchaiev, O.,
LeGresley, P., Li, H., Liu, J., Liu, Z., Long, E., Maha-
baleshwarkar, A. S., Majumdar, S., Maki, J., Martinez,
M., de Melo, M. R., Moshkov, I., Narayanan, D., Naren-
thiran, S., Navarro, J., Nguyen, P., Nitski, O., Noroozi,
V., Nutheti, G., Parisien, C., Parmar, J., Patwary, M.,
Pawelec, K., Ping, W., Prabhumoye, S., Roy, R., Saar,
T., Sabavat, V. R. N., Satheesh, S., Scowcroft, J. P.,
Sewall, J., Shamis, P., Shen, G., Shoeybi, M., Sizer,
D., Smelyanskiy, M., Soares, F., Sreedhar, M. N., Su,
D., Subramanian, S., Sun, S., Toshniwal, S., Wang,
H., Wang, Z., You, J., Zeng, J., Zhang, J., Zhang, J.,
Zhang, V., Zhang, Y., and Zhu, C. Nemotron-4 340b
technical report. CoRR, abs/2406.11704, 2024. doi:
10.48550/ARXIV.2406.11704. URL https://doi.
org/10.48550/arXiv.2406.11704.

Aghajanyan, A., Gupta, S., and Zettlemoyer, L. Intrin-
sic dimensionality explains the effectiveness of language
model fine-tuning. In Zong, C., Xia, F., Li, W., and
Navigli, R. (eds.), Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-

ral Language Processing (Volume 1: Long Papers), pp.
7319–7328, Online, August 2021. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.acl-long.
568. URL https://aclanthology.org/2021.
acl-long.568.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebrón, F., and Sanghai, S. GQA: training generalized
multi-query transformer models from multi-head check-
points. In Bouamor, H., Pino, J., and Bali, K. (eds.), Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Singa-
pore, December 6-10, 2023, pp. 4895–4901. Association
for Computational Linguistics, 2023. doi: 10.18653/V1/
2023.EMNLP-MAIN.298. URL https://doi.org/
10.18653/v1/2023.emnlp-main.298.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence the-
ory for deep learning via over-parameterization. In
Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 242–252. PMLR,
2019. URL http://proceedings.mlr.press/
v97/allen-zhu19a.html.

Anil, R., Borgeaud, S., Wu, Y., Alayrac, J., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., Silver, D., Petrov, S., Johnson, M., Antonoglou, I.,
Schrittwieser, J., Glaese, A., Chen, J., Pitler, E., Lilli-
crap, T. P., Lazaridou, A., Firat, O., Molloy, J., Isard, M.,
Barham, P. R., Hennigan, T., Lee, B., Viola, F., Reynolds,
M., Xu, Y., Doherty, R., Collins, E., Meyer, C., Ruther-
ford, E., Moreira, E., Ayoub, K., Goel, M., Tucker, G.,
Piqueras, E., Krikun, M., Barr, I., Savinov, N., Danihelka,
I., Roelofs, B., White, A., Andreassen, A., von Glehn,
T., Yagati, L., Kazemi, M., Gonzalez, L., Khalman, M.,
Sygnowski, J., and et al. Gemini: A family of highly
capable multimodal models. CoRR, abs/2312.11805,
2023. doi: 10.48550/ARXIV.2312.11805. URL https:
//doi.org/10.48550/arXiv.2312.11805.

Baldassarre, M. T., Caivano, D., Nieto, B. F., Gigante, D.,
and Ragone, A. The social impact of generative AI:
an analysis on chatgpt. In Proceedings of the 2023
ACM Conference on Information Technology for So-
cial Good, GoodIT 2023, Lisbon, Portugal, Septem-
ber 6-8, 2023, pp. 363–373. ACM, 2023. doi: 10.
1145/3582515.3609555. URL https://doi.org/
10.1145/3582515.3609555.

Belkin, M., Hsu, D. J., Ma, S., and Mandal, S. Rec-
onciling modern machine-learning practice and the
classical bias–variance trade-off. Proceedings of the
National Academy of Sciences, 116:15849 – 15854,

10

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://doi.org/10.48550/arXiv.2406.11704
https://doi.org/10.48550/arXiv.2406.11704
https://aclanthology.org/2021.acl-long.568
https://aclanthology.org/2021.acl-long.568
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
http://proceedings.mlr.press/v97/allen-zhu19a.html
http://proceedings.mlr.press/v97/allen-zhu19a.html
https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.1145/3582515.3609555
https://doi.org/10.1145/3582515.3609555

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

2018. URL https://api.semanticscholar.
org/CorpusID:198496504.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer:
The long-document transformer. CoRR, abs/2004.05150,
2020. URL https://arxiv.org/abs/2004.
05150.

Bercovich, A., Dabbah, M., Puny, O., Galil, I., Geif-
man, A., Geifman, Y., Golan, I., Karpas, E., Levy,
I., Moshe, Z., Nabwani, N., Ronen, T., Schen, I., Se-
gal, E., Shahaf, I., Tropp, O., Zilberstein, R., and El-
Yaniv, R. FFN fusion: Rethinking sequential computa-
tion in large language models. CoRR, abs/2503.18908,
2025. doi: 10.48550/ARXIV.2503.18908. URL https:
//doi.org/10.48550/arXiv.2503.18908.

Blakeman, A., Basant, A., Khattar, A., Renduchintala, A.,
Bercovich, A., Ficek, A., Bjorlin, A., Taghibakhshi, A.,
Deshmukh, A. S., Mahabaleshwarkar, A. S., Tao, A.,
Shors, A., Aithal, A., Poojary, A., Dattagupta, A., Bud-
dharaju, B., Chen, B., Ginsburg, B., Wang, B., Norick, B.,
Butterfield, B., Catanzaro, B., del Mundo, C., Dong, C.,
Harvey, C., Parisien, C., Su, D., Korzekwa, D., Yin, D.,
Gitman, D., Mosallanezhad, D., Narayanan, D., Frid-
man, D., Rekesh, D., Ma, D., Pykhtar, D., Ahn, D.,
Riach, D., Stosic, D., Long, E., Segal, E., Evans, E.,
Chung, E., Galinkin, E., Bakhturina, E., Dobrowolska,
E., Jia, F., Liu, F., Prasad, G., Shen, G., Liu, G., Chen,
G., Qian, H., Ngo, H., Liu, H., Li, H., Gitman, I., Kar-
manov, I., Moshkov, I., Golan, I., Kautz, J., Scowcroft,
J. P., Casper, J., Seppänen, J., Lu, J., Sewall, J., Zeng, J.,
You, J., Zhang, J., Zhang, J., Huang, J., Xue, J., Huang,
J., Conway, J., Kamalu, J., Barker, J., Cohen, J. M., Jen-
nings, J., Parmar, J., Sapra, K., Briski, K., Chumachenko,
K., Luna, K., Santhanam, K., Kong, K., Sivamani, K.,
Pawelec, K., Anik, K., Li, K., McAfee, L., Derczynski,
L., Pavao, L., Vega, L., Voegtle, L., Bala, M., de Melo,
M. R., Sreedhar, M. N., Chochowski, M., and Kliegl,
M. Nemotron-h: A family of accurate and efficient hy-
brid mamba-transformer models. CoRR, abs/2504.03624,
2025. doi: 10.48550/ARXIV.2504.03624. URL https:
//doi.org/10.48550/arXiv.2504.03624.

Capraro, V., Lentsch, A., Acemoglu, D., Akgün, S., Akhme-
dova, A., Bilancini, E., Bonnefon, J., Brañas-Garza, P.,
Butera, L., Douglas, K. M., Everett, J. A. C., Gigerenzer,
G., Greenhow, C., Hashimoto, D. A., Holt-Lunstad, J.,
Jetten, J., Johnson, S., Longoni, C., Lunn, P., Natale, S.,
Rahwan, I., Selwyn, N., Singh, V., Suri, S., Sutcliffe, J.,
Tomlinson, J., van der Linden, S., Lange, P. A. M. V.,
Wall, F., Bavel, J. J. V., and Viale, R. The impact of
generative artificial intelligence on socioeconomic in-
equalities and policy making. CoRR, abs/2401.05377,
2024. doi: 10.48550/ARXIV.2401.05377. URL https:
//doi.org/10.48550/arXiv.2401.05377.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I.,
and Zaremba, W. Evaluating large language models
trained on code. CoRR, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018. URL http://arxiv.
org/abs/1803.05457.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravanku-
mar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A.,
Rodriguez, A., Gregerson, A., Spataru, A., Rozière, B.,
Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak, C.,
Bi, C., Marra, C., McConnell, C., Keller, C., Touret, C.,
Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Allonsius,
D., Song, D., Pintz, D., Livshits, D., Esiobu, D., Choud-
hary, D., Mahajan, D., Garcia-Olano, D., Perino, D., Hup-
kes, D., Lakomkin, E., AlBadawy, E., Lobanova, E., Di-
nan, E., Smith, E. M., Radenovic, F., Zhang, F., Synnaeve,
G., Lee, G., Anderson, G. L., Nail, G., Mialon, G., Pang,
G., Cucurell, G., Nguyen, H., Korevaar, H., Xu, H., Tou-
vron, H., Zarov, I., Ibarra, I. A., Kloumann, I. M., Misra,
I., Evtimov, I., Copet, J., Lee, J., Geffert, J., Vranes, J.,
Park, J., Mahadeokar, J., Shah, J., van der Linde, J., Bil-
lock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J., Liu,
J., Wang, J., Yu, J., Bitton, J., Spisak, J., Park, J., Rocca,
J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V., Upasani,
K., Plawiak, K., Li, K., Heafield, K., Stone, K., and et al.
The llama 3 herd of models. CoRR, abs/2407.21783,
2024. doi: 10.48550/ARXIV.2407.21783. URL https:
//doi.org/10.48550/arXiv.2407.21783.

Gromov, A., Tirumala, K., Shapourian, H., Glorioso, P.,
and Roberts, D. A. The unreasonable ineffectiveness of

11

https://api.semanticscholar.org/CorpusID:198496504
https://api.semanticscholar.org/CorpusID:198496504
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://doi.org/10.48550/arXiv.2503.18908
https://doi.org/10.48550/arXiv.2503.18908
https://doi.org/10.48550/arXiv.2504.03624
https://doi.org/10.48550/arXiv.2504.03624
https://doi.org/10.48550/arXiv.2401.05377
https://doi.org/10.48550/arXiv.2401.05377
https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

the deeper layers. CoRR, abs/2403.17887, 2024. doi:
10.48550/ARXIV.2403.17887. URL https://doi.
org/10.48550/arXiv.2403.17887.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces. In First Conference on Lan-
guage Modeling, 2024. URL https://openreview.
net/forum?id=tEYskw1VY2.

Gu, A., Goel, K., and Re, C. Efficiently modeling
long sequences with structured state spaces. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=uYLFoz1vlAC.

Hardt, M. and Sun, Y. Test-time training on nearest neigh-
bors for large language models. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?
id=CNL2bku4ra.

Hasan, T., Bhattacharjee, A., Islam, M. S., Mubasshir, K. S.,
Li, Y., Kang, Y., Rahman, M. S., and Shahriyar, R. Xl-
sum: Large-scale multilingual abstractive summariza-
tion for 44 languages. In Zong, C., Xia, F., Li, W.,
and Navigli, R. (eds.), Findings of the Association for
Computational Linguistics: ACL/IJCNLP 2021, Online
Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of
Findings of ACL, pp. 4693–4703. Association for Com-
putational Linguistics, 2021. doi: 10.18653/V1/2021.
FINDINGS-ACL.413. URL https://doi.org/10.
18653/v1/2021.findings-acl.413.

He, S., Sun, G., Shen, Z., and Li, A. What mat-
ters in transformers? not all attention is needed.
CoRR, abs/2406.15786, 2024. doi: 10.48550/ARXIV.
2406.15786. URL https://doi.org/10.48550/
arXiv.2406.15786.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring massive
multitask language understanding. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?
id=d7KBjmI3GmQ.

Hinton, G. E., Vinyals, O., and Dean, J. Distilling the knowl-
edge in a neural network. CoRR, abs/1503.02531, 2015.
URL http://arxiv.org/abs/1503.02531.

Hive-Digital-Technologies. https://huggingface.
co/datasets/H-D-T/Buzz-V1.2.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,

L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy, A.,
Osindero, S., Simonyan, K., Elsen, E., Vinyals, O., Rae,
J. W., and Sifre, L. Training compute-optimal large lan-
guage models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems,
NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates
Inc. ISBN 9781713871088.

Hsieh, C., Sun, S., Kriman, S., Acharya, S., Rekesh, D.,
Jia, F., Zhang, Y., and Ginsburg, B. RULER: what’s the
real context size of your long-context language models?
CoRR, abs/2404.06654, 2024. doi: 10.48550/ARXIV.
2404.06654. URL https://doi.org/10.48550/
arXiv.2404.06654.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adapta-
tion of large language models. In The Tenth Interna-
tional Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Inc., C.-O. F. Python-mip: collection of python tools
for the modeling and solution of mixed-integer lin-
ear programs, 2023. URL https://github.com/
coin-or/python-mip.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
CoRR, abs/2001.08361, 2020. URL https://arxiv.
org/abs/2001.08361.

Khodak, M., Tenenholtz, N. A., Mackey, L., and Fusi,
N. Initialization and regularization of factorized neu-
ral layers. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=KTlJT1nof6d.

Kurtic, E., Kuznedelev, D., Frantar, E., Goin, M., and
Alistarh, D. Sparse fine-tuning for inference accelera-
tion of large language models. CoRR, abs/2310.06927,
2023. doi: 10.48550/ARXIV.2310.06927. URL https:
//doi.org/10.48550/arXiv.2310.06927.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Ef-
ficient memory management for large language model
serving with pagedattention, 2023. URL https://
arxiv.org/abs/2309.06180.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., Kuttler, H., Lewis, M., tau Yih, W.,

12

https://doi.org/10.48550/arXiv.2403.17887
https://doi.org/10.48550/arXiv.2403.17887
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=CNL2bku4ra
https://openreview.net/forum?id=CNL2bku4ra
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.48550/arXiv.2406.15786
https://doi.org/10.48550/arXiv.2406.15786
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
http://arxiv.org/abs/1503.02531
https://huggingface.co/datasets/H-D-T/Buzz-V1.2
https://huggingface.co/datasets/H-D-T/Buzz-V1.2
https://doi.org/10.48550/arXiv.2404.06654
https://doi.org/10.48550/arXiv.2404.06654
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://github.com/coin-or/python-mip
https://github.com/coin-or/python-mip
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=KTlJT1nof6d
https://openreview.net/forum?id=KTlJT1nof6d
https://doi.org/10.48550/arXiv.2310.06927
https://doi.org/10.48550/arXiv.2310.06927
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

Rocktäschel, T., Riedel, S., and Kiela, D. Retrieval-
augmented generation for knowledge-intensive nlp
tasks. ArXiv, abs/2005.11401, 2020. URL https:
//api.semanticscholar.org/CorpusID:
218869575.

Li, C., Peng, J., Yuan, L., Wang, G., Liang, X.,
Lin, L., and Chang, X. Block-wisely supervised
neural architecture search with knowledge distilla-
tion. 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 1986–1995,
2019. URL https://api.semanticscholar.
org/CorpusID:208513081.

Li, T., Chiang, W., Frick, E., Dunlap, L., Wu, T., Zhu, B.,
Gonzalez, J. E., and Stoica, I. From crowdsourced data to
high-quality benchmarks: Arena-hard and benchbuilder
pipeline. CoRR, abs/2406.11939, 2024. doi: 10.48550/
ARXIV.2406.11939. URL https://doi.org/10.
48550/arXiv.2406.11939.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring how
models mimic human falsehoods. In Muresan, S., Nakov,
P., and Villavicencio, A. (eds.), Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pp. 3214–3252. Association
for Computational Linguistics, 2022. doi: 10.18653/
V1/2022.ACL-LONG.229. URL https://doi.org/
10.18653/v1/2022.acl-long.229.

Ling, G., Wang, Z., Yan, Y., and Liu, Q. Slimgpt:
Layer-wise structured pruning for large language models.
In Globersons, A., Mackey, L., Belgrave, D., Fan,
A., Paquet, U., Tomczak, J. M., and Zhang, C. (eds.),
Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing
Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024, 2024. URL http://papers.
nips.cc/paper_files/paper/2024/hash/
c1c44e46358e0fb94dc94ec495a7fb1a-Abstract-Conference.
html.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Vi-
sual instruction tuning. ArXiv, abs/2304.08485,
2023. URL https://api.semanticscholar.
org/CorpusID:258179774.

Lu, C., Zhang, J., Chu, Y., Chen, Z., Zhou, J., Wu, F.,
Chen, H., and Yang, H. Knowledge distillation of
transformer-based language models revisited. arXiv
preprint arXiv:2206.14366, 2022.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. In Oh, A., Nau-
mann, T., Globerson, A., Saenko, K., Hardt, M., and

Levine, S. (eds.), Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

Men, X., Xu, M., Zhang, Q., Wang, B., Lin, H., Lu,
Y., Han, X., and Chen, W. Shortgpt: Layers in large
language models are more redundant than you expect.
CoRR, abs/2403.03853, 2024. doi: 10.48550/ARXIV.
2403.03853. URL https://doi.org/10.48550/
arXiv.2403.03853.

Molchanov, P., Hall, J., Yin, H., Kautz, J., Fusi, N., and
Vahdat, A. LANA: latency aware network acceleration.
In Avidan, S., Brostow, G. J., Cissé, M., Farinella, G. M.,
and Hassner, T. (eds.), Computer Vision - ECCV 2022 -
17th European Conference, Tel Aviv, Israel, October 23-
27, 2022, Proceedings, Part XII, volume 13672 of Lecture
Notes in Computer Science, pp. 137–156. Springer, 2022.
doi: 10.1007/978-3-031-19775-8\ 9. URL https://
doi.org/10.1007/978-3-031-19775-8_9.

Moons, B., Noorzad, P., Skliar, A., Mariani, G.,
Mehta, D., Lott, C., and Blankevoort, T. Distill-
ing optimal neural networks: Rapid search in di-
verse spaces. 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 12209–12218,
2020. URL https://api.semanticscholar.
org/CorpusID:229211047.

Muralidharan, S., Sreenivas, S. T., Joshi, R., Chochowski,
M., Patwary, M., Shoeybi, M., Catanzaro, B., Kautz, J.,
and Molchanov, P. Compact language models via pruning
and knowledge distillation. CoRR, abs/2407.14679, 2024.
doi: 10.48550/ARXIV.2407.14679. URL https://
doi.org/10.48550/arXiv.2407.14679.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774,
2023. doi: 10.48550/ARXIV.2303.08774. URL https:
//doi.org/10.48550/arXiv.2303.08774.

Penedo, G., Kydlı́cek, H., Allal, L. B., Lozhkov, A.,
Mitchell, M., Raffel, C., von Werra, L., and Wolf, T.
The fineweb datasets: Decanting the web for the finest
text data at scale. CoRR, abs/2406.17557, 2024. doi:
10.48550/ARXIV.2406.17557. URL https://doi.
org/10.48550/arXiv.2406.17557.

Project Gutenberg. https://www.gutenberg.org.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L.,
Tan, J., Le, Q. V., and Kurakin, A. Large-scale evolu-
tion of image classifiers. In International Conference
on Machine Learning, 2017. URL https://api.
semanticscholar.org/CorpusID:743641.

13

https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:208513081
https://api.semanticscholar.org/CorpusID:208513081
https://doi.org/10.48550/arXiv.2406.11939
https://doi.org/10.48550/arXiv.2406.11939
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
http://papers.nips.cc/paper_files/paper/2024/hash/c1c44e46358e0fb94dc94ec495a7fb1a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/c1c44e46358e0fb94dc94ec495a7fb1a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/c1c44e46358e0fb94dc94ec495a7fb1a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/c1c44e46358e0fb94dc94ec495a7fb1a-Abstract-Conference.html
https://api.semanticscholar.org/CorpusID:258179774
https://api.semanticscholar.org/CorpusID:258179774
https://doi.org/10.48550/arXiv.2403.03853
https://doi.org/10.48550/arXiv.2403.03853
https://doi.org/10.1007/978-3-031-19775-8_9
https://doi.org/10.1007/978-3-031-19775-8_9
https://api.semanticscholar.org/CorpusID:229211047
https://api.semanticscholar.org/CorpusID:229211047
https://doi.org/10.48550/arXiv.2407.14679
https://doi.org/10.48550/arXiv.2407.14679
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2406.17557
https://doi.org/10.48550/arXiv.2406.17557
https://www.gutenberg.org
https://api.semanticscholar.org/CorpusID:743641
https://api.semanticscholar.org/CorpusID:743641

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. In The Thirty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2020, The Thirty-Second In-
novative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pp. 8732–
8740. AAAI Press, 2020. doi: 10.1609/AAAI.V34I05.
6399. URL https://doi.org/10.1609/aaai.
v34i05.6399.

Sanyal, S., Shwartz-Ziv, R., Dimakis, A. G., and Sanghavi,
S. Inheritune: Training smaller yet more attentive lan-
guage models, 2024. URL https://arxiv.org/
abs/2404.08634.

Shazeer, N. Fast transformer decoding: One write-head
is all you need. CoRR, abs/1911.02150, 2019. URL
http://arxiv.org/abs/1911.02150.

Solaiman, I., Talat, Z., Agnew, W., Ahmad, L., Baker,
D. K., Blodgett, S. L., III, H. D., Dodge, J., Evans,
E., Hooker, S., Jernite, Y., Luccioni, A. S., Lusoli, A.,
Mitchell, M., Newman, J., Png, M., Strait, A., and Vas-
silev, A. Evaluating the social impact of generative AI
systems in systems and society. CoRR, abs/2306.05949,
2023. doi: 10.48550/ARXIV.2306.05949. URL https:
//doi.org/10.48550/arXiv.2306.05949.

Soldaini, L., Kinney, R., Bhagia, A., Schwenk, D., Atkin-
son, D., Authur, R., Bogin, B., Chandu, K. R., Dumas,
J., Elazar, Y., Hofmann, V., Jha, A. H., Kumar, S., Lucy,
L., Lyu, X., Lambert, N., Magnusson, I., Morrison, J.,
Muennighoff, N., Naik, A., Nam, C., Peters, M. E.,
Ravichander, A., Richardson, K., Shen, Z., Strubell, E.,
Subramani, N., Tafjord, O., Walsh, E. P., Zettlemoyer,
L., Smith, N. A., Hajishirzi, H., Beltagy, I., Groen-
eveld, D., Dodge, J., and Lo, K. Dolma: an open
corpus of three trillion tokens for language model pre-
training research. In Ku, L., Martins, A., and Sriku-
mar, V. (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pp. 15725–15788. Association for
Computational Linguistics, 2024. doi: 10.18653/V1/
2024.ACL-LONG.840. URL https://doi.org/
10.18653/v1/2024.acl-long.840.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A sim-
ple and effective pruning approach for large language
models. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=PxoFut3dWW.

Wang, Z., Bukharin, A., Delalleau, O., Egert, D., Shen,
G., Zeng, J., Kuchaiev, O., and Dong, Y. Helpsteer2-
preference: Complementing ratings with preferences.
CoRR, abs/2410.01257, 2024. doi: 10.48550/ARXIV.
2410.01257. URL https://doi.org/10.48550/
arXiv.2410.01257.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In Koyejo, S., Mohamed, S., Agarwal, A., Bel-
grave, D., Cho, K., and Oh, A. (eds.), Advances in Neu-
ral Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

Xia, M., Zhong, Z., and Chen, D. Structured pruning learns
compact and accurate models. In Muresan, S., Nakov,
P., and Villavicencio, A. (eds.), Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pp. 1513–1528. Association
for Computational Linguistics, 2022. doi: 10.18653/
V1/2022.ACL-LONG.107. URL https://doi.org/
10.18653/v1/2022.acl-long.107.

Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared llama:
Accelerating language model pre-training via structured
pruning. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=09iOdaeOzp.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Effi-
cient streaming language models with attention sinks. In
The Twelfth International Conference on Learning Repre-
sentations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024. URL https://openreview.
net/forum?id=NG7sS51zVF.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S. (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
In Korhonen, A., Traum, D. R., and Màrquez, L. (eds.),
Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pp.

14

https://doi.org/10.1609/aaai.v34i05.6399
https://doi.org/10.1609/aaai.v34i05.6399
https://arxiv.org/abs/2404.08634
https://arxiv.org/abs/2404.08634
http://arxiv.org/abs/1911.02150
https://doi.org/10.48550/arXiv.2306.05949
https://doi.org/10.48550/arXiv.2306.05949
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.18653/v1/2024.acl-long.840
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://doi.org/10.48550/arXiv.2410.01257
https://doi.org/10.48550/arXiv.2410.01257
https://doi.org/10.18653/v1/2022.acl-long.107
https://doi.org/10.18653/v1/2022.acl-long.107
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

4791–4800. Association for Computational Linguistics,
2019. doi: 10.18653/V1/P19-1472. URL https://
doi.org/10.18653/v1/p19-1472.

Zheng, L., Chiang, W., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang,
H., Gonzalez, J. E., and Stoica, I. Judging llm-as-a-judge
with mt-bench and chatbot arena. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S. (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023.

Zoph, B. and Le, Q. V. Neural architecture search
with reinforcement learning. ArXiv, abs/1611.01578,
2016. URL https://api.semanticscholar.
org/CorpusID:12713052.

A. Initialization of Alternative Subblocks
To accelerate the distillation process, we introduce training-
free initialization techniques for alternative subblocks. We
propose a method to reduce the intermediate dimensions of
FFN subblocks by selectively pruning channels based on
their contribution. Our approach, called Channel Contribu-
tion, uses an activation-based strategy to estimate channel
contribution during forward passes over a calibration dataset,
similar to (Muralidharan et al., 2024). To guide pruning,
we rank intermediate channels based on their impact on
the FFN output. This is quantified as the distance between
the original FFN output and the output after pruning. The
channels with the lowest contributions are prioritized for
pruning during subblock initialization.

To formalize our method, let us denote the hidden dimen-
sion by H , the FFN intermediate dimension by I , the FFN
down projection matrix by W down ∈ RI×H . Let X ∈ RI

represent the FFN’s intermediate activations for a single
token. The output of the FFN, Y ∈ RH , is then given by

Y = (W down)⊤X =

I∑
k=1

XkW
down
k,:

We define the per-token contribution of channel i as:

Ci(X) =

∥∥∥∥∥
(

I∑
k=1

XkW
down
k,:

)
−

 I∑
k=1
k ̸=i

XkW
down
k,:

∥∥∥∥∥
2

= |Xi| ·
∥∥W down

i,:

∥∥
2

We then compute the average contribution of each channel
across all tokens in the calibration dataset.

When replacing an FFN subblock with a linear layer, we
initialize it by computing the product of the up and down
projection matrices for FFNs, thereby effectively ignoring
the gating mechanism.

In attention subblocks with a reduced number of key-value
heads, we initialize the projection matrices for the key and
value heads by mean-pooling them into single projection
matrices, following the approach used in (Ainslie et al.,
2023). When replacing an attention subblock with a linear
layer, we use the product of the value and output projection
matrices, which simulates the scenario where each token
attends only to itself.

B. Search Algorithm: Mixed-integer
Programming

The search space for LLM architecture optimization is enor-
mous (we consider ∼ 10138 possibilities), as discussed in

15

https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://api.semanticscholar.org/CorpusID:12713052
https://api.semanticscholar.org/CorpusID:12713052

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

Section 2. Efficiently navigating this space requires two key
components: a fast method to estimate candidate quality,
which we addressed in Section 4.2, and an efficient algo-
rithm to maximize the estimated quality under hardware-
specific constraints.

The structure of transformer models naturally frames our
optimization problem as a grouped variant of the classical
Knapsack Problem. Each layer of the model represents a
group, containing various block alternatives (attention and
FFN variants) as items. Each block alternative has an asso-
ciated value (its quality score) and multiple costs (parameter
memory, KV-cache memory, and runtime characteristics).
The objective is to select exactly one block variant from
each layer while maximizing the total score and satisfying
deployment constraints.

Following (Molchanov et al., 2022), we formulate this as
a Mixed Integer Programming (MIP) problem. Let xi,j be
a binary decision variable indicating whether block variant
j is selected for layer i. For a model with L layers and Ki

variants per layer, the optimization problem is:

maximize
L∑

i=1

Ki∑
j=1

score(i, j)xi,j

subject to
L∑

i=1

Ki∑
j=1

[memparams(i, j) + b ·memkv(i, j)]xi,j ≤ Memorymax

b · seq len∑L
i=1

∑Ki

j=1 runtime(i, j, b)xi,j

≥ Throughputmin

L∑
i=1

Ki∑
j=1

runtime(i, j, b)xi,j ≤ Latencymax

Ki∑
j=1

xi,j = 1 ∀i ∈ {1, . . . , L}

xi,j ∈ {0, 1} ∀i, j ,

where:

• score(i, j) is the quality score of block variant j in
layer i, measuring how well it maintains the parent
model’s performance. If the block scores represent a
negative impact (e.g. LM loss or KL divergence) we
minimize the sum of scores instead of maximizing it.

• memparams(i, j) is the parameter memory required for
block variant j in layer i, which is shared across all
sequences in a batch.

• memkv(i, j) is the key-value cache memory required
for a single sequence in layer i with block variant j.

• b is the batch size - the number of sequences processed
in parallel during inference.

• seq len is the total sequence length, including both
prefill and generation.

• runtime(i, j, b) is the runtime of block variant j in
layer i when processing batch size b.

• Memorymax is the maximum allowed total memory,
specified to fit the target GPU(s).

• Throughputmin is the minimum required throughput
(tokens per second).

• Latencymax is the maximum allowed latency per batch.

The objective maximizes the sum of quality scores across
all selected block variants. The first constraint ensures the
total memory usage stays within limits, accounting for both
parameter memory (shared across batches) and KV-cache
memory (which scales linearly with batch size as each se-
quence requires its own cache). The second constraint en-
forces a minimum throughput requirement: for batch size b,
we process b · seq len tokens within the total runtime, which
must meet or exceed Throughputmin tokens per second. The
third constraint ensures the total processing time for a batch
does not exceed the maximum allowed latency. The fourth
constraint guarantees exactly one variant is selected for each
layer. Note that we do not impose any constraint on the num-
ber of model parameters - they are reduced naturally by the
search algorithm due to the true scenario constraints.

Since the batch size b is not a variable in this optimization,
we solve the MIP problem multiple times with different
values of b to explore the runtime-memory trade-off space.
Larger batch sizes typically result in higher throughput for
all block operations, but also higher latency and more mem-
ory for KV-cache storage, which forces a reduction in mem-
ory to meet the constraints (such as reducing the number
of KV heads). For each set of deployment constraints, we
choose the batch size that produced the highest quality archi-
tectures. If the target scenario specifies a maximum batch
size, such as the typical number of active users for a chat
bot, the search can be capped accordingly.

While MIP problems are NP-complete, modern solvers can
efficiently handle instances of our size. Using the open-
source python-mip package (Inc., 2023), we obtain high-
quality solutions within seconds. This efficiency enables
us to explore multiple architecturally diverse solutions by
adding a diversity constraint:

L∑
i=1

Ki∑
j=1

xi,jyi,j ≤ α · L ∀y ∈ Y,

where Y is the set of previous solutions and α ∈ [0, 1]
controls the maximum allowed similarity. For example,
with α = 0.8, each new solution must differ from previous
solutions in at least 20% of its layer choices. This constraint
helps discover meaningfully different architectures.

16

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

A key feature of our approach is its ability to generate so-
lutions precisely tailored for specific hardware platforms.
For example, in platforms with limited memory intended for
batch size 1, the algorithm strongly favors memory-saving
techniques such as FFN pruning, while de-prioritizing KV-
cache optimizations which have minimal impact at batch 1.
The hardware specificity extends to architectural features of
the inference devices - for example, on H100 GPUs, FP8
quantization offers ∼2× acceleration and can be used ag-
gressively, while on A100 GPUs where FP8 is unavailable,
different optimization strategies must be employed. Even
the difference in inter-GPU bandwidth between H100 PCI-E
and NVLink configurations influences the optimal architec-
ture by affecting tensor parallel synchronization costs.

This flexibility enables a powerful “train once, adapt on
demand” methodology that requires minimal human inter-
vention. After building a block library and computing block
scores once, we can efficiently generate different architec-
tures optimized for various deployment scenarios without
additional training or manual tuning. The user needs only to
specify the available block configurations for each platform
- the hardware-specific measurements of block variants nat-
urally guide the optimization toward platform-appropriate
solutions. This approach makes Puzzle particularly valuable
for real-world deployment, where the same parent model
might need to be optimized differently across diverse hard-
ware configurations and deployment constraints.

C. Supporting Fast Inference for
Variable-Block Architectures in
TensorRT-LLM

TensorRT-LLM is a highly optimized LLM runtime de-
signed to accelerate inference performance on NVIDIA
GPUs. It provides industry-leading performance for both
latency and throughput-oriented workloads. The runtime
enables LLMs to run on GPUs while utilizing custom paged
attention (Kwon et al., 2023) kernels to efficiently man-
age KV caching across sequences in a batch. Further-
more, TensorRT-LLM supports FP8 quantization and var-
ious scheduling policies that allow LLM deployments to
optimally utilize the underlying hardware.

To enable the use of Puzzle-generated architectures from the
search space (see Section 2) a major underlying assumption
of TensorRT-LLM had to be revised: that all attention layers
contain the same number of key and value heads. We de-
vised changes to the paged KV cache strategy that enabled
variable GQA ratios within a model. TensorRT-LLM now
supports running any architecture from our search space
including variable blocks and linear replacements, using
FP8 precision for weights, activations and KV cache. Our
NAS framework is designed to generate models that run effi-
ciently in real inference scenarios. Therefore full support in

inference engines and awareness to runtime considerations
when applying on NAS scheme contributes greatly to the
usability of resulting models, such as Nemotron-51B.

D. Human Evaluation
A blind-test comparison between Nemotron-51B and Llama-
70B was conducted in the following manner:

• A set of 169 samples was sent.

• The evaluation was done by Nvidia’s data factory team.

• Three annotators annotated each sample independently,
resulting in a total of 169 · 3 = 507 annotations.

• Annotators saw [prompt, completion 1, completion 2]
and had to choose between 4 options:

– Completion 1 is better.
– Completion 2 is better.
– Both are good.
– Neither is good.

• The order of the completions was randomized to avoid
positional bias.

The test set was curated by the project’s product team and
Nvidia’s data factory and included the following tasks and
subtasks listed in brackets: The test set was curated and
included the following tasks and subtasks listed in brackets:

• Long form text generation (write a blog, write a story,
other).

• Long inputs (Open book QA, Multi-hop questions, text
to headline)

• Grounded text generation (table of contents to blog,
paraphrasing).

• Multi-condition instructions (3-5 conditions, 6-10 con-
ditions).

• Knowledge and trivia.

• Summarization (full document summary, summarize
to bullet points, summarize paragraph to a sentence).

• Reasoning (temporal reasoning, cause and effect, navi-
gation, general reasoning).

• Semantic extraction.

E. RULER Benchmark Performance Tables
This section provides complete performance tables for our
parent-child pairs on a subset of the RULER benchmark
across all context lengths evaluated.

17

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

E.1. Nemotron-51B vs. Llama-3.1-70B-Instruct

Table 19 shows the results of the parent (Llama-3.1-70B-
Instruct) and child (Nemotron-51B) for all context lengths.
As noted in the main text, Nemotron-51B was trained on
sequences up to only 8K tokens yet retains more than 96%
of its parent’s performance at 16K. The child’s performance
degrades at 64K and beyond, which is unsurprising given its
training horizon. Nevertheless, these results underscore that
a large fraction of the parent’s long-context capabilities can
remain intact even without explicit training on such long
sequences.

E.2. Nemotron-49B-Base vs. Llama-3.3-70B-Instruct

In Table 7, we present the extended context-length results
for Nemotron-49B-Base (uptrained with sequences up to
128K tokens) alongside its parent (Llama-3.3-70B-Instruct).
We rename columns to make them more consistent with
the style above, although some tasks differ from those used
for Nemotron-51B. Nemotron-49B-Base preserves 98% or
more of its parent’s performance up to 64K tokens and re-
mains above 94% at 128K. This highlights that adding a
short uptraining phase on longer contexts can effectively ex-
tend the context range of Puzzle-derived models. Additional
details and per-task results appear below.

F. In-Depth Analysis and Ablation Studies
To better understand the key components and design choices
of the Puzzle framework, we conduct a series of detailed
analyses and ablation studies. We evaluate the importance
of global knowledge distillation, investigate the impact of
training dataset size and composition, and analyze how our
MIP solver adaptively chooses architectures under vary-
ing constraints. These studies not only validate our design
decisions but also provide insights into the fundamental
trade-offs in LLM architecture optimization and the relative
importance of different architectural components.

F.1. Block Library Construction Ablation Studies

In Appendices F.1.1 to F.1.5, we analyze the impact of crit-
ical decisions in block library construction. These studies
examine the fundamental trade-offs between computational
cost, dataset characteristics, and model performance. Our
key findings are:

• Coupled vs. Decoupled BLD: Decoupled BLD re-
duces training cost by transforming the search space
from multiplicative to additive. Combining decoupled
BLD for subspace narrowing with coupled BLD for
refinement improves accuracy while maintaining com-
putational costs (see Appendix F.1.1).

• Dataset Composition: Models trained on the di-

verse Distillation Mix outperformed those trained on
the limited-domain Project Gutenberg, but Gutenberg-
trained models still retained 93% of performance,
showcasing Puzzle’s robustness (see Appendix F.1.2).

• Training Dataset Size: BLD achieves strong perfor-
mance even with smaller token budgets, with diminish-
ing returns beyond 0.5B tokens (see Appendix F.1.3).

• Block Scoring Metrics: KL divergence scoring out-
performed LM loss and task-specific downstream scor-
ing, demonstrating better balance between general-
ity and accuracy, although task-specific scoring pro-
vides an advantage for customized target tasks (see
Appendix F.1.4).

• Reduced Search Space: Constraining the search
space to no-op alternatives simplifies optimization and
eliminates BLD but results in lower accuracy (75.4
vs. 78.39 MMLU), highlighting the value of diverse
block replacements for optimal performance (see Ap-
pendix F.1.5).

F.1.1. COMBINING COUPLED BLD AND DECOUPLED
BLD

We investigate the effects of coupling in BLD (see Sec-
tion 3.1) on Puzzle derivatives of Llama-3.1-8B-Instruct,
which has 32 layers. For each layer, the search space we
consider contains |Ai| = 6 variants of the attention subblock
and |Fi| = 12 variants of the FFN subblock. With coupled
BLD, this would amount to training 6 · 12 · 32 = 2304
blocks. Decoupled BLD reduces the training requirements
to only (4 + 10) · 32 = 448 subblocks, which is consid-
erably more resource-efficient. Note that besides moving
from multiplicative composition to additive composition,
with decoupled BLD we also do not need to train the no-op
and parent variants in Ai and Fi.

We propose a two-stage technique to reap the benefits of
coupled BLD while still keeping the computational cost
reasonable. First, we run the full Puzzle framework with de-
coupled BLD. Then, we analyze the architectures produced
by the search algorithm, and identify the most prominent
choices of subblock variants. We shrink the search space to
include only these choices, then run the full Puzzle frame-
work with coupled BLD on the reduced search space. In our
case, we were able to shrink |Ai| from 6 to 4, and |Fi| from
12 to 3, resulting in a total number of 4 · 3 · 32 = 384 blocks
to train in coupled BLD, which is similar to the number we
trained in decoupled BLD for the larger search space. This
approach produced a higher-accuracy architecture. Note,
however, that the one created with decoupled BLD was al-
ready significantly above the efficient frontier. See results
in Table 8. Both models underwent short GKD uptraining.

18

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

Table 7. Performance comparison of the parent (Llama-3.3-70B-Instruct) and child (Nemotron-49B-Base) on a subset of the RULER
benchmark. ‘Accuracy Preserved’ is (child / parent)×100.
Context single needle 1 single needle 2 single needle 3 multi needle 1 multi needle 2 multi needle 3 multi value multi query variable tracking 1 4 common words extraction freq words extraction qa squad qa hotpotqa Average Accuracy Preserved (%)

Parent: Llama-3.3-70B-Instruct
4K 100 100 100 100 100 100 100 100 100 95 91 72 96.77 96.77 -
8K 100 100 100 100 100 100 100 100 100 96 87 71 96.46 96.46 -
16K 100 100 100 100 100 100 100 100 99.8 95 86 67 95.98 95.98 -
32K 100 100 100 100 100 99 98.75 100 95 92.33 83 63 94.70 94.70 -
64K 100 100 100 100 97 93 98.25 100 43.9 92.67 75 56 88.91 88.91 -
128K 37 100 100 90 0 1 98.25 95.75 0.4 3.5 78.33 41 34 52.25 52.25 -

Child: Nemotron-49B-Base
4K 100 100 100 100 100 100 100 100 100 95.9 99.33 93 78 97.40 100.65
8K 100 100 100 100 100 100 100 100 100 92.4 98.33 89 76 96.59 100.13
16K 100 100 100 100 99 100 99.75 100 100 92.4 98 89 71 96.09 100.11
32K 100 100 100 100 99 99 99.5 100 81.4 95 85 67 94.3 94.30 99.58
64K 100 100 100 100 92 92 99.75 100 26.9 92.67 73 60 87.39 87.39 98.29
128K 45 99 99 89 0 0 88 86.5 1.6 1.3 56.67 44 35 49.62 94.97

Table 8. The effect of coupled BLD vs decoupled BLD on high-
throughput child derivatives of Llama-3.1-8B-Instruct. We found
a relevant subspace of the search space using a decoupled BLD
Puzzle, then trained coupled BLD on this subspace and ran a
separate Puzzle, leading to additional improvement. Throughput
is estimated via the sum of measured block runtimes on a single
NVIDIA RTX 4090 GPU. Accuracy = (MT-Bench ×10 + MMLU)
/ 2.
Model Throughput* Accuracy

Puzzle with Coupled BLD 5856 73.98
Puzzle with Decouple BLD 5834 73.10
Llama-3.2-3B-Instruct 5737 70.36

F.1.2. IMPACT OF DATASET COMPOSITION ON
PUZZLE-DERIVED MODELS

We evaluate the robustness of the Puzzle framework to
training data composition by comparing performances up
through the BLD stage (prior to GKD). For this analysis, we
contrast two datasets: our domain-diverse Distillation Mix
(described in Section 3) and the English subset of Project
Gutenberg (Project Gutenberg). The latter, a dataset pre-
dominantly comprising literary works, which lacks diverse
coverage of technical, conversational and STEM-specific
content, making it an interesting test case for framework
robustness.

As shown in Table 9, models derived using Project Guten-
berg data (for training, pruning and block scoring) demon-
strate strong performance despite the dataset’s limitations.
On general benchmarks like MT-Bench and MMLU, the
Gutenberg-trained model achieves 92.7% and 95.5% of the
performance obtained with Distillation Mix, respectively.
Even on STEM categories within MMLU, where the train-
ing data’s limitations are most relevant, the model maintains
91.7% of the performance (64.5 vs 70.35).

These results demonstrate that the Puzzle framework can
effectively transfer knowledge from the parent model even
when the training data provides limited coverage of specific
domains. This robustness is particularly noteworthy given
that no GKD uptraining was performed, suggesting that
our BLD approach effectively preserves model capabilities

across domains regardless of the training data composition.

Table 9. Benchmark results on Llama-3.1-70B-Instruct derivatives
obtained from Puzzle without uptraining applied with different
datasets.

Model MT-Bench MMLU MMLU-STEM

Gutenberg-Trained 7.98 74.84 64.5
DistillationMix-Trained 8.61 78.39 70.35

F.1.3. IMPACT OF BLOCKWISE LOCAL DISTILLATION
TRAINING DATASET SIZE

To evaluate the efficiency of BLD under varying training
dataset sizes, we conducted experiments using different
token budgets. Specifically, we trained the same set of
block variants using 0.25B, 0.5B, and 1.0B tokens from the
Distillation Mix dataset (see Section 3). After completing
the BLD stage for each token budget, we used the MIP
optimization stage to generate optimized architectures under
similar constraints to those used to produce Nemotron-51B,
and evaluated their performance on downstream tasks.

In Table 10 we present the performance of models trained
with different BLD token budgets. Notably, while all models
achieved comparable MMLU scores, the MT-Bench results
indicate a more pronounced performance improvement as
the token budget increases, particularly in multi-turn con-
versational tasks. However, the improvements diminish as
the token budget grows (e.g., the boost from 0.25B to 0.5B
tokens is larger than that from 0.5B to 1.0B), suggesting
that BLD facilitates rapid recovery of the parent model’s
performance even with moderate training budgets. These
findings imply that longer BLD training can yield better
block libraries but with diminishing returns at larger scales.

F.1.4. IMPACT OF DIFFERENT BLOCK SCORING
METRICS

In Section 4.2, we presented three possible metrics for
replace-1-block scores: downstream accuracy, LM loss and
KL divergence. We investigate the effects of using different
replace-1-block scores when applying the Puzzle frame-
work to Llama-3.1-8B-Instruct with a large search space

19

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

Table 10. Performance comparison of Puzzle-optimized architec-
tures trained with varying BLD token budgets. Metrics include
MT-Bench and MMLU scores.

BLD Token Budget MT-Bench MMLU

1.0B Tokens 8.98 78.54
0.5B Tokens 8.86 78.44
0.25B Tokens 8.51 78.27

(|Ai| = 6, |Fi| = 12). We compare the use of the model’s
loss on a validation set (LM loss in our case), a common
choice in earlier decomposed NAS methods used in CV,
with our proposed method based on KL divergence. LM
loss aims to capture the general quality degradation induced
by changing a specific parent block, while KL divergence
aims to capture the distance from the parent model induced
by this change. As illustrated in Figure 7, KL divergence
scoring results in better Puzzle architecture choices than
scoring with LM loss. All models were constructed using
decoupled BLD and underwent short GKD uptraining.

Kl div

frontier

throughp

ut

Kl div

frontier

accuracy

LMLoss

frontier

throughp

ut

Kl div

frontier

accuracy

4518.81 74.87309 4518.815 74.8835

5522.93 74.73541 5576.134 73.64218

5834.11 72.92387 5834.107 72.40147

KL Div

KL Div

LM Loss

LM Loss
72

72.5

73

73.5

74

74.5

75

5500 5900

Ac
cu

ra
cy

Throughput*

Llama-3.1-8B-
Instruct

Figure 7. Accuracy vs. Throughput performance of Llama-3.1-8B-
Instruct child derivatives, some constructed using LM loss as
replace-1-block scores, and some constructed using KL divergence
as replace-1-block scores. LM loss aims to capture the general
quality degradation induced by changing a specific parent block,
while KL divergence aims to capture the distance from the parent
model induced by this change. KL divergence results in better
architecture choices. Accuracy = (MT-Bench ×10 + MMLU) / 2.
Throughput is estimated via the sum of measured block runtimes
on a single NVIDIA RTX 4090 GPU.

Next, we explore the use of downstream accuracy as replace-
1-block scores to customize the algorithm’s block selection
for specific target tasks. Our hypothesis is that, within the
same budget, different architectures may excel at differ-
ent tasks because distinct capabilities—such as reasoning,

world knowledge, or conversational abilities—are likely
concentrated in different parts of the model. Due to the com-
putational expense of calculating downstream accuracy, we
use the reduced search space from Appendix F.1.1 to keep
the experiment feasible. To evaluate downstream accuracy,
we use the MMLU benchmark, splitting its 57 tasks into
two nearly equal-sized sets stratified by the MMLU cate-
gories {STEM, Social Sciences, Humanities, Other}. These
subsets are referred to as Half-MMLU, with one serving as a
“train” set for block quality scoring and the other as a “test”
set for evaluation. Table 11 shows that, even with the same
library of trained blocks, the block selection process can be
customized to construct architectures optimized for specific
target tasks. We note that this customization is not without
cost: the architecture constructed using Half-MMLU scores
achieves the best accuracy on the target task, but its MT-
Bench accuracy of 7.57 is lower than the 8.06 MT-Bench
accuracy of the architecture constructed according to the
more general KL divergence scores. Both models were con-
structed using decoupled BLD and underwent short GKD
uptraining.

Table 11. The effect of task-oriented block scoring on high-
throughput child derivatives of Llama-3.1-8B-Instruct. We split
the tasks in MMLU into two equal-sized sets and use one of them
for block quality scoring and the other for evaluation, showing that
even with the same library of trained blocks, block selection can
be customized to build architectures that fit a desired target task.
Throughput is estimated via the sum of measured block runtimes
on a single NVIDIA RTX 4090 GPU.
Model Throughput* Half-MMLU Accuracy (Test Set)

Puzzle: scored with Half-MMLU accuracy (train set) 5818 66.24
Puzzle: scored with KL divergence 5834 64.94
Llama-3.2-3B-Instruct 5737 60.06

F.1.5. EFFECTS OF LIMITED SEARCH SPACE DIVERSITY

To explore the impact of reducing the search space com-
plexity on the Puzzle framework, we constrained alternative
child blocks to only allow replacing parent model subblocks
with no-op operations. This eliminates the need for BLD as
no additional block variants that require training are consid-
ered, further reducing the computational costs.

The resulting architecture, optimized using the same MIP
approach but limited to no-ops, was evaluated against pre-
uptraining Nemotron-51B, which was derived using the
same Puzzle pipeline but with a more diverse block vari-
ants. As shown in Table 12, the no-op-only model retained
high throughput but exhibited a noticeable drop in MMLU
accuracy compared to Nemotron-51B (75.4 vs. 78.39).

These results illustrate the flexibility of the Puzzle frame-
work in balancing resource constraints and model perfor-
mance. Although limiting the search space simplifies the
optimization process and reduces training costs even further,

20

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

it sacrifices the fine-grained architectural customization en-
abled by a broader range of block alternatives. This demon-
strates that a more diverse search space leads to architectures
that achieve better accuracy.

Table 12. Comparison of pre-uptraining Nemotron-51B (derived
using the full search space) and a no-op-only variant.

Model MMLU Throughput (tokens/sec)

Puzzle (No-op only) 75.40 5604.18
Puzzle (Full search space) 78.39 5500.25

F.2. Search Algorithm Ablation Studies

In Appendices F.2.1 to F.2.3, we analyze the MIP optimiza-
tion process and alternative approaches within the Puzzle
framework. These studies focus on how throughput con-
straints and scoring strategies influence architecture selec-
tion and model performance. Our key findings are:

• MIP Optimization and Throughput Constraints:
The MIP solver adapts architectures to meet various
throughput targets, revealing nuanced trade-offs be-
tween global and local efficiency. Notably, FFN com-
ponents are preserved even under strict constraints,
highlighting their critical role in maintaining model
accuracy (see Appendix F.2.1).

• Greedy Algorithm Alternative: A budget-
constrained greedy algorithm, while simpler, resulted
in significantly lower accuracy (70.74% MMLU)
compared to MIP-based optimization (78.39%). This
underscores the importance of global optimization for
achieving superior accuracy-efficiency trade-offs (see
Appendix F.2.2).

• Data-free Scoring: Maximizing parameter count as
a heuristic produced architectures with sharp perfor-
mance declines (23.12% MMLU), emphasizing the
necessity of data-driven scoring mechanisms for effec-
tive architecture optimization (see Appendix F.2.3).

• Random Architecture Baselines: Nemotron-51B out-
performs both fully random and random-from-library
architectures under the same training and speed con-
straints, underscoring the role of the MIP solver in
selecting effective architectural compositions (see Ap-
pendix F.2.4).

F.2.1. MIP SOLUTION ANALYSIS UNDER VARYING
THROUGHPUT CONSTRAINTS

Figure 8 provides an interesting window into how our MIP
solver adapts model architecture to different throughput
requirements. Each row in the heatmaps represents a distinct

architecture optimized for a specific throughput target, with
darker colors indicating higher computational cost relative
to the parent model. The architecture of Nemotron-51B,
corresponding to a throughput target of 5500 tokens per
second, is marked in green. Several intriguing patterns are
evident:

• Counter-intuitive local optimizations: While stricter
throughput constraints generally lead to faster blocks,
we observe surprising inversions of this trend. For
example, in layers 1-4, the MIP sometimes chooses
computationally heavier blocks for higher throughput
targets. This counter-intuitive choice suggests that
local slowdowns can enable better global optimization,
with other layers compensating to meet the overall
throughput constraint.

• Asymmetric treatment of components: The MIP
treats attention and FFN components quite differently.
While attention mechanisms are completely eliminated
in some layers even under lenient throughput con-
straints, FFN components are never entirely skipped.
This suggests that FFN layers might play a more fun-
damental role in maintaining model capabilities, while
attention mechanisms offer more flexibility for opti-
mization.

• Architectural phases: The heatmap reveals distinct
“phases” across layer depths. Shallow layers (0-15)
show high variability in both attention and FFN, mid-
dle layers (16-42) maintain more consistent computa-
tion, and deeper layers (43-80) show different patterns
for attention versus FFN optimization. This suggests
different layers serve distinct roles in the network’s
information processing.

• Throughput-dependent transitions: The solution
patterns show clear transitions as throughput require-
ments increase, but these transitions are not uniform
across layers. Some layers maintain consistent compu-
tation across different throughput targets while others
show sharp transitions, indicating varying sensitivity
to throughput constraints.

These patterns demonstrate the sophisticated optimization
strategies discovered by the MIP solver, revealing that opti-
mal architectures often require nuanced tradeoffs between
local and global efficiency. The preservation of FFN com-
putation even under strict constraints provides empirical
evidence for the relative importance of different architec-
tural components in such transformer models.

F.2.2. GREEDY SEARCH ALGORITHM ALTERNATIVE

To further evaluate the impact of the MIP optimization ap-
proach, we implemented a budget-constrained greedy search

21

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78
5000
5100
5200
5300
5400
5500
5600
5700
5800
5900
6000

0

0.5

1

Runtime
(compared
to parent)

Attention Runtime as function of Throughput

Layer Index

T
hr

ou
gh

pu
t

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78
5000
5100
5200
5300
5400
5500
5600
5700
5800
5900
6000

0

0.5

1

Runtime
(compared
to parent)

FFN Runtime as function of Throughput

Layer Index

T
hr

ou
gh

pu
t

Figure 8. Heatmaps showing how attention and FFN runtime pat-
terns vary with throughput constraints across model layers. Dark
colors indicate higher computational cost relative to the parent
model. Each row represents an architecture optimized for a spe-
cific throughput target, with Nemotron-51B’s configuration (5500
tokens/sec) marked in green.

algorithm as an alternative. This algorithm prioritizes sim-
plicity by using a heuristic-based layer-wise selection pro-
cess, contrasting with the global optimization provided by
MIP.

The greedy algorithm operates as follows:

• At initialization, the runtime and memory budgets
which are derived from the required constraints, are
split equally across layers.

• Layer scoring: Each layer is assigned a score based on
a heuristic metric designed to estimate how easily it can
be replaced with minimal performance degradation. In
our implementation, this metric was the mean replace-
1-block KL divergence score across all block variants
for the layer. Layers with lower average scores were
deemed easier to optimize.

• Sequential replacement: Layers are processed in as-
cending order of their scores. For each layer, the algo-
rithm selects the block variant with the lowest replace-
1-block KL divergence score that satisfies the layer’s
runtime and memory budget.

• Constraint adjustment: After selecting a block for the
current layer, the remaining runtime and memory sav-
ings are added to the next layer’s budget. This allows
for a more dynamic algorithm that allocates more re-
sources for layers that are harder to replace.

Table 13 compares the performance of the greedy algorithm
with the MIP-derived pre-uptraining Nemotron-51B. The
results show that the greedy algorithm leads to a significant
drop in accuracy, highlighting the importance of global opti-
mization. Specifically, the model derived using the greedy

algorithm achieves a substantially lower MMLU accuracy
of 70.74%, compared to 78.39% for the MIP-derived model,
despite both architectures meeting the same throughput con-
straint.

Table 13. Comparison of the budget-constrained greedy algorithm
and MIP as search algorithms for Puzzle. Results are shown for pre-
uptraining Nemotron-51B under identical throughput constraints.

Optimization Method MMLU Throughput (tokens/sec)

Greedy Algorithm 70.74 5500.30
MIP 78.39 5500.25

These findings underscore the critical role of global opti-
mization in the Puzzle framework. By considering jointly
optimizing block selection, MIP achieves a significantly
better balance between efficiency and accuracy, making it
indispensable for extracting the full potential of the Puzzle
framework.

F.2.3. IMPORTANCE OF DATA-DRIVEN QUALITY
ESTIMATION IN ARCHITECTURE SCORING

To further understand the importance of quality estimation
in search space optimization, we conducted an experiment
using a simple heuristic: scoring blocks based on their pa-
rameter count. While not a data-driven approach, parameter
count serves as a straightforward metric often associated
with improved performance in LLMs. This experiment
aimed at assessing whether such a basic metric could pro-
vide sufficient guidance in the search space, shedding light
on the role of more nuanced scoring mechanisms.

Under this method, the search algorithm is simplified to
selecting the block variant with the largest number of pa-
rameters that satisfied throughput and memory constraints.
This resulted in an architecture composed uniformly of
high-parameter blocks across all layers, without considering
layer-specific block quality and representational needs.

As shown in Table 14, maximizing parameter count leads
to a sharp drop in MMLU accuracy compared to the archi-
tecture derived using the full Puzzle framework with MIP
optimization. Despite having similar throughput, the sim-
plistic parameter-maximization approach fails to achieve
competitive results, underscoring the necessity of quality-
aware block scoring, and different layers require different
computational budgets for optimal performance.

F.2.4. EVALUATING RANDOM ARCHITECTURES AS
SEARCH BASELINES

To further validate the effectiveness of our search algorithm,
we evaluated several baselines where block selection was
performed randomly. All models were trained with 10B
tokens.

22

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

Table 14. Comparison of maximizing parameter count with Puz-
zle’s MIP-based optimization as search algorithms. Results are
shown for pre-uptraining Nemotron-51B under identical through-
put constraints.

Optimization Method MMLU Throughput (tokens/sec)

Maximizing Parameters 23.12 5727.08
pre-uptraining Nemotron-51B 78.39 5500.25

The first baseline (“Random-from-block-library”) randomly
samples block variants from the full block library while
satisfying the same throughput constraint as Nemotron-
51B, ignoring their block scores. The second (“Fully
Random”) uses a completely random architecture that is
not constrained to trained block variants, but adheres to
the same speed constraints. Finally, we added a third
baseline—Parent-Randomized—which evaluates Llama-
3.1-70B with randomized weights but no architectural mod-
ifications.

As shown in Table 15, Puzzle significantly outperforms
all baselines. Notably, the random-from-library baseline
achieves only 86.6% of Nemotron-51B’s performance, de-
spite being constructed from the same trained blocks. This
experiment further emphasizes the role of MIP in selecting
high-quality architectural compositions from the library.

Table 15. Comparison of Nemotron-51B with randomly con-
structed architectures, all trained for 10B tokens. The random-
from-library variant uses trained blocks, while the fully random
variant ignores the block library. The Parent-Randomized model
uses Llama-70B’s architecture with random weights.

Model MMLU MT-Bench Avg. Accuracy Relative to Llama-70B

Nemotron-51B (10B tokens) 79.7 8.89 84.30 98.61%
Random-from-block-library 66.02 8.20 74.01 86.58%
Fully Random 23.13 0.89 16.02 18.73%
Parent-Randomized 23.42 0.95 16.46 19.25%
Llama-3.1-70B 81.66 8.93 85.48 100%

F.3. Global Knowledge Distillation Uptraining

We assess the significance of the final GKD uptraining phase,
in enhancing the accuracy of child models derived from
Llama-3.1-70B-Instruct and Llama-3.1-8B-Instruct. The
results presented in Table 16 demonstrate that this stage
contributes to improvements in both the MMLU and MT-
Bench benchmark scores.

Table 16. Impact of global knowledge distillation uptraining on
MMLU and MT-Bench benchmark scores for child models derived
from Llama-3.1-70B-Instruct and Llama-3.1-8B-Instruct.
Model Name GKD Uptraining MMLU MT-Bench Average

Llama-3.1-70B-Instruct (parent) - 81.66 8.93 85.48
✗ 78.39 8.67 82.55Nemotron-51B-Instruct (child)
✓ 80.20 8.99 85.10

Llama-3.1-8B-Instruct (parent) - 69.40 8.34 76.40
✗ 65.25 7.29 69.06Child derivative of Llama-3.1-8B-Instruct (child)
✓ 65.46 8.25 73.98

F.3.1. LOSS COMPOSITION ABLATION STUDIES FOR
UPTRAINING

Recall from Section 4.3 that our final GKD objective com-
prises cosine similarity and KL divergence losses:

Lcosine =

L∑
l=1

(
1−

hl
c · hl

p

∥hl
c∥∥hl

p∥

)
, (2)

LKLD =

N∑
i=1

pi log

(
pi
qi

)
, (3)

In this subsection, we provide a detailed ablation of different
loss combinations, including the language modeling (LM)
loss:

LLM = −
N∑
i=1

yi log(ŷi), (4)

where yi is the ground-truth label for the i-th token and ŷi
its predicted probability. We paired LLM with cosine and
KL divergence losses in various configurations to see which
composition best recovers the parent model’s accuracy.

Experimental Setup: We used Nemotron-51B (the imme-
diate child after BLD) and trained with ∼ 5B tokens for
each combination, measuring accuracy on MMLU and MT-
Bench. Table 17 shows that adding LLM often harms down-
stream performance, consistent with Muralidharan et al.
(2024). In contrast, combining Lcosine and LKLD yields the
best results. We thus adopt Equation (1):

LGKD = Lcosine + LKLD

as our final uptraining loss, ultimately running it over 45B
tokens to produce Nemotron-51B-Instruct.

Table 17. Ablation study for different combinations of LM loss,
block (hidden activations) loss, and logits KLD loss. All mod-
els (Nemotron-51B, derived from Llama-3.1-70B-Instruct) were
trained for ∼ 5B tokens. First row did not undergo uptraining.
Adjacent rows with the same color differ only in the LLM compo-
nent. ∗During the KD process for this combination, the validation
LKLD consistently increased. †Trained for 45B tokens using LGKD

defined in Equation (1).
LLM (4) Lcosine (2) LKLD (3) MMLU MT-Bench Average Validation LKLD

✗ ✗ ✗ 78.39 8.67 82.55 0.19
✓ ✗ ✗ 78.55 7.71 77.83 0.31∗

✓ ✗ ✓ 79.26 8.85 83.88 0.14
✗ ✗ ✓ 79.33 8.68 83.07 0.10
✓ ✓ ✗ 79.04 7.80 78.52 0.30∗

✗ ✓ ✗ 79.40 8.74 83.40 0.16
✓ ✓ ✓ 79.45 8.66 83.03 0.14
✗ ✓ ✓ 79.61 8.87 84.16 0.11

Llama-3.1-70B-Instruct (parent) 81.66 8.93 85.48 0.00
Nemotron-51B-Instruct (child)† 80.20 8.99 85.10 0.08

We hypothesize that LLM may cause overfitting to the up-
training dataset, thus reducing the child’s ability to mir-
ror the parent’s distribution across downstream tasks. Re-
moving this term mitigates open-weights, closed-data mis-
matches, leading to better knowledge transfer.

23

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

F.4. Comparison with Related Work

There are many different techniques to prune or compress
models, most of which could be complementary to Puz-
zle. Some pruning methods, for example, could be used
to construct alternative blocks for Puzzle’s block library.
Nevertheless, in this section we compare several established
methods directly against the basic Puzzle framework, with-
out integrating them.

We compare Puzzle against structured sparsity (Wanda
(Sun et al., 2024)) and low-rank approximation (similar
to (Khodak et al., 2021) with subsequent distillation) ap-
plied to Llama-3.1-70B under similar throughput constraints.
Wanda applied 2:4 structured sparsity without additional
training, while the low-rank method used factorized layers
followed by distillation. Nemotron-51B significantly out-
performed both methods, achieving 99.49% of the parent’s
average accuracy (MMLU and MT-Bench), compared to
92.23% for Wanda and 88.96% for low-rank approximation
(see Table 18). Subsequent distillation post-pruning with
Wanda slightly improved MMLU (73.69) without impact-
ing MT-Bench. Moreover, since both structured sparsity
and low-rank approximations represent subsets of Puzzle’s
broader search space, integrating these approaches into Puz-
zle could further enhance performance.

Table 18. Comparison of Puzzle, Wanda (structured sparsity), and
low-rank approximation methods on Llama-3.1-70B derivatives
under similar throughput constraints.

Model MMLU MT-Bench Average Accuracy Accuracy Preserved (%)

Nemotron-51B 80.20 8.99 85.05 99.49%
Wanda (Sun et al., 2024) 72.99 8.39 78.44 92.23%
Low-rank 72.87 8.01 76.05 88.96%
Llama-3.1-70B (Parent) 81.66 8.93 85.48 100%

Other methods such as Minitron (Muralidharan et al., 2024),
ShortGPT (Men et al., 2024), and SlimGPT (Ling et al.,
2024) share conceptual similarities with Puzzle, but each
represents a constrained subset of Puzzle’s broader opti-
mization space. For the most part, Minitron restricts mod-
ifications to homogeneous block replacements across all
layers, ShortGPT focuses exclusively on redundant layer
removal, and SlimGPT employs incremental pruning ratios
via a fixed heuristic. Puzzle generalizes and extends these
approaches, allowing for heterogeneous, layer-specific mod-
ifications, diverse block alternatives including no-op layers,
and customizable pruning ratios optimized globally through
MIP-based optimization.

24

Puzzle: Distillation-Based NAS for Inference-Optimized LLMs

Table 19. Full performance comparison of the parent (Llama-3.1-70B-Instruct) and child (Nemotron-51B) on a subset of the RULER
benchmark across all context lengths. ‘Accuracy Preserved’ is (child / parent)×100. Benchmark names refer to the implementation/settings
in the official RULER repository. *Varies depending on context length.
Context Length qa hotpotqa qa squad common words extraction* variable tracking 1 4 variable tracking 2 2 freq words extraction 2 freq words extraction 3.5 Average Accuracy Preserved (%)

Parent: Llama-3.1-70B-Instruct
1K N/A N/A 100.00 100.00 100.00 99.40 99.67 99.81 -
2K N/A 88.40 100.00 100.00 100.00 99.53 99.87 97.97 -
4K 67.60 87.40 100.00 100.00 99.87 99.00 99.80 93.38 -
8K 67.80 83.80 99.96 100.00 99.40 97.87 99.93 92.68 -
16K 63.20 82.00 98.86 100.00 96.87 96.67 99.93 91.08 -
32K 61.60 77.20 93.48 100.00 97.93 95.53 100.00 89.39 -
64K 55.40 72.60 26.16 99.96 97.93 94.53 99.87 78.06 -
128K 33.65 49.04 2.37 56.85 36.33 78.61 85.71 48.94 -

Child: Nemotron-51B
1K N/A N/A 99.98 100.00 100.00 99.40 99.53 99.78 99.90
2K N/A 86.20 99.86 99.96 99.67 98.40 99.80 97.32 99.34
4K 63.40 85.00 99.92 100.00 98.93 97.73 99.87 92.12 98.65
8K 58.20 80.80 99.34 100.00 99.60 96.67 99.80 90.63 97.79
16K 53.40 75.60 93.50 99.72 96.80 94.73 99.80 87.65 96.23
32K 45.60 70.60 51.92 98.28 93.67 90.27 99.47 78.54 87.86
64K 7.40 15.20 2.28 3.48 7.87 36.93 8.67 11.60 14.86
128K 3.80 3.20 0.10 0.00 0.00 2.07 0.00 1.31 2.67

25

