Under review as a conference paper at ICLR 2026

GENERALIZABLE OPPONENT EXPLOITATION IN LILLM
AGENTS VIA MIXED BEST-RESPONSES TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Opponent exploitation is a crucial capability for agents in competitive scenar-
ios, allowing them to exploit weaknesses in opponent strategies. Large Language
Model (LLM) based agents have demonstrated remarkable capabilities in strate-
gic reasoning and adversarial decision-making. However, their ability to exploit
diverse opponents, including those following suboptimal strategies, remains un-
derexplored. In this work, we introduce GOE-LLM (Generalizable Opponent
Exploitation with LLMs), a novel framework that leverages LLMs to learn oppo-
nent exploitation strategies through mixed best-response training in two-player
zero-sum games. A Multi-Layer Perceptron (MLP) Profiler is pre-trained in-
dependently to analyze opponent behaviors and identify their strategic patterns.
This profiling information is then utilized by a fine-tuned LLM Exploiter, trained
with group relative policy optimization on a curated set of best-response strate-
gies against heterogeneous opponents. To ensure stable training while enabling
the resulting agent to generalize across a broad spectrum of opponents, we pro-
pose a Mixture-Best-Responses principle to guide the construction of training
data. We evaluate GOE-LLM using various LLM sizes in Kuhn Poker, where
it demonstrates strong exploitation against out-of-distribution opponents. Addi-
tionally, our method shows consistent performance and generalization trends in
Leduc Hold’em Poker. We construct and compare different mixtures of train-
ing data to validate the effectiveness of the Mixture-Best-Responses principle,
confirming its role in ensuring both stability and generalization. Extensive ab-
lation studies further validate the contributions of each component to the overall
performance. Our results highlight the potential of GOE-LLM for generalizable
opponent exploitation and demonstrate the effectiveness of mixed best-response
training in enhancing the adaptability of LLM agents.

1 INTRODUCTION

Opponent exploitation is a critical skill for agents in competitive scenarios, enabling them to adapt to
specific opponents and exploit their weaknesses (Hoehn et al., |2005; |Ganzfried & Sandholm, 2015;
Liu et al.| 2022). This skill is essential not only for achieving competitive performance but also for
demonstrating advanced strategic reasoning.

Meanwhile, Large Language Models (LLMs) have recently demonstrated impressive capabilities as
autonomous agents (Wang et al.,2024), excelling in strategic reasoning and decision-making within
interactive domains such as multi-agent games (Zhang et al., 2024bj; |[Duan et al.,[2024; [Huang et al.,
2025}, [Light et al 2023 2025} |Guo et al., 2024; Hu et al.| 2024). Despite such rapid progress,
however, the potential of LLMs for opponent exploitation has not yet been thoroughly explored.
In fact, existing research on LLM-based game agents has primarily focused on two approaches:
(1) in-context learning with carefully engineered prompts (Brown et al.| |2020; [Zhang et al.| 2024 a;
Guan et al.| |2024; |[Karten et al., 2025} |Cui et al.| |2025b; |Xu et al., 2025b), and (2) direct policy
learning methods using data generated from equilibrium or optimal strategies (Huang et al., 2024;
Zhuang et al, 2025} [Feng et al.| 2023; [Zhang et al., 2025; Wang et al., 2025 Xu et al., 2025a).
While these methods have advanced the field, they tend to prioritize general strategic competence
or equilibrium play (Zhuang et al., [2025). Consequently, there remains a notable gap between
current approaches and the goal of developing LLM-based agents that can explicitly adapt to—and
effectively exploit—the weaknesses of diverse opponents. This observation raises a central question:

Under review as a conference paper at ICLR 2026

what would it take for LLM-based agents to move beyond equilibrium play and achieve effective and
generalizable opponent exploitation?

(c) GOE-LLM Existing Methods

| » &) D B I B
ileor [Round ¢ P i ~ X R e . =0 :
: [o [_/ ' ' \o/ ' '
: ValueBet | | ! o m Cod O i . g B o g 1 Expert H !
1 B < Sl :

: . .
: AT X
| Bt <r't' (r have a card U, | want o '
: fuili < M i ! s a bluff strategy BID p [! hU
v ! i N : - LLM Agent : LLM Agent
: ' 3 (Since & is bluffing,... to L] LLM Exploiter R _J J-L . H
: - ' exploit opponent.) [Call] g h ' ' '

b

Rand
andom Mixed BR Data . at ! ¢ at
'
Since = is bluffing, | can play value-betting 4

! '

: ' ' '

i Opponent : ‘ @ wins this round. 1| Checktosee & 's |1 | I will follow the GTO | |

! : ' '

| Strategy Space . to exploit opponent. [Call] ' next move. [Checl H strategy. [Fold] '
'

VeTTTTTTT e e [——————— R ——————————

! 1 ' H
Decision-Tree Opponent ' Prompt ! Pure GTO Data
H

1 H Engineerin:
\O?JUJ Lo Roceng b H N 9

Figure 1: GOE-LLM Overview. In two-player zero-sum poker games, players take turns acting,
and can exploit opponents deviating from optimal strategies to gain more chips. Existing research
mainly focuses on (a) in-context learning with expert knowledge, which suffers from hallucinations,
and (b) training on single optimal strategy data, which fails to exploit opponent weaknesses. We
propose (c) GOE-LLM, where a top-level profiler classifies opponent strategies, and a bottom-level
exploiter is trained on a mixture of best-response data to enhance adaptability to diverse opponents.

Motivated by this challenge, we propose GOE-LLM (Generalizable Opponent Exploitation with
LLMs), which introduces a LLM-centered framework designed to enhance opponent exploitation
capabilities, as illustrated in Figure [l GOE-LLM integrates (i) a lightweight profiler that identi-
fies strategic tendencies of opponents, and (ii) an LLM-based exploiter fine-tuned to generate best-
responses against diverse opponents. Inspired by the mixture of opponents learning (Smith et al.|
2023), we employ a mixed best-response training paradigm. First, we mix multiple best-response
strategies in a balanced way, ensuring that the exploiter learns not only equilibrium strategies but
also diverse best-response strategies. In particular, we carefully construct the mixture to prevent non-
transitive dominance cycles (Tenney & Foster, |1976)) between best-response strategies, thereby pre-
serving training stability and enhancing generalization. Building on the mixed best-response data,
we further adapt the Group Relative Policy Optimization(GRPO) algorithm (Shao et al.| [2024) to
fine-tune the LLM exploiter. By designing a fine-grained reward signal that incorporates opponent-
aware reasoning, we encourage the model to explicitly consider opponent behavior in its decision
process. This design also establishes a natural connection to the upper-level profiler, ultimately
enhancing the exploiter to generalize and effectively exploit weaknesses across both familiar and
previously unseen opponents. We conduct experiments in Kuhn Poker and Leduc Hold’em poker,
showing that GOE-LLM not only achieves strong generalization to out-of-distribution opponents
but also maintains stable performance across varying LLM sizes. Through comprehensive abla-
tion studies, we further disentangle the contributions of each component and analyze the impact of
different mixture training strategies on performance. Overall, our contributions are threefold: (1)
we propose the LLM-based framework explicitly targeting opponent exploitation; (2) we develop a
mixed best-response training principle that balances robustness and diversity for generalizable op-
ponent exploitation, along with a corresponding opponent-aware policy optimization; and (3) we
provide extensive empirical validation, highlighting the effectiveness of GOE-LLM in Kuhn poker
and Leduc Hold’em poker, along with insights into the roles of various components.

2 RELATED WORK

Research on opponent exploitation has traditionally combined game theory and reinforcement learn-
ing. Classical approaches such as Independent Reinforcement Learning (InRL), Iterated Best Re-
sponse (IBR), Double Oracle (DO), and Fictitious Play (FP) aim to compute optimal responses to
opponents’ strategies (Lanctot et al., [2017), but they often overfit to specific equilibria and gen-
eralize poorly to unseen adversaries. To handle non-transitive strategy cycles, Rectified Nash Re-
sponse (PSROrN) was introduced to maintain diversity through ecological niches (Balduzzi et al.,
2019). The Policy Space Response Oracles (PSRO) framework then unified DO and FP by itera-
tively expanding restricted games with empirical game-theoretic analysis (Bighashdel et al., 2024).
Extensions include PSD-PSRO, which regularizes for population robustness (Yao et al., 2023a)),

Under review as a conference paper at ICLR 2026

and SPSRO, which adapts meta-solvers and response learning dynamically (Li et al., [2024a)). In
large-scale domains like StarCraft II, league training frameworks integrate opponent modeling and
goal-conditioned exploiters, boosting exploitation and adaptation in real time (Huang et al., [2023).
Despite that, insufficient strategy diversity and overfitting remain central challenges.

More recently, large language models (LLMs) have been introduced into game environments as
central components for opponent modeling and analysis, enabling more flexible and semantically
grounded exploitation strategies (Hu et al.l |2024). Current LLM-based methods primarily rely on
prompting or lightweight fine-tuning, but they have yet to systematically address opponent exploita-
tion. Prior work shows that LLM-based agents can adapt to game environments by using care-
fully designed prompting strategies to follow rules and generate coherent action sequences (Zhang
et al.}2024a; |[Karten et al., 2025). Likewise, fine-tuning on curated datasets or synthesized decision-
making trajectories can improve domain-specific performance. For example, the POKERBENCH
benchmark demonstrates that although frontier models like GPT-4 perform poorly in poker, fine-
tuning yields modest gains but still falls far short of human expert play (Zhuang et al., 2025). Sim-
ilarly, Mastermind-Dou/Go fine-tune models on structured game data (Wang et al., [2025), while
PokerGPT (Huang et al.,|2024) uses RLHF and prompt-engineered trajectories to adapt lightweight
LLMs to Texas Hold’em. The ICE framework attempts in-context opponent exploitation through
trajectory-based RL, but it struggles with dynamic opponents and requires processing full historical
trajectories (Li et al.,[2024b;|Shi et al., 2024). Existing methods, largely based on trajectory imitation
or reward optimization, enhance consistency but fail to capture opponent-specific weaknesses. This
limitation is most acute in imperfect-information games, where adaptive exploitation is essential.

Inspired by the TOMAP framework (Han et al., [2025), which strengthens persuasion agents with
counterclaim prediction and MLP-based opponent modeling, we extend it to adversarial game set-
tings. We propose a mixture-of-best-response principle to stabilize LLM mixture policy training
and integrate an MLP profiler to model unseen opponents’ behavioral tendencies, enabling adap-
tive strategy adjustment. This design combines TOMAP’s opponent-awareness with game-theoretic
exploitation, addressing instability and generalization limits in current LLM-based agents.

3 METHODOLOGY

In this section, we introduce GOE-LLM, our proposed generalizable opponent exploitation frame-
work for LLM agents. Our framework is organized into two hierarchical layers: opponent modeling
followed by opponent exploitation. Specifically, we employ a multilayer perceptron (MLP) as the
opponent profiler, which dynamically classifies the opponent based on their recent behavior tree.
The classification is translated into a language-based description, which is then passed to the LLM
Exploiter, aimed at exploiting the identified opponent. Before detailing these two components, we
first present the formal definition of the game setting for LLM-based agents.

3.1 PRELIMINARIES

Two-player zero-sum imperfect-information extensive-form game. An imperfect-information
extensive-form game(IIEFG) G = (N, A, H,Z, x,p,0,u,T) describes a sequential interaction
among n players (Liu et al., 2022). N = {1,...,n} is a finite set of players, and ¢ denotes the
chance player modeling exogenous randomness. H is the set of non-terminal decision nodes, Z is
the set of terminal nodes (leaves). The set of all possible actions is A, and x : H — 24 assigns to
each decision node h € H the set of legal actions x (k). A player function p : H — N U{c} assigns
to each decision node h the player (or chance) who acts at that node. o is the fixed, commonly
known stochastic policy of the chance player and © = (uq,...,uy) is the utility function, where
u; : Z — R specifies the payoff of player ¢ at each terminal node. I = (1, ..., I,,) is the collection
of information sets, where each I; = {I; 1, ..., I, x, } is a partition of the decision nodes of player s.
If two nodes h, b’ belong to the same information set I; ;, then p(h) = p(h') = i and x(h) = x(h’).
We use I(h) to denote the infoset containing node h. The strategy of player i is o; : I; — A(A),
where A(A) is the set of probability distributions over A. A strategy profile is 0 = (o1,...,0p).
And the expected utility of player 4 under strategy profile o is denoted by w;(0) = u;(0;,0—;),
where o_; is the strategy profile of all players except player . For two-player zero-sum IIEFGs,
we have n = 2 and vy + us = 0. We denote the strategies of player 1 and player 2 are o, and o9,
respectively. The value of the game is defined as v = max,, ming, u1(01,02). A best response

Under review as a conference paper at ICLR 2026

strategy for player 1 against opponent strategy o9 is defined as BR;(02) = argmax,, ui(o1,02).
A strategy profile o* = (o7, 03) is a Nash equilibrium if uy (o7, 03) > uy(0o1,0%) for all o1 and
us (o, 0%) > ug(of,o09) for all o9. In two-player zero-sum games, a Nash equilibrium strategy is
also a minimax strategy, i.e., 0 = BRy(03) and 05 = BRa(07).

Game-playing with LLM agents. Since LLMs are not explicitly designed to model game states
and strategies, we leverage their strong instruction-following capabilities by integrating the game
rules and infoset information into the prompt. This enables the LLM to understand the basic rules
and current state of the game, allowing it to make valid decisions without explicitly modeling the
game state and strategy. Formally, at each decision node h, the LLM agent receives prompt,, that
includes the game rules, the current infoset I(h), and the history of actions taken so far. The LLM
then generates an action a € x(I(h)) based on this prompt: a ~ opm(I(h)) = f(me(prompty)),
where 7y is the LLM parameterized by 6, and f extracts the action from the LLM’s output.

3.2 MLP OPPONENT PROFILER

The MLP profiler is pre-trained to provide opponent information to the LLM exploiter. We collect
opponent data from predefined opponent types to train an MLP classifier, which maps the opponent’s
behavior tree over the last k£ games to a discrete opponent type space. The opponent type is then
translated into a language-based description. It is important to note that the choice of k varies across
different environments and opponent definitions. A small k£ may fail to capture the opponent’s
behavior patterns, while a large k¥ may overlook recent weaknesses. In Kuhn Poker and Leduc
Hold’em poker, we set k = 10 and k = 50, respectively. Due to space constraints, we provide more
training details and choice of k in the Appendix along with visualization results.

3.3 LLM OPPONENT EXPLOITER

We first describe the training procedure of the LLM exploiter. Its objective is to learn a robust policy
that adapts to different opponent types and approximates their best responses. To achieve this, we
propose a Mixture-of-Best-Responses Principle that balances training stability and generalization.
Based on this principle, we extend the GRPO algorithm (Shao et al., |2024) with a fine-grained
opponent-aware reward design to optimize the LLM exploiter, shown in Figure

Optimal J-D Sample . : CT_F;:S
-0 Obs '
& @ S B

_______ ﬁ.N. . Rollouts -+
(©Obs., a3, # Policy Update

Bluffing Passive

Non-transitive
Dominance Cycle

o8¢

Counter Counter |

| think the opponent is playing Rf"’"‘a‘ \a @
a bluff-heavy strategy, so it's a good R > /@
idea to call with Q. ., GT lag

=a;
all
— [Riasen)

Advantages

Figure 2: The training procedure of LLM Opponent Exploiter. There are two key components: (1)
Mixture-of-Best-Responses Principle, which guides the selection of training data, ensuring a diverse
yet non-cyclic counter relation among strategies; (2) Opponent-Aware Policy Optimization, which
optimizes the LLM exploiter using GRPO with a fine-grained opponent-aware reward structure.

3.3.1 MIXTURE-OF-BEST-RESPONSES PRINCIPLE

Training LLM game agents directly on equilibrium strategies often leads to overfitting (Lanctot
et al., |2017), making it difficult to adapt to diverse opponents. Conversely, learning to counter all
possible opponent strategies can result in unstable training.

Let the strategy space of two-player zero-sum IIEFG be Y. For two strategies o, o’ € X, we say that
o counters o', written as o > o', if u(c,c’) > 0, where (0, 0’) denotes the symmetrized payoff

Under review as a conference paper at ICLR 2026

of strategy o against ¢’, obtained by averaging its expected payoff over both player positions in the
zero-sum game. We Let 3;,X; C X denote two disjoint subsets (strategy clusters). We say that >;
counters ¥;, written as X; >~ 3, if

VoeX;, Vo' €eX;: o>0 &au(o,0)>0.

For any strategy o € X, by definition of best response in two-player zero-sum games, we
have @(BR(c),0) > 0, which implies that BR(c) counters 0. We define its counter set as
Counter(c) := {0’ € ¥ | ¢’ = 0}, i.e., the set of all strategies that counter o.

Cyclic counter relation. A strategy set ' C X is said to exhibit a cyclic counter relation if there
exists a subset {01, 02, ..., 0%} C ¥ that forms a non-transitive dominance cycle, i.e.,

01>02, 02>03, Ceey Jk_1>ak, oF ol

Training dataset D is generated from interactions with a collection of profiles {(ogpp07 Jggent) s

where aéppo € X denotes the opponent’s strategy and aggent € X is the agent’s, chosen such that

U;gcnt € Counter(U BR(

Jci)ppo) O—z)ppo)'

We say that D satisfies the Mixture-of-Best-Responses Principle if the set of agent strategies

1 2 m
{aagcntv Uagcnt’ o Uagcnt}

does not exhibit a cyclic counter relation. Intuitively, this Principle requires that the mixture of
best-response strategies used for training is free from cyclic counter relation, thereby ensuring both
training stability and the potential for generalization across diverse opponents. We show the ablation
results of different mixture principles in Section {.3]

3.3.2 OPPONENT-AWARE POLICY OPTIMIZATION

To optimize the LLM exploiter, we adopt GRPO, a reinforcement learning algorithm designed to
eliminate the need for an explicit value function while stabilizing training in reasoning tasks. Unlike
Proximal Policy Optimization (PPO), which relies on estimating token-level advantages using a
learned critic, GRPO leverages a group-based normalization mechanism to estimate the relative
quality of generated responses.

Formally, given a prompt ¢ (corresponding to an infoset in the game) and a group of G sampled
responses {o; }& | generated from the old policy 7g,,, the reward of each response is computed as
R;. The relative advantage of response ¢ is estimated by normalizing rewards within the group:

. Ri— mean({R;}5.,)
C SR

This formulation provides a variance-reduced estimate of relative quality, encouraging the policy to
assign higher probability mass to actions leading to better-than-average outcomes while suppressing
worse ones. The optimization objective of GRPO is given by:

G [os]
1 1 , A,
Taxeo0) = B 1015~ | G D o] 2 (MI0(ra(0) A, clipd) — ﬁDKLﬂ o
=1 t=1

Joif &

clip =clip(r; +(0),1 —¢,14+€), Dkr = Dkr(mgl|mret)-

where the importance ratio is defined as

ri(0) = m9(0i 1 | q,0i <t)
it - .
' T4 (Oi,t | q, 0i,<t)

Here, € is the clipping parameter that controls the trust region of policy updates, and /3 regulates the
KL divergence between the updated policy 7y and a frozen reference policy 7.

Under review as a conference paper at ICLR 2026

Opponent-aware reasoning reward. Rewards R; consist of three components:

* Format reward Roma € [0, 1]: Rewards the agent for adhering to a structured output format,
<think>...</think><answer> [ACTION] </answer>. The <think> tag encap-
sulates the reasoning process and the <answer> tag indicates the final action decision. Only
outputs that strictly follow this format will receive a reward of Rgormae = 1, otherwise Rormae = 0.

* Tag reward Ry, € [0,1]: Based on the specified format, the reply should include <think>,
</think>, <answer>, and </answer>. Each tag must appear exactly once to earn a reward
of 0.25 added to Ry,,. Missing or repeated tags receive no reward for that tag (Han et al., 2025).

* Decision reward Rgecision € [0, 1]: Correction reward based on the accuracy of the final action
decision. If the [ACTION] matches the ground truth, Rgecision = 1; otherwise, Rgecision = 0.

This composite reward structure incentivizes the agent to not only make correct decisions but also
to articulate its reasoning process clearly, enhancing interpretability and consistency. Formally,

R; = Rgecision + atagRtag ~+ Qformatformats

where Quag, Qformac are hyperparameters that balance the contributions of each component.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of GOE-LLM, our proposed LLM-based General-
izable Opponent Exploitation framework, in enhancing the opponent exploitation performance in
two-player zero-sum games. We conduct experiments on Kuhn poker and Leduc Hold’em, com-
paring GOE-LLM with several baseline methods. We also perform ablation studies to assess the
contributions of different components of GOE-LLM. Before presenting the results, we first describe
the experimental setup, including the environments, baselines, and evaluation metrics.

4.1 EXPERIMENTAL SETUP

Environments. We implement GOE-LLM on two classic two-player zero-sum poker games: Kuhn
poker and Leduc Hold’em (Southey et al.l [2005). Both games have an action space consisting of
check, bet, call, raise, and fold, and involve multiple rounds. We use the environment implementa-
tion from the textarena (Guertler et al.| [2025).

To design diverse opponent strategies, we predefine six types of opponent strategies: GTO, Random,
Bluff, ValueBet, Passive, and Aggressive. The GTO strategy for Kuhn poker can be found in [Kuhn
(2016), while for Leduc Hold’em, we compute the GTO strategy using the CFR algorithm (Zinke-
vich et al., [2007). We provide detailed descriptions of opponent strategies in Appendix [A.T] [A.2]

Baselines. We compare GOE-LLM with several baseline methods, including rule-based agents,
LILM-based agents without policy optimization, and fine-tuned LLM agents. Unless otherwise spec-
ified, LLM-based methods use Qwen2.5-3B as the base model. All LLM-based agents use the same
prompt described in Appendix[A.3] The training hyperparameters are summarized in Appendix[A.5]
In the ablation studies, we compare different sizes of LLMs, including Qwen2.5-1.5B, Qwen2.5-7B.
We set e and tgormar t0 0.1, following the setting in|Han et al.|(2025)). The baselines are as follows:

* Rule-based Agents: We implement several rule-based agents with predefined strategies:

— Random Agent: An agent that selects available actions uniformly at random.

— GTO Agent (Kuhn, 2016} Zinkevich et al., [2007): An agent that follows a precomputed
optimal strategy for the game.

— Best-Response Agent: An agent that selects the best response strategy against the hidden
opponent, assuming full knowledge of the opponent. This serves as an upper bound.

* LLM Agent (Yao et al.l[2023b)): An agent that uses a large language model to make decisions
based on the current observation without opponent modeling(OM) information from profiler.

* LLM+OM Agent: An agent that uses a large language model with extra OM information, but
without parameter fine-tuning.

Under review as a conference paper at ICLR 2026

* GTO-LLM Agent (Zhuang et al., 2025): An agent that is fine-tuned on pure GTO strategy data
and makes decisions without OM information during inference.

Evaluation Metrics. We construct a total of 24 different opponent strategies from the six predefined
types, including 21 exploitable strategies and 3 optimal (GTO) strategies. In Leduc Hold’em, we
construct 14 different opponent strategies from five predefined types. The details of the opponent
strategies are summarized in Table [T} To evaluate the performance of each agent, we let each agent
play 3000 hands against each opponent strategy in Kuhn poker and 600 hands in Leduc Hold’em.
The evaluation metrics include the average win chips per hand and the win rate (Southey et al.,
2005)). Implementation details of the predefined strategies can be found in Appendix [A.1}

Table 1: Opponent strategy categories, counts, exploitability, and whether seen during training in
Kuhn poker and Leduc Hold’em.

(a) Kuhn poker. (b) Leduc Hold’em.

Type #Num Exploitable In Training Type #Num Exploitable In Training
Random 1 Yes Yes Random 1 Yes Yes
GTO 3 No Yes GTO 1 No Yes
Bluff 8 Yes Yes Tight 3 Yes Yes
Value 4 Yes No Loose 3 Yes No
Passive 4 Yes No Passive 3 Yes No
Aggressive 4 Yes No Aggressive 3 Yes No
Total 24 - - Total 14 - -

Each agent plays 3000 games against each opponent strategy, and we report the win chips and the
win rate as the evaluation metrics.

4.2 MAIN RESULTS

Table 2] and Table [3] summarize the performance of GOE-LLM in Kuhn poker and Leduc Hold’em,
respectively. GOE-LLM shows strong opponent exploitation ability compared to all baseline meth-
ods. Facing both seen and unseen various opponents, GOE-LLM consistently achieves additional
chips per hand compared to the expected value of a GTO strategy, demonstrating its effectiveness in
exploiting suboptimal opponents. Evaluation results about win rate are provided in Appendix

GOE-LLM is a strong opponent exploiter. As shown in Table[2] GOE-LLM outperforms all base-
line methods across all opponent strategies. GOE-LLM has a superior performance, achieving an
average win of 0.021 chips per hand as PO and 0.133 chips per hand as P1, which most closely ap-
proaches the idealized Best-Response agent’s performance of 0.142 and 0.181. Similarly, in Leduc
Hold’em, GOE-LLM also achieves the best performance, with an average win of 0.083 chips per
hand as PO and 0.034 chips per hand as P1. These indicate that GOE-LLM can effectively adapt its
intrinsic strategy against different opponents to exploit suboptimal strategies.

Training on mixed data promotes generalization. Compared to training solely on pure GTO data,
training on mixed data enables better generalization to out-of-distribution (OOD) opponents. As
shown in Table 2] GTO-LLM plays a standard GTO strategy against the GTO opponent, achieving
an average return of -0.055 chips per hand as PO and 0.052 chips per hand as P1, which is close to
the equilibrium value of Kuhn poker. However, its performance drops significantly against Random
and Aggressive strategies, indicating that the LLM may have merely memorized the equilibrium
strategy without truly learning it. GOE-LLM achieves returns above the equilibrium value against
both seen and unseen opponents, demonstrating its strong generalization ability.

The Vanilla LLM is a weak opponent exploiter. The base LLM without fine-tuning exhibits lim-
ited opponent exploitation capabilities. For Kuhn poker agent, the LLM agent achieves an average
return of -0.077, -0.073 chips per hand. By incorporating additional opponent modeling informa-
tion, the LLM+OM agent achieves an average return of -0.100, -0.114 chips per hand, showing
no improvement. This phenomenon is similar in the Leduc Hold’em, where LLM and LLM+OM
agents achieve average returns of -0.577, -0.343 chips per hand and -0.790, -0.285 chips per hand,
respectively. This indicates that the base LLM cannot effectively utilize opponent information for
exploitation, highlighting the necessity of fine-tuning on relevant data.

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of GOE-LLM with baseline methods in Kuhn poker. Each row
represents an agent, each column represents an opponent type, and each cell shows the average
return per hand when the agent plays as PO or P1. The best performance for PO is highlighted in
bold, while that for P1 is highlighted with a yellow background. BR* denotes an idealized best-
response agent that selects the optimal counter strategy against each opponent.

Agent Opponent (as P,pp)
Method Role Random GTO(s) Bluff(s) Value(s) Passive(s) Agg.(s) Average
Rendom PO 0.111 —0171 —0221 —0303 —0.146 —0.136 —0.145
Pl —0.150 —0.106 —0279 —0125 —0.020 —0.143 —0.137
GTO PO 0.133 —0.051 —0064 —0052 —0065 —0050 —0.025
PI 0.167 0063 0.060 0.046 0.053 0.070 0.076
i PO 0.317 —0.146 —0.154 —0250 —0.148 —0.081 —0.077
PI 0.054 —0109 —0.166 —0.211 —0.063 0.060 —0.073
PO 0222 —0160 —0.178 —0.188 —0.08 —0212 —0.100
LLM+OM b1 5085 —0.143 —0219 —0.091 —0035 —0.112 —0.114
PO 0.010 —0055 —0.035 0.145 0.043 —0.117 —0.001
GTO-LIM 0074 0052 0021 0.125 0.019 —0.163 0.021
PO 0.124 —0054 —0.028 0073 —0.015 0.024 0.021
GOE-LLM | 0212 0058 0219 0.115 0.093 0.101 0.133
SR PO 0509 —0063 0095 0.147 0.081 0.084 0.142
PI 0415 0052 0243 0.126 0.125 0.127 0.181

Table 3: Performance comparison of GOE-LLM with baseline methods in Leduc Hold’em. Each
row represents an agent, each column represents a specific opponent strategy.

Agent Opponent (as Popp)

Method Role Random GTO Tight1 Tight2 Tight3 Loosel Loose2 Loose3 Passivel Passive2 Passive3 Agg.l Agg2 Agg3 Average
LLM PO 0.263 —0.063 0.092 —0.054 0.529 —0.975 —1.208 —1.850 0.433 —0.375 —0.408 —1.113 —1.429 —1.917 —0.577

P1 —0.463 0.121 0.379 —0.063 0.242 —0.425 —0.292 —1.083 —0.529 —0.242 —0.525 —0.683 —0.754 —0.488 —0.343
LLM+OM PO 0.007 —0.618 0.727 0.815 0.792 —1.760 —2.108 —2.438 0.362 0.108 0.337 —2.423 —2.413 —2.440 —0.790
- Pl —0.285 0.115 0.577 0.917 0.767 —1.358 —1.012 -1.013 0.533 0.582 0.248 —1.362 —1.495 —1.197 —0.285
GOE-LLM PO 0.268 0.042 —0.098 —0.105 —0.120 0.118 0.277 0.082 0.088 —0.167 0.062 0.185 0.190 0.347 0.083

Pl 0.203 0.082 —0.063 —0.093 0.175 0.143 —0.035 0.287 0.043 0.093 0.060 —0.128 —0.265 —0.027 0.034

4.3 ABLATION STUDIES

Data Mixture Strategies for LLM Training. To evaluate the impact of different data mixture
strategies on the training process and final performance, we design three data mixture strategies for
comparison experiments: 1) GOE(only GTO), only using GTO data for training; 2) GOE, training
data includes multiple strategies while satisfying the mixture principle; 3) GOE(+NTDC), adding
opponent strategy data with Non-Transitive Dominance Cycle on the basis of GOE. Figure 3] shows
the main training results. More detailed training curves are presented in Appendix [C.2]

@) critic/score/mean (o) actor/grad_norm © actor/entropy_loss

. Exploding
v Gradients

5

l‘\& \ Unstable

Critic Score

Figure 3: Ablation study on different data mixture strategies based on various LLM sizes.

From Figure 3[a), we observe that GOE(+NTDC) exhibits instability in the early stages of training
due to the presence of Non-Transitive Dominance Cycles, resulting in significant fluctuations, which
gradually converges after 40 training steps. Our GOE method, by avoiding the existence of cyclic
counter relations, enables the model to be more stable during training, converging after about 25
steps. GOE(only GTO) converges the fastest, as it only needs to learn one best response strategy.

Under review as a conference paper at ICLR 2026

A similar trend can be observed in the gradient norm in Figure B{b), where GOE(+NTDC) has
exploding gradients in the early stages of training, further validating the positive effect of the mixture
principle on training stability. Figure B{c) shows that models of different sizes based on the GOE
method can steadily reduce the entropy loss, indicating that the model gradually learns opponent
exploitation strategies. After convergence, the models maintain an entropy above 0.4, indicating

that the models retain a certain level of strategy diversity (Cui et al., 2025a).

Contribution of MLP Profiler. To assess the contribution of the MLP Profiler in GOE-LLM, we
conduct an ablation study by removing the profiler, as GOE-LLM(w/o Profiler). As shown in Fig-
ure [d] GOE-LLM (w/o profiler) performs well against seen opponents. With opponent information
from the MLP Profiler, GOE-LLM achieves substantial improvements against unseen opponents,
while preserving its performance on seen ones. This improvement is mainly attributed to the high
opponent-type identification accuracy, which exceeds 96% across all types and enables the exploiter
to adjust its strategy more efficiently. Table[5]in Appendix [A:4]reports the accuracy across opponent
types. We also test the profiler under different player positions; details are in Appendix [C.1}

Average Win Chips against Different Opponents Performance Across Different Model Sizes
0.2
W GOE-LLM(w/o Profiler) 0.154
0419 = GOE-LLM

0.0

B Y

LLM-OM
. GTO-LLM
= GOE-LLM

|
o
N

Average Win Chips
Average Win Chips

|
<
>

Random GTO Bluff Value Passive Agg. Average

Qwen2.5-1.5B Qwen2.5-3B Qwen2.5-7B

Figure 4: Average win chips per hand of Figure 5: Average win chips per hand with dif-
GOE-LLM with and without the MLP Profiler. ferent LLM sizes, compared to baselines.

Various LLM Sizes. Figure[5]presents the performance of GOE-LLM with different LLM sizes, in-
cluding Qwen2.5-1.5B, Qwen2.5-3B, and Qwen2.5-7B. Observing the results of LLM-based meth-
ods, the overall trend is that as the model size increases, the performance gradually improves. For the
LLM+OM method, adding extra opponent information for smaller models not only fails to enhance
strategy capability but also degrades performance; however, it does improve for the 7B model. This
may arise from smaller models’ limited ability to understand the environment and follow instruc-
tions, making the extra information more likely to hinder rather than help their decision-making.
The GTO-LLM method enables the model to learn a good equilibrium strategy, stabilizing around
0. Our method, GOE-LLM, achieves good performance across different model sizes, reaching a
peak performance of 0.154 chips per hand. The results demonstrate that our method can effectively
enhance opponent exploitation capabilities across different model sizes.

5 CONCLUSION

GOE-LLM, a novel framework, enables LLM agents to perform opponent exploitation in two-player
zero-sum imperfect-information games. By introducing a mixture of best-response data, we not only
stabilize the learning of mixed strategies for the LLM exploiter but also avoid collapsing to a sin-
gle equilibrium strategy, thereby generating diverse best-response strategies. The lightweight MLP
profiler is trained to identify opponent types from recent behaviors of opponent and translate them
into language-based descriptions for the LLM exploiter. This enables the LLM exploiter to adapt
to unseen or out-of-distribution opponent types. We validate the effectiveness of the GOE-LLM
framework in Kuhn poker and Leduc Hold’em, highlighting the importance of the mixture-best-
responses principle in maintaining stable training and diverse strategies for the LLM exploiter. A
current limitation is that GOE-LLM has not yet been assessed in more realistic general-sum or mixed
cooperative—competitive domains, and exploring such settings represents an important direction for
future work. Overall, our findings demonstrate the potential of leveraging LLM-based agents for
generalizable opponent exploitation in more complex imperfect-information games.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or proprietary information. The
poker environments used (Kuhn poker and Leduc Hold’em poker) are standard benchmarks and do
not raise ethical concerns. All datasets are synthetically generated and publicly shareable. We are
not aware of any direct societal risks or negative downstream applications of our study. We have
adhered to the Ethics throughout the preparation and submission of this work.

REPRODUCIBILITY STATEMENT

In the Supplementary Material, we provide the code for data generation, datasets, training and
evaluation scripts, as well as detailed experimental results to facilitate verification and replica-
tion of our findings. The experimental environments for Kuhn poker and Leduc Hold’em poker
are adapted from textarena: https://github.com/LeonGuertler/TextArenal Our
implementation of the CFR algorithm follows an open-source reference: https://github.
com/tansey/pycfr. The LLMs used in this work are downloaded from HuggingFace, fine-
tuned with the verl library(https://github.com/volcengine/verl), and evaluated us-
ing vllm(https://github.com/v1lm-project/v1lm).

REFERENCES

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Perolat, Max Jader-
berg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. In International
Conference on Machine Learning, pp. 434-443. PMLR, 2019.

Ariyan Bighashdel, Yongzhao Wang, Stephen McAleer, Rahul Savani, and Frans A. Oliehoek. Pol-
icy space response oracles: A survey. In Kate Larson (ed.), Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelligence, IJCAI-24, pp. 7951-7961. International
Joint Conferences on Artificial Intelligence Organization, 8 2024. doi: 10.24963/ijcai.2024/880.
URL https://doi.org/10.24963/1ijcai.2024/880. Survey Track.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025a.

Sijia Cui, Shuai Xu, Aiyao He, Yanna Wang, and Bo Xu. Empowering llms with parameter-
ized skills for adversarial long-horizon planning, 2025b. URL https://arxiv.org/abs/
2509.13127.

Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias Stengel-
Eskin, Mohit Bansal, Tianlong Chen, and Kaidi Xu. Gtbench: Uncovering the strategic reasoning
capabilities of 1lms via game-theoretic evaluations. Advances in Neural Information Processing
Systems, 37:28219-28253, 2024.

Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David Mguni,
Yali Du, and Jun Wang. Chessgpt: Bridging policy learning and language modeling. Advances in
Neural Information Processing Systems, 36:7216-7262, 2023.

Sam Ganzfried and Tuomas Sandholm. Safe opponent exploitation. ACM Transactions on Eco-
nomics and Computation (TEAC), 3(2):1-28, 2015.

Zhenyu Guan, Xiangyu Kong, Fangwei Zhong, and Yizhou Wang. Richelieu: Self-evolving llm-
based agents for ai diplomacy. Advances in Neural Information Processing Systems, 37:123471—
123497, 2024.

Leon Guertler, Bobby Cheng, Simon Yu, Bo Liu, Leshem Choshen, and Cheston Tan. Textarena.
arXiv preprint arXiv:2504.11442, 2025.

10

https://github.com/LeonGuertler/TextArena
https://github.com/tansey/pycfr
https://github.com/tansey/pycfr
https://github.com/volcengine/verl
https://github.com/vllm-project/vllm
https://doi.org/10.24963/ijcai.2024/880
https://arxiv.org/abs/2509.13127
https://arxiv.org/abs/2509.13127

Under review as a conference paper at ICLR 2026

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. In IJCAI, 2024.

Peixuan Han, Zijia Liu, and Jiaxuan You. Tomap: Training opponent-aware llm persuaders with
theory of mind. arXiv preprint arXiv:2505.22961, 2025.

Bret Hoehn, Finnegan Southey, Robert C Holte, and Valeriy Bulitko. Effective short-term opponent
exploitation in simplified poker. In AAAI volume 5, pp. 783-788, 2005.

Sihao Hu, Tiansheng Huang, Gaowen Liu, Ramana Rao Kompella, Fatih Ilhan, Selim Furkan Tekin,
Yichang Xu, Zachary Yahn, and Ling Liu. A survey on large language model-based game agents.
arXiv preprint arXiv:2404.02039, 2024.

Chenghao Huang, Yanbo Cao, Yinlong Wen, Tao Zhou, and Yanru Zhang. Pokergpt: An end-to-
end lightweight solver for multi-player texas hold’em via large language model. arXiv preprint
arXiv:2401.06781, 2024.

Jen-tse Huang, Eric John Li, Man Ho Lam, Tian Liang, Wenxuan Wang, Youliang Yuan, Wenxi-
ang Jiao, Xing Wang, Zhaopeng Tu, and Michael R. Lyu. Competing large language models in
multi-agent gaming environments. In Proceedings of the Thirteenth International Conference on
Learning Representations (ICLR), 2025.

Ruozi Huang, Xipeng Wu, Hongsheng Yu, Zhong Fan, Haobo Fu, Qiang Fu, and Wei Yang. A robust
and opponent-aware league training method for starcraft ii. Advances in Neural Information
Processing Systems, 36:47554-47574, 2023.

Seth Karten, Andy Luu Nguyen, and Chi Jin. Pokéchamp: an expert-level minimax language
agent. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=Snz7SKykHhl

Harold W Kuhn. A simplified two-person poker. Contributions to the Theory of Games, 1:97-103,
2016.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent rein-
forcement learning. Advances in neural information processing systems, 30, 2017.

Pengdeng Li, Shuxin Li, Chang Yang, Xinrun Wang, Xiao Huang, Hau Chan, and Bo An. Self-
adaptive psro: Towards an automatic population-based game solver. In Kate Larson (ed.), Pro-
ceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24,
pp. 139-147. International Joint Conferences on Artificial Intelligence Organization, 8§ 2024a. doi:
10.24963/ijcai.2024/16. URL https://doi.org/10.24963/1jcai.2024/16. Main
Track.

Shuxin Li, Chang Yang, Youzhi Zhang, Pengdeng Li, Xinrun Wang, Xiao Huang, Hau Chan, and
Bo An. In-context exploiter for extensive-form games. arXiv preprint arXiv:2408.05575, 2024b.

Jonathan Light, Min Cai, Sheng Shen, and Ziniu Hu. Avalonbench: Evaluating LLMs playing the
game of avalon. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023. URL
https://openreview.net/forum?id=1tUrSrySOK.

Jonathan Light, Min Cai, Weiqin Chen, Guanzhi Wang, Xiusi Chen, Wei Cheng, Yisong Yue, and
Ziniu Hu. Strategist: Self-improvement of LLM decision making via bi-level tree search. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=gfI9v7AbFgl

Mingyang Liu, Chengjie Wu, Qihan Liu, Yansen Jing, Jun Yang, Pingzhong Tang, and Chongjie
Zhang. Safe opponent-exploitation subgame refinement. Advances in Neural Information Pro-
cessing Systems, 35:27610-27622, 2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

11

https://openreview.net/forum?id=SnZ7SKykHh
https://openreview.net/forum?id=SnZ7SKykHh
https://doi.org/10.24963/ijcai.2024/16
https://openreview.net/forum?id=ltUrSryS0K
https://openreview.net/forum?id=gfI9v7AbFg
https://openreview.net/forum?id=gfI9v7AbFg

Under review as a conference paper at ICLR 2026

Chengshuai Shi, Kun Yang, Jing Yang, and Cong Shen. Transformers as game players: Provable
in-context game-playing capabilities of pre-trained models. Advances in Neural Information Pro-
cessing Systems, 37:132001-132049, 2024.

Max Olan Smith, Thomas Anthony, and Michael P Wellman. Learning to play against any mixture
of opponents. Frontiers in Artificial Intelligence, 6:804682, 2023.

Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse Billings,
and Chris Rayner. Bayes’ bluff: opponent modelling in poker. In Proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence, pp. 550-558, 2005.

Richard L Tenney and Caxton C Foster. Non-transitive dominance. Mathematics Magazine, 49(3):
115-120, 1976.

Haolin Wang, Xueyan Li, Yazhe Niu, Shuai Hu, and Hongsheng Li. Empowering LLMs in decision
games through algorithmic data synthesis. In Will Synthetic Data Finally Solve the Data Access
Problem?,2025. URL https://openreview.net/forum?id=1RIHEJWNI1L.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Kaixuan Xu, Jiajun Chai, Sicheng Li, Yuqgian Fu, Yuanheng Zhu, and Dongbin Zhao. DipLLM:
Fine-tuning LLM for strategic decision-making in diplomacy. In Forty-second International
Conference on Machine Learning, 2025a. URL https://openreview.net/forum?id=
hfPaOxDWfET.

Shuai Xu, Sijia Cui, Yanna Wang, Bo Xu, and Qi Wang. Strategy-augmented planning for large
language models via opponent exploitation. arXiv preprint arXiv:2505.08459, 2025b.

Jian Yao, Weiming Liu, Haobo Fu, Yaodong Yang, Stephen McAleer, Qiang Fu, and Wei Yang. Pol-
icy space diversity for non-transitive games. Advances in Neural Information Processing Systems,
36:67771-67793, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Wengqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li,
Yueting Zhuang, and Weiming Lu. Agent-pro: Learning to evolve via policy-level reflection and
optimization. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 5348-5375, 2024a.

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Yan Xia, Wenshan Wu, Ting Song, Man
Lan, and Furu Wei. LLM as a mastermind: A survey of strategic reasoning with large language
models. In First Conference on Language Modeling, 2024b. URL https://openreview.
net/forum?id=1MgJsQ4evS.

Yiming Zhang, Athul Paul Jacob, Vivian Lai, Daniel Fried, and Daphne Ippolito. Human-aligned
chess with a bit of search. In The Thirteenth International Conference on Learning Representa-
tions, 2025. URL https://openreview.net/forum?id=bc2H72hGxB.

Richard Zhuang, Akshat Gupta, Richard Yang, Aniket Rahane, Zhengyu Li, and Gopala Anu-
manchipalli. Pokerbench: Training large language models to become professional poker players.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 26175-26182,
2025.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization
in games with incomplete information. Advances in neural information processing systems, 20,
2007.

12

https://openreview.net/forum?id=1RIHEJWN1L
https://openreview.net/forum?id=hfPaOxDWfI
https://openreview.net/forum?id=hfPaOxDWfI
https://openreview.net/forum?id=iMqJsQ4evS
https://openreview.net/forum?id=iMqJsQ4evS
https://openreview.net/forum?id=bc2H72hGxB

Under review as a conference paper at ICLR 2026

CONTENTS OF APPENDIX

A" Implementation Details| 14
A. SrategIes| e e e e e e 14
[A2 DatasetDetails| 14
[A.3 Prompt Design|l 15
[A4 MLP Profiler Details| 16
IA.5 Tramning Parameters|. o o 17
|A.6 Traimning Environment Detals|. 18

B_More Results 19
B.I__Additional Resultson WinRate] 19

[C_Ablafion Details 19
C MLP Profiler.] e 19
IC.2 Mixture of Tramning Data.|., 20

13

Under review as a conference paper at ICLR 2026

APPENDIX

A IMPLEMENTATION DETAILS

A.1 STRATEGIES

Kuhn Poker Agents.

In our implementation, we build a series of rule-based strategy agents based on the game structure
of Kuhn Poker. The core idea is to use predefined probability tables conditioned on card strength,
player position, and action history to decide whether to bet, call, fold, or check, thereby simulating
players with different styles. Each type of agent is controlled by a small set of parameters: GtoAgent
uses a parameter « to adjust the bluffing frequency with weak cards, where o = 1/3 approximates
the equilibrium strategy, smaller values represent more conservative play, and larger values indicate
more aggressive play; BluffAgent extends « to higher ranges and allows an additional parameter
to control bluffing tendencies after the opponent checks, thereby modeling over-bluffing strategies;
ValueAgent and PassiveAgent parameterize the degree of value betting and passive folding, re-
spectively, to represent solid or conservative styles; while AggressiveAgent uses its parameter to
determine bluffing frequency with weak cards, modeling highly aggressive play. We also provide
natural language opponent descriptions for prompt conditioning. Overall, the strategies exhibit a
typical non-transitive countering relationship: Aggressive (bluff-heavy) strategies can exploit Pas-
sive strategies, Passive strategies can counter Value strategies, and Value strategies can effectively
counter Aggressive strategies.

Leduc Hold’em Agents.

In the case of Leduc Hold’em, we similarly design a set of rule-based opponent strategies to capture
diverse and contrasting playing styles. The baseline LeducGTOAgent follows approximate equilib-
rium strategies derived from PyCFR, balancing value betting and bluffing across different rounds.
On top of this baseline, we introduce parameterized variants: LeducTightAgent emphasizes con-
servative play by drastically reducing betting or bluffing frequencies with weaker hands, focusing
only on strong holdings; LeducL.ooseAgent represents the opposite style, frequently entering pots
and bluffing with weak hands, thereby creating exploitable over-aggression; LeducAggressiveAgent
systematically increases betting and raising frequencies regardless of card strength, aiming to apply
constant pressure; while LeducPassiveAgent reduces proactive betting and relies mainly on check-
ing and calling, reflecting a cautious and defensive style. We also include a LeducRandomAgent as
a baseline without strategic structure. Each agent is controlled by simple parameters (e.g., tightness,
looseness, aggression, passiveness) that adjust the relative weights of betting, calling, folding, and
checking. For clarity in evaluation, we additionally provide natural language descriptions of these
strategies to guide prompt conditioning. Overall, these strategies represent interpretable stylized
opponents in Leduc Hold’em, where tight strategies can be exploited by bluffing, loose strategies
can be punished by calling more often, aggressive styles are countered by defensive value play, and
passive styles are vulnerable to pressure and frequent betting.

A.2 DATASET DETAILS

Kuhn Poker Agent Dataset

In the Kuhn Poker task, we constructed a balanced and diverse dataset by generating match tra-
jectories from three complementary opponent pairings: RandomAgent vs. GTOAgent to introduce
non-strategic noise against equilibrium play, GTOAgent vs. GTOAgent to capture distributions close
to Nash equilibrium, and BluffAgent vs. Counter-BluffAgent to model systematic over-bluffing and
its corresponding counter-strategies. These matchups generated 32k, 64k, and 32k raw samples re-
spectively, from which we selected a final 64k training set with an 8:2 train—validation split (51.2k
: 12.8k). Importantly, GOE-LLM and the GTO-LLM baseline were both trained under identical
hyperparameter settings, including a batch size of 512. Because checkpoints were saved every 100
steps, one full training run corresponds to processing 51.2k samples, ensuring that both models are
evaluated after being exposed to exactly the same amount of data. GOE-LLM constructs a 64k train-
ing corpus combining diverse opponent styles, whereas the baseline GTO-LLM dataset (96k total
samples) is exclusively generated from GTOAgent vs. GTOAgent interactions.

14

Under review as a conference paper at ICLR 2026

Leduc Hold’em Agent Dataset

For Leduc Hold’em, we followed a comparable data-generation protocol while expanding the be-
havioral coverage of strategic deviations. Specifically, the dataset combines samples from Rando-
mAgent vs. GTOAgent (24k), GTOAgent vs. GTOAgent (32k), and TightAgent vs. LooseAgent
(24k) matchups, jointly modeling equilibrium play, non-strategic noise, and classical tight-loose
exploitation dynamics. From these raw 80k trajectories, we constructed an 80k training dataset with
an 8:2 train—validation split (64k : 16k). This ensures that the training distribution does not inadver-
tently encode cyclical or anti-correlated behavioral patterns, but instead reflects a broad yet stable
mixture of strategically interpretable interactions. Consistent with the Kuhn Poker setting, both
GOE-LLM and the GTO-LLM baseline were trained with identical optimization hyperparameters,
such that each reported checkpoint corresponds to the same effective exposure—64k samples—with
the baseline GTO-LLM relying entirely on GTOAgent vs. GTOAgent equilibrium-only data during
construction.

Table 4: Composition of training data for Kuhn Poker and Leduc Hold’em. The table reports the
generated samples from each matchup and the final selected training size.

Game Matchup Generated Samples Training Samples(Train:Val)
Random vs. GTO 32,000
Kuhn Poker GTO vs. GTO 64,000 64,000(51,200:12,800)
Bluff vs. Counter-Bluff 32,000
Random vs. GTO 24,000
Leduc Hold’em GTO vs. GTO 32,000 80,000(64,000:16,000)
Tight vs. Loose 24,000

A.3 PROMPT DESIGN

Prompt 1: Kuhn Poker Agent

You are an expert Kuhn Poker player, tasked with making optimal decisions in a two-player simplified poker environment. Your objective
is to maximize expected value while reasoning about hidden information and opponent behavior.

Game Rules

Kuhn Poker is a fundamental imperfect-information game with the following properties:

- Deck: 3 cards {J, Q, K}, ranked J < Q < K.

- Initial setup: Each player antes 1 chip and is dealt 1 private card (cards are dealt without replacement).
- Showdown: If both players remain without folding, the player with the higher card wins the pot.

Action Rules

At each decision point, the following actions may be taken (subject to the betting history):
- [Check]: Pass without betting (only if no bet is on the table).

- [Bet]: Add 1 chip to the pot (only if no bet is on the table).

- [Call]: Match an opponent’s bet by adding 1 chip to the pot (only if a bet has been made).
- [Fold]: Concede the pot to the opponent (only if a bet has been made).

Decision Context (State Representation)

The state will be described in natural language, including:
- Your role: Player {player_id} ({first} to act this round).
- Private information: Your card = {card}.

- Action history: {history}.

- Legal actions available: {available_actions}.

Output Format
Your response must explicitly include reasoning and action selection:

<think> Your thoughts and reasoning </think>
<answer> [ACTION] </answer>

- The <think> field should describe your strategic reasoning (e.g., hand strength, bluffing, opponent modeling).
- The <answer> field must contain exactly one action from {available_actions}.

Important Notes

1. You must always provide a reasoning process in the <think> field.

2. Your final choice in <answer> must be strictly one of the available actions.

3. Decisions should consider both exploitative opportunities and minimization of exploitability.

15

Under review as a conference paper at ICLR 2026

Prompt 2: Leduc Hold’em Agent

You are an expert Leduc Hold’em player, tasked with making optimal strategic decisions in a two-player fixed-limit poker environment.
Your goal is to maximize expected utility through well-reasoned betting actions, given private information (your card), public information
(community card, betting history), and the opponent’s behavior.

Game Rules

Leduc Hold’em is a simplified poker variant with perfect recall and incomplete information:

- Deck: 6 cards (two each of J, Q, K).

- Initial setup: Each player antes 1 chip and receives 1 private card.

- Round 1 (Pre-flop): A betting round begins. Bet size is 2 chips. Maximum of 2 raises per round.

- Round 2 (Post-flop): One public card is revealed. A second betting round begins with fixed bet size of 4 chips. Maximum of 2 raises per
round.

- Showdown: If both players remain, the winner is determined by hand strength .

- Pot Limitations: Betting is fixed-limit, ensuring bounded strategy space.

Action Rules

At each decision point, you may choose from the following legal actions (subject to game constraints):

- [Check]: Pass without adding chips (only if no outstanding bet).

- [Bet]: Initiate betting (2 chips pre-flop, 4 chips post-flop; only if no outstanding bet).

- [Raise]: Increase the current bet by the fixed size (2 or 4 chips), only if fewer than 2 raises have occurred this round.
- [Call]: Match the opponent’s current bet (only if a bet exists).

- [Fold]: Concede the pot immediately (only if a bet exists).

Decision Context (State Representation)

The current decision state is described in natural language and includes:
- Your role: Player {player_id} ({first} to act this round).

- Private information: Your hole card = {card}.

- Public information: {board_card}.

- Action history: {history}.

- Legal actions available: {available_actions}.

Output Format
Your response must explicitly include both reasoning and action selection:

<think> Detailed reasoning about hand strength, betting history,
opponent modeling, and risk/reward tradeoffs. </think>
<answer> [ACTION] </answer>

- The <think> field should explain why you select a given action.
- The <answer> field must contain exactly one action from {available_actions}.

Important Notes

1. Always provide reasoning in the <think> section before deciding.

2. Your decision should balance value extraction, bluffing opportunities, and minimization of exploitability.
3. The final output must conform strictly to the format above.

4. You must never output actions not listed in {available_actions}.

A.4 MLP PROFILER DETAILS

The MLP Opponent Profiler is designed to enhance the generalization capability of the LLM Ex-
ploiter against unseen opponents. Specifically, we maintain a history of the opponent’s behavior
trees over the last k£ games. We extract features from these decision trees to form a fixed-length
vector representation. This vector is then fed into a pre-trained MLP classifier that maps it to a dis-
crete opponent type space. Finally, we translate the identified opponent type into a language-based
description, which is provided as auxiliary information to the LLM Exploiter. This enables the LLM
to adjust its strategy based on the classified opponent type.

The value of k is a critical hyperparameter that balances the trade-off between responsiveness and
stability in opponent modeling. A smaller k allows the profiler to quickly adapt to recent changes
in the opponent’s strategy, while a larger & provides a more stable and comprehensive view of the
opponent’s behavior over time.

We visualize the decision feature vectors for different values of k using t-SNE in Figure[6] In Kuhn
Poker, when k is small, the distribution of decision vectors is more scattered, making it difficult to
distinguish between different opponent types. However, when k& = 10, the decision vectors form
distinct clusters, with clearer boundaries between different opponent types. This clustering effect fa-
cilitates the training and generalization of the MLP classifier. For the more complex Leduc Hold’em
poker, which has a larger strategy space, a longer history % is needed to capture the opponent’s be-

16

Under review as a conference paper at ICLR 2026

havior patterns. We find that when k£ = 50, the decision vectors also form distinct clusters in the
t-SNE visualization, aiding in distinguishing between different opponent types.

k-hands Decision Features of Strategies in Kuhn Poker

I_/\
\-‘

t-SNE Dimension 2
(]

|

© RandomAgent
© GtoAgent
BluffAgent

-I’ ° -

BarS %

e

k-hands Decision Features of Strategies in Leduc Hold'em

t-SNE Dimension 2
|

© LeducRandomAgent
Le

F o
izl Sl
t-SNE Dimension 1
(a) Kuhn Poker with £ = 10

20 3 2
t-SNE Dimension 1

(b) Leduc Hold’em poker with k& = 50

Figure 6: More complex games require longer history k to capture opponent behavior patterns.

Table 5: Confusion matrix across six strategy categories.
accuracy, with Value(s), Passive(s), and Aggressive(s) achieving near-perfect performance.

Most classes show high classification

True \ Pred Random GTO(s) Bluff(s) Value(s) Passive(s) Aggressive(s) Accuracy
Random 600 0 0 0 0 1.0000
GTO(s) 0 1730 69 0 1 0 0.9611
Bluff(s) 0 61 4739 0 0 0 0.9873
Value(s) 0 0 0 2392 8 0 0.9967
Passive(s) 0 4 0 3 2393 0 0.9971
Aggressive(s) 0 0 0 0 0 2400 1.0000

A.5 TRAINING PARAMETERS

Opponent Profiler.
Table 6: Training parameters for the Opponent Profiler.

Parameter Value
Hidden Layer Sizes (128, 64)
Activation Function ReLLU
Solver Adam
L2 Regularization Coefficient (o)) le-4
Batch Size 64
Learning Rate le-3
Maximum Iterations 200
Early Stopping Enabled
Patience (No Change Tolerance) 10 iterations
Validation Fraction 0.1

LLM Exploiter.

17

Under review as a conference paper at ICLR 2026

Table 7: Training parameters employed in the LLM Exploiter experiment.

Parameter

Value

Algorithm Advantage Estimator
Training Batch Size

Maximum Prompt Length
Maximum Response Length
Overlong Prompt Filtering
Truncation Strategy

Learning Rate

PPO Mini-batch Size

PPO Micro-batch Size per GPU
KL Divergence Loss

KL Loss Coefficient

KL Loss Type

Entropy Coefficient

Gradient Checkpointing

KL in Reward Computation
Critic Warmup Steps

Rollout Sample Size

&rpo

5

12

1024

5

12

False
error
le-6

128

16
Enabled

0

.001

low_var_kl

0

Enabled
Disabled

0
5

A.6 TRAINING ENVIRONMENT DETAILS

Table 8: Integrated environment configuration for VERL training (hardware, software, memory,

distributed training, inference, and data preprocessing).

Category Parameter Value
Hardware GPUs per Node 2
Number of Nodes 1
Tensor Model Parallel Size 2
GPU Memory Utilization 0.9
Software Training Framework VERL
Inference Engine vLLM
Logging System Console + Weights & Biases
Memory Gradient Checkpointing Enabled
Parameter Offload (Actor) False
Parameter Offload (Reference) True
Optimizer Offload False
Remove Padding True
Distributed FSDP Parameter Offload False
FSDP Optimizer Offload False
Micro-batch Size per GPU 16
Log-Prob Micro-batch Size 32
Multi-GPU Communication NCCL
Inference Inference Backend vLLM
Rollout Samples 5
Memory Management Dynamic
Batch Processing Parallel

Data Preprocessing

Data Loading
Sequence Truncation
Prompt Filtering
Batch Processing

Parquet Reader
Error on Overflow
Disabled

Dynamic Batching

18

Under review as a conference paper at ICLR 2026

B MORE RESULTS
B.1 ADDITIONAL RESULTS ON WIN RATE

Table 9: Win Rate of GOE-LLM with baseline methods in Leduc Hold’em. Each row represents an
agent, each column represents a specific opponent strategy.

LLM@3B) Opponent (as Poyp)
Method Role Random GTO Tight Loose Passive Aggressive Average
Random PO 39.83 % 38.67 % 66.00 % 26.67 % 44.55 % 20.61 % 39.39 %
P1 52.33 % 41.00 % 67.39 % 31.89 % 48.39 % 28.94 % 44.99 %
GTO PO 49.67 % 41.67 % 53.61 % 37.39 % 44.83 % 36.28 % 43.91 %
P1 43.00 % 40.50 % 53.00 % 36.83 % 41.22 % 3528 % 41.64 %
BR PO 48.42 % 41.33 % 58.35 % 3594 % 4528 % 33.65 % 43.83 %
P1 43.83 % 40.88 % 56.75 % 34.22 % 44.83 % 32.57 % 42.18 %
LLM PO 51.25 % 59.17 % 77.72 % 11.61 % 50.50 % 21.11 % 45.23 %
P1 3750 % 37.08 % 74.00 % 20.17 % 51.22 % 2583 % 40.97 %
LLM+OM PO 54.67 % 35.67 % T7.72 % 26.67 % 51.50 % 11.78 % 43.00 %
P1 37.00 % 34.67 % 74.00 % 31.89 % 51.00 % 20.17 % 41.45 %
GOE-LLM PO 43.50 % 40.17 % 40.78 % 37.39 % 40.33 % 41.72 % 40.65 %
Pl 41.17 % 39.17 % 42.72 % 36.83 % 38.83 % 39.06 % 39.63 %
Table 10: Win Rate of GOE-LLM with baseline methods in Kuhn Poker.
LLM(@3B) Opponent (as Popp)
Method Role Random GTO Bluff Value Passive Aggressive Average
Random PO 56.67 % 52.67 % 49.07 % 47.36 % 55.13 % 50.94 % 51.97 %
P1 4417 % 51.48 % 3757 % 52.02 % 57.09 % 42.50 % 4747 %
GTO PO 51.83 % 52.08 % 50.64 % 50.59 % 54.07 % 51.10 % 51.72 %
P1 4733 % 51.59 % 41.80 % 51.20 % 55.08 % 45.53 % 48.76 %
BR PO 53.00 % 51.82 % 51.05 % 50.00 % 62.45 % 50.00 % 53.05 %
P1 4797 % 50.78 % 50.00 % 50.00 % 64.60 % 50.00 % 52.22 %
LLM PO 64.30 % 55.38 % 54.51 % 50.00 % 56.01 % 5832 % 56.42 %
Pl 50.10 % 53.61 % 41.15 % 52.58 % 60.57 % 52.43 % 51.74 %
LLM+OM PO 60.33 % 54.73 % 54.02 % 40.82 % 61.95 % 4162 % 52.24 %
Pl 44.30 % 51.21 % 39.30 % 48.33 % 64.30 % 43.39 % 4847 %
GTO-LLM PO 4240 % 44.45 % 4043 % 49.99 % 50.00 % 37.92 % 44.20 %
P1 41.33 % 47.17 % 37.01 % 50.00 % 50.00 % 34.84 % 43.39 %
GOE-LLM PO 48.77 % 49.65 % 49.30 % 49.94 % 61.22 % 49.56 % 5141 %
P1 48.20 % 49.86 % 48.88 % 49.98 % 61.98 % 49.03 % 51.32 %

C ABLATION DETAILS

C.1 MLP PROFILER.

As shown in Figure [/} we can see that GOE-LLM(w/o Profiler) and GOE-LLM perform similarly
against seen opponents (e.g., Random, GTO, Bluff), but show clear differences against unseen op-
ponents (Value, Passive, Aggressive). With the MLP Profiler, GOE-LLM generally achieves higher
win rates against these unseen opponents, with the most notable improvements observed when PO
plays against Value and Passive opponents. On average, GOE-LLM enhances adaptability to unseen
opponents while maintaining its performance against seen ones, demonstrating that the MLP Profiler
effectively improves the model’s generalization and robustness.

19

Under review as a conference paper at ICLR 2026

Average Win Chips as PO against Different Opponents

mmm GOE-LLM(w/o Profiler)
B GOE-LLM

Average Win Chips

Random GTO Bluff Value Passive Agg. Average

(a) Player 0 (P0O)

Average Win Chips

Average Win Chips as P1 against Different Opponents

mmm GOE-LLM(w/o Profiler)
B GOE-LLM

Random Bluff Value Passive Agg. Average

(b) Player 1 (P1)

Figure 7: Critic score curves for LLM exploiters trained with and without the MLP-based opponent
profiler, across different player positions (PO and P1).

C.2 MIXTURE OF TRAINING DATA.

(@)

critic/score/mean
— 7TB.GOE(*NTDC) = 78.GOE. = T8-GOE(only GTO

critic/score/mean
— LSB.GOE(¥TDC) = 15B-GOE(only GTO) — 158-GOE

(b)

critic/score/mean
— 3B.GOE(NTDC) — 38-GOE(only GTO) — 38-GOE

Unstable
Critic Score

Step

100

Figure 8: Critic score curves for LLM exploiters trained on different mixture datasets, across differ-
ent model sizes (1.5B, 3B, 7B).

As shown in Figure the critic score curves across different model sizes (1.5B, 3B, 7B) consistently
demonstrate clear differences among the three mixture strategies. For the smallest model (1.5B),
GOE-LLM achieves the balance between stability and performance, with faster improvement and
higher final scores compared to GOE-LLM(only GTO), while GOE-LLM(+NTDC) suffers from se-
vere fluctuations and degraded performance due to the instability introduced by non-transitive dom-
inance cycles. At the 3B scale, GOE-LLM remains the most effective, outperforming the other two
baselines; although the negative impact of NTDC is partially mitigated relative to 1.5B, the corre-
sponding curve still exhibits noticeable instability. At the largest scale (7B), GOE-LLM continues to
deliver the highest and most stable critic scores, but the performance gap with GOE-LLM(+NTDC)
narrows, suggesting that larger models have stronger robustness to complex, cyclic opponent data. In
contrast, only GTO remains consistently inferior across all model sizes, highlighting the importance
of diversified yet principled data mixtures for effective exploitation learning.

20

	Introduction
	Related Work
	Methodology
	Preliminaries
	MLP Opponent Profiler
	LLM Opponent Exploiter
	Mixture-of-Best-Responses Principle
	Opponent-Aware Policy Optimization

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies

	Conclusion
	Implementation Details
	Strategies
	Dataset Details
	Prompt Design
	MLP Profiler Details
	Training Parameters
	Training Environment Details

	More Results
	Additional Results on Win Rate

	Ablation Details
	MLP Profiler.
	Mixture of Training Data.

