Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large
Language Models

Zhihong Shao! Yeyun Gong? Yelong Shen® Minlie Huang' Nan Duan? Weizhu Chen?

Abstract

Large language models can perform various rea-
soning tasks by using chain-of-thought prompting,
which guides them to find answers through step-
by-step demonstrations. However, the quality of
the prompts depends on the demonstrations given
to the models, and creating many of them by hand
is costly. We introduce SYNTHETIC PROMPTING,
a method that leverages a few handcrafted exam-
ples to prompt the model to generate more exam-
ples by itself, and selects effective demonstrations
to elicit better reasoning. Our method alternates
between a backward and forward process to gen-
erate new examples. The backward process gen-
erates a question that match a sampled reasoning
chain, so that the question is solvable and clear.
The forward process produces a more detailed
reasoning chain for the question, improving the
quality of the example. We evaluate our method
on numerical, symbolic, and algorithmic reason-
ing tasks, and show that it outperforms existing
prompting techniques.

1. Introduction

Few-shot demonstrations, i.e., examples of inputs and out-
puts for a task, can enable Large Language Models (LLMs)
to perform various tasks without fine-tuning (Brown et al.,
2020; Chung et al., 2022). LLMs can further improve their
performance by using chain-of-thought prompting, which
provides intermediate reasoning steps for the task (Wei et al.,
2022b; Kojima et al., 2022). However, the LLMs’ few-shot
performance depends heavily on the quality of the demon-
strations, especially for reasoning tasks that need complex
and diverse reasoning patterns. Manually creating a large
and diverse set of examples for demonstration selection is

Research Asia
Minlie Huang

"Tsinghua University *Microsoft
*Microsoft Azure AI. Correspondence to:
<aihuang @tsinghua.edu.cn>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

costly and tedious, while relying on a limited set of demon-
strations may hamper the LLMs’ generalization and adapta-
tion to different test inputs.

In this paper, we propose a novel method, SYNTHETIC
PROMPTING, that leverages the LLMs’ own knowledge and
generative power to augment a limited set of demonstra-
tions with self-synthesized examples, and then uses the aug-
mented set to elicit better reasoning in the LLMs. Specif-
ically, given a few seed examples, each consisting of a
question and a chain of reasoning steps, we prompt an
LLM to generate more examples by alternating between
two processes: (1) the backward process, where the LLM
synthesizes a question based on a self-generated reasoning
chain, which ensures that the question is answerable and
well-defined; and (2) the forward process, where the LLM
produces a reasoning chain for the synthesized question,
which refines the reasoning chain to be more precise and
consistent with the question. We repeat this process until
we obtain enough synthetic examples. To select the most
effective demonstrations from the augmented set, we pro-
pose a new selection scheme based on in-cluster complexity,
which aims to maximize the diversity and informativeness
of the demonstrations by clustering them and choosing the
most complex one (the one with the longest reasoning chain)
from each cluster. Finally, we prompt the LLM with the
selected demonstrations to generate a reasoning chain for a
test question and then use it to obtain the answer.

We evaluate our method on various reasoning tasks, in-
cluding numerical reasoning, algorithmic reasoning, and
symbolic reasoning. Following previous few-shot settings
(Wang et al., 2022b; Suzgun et al., 2022), we demonstrate
that our method can significantly improve the LLMs’ per-
formance, achieving up to 15.6% absolute gains over the
state-of-the-art methods.

Our main contributions are:

* We introduce SYNTHETIC PROMPTING, a novel
method that augments a limited set of demonstrations
with self-synthesized examples by prompting an LLM,
and leverages the augmented set to elicit better reason-
ing in the LLM.

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

* We propose an in-cluster complexity based scheme to
select diverse and informative demonstrations from the
augmented set for inference.

* We demonstrate the effectiveness of our method on
three reasoning tasks, achieving significant improve-
ments over previous methods.

2. Related Work

In-context few-shot learning With large-scale unsuper-
vised pre-training, LLMs (Brown et al., 2020; Chowdh-
ery et al., 2022; Zhang et al., 2022a) can learn to perform
tasks by mimicking in-context demonstrations (Shin et al.,
2022). To improve robustness to prompts, instruction tuning
(Ouyang et al., 2022; Wei et al., 2022a; Sanh et al., 2022;
Chung et al., 2022) has been proposed, which trains a lan-
guage model on diverse tasks to generate desirable outputs
that follow given instructions. With improved controllability,
in-context learning-based applications flourish, including
text generation (Yang et al., 2022; Gao et al., 2022a), di-
alogue generation (Thoppilan et al., 2022), and resource
construction (West et al., 2022).

Prompting techniques for reasoning Instead of directly
generating an answer, chain-of-thought prompting (Wei
et al., 2022b) prompts LLMs to arrive at an answer after a
step-by-step reasoning process, which largely improves per-
formance on numerous reasoning tasks. Following works
like least-to-most prompting (Zhou et al., 2022), self-ask
(Press et al., 2022), and decomposed prompting (Khot et al.,
2022) also shares the spirit of question decomposition, i.e.,
decomposing a complex question into a series of tractable
sub-questions. All these methods produce natural language
reasoning steps, which struggle with calculations and sym-
bolic manipulations. Techniques like PAL prompting (Gao
et al., 2022b) and program-of-thought prompting (Chen
et al., 2022) propose to improve natural language reasoning
with structured code, showing significant improvements on
arithmetic, symbolic and algorithmic tasks.

Orthogonal to prompting workflows, previous works also
explore what make an effective demonstration. Metrics
include (1) diversity, which selects complementary demon-
strations so that models can fuse different reasoning (Li
et al., 2022; Ye et al., 2022b) or be less biased by one type
of reasoning (Zhang et al., 2022b); (2) reasoning complex-
ity, which selects demonstrations with the highest reasoning
complexity, and has been found to work well on numerical
reasoning empirically (Fu et al., 2022); (3) similarity with a
test input, which retrieves structurally (Drozdov et al., 2022)
or semantically (Liu et al., 2022b) similar demonstrations.
To ensure both diversity and informativeness of demonstra-
tions, we propose a selection scheme based on in-cluster
complexity to choose the most complex examples from ex-

ample clusters. All these selection schemes assume access
to a set of examples (whether annotated or not).

Knowledge distillation from LLMs Some previous works
distilled knowledge from LLMs into symbolic knowledge,
e.g., structured commonsense knowledge (West et al., 2022)
or task-specific examples (Liu et al., 2022a; Ye et al., 2022a;
Huang et al., 2022). These works have at least one of the
following characteristics: (1) assuming access to gold in-
puts from training sets without needing to generate them;
(2) distilling knowledge based on collaboration between
workers and Al (3) using distilled knowledge for training.
By contrast, we assume access to only a few gold examples,
automatically synthesize more examples by prompting an
LLM, and study whether synthesized examples can be lever-
aged to better elicit reasoning in the model itself, without
further training.

3. Synthetic Prompting
3.1. Overview

To perform reasoning tasks with LLMs, given a few exam-
ples each consisting of a question and a reasoning chain,
it is common to directly concatenate them into a prompt
for inference. In this paper, we instead treat them as seed
examples, and prompt an LLM to automatically synthesize
more by repeating a backward-forward procedure; the back-
ward process and the forward process produce a question
and a corresponding reasoning chain, respectively. Dur-
ing inference, the LLM is prompted with self-synthesized
demonstrations to better elicit reasoning in the model itself.
Demonstrations are selected with a new scheme that ensures
diversity and informativeness.

3.2. Example Synthesis Phase

Using seed demonstrations, we automatically synthesize
more examples by repeating a backward-forward process.
Each synthetic example is a (question, reasoning chain)
pair. In our main experiments, we use PAL-style reasoning,
i.e., reasoning chains are snippets of code, and answers are
obtained by executing the code.

3.2.1. BACKWARD PROCESS

In the backward process, an LLLM is prompted to first gen-
erate a reasoning chain and then a question. The question,
which is the output of the backward process, is synthesized
conditioned on a given topic word, a target reasoning com-
plexity, and the self-generated reasoning chain. Figure 1
(left) shows an example prompt for the backward process,
which includes some demonstrations randomly sampled
from the seed examples and the previously synthesized ones.
The number of demonstrations is equal to the number of
seed examples.

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

_ Example 1
I implement a Python function called solution() to
solve the following question correctly.
The question is about work.
def solution():
7 5-line function
#1
num_roses = 4
#2
num_dahlias = num_roses + 7
#3
num_flowers = num_roses + num_dahlias
#4
result = num_flowers
#5
return result

9399

Demonstration

Question: There are 4 roses in the vase. There are 7 more
dahlias than roses in the vase. How many flowers are
there in the vase in total?

Example 2

I implement a Python function called solution() to
solve the following question correctly.

The question is about chef.

def solution():
7 6-line function
#1
bags_of onions =4
#2
weight_per_bag =50
#3
cost_per_bag = weight_per_bag * 1.50
#4
money_spent = num_bags_bought * cost_per_bag
#5
result = money_spent
#6
return money_spent

Topic word

99399

Target Complexity

Self-Generated
Reasoning Chain

Question: A chef bought 4 bags of onions. Each bag
weighs 50 pounds. A pound of onions cost $1.50.
How much did the chef spend?

Synthesized
Question

Backward Process

Example 1 _

Question: Cynthia eats one serving of ice cream every
night. She buys cartons of ice cream with 15 servings
of ice cream per carton at a cost of $4.00 per carton.
After 60 days, how much will she spend on ice cream?

def solution():

servings_per_night = 1

servings_per_carton = 15

cost_per carton =4.00

num_days = 60 Demonstration
num_servings = num_days * servings_per_night
num_cartons = num_servings / servings_per carton
money_spent = cost_per_carton * num_cartons
result = money_spent

return result

Example 2
Question: A chef bought 4 bags of onions. Each bag

> weighs 50 pounds. A pound of onions cost $1.50.

How much did the chef spend?
def solution():

num_bags bought =4

weight_per_bag = 50

cost_per_pound = 1.50 Synthesized
cost_per_bag = weight_per_bag * cost_per_pound Reasoning Chain
money_spent = num_bags_bought * cost_per_bag

result = money_spent

return money_spent .

Forward Process

Figure 1: Example prompts and model completions in the backward process (left) and the forward process (right) of example
synthesis. We show only one demonstration in each prompt for brevity. Self-Generated Reasoning Chain
(in blue), Synthesized Question (in green), and Synthesized Reasoning Chain (in purple) are example
completions. In the backward process, an LLM synthesizes a question conditioned on a topic word, a target reasoning
complexity, and a generated reasoning chain. To better control the reasoning complexity, we number the reasoning steps,
e.g.,# 1and# 2 on the left. In the forward process, the LLM synthesizes a more precise reasoning chain for the question
produced in the backward process. The question produced in the backward process and the corresponding reasoning chain
produced in the forward process constitute a synthetic example.

Topic word We assume that each reasoning question
is related to a specific topic, and that different topics
may require different types of reasoning. For example,
questions about fax may involve arithmetic operations,
while questions about speed may involve unit conversions.
To ensure diversity of the synthesized questions, we prompt
the model to generate a question for a given topic word,
which is randomly sampled from a set of words. The word
set is created by prompting the model to list single-token
noun words, following some random noun words from the

seed examples. The instruction for generating the word set
is List 50 noun words. Each word should
contain one token only. Do not repeat
words already listed., followed by no more than
10 words from the seed examples. We repeat this process
until we have 1,000 different words, or reach 100 repetitions
of prompting.

Target complexity We also want to control the complexity
of the synthesized questions, as more complex examples

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

may help the model learn better reasoning skills (Fu et al.,
2022). We define the complexity of a question as the number
of reasoning steps required to answer it, where a step is a
line of code separated by a line break. For example, the
complexity of Example 1 in Figure 1 (left) is 5, as it has
5 lines of code. The target complexity for generating a
question is randomly sampled from a range that spans from
the lowest complexity of the seed examples to the highest
one plus c.

Self-generated reasoning chain We prompt the model to
generate a reasoning chain of the target complexity for the
given topic, and then generate a question based on the rea-
soning chain. We find that this approach leads to more an-
swerable and well-defined questions, compared to directly
generating questions without a reasoning chain. To guide
the model to follow the target complexity, we number each
reasoning step in the demonstrations, e.g., #1 and #2 in Fig-
ure 1 (left). We filter out the questions that are duplicated,
repeat at least one 5-gram, or do not mention the given topic
word.

3.2.2. FORWARD PROCESS

The forward process aims to generate a reasoning chain
for the question synthesized in the backward process. Fig-
ure 1 (right) shows an example prompt for the forward
process, which consists of the seed examples. Unlike chain-
of-thought prompting, PAL prompting does not include the
final answers in the prompt, as the answers can be obtained
by executing the generated code, rather than extracted from
the model output. We observe that the reasoning chain gen-
erated in the forward process is more relevant and precise
than the one generated in the backward process, as it is
directly conditioned on the question.

We also want to ensure that the model is confident about
the answer produced by the reasoning chain. Following
Huang et al. (2022), we measure the confidence of an an-
swer by the proportion of sampled reasoning chains that
lead to the same answer. For a question z, we sample m
reasoning chains and obtain their answers {a1, as, ..., am }-
We then find the most consistent answer by majority vot-
ing: @ = argmawa, Y, 1(a; = ay). If more than m /2
reasoning chains lead to a, we associate the shortest one
with the synthesized question; otherwise, we discard the
question, as the model fails to produce confident reasoning
chains for it. Note that majority voting is only used for syn-
thesizing examples, not for inference (Section 3.3). This is
different from Wang et al. (2022a), who use majority voting
for inference.

3.3. Inference Phase

During inference, we select a subset of synthesized exam-
ples as demonstrations for the model. According to Fu

et al. (2022), selecting demonstrations based on complex-
ity can improve the performance of the model on reason-
ing tasks, compared to selecting them based on similarity.
Moreover, selecting demonstrations based on similarity may
introduce biases (Zhang et al., 2022b; Lyu et al., 2022) from
the demonstrations, especially if they are incorrect. Fur-
thermore, selecting demonstrations that are complementary
to each other may help the model fuse knowledge from
different types of reasoning (Ye et al., 2022b; Zhang et al.,
2022b).

Therefore, we propose an in-cluster complexity based
scheme to select demonstrations that are both complex and
complementary. Specifically, we cluster the synthesized
examples in a semantic embedding space, using Sentence-
BERT (Reimers & Gurevych, 2019) as the encoder. The
number of clusters is equal to the number of demonstra-
tions used for inference. We then choose the most complex
example from each cluster as the demonstration. The in-
ference process is the same as previous works like PAL
prompting, where the model completes a given prompt. The
only difference is that the demonstrations in our prompts
are synthesized from the seed examples, rather than fixed to
them. Notably, topic words used in the synthesis phase are
not used in the inference phase. Moreover, the computation
used to synthesize examples is a one-time cost for a task;
we do not introduce more computation than previous works
in the inference phase.

4. Experiments
4.1. Datasets

We experimented on seven datasets of different reasoning
tasks. Examples are presented in Table 1.

Numerical reasoning (1) GSM8K (Cobbe et al., 2021) is a
dataset of 1,319 diverse grade school math word problems,
curated to evaluate multi-step mathematical reasoning abili-
ties of LLMs. (2) GSM-Hard is a harder version of GSM8K,
created by Gao et al. (2022b) via replacing numbers in the
questions with larger ones, intended to evaluate whether
LLMs can generalize to large numbers. (3) SVAMP (Patel
et al., 2021) is a math word problem dataset with 1,000
questions for robustness evaluation. (4) ASDiv (Miao et al.,
2020) consists of 2,000 diverse math word problems. (5)
SingleOp (Koncel-Kedziorski et al., 2016) consists of 562
math word problems.

Symbolic reasoning The Colored Objects task from Big-
Bench Hard (Suzgun et al., 2022), with 2,000 questions
about position and color attributes of given objects.

Algorithmic reasoning The Repeat Copy task also comes
from Big-Bench Hard, consisting of 32 test examples. A
model should generate a sequence of words that meets re-

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Datasets Example

GSMS8K Patrick has three glue sticks that are partially used. One has 1/6 left, the second has 2/3 left and
the third one has 1/2 left. If a glue stick is 12 millimeters long originally, what is the total length
of the glue sticks that are not used?

Colored Objects On the nightstand, you see several items arranged in a row: a blue crayon, a red notebook, a teal
bracelet, a magenta sheet of paper, a silver dog leash, and a black booklet. What is the color of the
item furthest from the dog leash?

Repeat Copy Repeat election to the council three times, but after every other word say cool

Table 1: Examples from three datasets. Questions in the other numerical reasoning datasets resemble those in GSMS8K.

quirements in a given instruction.

4.2. Evaluation Settings

Both Suzgun et al. (2022) and Wang et al. (2022b) evaluated
LLMs on benchmarks with numerous tasks under few-shot
settings which have access to no more than 4 gold examples.
Following these settings, we assumed access to 2 or 4 ran-
dom examples from each dataset by default. For numerical
reasoning tasks, we also experimented with the 8 examples
that were manually crafted by Wei et al. (2022b) and were
adopted by several following papers (Fu et al., 2022; Wang
et al., 2022a; Gao et al., 2022b). We also used the PAL-style
reasoning chains annotated by Gao et al. (2022b).

Prompting baselines without synthesis use all provided gold
examples to construct prompts for inference. SYNTHETIC
PROMPTING and its variants synthesize examples using the
provided examples, and select 8 synthetic demonstrations
based on in-cluster complexity, unless stated otherwise.

Seed examples and synthetic prompts are provided in the
Appendix.

4.3. Baselines

Direct Prompting Direct prompting (Brown et al., 2020)
prompts LLMs to directly generate answers with demonstra-
tions of input-answer pairs.

CoT Prompting Chain-of-thought prompting (Wei et al.,
2022b) is effective in eliciting reasoning in LLMs, which
prompts LLMs to generate natural language reasoning steps
followed by an answer.

PAL Prompting PAL prompting (Gao et al., 2022b), a vari-
ant of chain-of-thought prompting, improves reasoning with
structured code. Figure 1 (right) provides two examples. It
does not prompt LL.Ms to include final answers into com-
pletions; answers are obtained by executing the code. This
prompting technique has achieved state-of-the-art results on
numerous reasoning tasks.

Vanilla SYNTHETIC PROMPTING This is a variant of
SYNTHETIC PROMPTING, which differs in that prompts
used for question synthesis only consist of questions from

seed examples. In other words, new questions are syn-
thesized by mimicking seed questions, without any other
condition.

4.4. Implementation Details

We adopted PAL-style reasoning chains which are structured
code with comments being natural language reasoning step.
text-davinci-003 version of InstructGPT (Ouyang
et al., 2022) was used as our backend LLM for both syn-
thesis and inference. We used top-p sampling (Holtzman
et al., 2020) for synthesis with temperature set to 0.7, and
used greedy decoding for inference with temperature set to
0. All numerical reasoning datasets share one set of seed
examples either randomly sampled from GSM8K (when
the number of seeds is 2 or 4) or from Wei et al. (2022b)
(when the number of seeds is 8). For datasets of the other
tasks, seeds were randomly sampled from their own datasets.
We annotated seed examples with both CoT-style reasoning
chains and PAL-style reasoning chains manually, following
their annotation protocols. Annotations are provided in the
Appendix. For each set of seed examples, we synthesized
more examples by repeating backward-forward synthesis
for 1,000 times. Target complexities range from the lowest
complexity of seed examples to the highest one plus c; ¢
was set to 4 for numerical reasoning and 2 on the other
datasets. In forward synthesis, the number of reasoning
chains sampled for each question was 3. The encoder used
for clustering was all-mpnet-base-v2.

4.5. Main Results

As shown by Table 2, SYNTHETIC PROMPTING consistently
outperforms PAL prompting by up to absolute 15.6%, indi-
cating that self-synthesized demonstrations can be leveraged
to better elicit reasoning in the LLM itself, surpassing the
performance of using seed demonstrations only.

Though vanilla SYNTHETIC PROMPTING also uses synthetic
demonstrations, it fails to consistently improve over PAL
prompting. On GSM8K and GSM-Hard which contain ques-
tions requiring complex deductions, vanilla SYNTHETIC
PROMPTING can barely improve over PAL prompting, as
it does not explicitly control the reasoning complexities of

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Datasets GSMSK GSM-Hard SVAMP ASDiv SingleOp Colored Objects Repeat Copy
Previous Fine-tuned SOTA 55% - 57.48 75.37 - - -
COTpaLM 540B 56.9 - 79.0 73.9 = - =
Gold/Seed Examples 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 2 4

Methods Using Gold Examples Only

Direct 154 16.1 16.8 44 43 44 67.0 67.2 68.3 69.8 69.8 71.5 925 92.2 92.2 58.7 81.7 313 438
CoT 61.8 62.2 58.2 23.6 23.3 23.0 79.5 78.2 79.0 75.1 77.7 80.2 90.7 93.4 934 81.7 888 563 62.5
PAL 72.5 73.1 71.8 62.8 62.9 60.7 80.2 79.6 81.8 81.0 79.4 81.1 93.4 92.5 94.1 82.7 944 719 813

Methods Leveraging Synthetic Demonstrations

Vanilla SYNTHETIC
SYNTHETIC

72.6 72.7 71.6 62.5 59.3 60.0 83.5 80.6 81.4 81.5 80.8 80.8 92.7 91.5 94.3 92.7 93.1 53.1 813
74.7 75.3 73.9 63.1 64.7 64.7 82.0 80.5 81.8 81.1 80.6 80.7 93.6 93.4 95.2 93.8 97.3 87.5 844

Table 2: Accuracies on numerical reasoning, symbolic reasoning, and algorithmic reasoning datasets. The previous fine-
tuned state-of-the-art models are: «: (Cobbe et al., 2021); 5: (Pi et al., 2022); v: (Miao et al., 2020). Accuracies of CoT
prompting with PaLM 540B are from Wei et al. (2022b). PAL prompting is the previous state-of-the-art method, which uses
provided gold examples as demonstrations during inference. Both SYNTHETIC PROMPTING and its vanilla version use gold
examples as seeds to automatically synthesize more examples by prompting an LLM; during inference, demonstrations are
selected from self-synthesized examples to better elicit reasoning in the LLM itself.

synthetic examples and tends to synthesize examples that
are similar to seed examples in terms of complexities and
informativeness. Notably, vanilla SYNTHETIC PROMPTING
significantly underperforms PAL prompting on Repeat Copy
with 2 seed examples. We found that 2 selected demonstra-
tions have ill-formed questions, e.g., Repeat the sentence
"The sun is bright” five times, with a different emphasis on
a different word each time. This may be because questions
are synthesized without explicit awareness of their reason-
ing chains. Section 4.6.1 shows the benefits of controlling
question synthesis with various conditions.

We also observe that increasing the number of seed exam-
ples from 2 to 8 does not significantly improve performance,
especially on GSM8K and Repeat Copy. Two possible rea-
sons are as follows: (1) Example synthesis is biased by seed
examples. With limited seeds, it is possible that synthesized
examples are not diverse enough, and are still helpless on
some portion of test questions'. (2) Though our proposed
demonstration selection scheme is effective (see analysis in
Section 4.6.2), it is probably suboptimal, failing to make the
best of synthesized examples.

4.6. Ablation Studies

We mainly conducted ablation studies on GSMS8K and the
Colored Objects task.

4.6.1. CONDITIONS USED FOR QUESTION SYNTHESIS

In backward synthesis, we ask the LLM to sample a question
conditioned on a topic, a target complexity, and a sampled
reasoning chain. To analyze the effect of each condition on

'On numerical reasoning tasks, we notice that using 8 seed
examples is sometimes worse than using 2 or 4 seed examples,
not only for our method but also for CoT prompting and PAL
prompting. We investigated this phenomenon in Section A.2.

Datasets GSMS8K Colored Objects

Seed Examples 2 4 2 4

SYNTHETIC PROMPTING 74.7 75.3 93.8 97.3
w/o Topic Word 73.9 73.2 80.2 92.9
w/o Target Complexity 71.6 72.0 93.1 94.5
w/o Reasoning Chain 72.9 73.8 86.0 922

Table 3: Analysis of how different conditions used in back-
ward question synthesis affect inference performance.

Method Diversity Complexity Correctness
SYNTHETIC PROMPTING 0.68 823/125 100.0%
w/o Topic Word 0.85 94/134 100.0%
w/o Target Complexity 0.73 5.0/7.6 87.5%
w/o Reasoning Chain 0.68 5.6/12.3 37.5%

Table 4: Analysis on GSM8K with 4 seed examples, about
how conditions used in backward question synthesis affect
quality of synthesized examples. Diversity is measured
by pair-wise cosine similarity among synthetic examples.
Complexity measures the average reasoning complexi-
ties of synthetic examples (left) and selected demonstrations
(right), separated by /. Correctness is the portion of
selected synthetic demonstrations that are correct.

question synthesis, we removed corresponding lines in the
prompts. Notably, when removing the target complexity,
number markers of reasoning steps are also removed. As
shown by Table 3, removing any condition leads to degraded
model performance on both GSM8K and Colored Objects.

We further investigated how different conditions affect the
quality of synthetic examples, in terms of (1) diversity, mea-
sured by the maximum pair-wise cosine similarity between
a synthetic example and the others on average, (2) complex-
ity, measured by the average number of reasoning steps,
(3) and correctness, measured by the portion of demonstra-

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

tions used for inference that are correct. Table 4 presents the
analysis on GSM8K. Removing topic words results in less
diverse synthetic examples. Reasoning patterns of selected
demonstrations are limited, too; although all demonstrations
are correct, 62.5% of questions revolve around discount or
tax. Removing target complexities produces much simpler
synthetic examples. Synthesizing questions without condi-
tioned on reasoning chains affects correctness negatively;
62.5% are flawed, 80% of which are unanswerable, e.g.,

An image is represented by a 4x4 matrix of integers. Each
cell of the matrix contains a single integer between 0 and
255. What is the average value of all the integers in the
matrix?.

Notably, though we also include target complexities into the
prompts when synthesizing questions without conditioned
on reasoning chains, the resulting questions tend to require
less reasoning steps than SYNTHETIC PROMPTING, indi-
cating that conditioning on numbered reasoning steps can
control reasoning complexities better.

4.6.2. SCHEMES OF DEMONSTRATION SELECTION

Datasets GSMS8K Colored Objects
Seed Examples 2 4 2 4
Random 734 73.1 83.0 90.0
Cluster Centroid 73.1 73.0 91.2 93.6
Similarity 729 740 87.0 942
In-Cluster Similarity 72.9 73.2 89.3 954
Complexity 74.1 743 92.7 97.5
In-Cluster Complexity 74.7 75.3 93.8 973

Table 5: Accuracies with different schemes of demonstra-
tion selection.

To make good use of synthesized examples, having an ef-
fecitve selection scheme matters. We evaluated the follow-
ing 6 selection schemes. (1) Random: randomly selects
demonstrations; (2) Cluster Centroid: selects the example
closest to each cluster centroid; (3) Similarity: retrieves
the most similar examples according to cosine similarity;
(4) In-Cluster Similarity: select the most similar example
from each cluster; (5) Complexity: selects the examples
with the most reasoning steps; (6) In-Cluster Complexity:
selects the most complex example from each cluster.

Table 5 presents the comparisons. Though most selection
schemes achieve better performance than PAL prompting,
complexity-based selection schemes are the most effective
on the two reasoning tasks, with some other schemes like
Random lagging far behind. Our proposed In-Cluster Com-
plexity outperforms Complexity, showing the benefits of
using diverse and complex demonstrations.

= PAL Prompting Vanilla Synthetic Prompting = Synthetic Prompting

74.8

2 Seed Ex: 2 Seed Exampl

GSMSK

4 Seed Examples 4 Seed Examples

2 Seed Exampl 2 Seed Exampl

4 Seed Examples

4 Seed Examples

Colored Objects

Figure 2: Sensitivity analysis on GSM8K and Colored Ob-
jects. We experimented with another two random sets of
seed examples of size 2 and 4 for each dataset.

4.6.3. SENSITIVITY TO SEED EXAMPLES

To investigate how sensitive SYNTHETIC PROMPTING is
to seed examples, we repeated experiments on another two
random sets of seed examples. Figure 2 demonstrates our
sensitivity analysis. SYNTHETIC PROMPTING consistently
outperforms PAL prompting on different runs. However,
we observed that seed examples with better PAL prompting
performance does not necessarily lead to better SYNTHETIC
PROMPTING performance.

4.7. Comparison with Selecting from Training Examples

To measure the performance gap between using synthetic
demonstrations and using gold demonstrations from a large
set of carefully-curated examples, we selected 8 demon-
strations from the training set of GSM8K with the two
complexity-based selection schemes (i.e., Complexity and
In-Cluster Complexity in Section 4.6.2), respectively. As the
training examples were annotated with natural language rea-
soning chains (CoT-style reasoning), we measured the num-
bers of natural language reasoning steps as reasoning com-
plexities for complexity-based selection, and manually an-
notated selected examples with PAL-style reasoning chains
for PAL prompting. As the training examples of GSM8K
are diverse, both Complexity and In-Cluster Complexity
select diverse and informative demonstrations, and yield an
accuracy of 77.0% on the test set of GSMS8K, surpassing
our accuracy of 75.3% by absolute 1.7%. Compared with
our synthetic demonstrations (Table 21), the selected gold
demonstrations (Table 42 and Table 43) are more logically
complex with less straightforward reasoning, which may be

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Datasets GSM8K GSM-Hard SVAMP ASDiv SingleOp Colored Objects Repeat Copy
Gold/Seed Examples 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 2 4
CoT 57.5 62.2 61.5 23.6 25.0 24.8 71.0 72.7 77.7 76.2 77.7 78.7 88.6 92.7 93.1 79.5 91.6 594 719
PAL 70.1 70.8 72.0 59.6 61.1 62.1 81.1 81.9 80.4 77.2 77.0 79.3 94.8 95.6 943 76.2 914 68.8 875
SYNTHETIC 73.2 73.6 73.2 62.5 63.5 63.1 81.2 81.5 83.1 78.9 78.5 80.2 954 945 954 80.1 97.8 875 90.6
- text-003 as Demo Generator 75.0 75.1 74.6 66.0 64.2 65.1 83.0 81.3 81.6 78.8 79.2 77.8 94.0 940 93.8 88.6 99.5 78.1 875

Table 6: Accuracies on seven reasoning datasets, using code-davinci-002 for both synthesis and inference. Seed
examples were the same as in Table 2. We also present the performance of code—davinci—-002 re-using demonstrations

synthesized by text-davinci-003 (last row).

Datasets GSM8K GSM-Hard SVAMP ASDiv SingleOp Colored Objects Repeat Copy
Gold/Seed Examples 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 2 4
CoT 35 50 60 09 09 1.7 174 189 294 26.3 27.6 36.2 51.2 50.0 62.5 493 55.8 94 250
PAL 23.8 24.9 23.0 19.1 20.2 17.7 48.2 49.0 43.8 59.4 58.4 57.4 85.1 84.2 81.1 425 664 250 406
SYNTHETIC 24.4 25.3 23.8 19.6 20.2 19.0 51.5 48.0 44.4 58.9 59.7 57.1 82.6 84.7 83.3 44.1 645 313 344
- text-003 as Demo Generator 26.0 24.7 24.3 21.7 20.2 20.2 47.3 47.6 42.5 59.5 57.6 56.1 87.4 82.7 81.7 40.6 554 219 344

Table 7: Accuracies on seven reasoning datasets, using cushman for both synthesis and inference. Seed examples
were the same as in Table 2. We also present the performance of cushman re-using demonstrations synthesized by

text—-davinci-003 (last row).

Demo Generator Diversity Complexity Correctness

text-003 0.68 8.23/12.5 100.0%
code-002 0.64 739/11.4 100.0%
cushman 0.56 5.34/6.86 85.7%

Table 8: Analysis on GSMS8K with 4 seed examples,
about the quality of synthesized examples using differ-
ent language models. Diversity, Complexity, and
Correctness are defined the same as in Table 4.

more informative to LLMs.

Notably, using the 8 simple demonstrations from Wei et al.
(2022b) that were manually crafted without prompt engi-
neering results in an even lower accuracy of 71.8%. This in-
dicates that demonstrations indeed matters. Under scenarios
with access to only limited and possibly-simple examples,
automatically synthesizing examples for selecting more ef-
fective demonstrations serves as a promising way to elicit
better reasoning in LLMs.

4.8. Effect of Language Models

To evaluate the effectiveness of SYNTHETIC PROMPTING
with different language models, we also experimented with
code-davinci-002 and cushman. Table 6 presents
the performance of code-davinci-002. SYNTHETIC
PROMPTING improves over PAL prompting under almost
all settings. However, as shown by Table 7, when using
the much smaller language model cushman, SYNTHETIC
PROMPTING fails to induce strong and consistent perfor-
mance gains over PAL prompting. We therefore conducted
further investigations as follows.

Effect of Language Models on Example Synthesis As

shown by Table 10, text-davinci-003 achieves the
highest success rate in terms of example synthesis, followed
by code-davinci-002 and the much worse cushman.
The most common failure cases of cushman include pro-
ducing off-topic questions in the backward process and
inconsistent reasoning chains in the forward process.

We further investigated the quality of synthetic exam-
ples from different models. As shown by Table 8,
text-davinci-003 is capable of synthesizing complex
and informative examples, while cushman can only syn-
thesize examples with simple and straightforward reasoning
chains.

Re-using Examples Synthesized by a Different LLM
We also explored whether we can elicit better reason-
ing in an LLM re-using examples synthesized by another
LLM. As shown by Table 6, demonstrations synthesized
by text-davinci-003 indeed elicit better reasoning
in code-davinci-002 than seed examples, and are
even more effective than demonstrations synthesized by
code-davinci-002 itself in some settings. This in-
dicates that text-davinci-003 can synthesize high-
quality demonstrations that can be re-used effectively on
other LLMs. However, as shown by Table 7, cushman is
not capable enough to leverage the complex and informa-
tive demonstrations synthesized by text -davinci-003,
which aligns with the findings from (Fu et al., 2022).

4.9. Quality Analysis of Synthetic Examples

To investigate the quality of synthesized examples, we con-
ducted manual evaluation on GSM8K. We evaluated 25
random examples synthesized by SYNTHETIC PROMPTING
and vanilla SYNTHETIC PROMPTING, respectively. Com-

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Seed Examples

Question: Carol has 20 signatures in her book, and Jennifer has 44. The sisters have three more weeks of summer vacation,
and they decide they want to reach 100 signatures between them by the end of the summer. How many signatures do the
sisters need to collect to reach their goal?

Question: A team of 4 painters worked on a mansion for 3/8ths of a day every day for 3 weeks. How many hours of work
did each painter put in?

Synthetic Demonstrations from Vanilla SYNTHETIC PROMPTING

Question: 80 people attended a party. 40 of them were men and 40 were women. Of the men, 10 were married and of the
women, 20 were married. How many single people were at the party?

Question: The team of 4 painters worked on the mansion for 3/8ths of a day every day for 3 weeks. If each painter was
paid $25 per hour, how much money did the team of painters earn in total?

Question (Unanswerable): 80 students took a quiz in Mrs. Smith’s math class. The average score was 75%. How many
students scored a 95% or higher?

Synthetic Demonstrations from SYNTHETIC PROMPTING

Given Topic Word: idea
Question: If 5 people each have 10 ideas, with 5 of those ideas being innovative and taking 2 minutes each to develop, and
the other 5 ideas being non-innovative and taking 1 minute each to develop, how many minutes will it take all 5 people to

develop all 10 ideas?

Given Topic Word: office

Question: The office is 20 feet wide, 30 feet long and 10 feet high. It has two windows that are each 5 feet wide and 6 feet
high, and one door that is 3 feet wide and 8 feet high. What is the total area of the office walls?

Given Topic Word: gallery

Question: A gallery has 10 paintings, 9 sculptures, 6 photos, and 4 mixed media pieces. The painting is $200, the sculpture
is $500, the photo is $100 and the mixed media piece is $150. You get a 15% discount and you have to pay 5% tax. How

much will you pay in total?

Table 9: A set of seed examples from GSMS8K, as well as synthetic demonstrations selected by SYNTHETIC PROMPTING
and its vanilla version, respectively. We only show questions for brevity, as their reasoning chains are correct, except that the
third question from vanilla SYNTHETIC PROMPTING is unanswerable.

pared with vanilla SYNTHETIC PROMPTING, SYNTHETIC
PROMPTING synthesizes questions of higher complexities
(8.3 vs. 5.4) and also with lower error rate (8% vs. 24%).

We further analyze the quality of selected synthetic demon-
strations. For SYNTHETIC PROMPTING, all selected demon-
strations are correct, while its vanilla version has one unan-
swerable question and another one with wrong reasoning.

Table 9 shows two seed examples, as well as some synthetic
demonstrations. For vanilla SYNTHETIC PROMPTING, the
first two questions are logically close to seed questions, and
the third one is unanswerable. With SYNTHETIC PROMPT-
ING, the LLM can synthesize on-topic questions requiring
novel reasoning patterns, e.g., the second question about
office requires geometric reasoning.

5. Conclusion

We introduce SYNTHETIC PROMPTING, a novel technique
for reasoning with large language models using few exam-
ples, which differs from previous works by using the models
as generators of additional examples besides as consumers
of in-context demonstrations. We show that by prompting
a large language model to synthesize more examples, we
can improve its reasoning performance on numerical, sym-
bolic, and algorithmic tasks, compared to existing prompt-
ing methods such as chain-of-thought prompting and PAL
prompting.

Acknowledgements

Zhihong Shao and Minlie Huang were supported by the
NSFC projects (Key project with No. 61936010), and
were also supported by the Guoqgiang Institute of Tsinghua
University, with Grant No. 2020GQG0005.

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

References

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P, Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, 1., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.
neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8acld42f6da—-Abstra

html.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Pro-
gram of thoughts prompting: Disentangling compu-
tation from reasoning for numerical reasoning tasks.
CoRR, abs/2211.12588, 2022. doi: 10.48550/arXiv.
2211.12588. URL https://doi.org/10.48550/
arXiv.2211.12588.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P, Duke, T., Levskaya, A., Ghemawat, S., Dev,
S., Michalewski, H., Garcia, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim,
H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pel-
lat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov,
0., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M.,
Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck,
D., Dean, J., Petrov, S., and Fiedel, N. Palm: Scaling lan-
guage modeling with pathways. CoRR, abs/2204.02311,
2022. doi: 10.48550/arXiv.2204.02311. URL https:
//doi.org/10.48550/arXiv.2204.02311.

Chung, H. W.,, Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma, S.,
Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X.,
Chowdhery, A., Narang, S., Mishra, G., Yu, A., Zhao,
V.Y, Huang, Y., Dai, A. M., Yu, H., Petrov, S., Chi, E. H.,
Dean, J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V.,
and Wei, J. Scaling instruction-finetuned language mod-
els. CoRR, abs/2210.11416, 2022. doi: 10.48550/arXiv.
2210.11416. URL https://doi.org/10.48550/
arXiv.2210.11416.

URL https://proceedings.

10

ct

Cobbe, K., Kosaraju, V., Bavarian, M., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Drozdov, A., Scharli, N., Akyiirek, E., Scales, N., Song,
X., Chen, X., Bousquet, O., and Zhou, D. Compo-
sitional semantic parsing with large language models.
CoRR, abs/2209.15003, 2022. doi: 10.48550/arXiv.
2209.15003. URL https://doi.org/10.48550/
arXiv.2209.15003.

Fu, Y., Peng, H., Sabharwal, A., Clark, P., and Khot,
T. Complexity-based prompting for multi-step reason-
ing. CoRR, abs/2210.00720, 2022. doi: 10.48550/arXiv.
2210.00720. URL https://doi.org/10.48550/

"arxiv.2210.00720.

Gao, L., Dai, Z., Pasupat, P, Chen, A., Chaganty, A. T., Fan,
Y., Zhao, V. Y., Lao, N., Lee, H., Juan, D.-C., and Guu,
K. Rarr: Researching and revising what language models
say, using language models, 2022a.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. PAL: program-aided lan-
guage models. CoRR, abs/2211.10435, 2022b. doi: 10.
48550/arXiv.2211.10435. URL https://doi.org/
10.48550/arXiv.2211.10435.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.
The curious case of neural text degeneration. In 8th
International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.
net/forum?id=rygGQyrFvH.

Huang, J., Gu, S. S., Hou, L., Wu, Y., Wang, X., Yu, H.,
and Han, J. Large language models can self-improve.
CoRR, abs/2210.11610, 2022. doi: 10.48550/arXiv.
2210.11610. URL https://doi.org/10.48550/
arxXxiv.2210.11610.

Khot, T., Trivedi, H., Finlayson, M., Fu, Y., Richardson,
K., Clark, P., and Sabharwal, A. Decomposed prompt-
ing: A modular approach for solving complex tasks.
CoRR, abs/2210.02406, 2022. doi: 10.48550/arXiv.
2210.02406. URL https://doi.org/10.48550/
arXiv.2210.02406.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwa-
sawa, Y. Large language models are zero-shot reason-
ers. CoRR, abs/2205.11916, 2022. doi: 10.48550/arXiv.
2205.11916. URL https://doi.org/10.48550/
arXiv.2205.11916.

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2210.11416
https://doi.org/10.48550/arXiv.2210.11416
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/arXiv.2209.15003
https://doi.org/10.48550/arXiv.2209.15003
https://doi.org/10.48550/arXiv.2210.00720
https://doi.org/10.48550/arXiv.2210.00720
https://doi.org/10.48550/arXiv.2211.10435
https://doi.org/10.48550/arXiv.2211.10435
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.48550/arXiv.2210.11610
https://doi.org/10.48550/arXiv.2210.11610
https://doi.org/10.48550/arXiv.2210.02406
https://doi.org/10.48550/arXiv.2210.02406
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.48550/arXiv.2205.11916

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Koncel-Kedziorski, R., Roy, S., Amini, A., Kushman,
N., and Hajishirzi, H. MAWPS: A math word prob-
lem repository. In Knight, K., Nenkova, A., and Ram-
bow, O. (eds.), NAACL HLT 2016, The 2016 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, San Diego California, USA, June 12-17,
2016, pp. 1152-1157. The Association for Computational
Linguistics, 2016. doi: 10.18653/v1/n16-1136. URL
https://doi.org/10.18653/v1/nl16-1136.

Li, Y, Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., and
Chen, W. On the advance of making language models bet-
ter reasoners. 2022. doi: 10.48550/ARXIV.2206.02336.
URL https://arxiv.org/abs/2206.02336.

Liu, A., Swayamdipta, S., Smith, N. A., and Choi, Y.
WANLI: worker and Al collaboration for natural language
inference dataset creation. CoRR, abs/2201.05955, 2022a.
URL https://arxiv.org/abs/2201.05955.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and
Chen, W. What makes good in-context examples for
gpt-3? In Agirre, E., Apidianaki, M., and Vulic, L
(eds.), Proceedings of Deep Learning Inside Out: The
3rd Workshop on Knowledge Extraction and Integration
for Deep Learning Architectures, DeeLIO@ACL 2022,
Dublin, Ireland and Online, May 27, 2022, pp. 100-114.
Association for Computational Linguistics, 2022b. doi:

10.18653/v1/2022.deelio-1.10. URL https://doi.

org/10.18653/v1/2022.deelio-1.10.

Lyu, X., Min, S., Beltagy, 1., Zettlemoyer, L., and Hajishirzi,
H. Z-ICL: zero-shot in-context learning with pseudo-
demonstrations. CoRR, abs/2212.09865, 2022. doi: 10.
48550/arXiv.2212.09865. URL https://doi.org/
10.48550/arXiv.2212.09865.

Miao, S., Liang, C., and Su, K. A diverse corpus for
evaluating and developing english math word problem
solvers. In Jurafsky, D., Chai, J., Schluter, N., and
Tetreault, J. R. (eds.), Proceedings of the 58th Annual
Meeting of the Association for Computational Linguis-
tics, ACL 2020, Online, July 5-10, 2020, pp. 975-984.
Association for Computational Linguistics, 2020. doi:

10.18653/v1/2020.acl-main.92. URL https://doi.

org/10.18653/v1/2020.acl-main.92.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller,
L., Simens, M., Askell, A., Welinder, P., Christiano,
P. F., Leike, J., and Lowe, R. Training language
models to follow instructions with human feedback.
CoRR, abs/2203.02155, 2022. doi: 10.48550/arXiv.
2203.02155. URL https://doi.org/10.48550/
arxXiv.2203.02155.

11

Patel, A., Bhattamishra, S., and Goyal, N. Are NLP

models really able to solve simple math word prob-
lems? In Toutanova, K., Rumshisky, A., Zettlemoyer,
L., Hakkani-Tiir, D., Beltagy, 1., Bethard, S., Cotterell,
R., Chakraborty, T., and Zhou, Y. (eds.), Proceedings
of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2021, On-
line, June 6-11, 2021, pp. 2080-2094. Association for
Computational Linguistics, 2021. doi: 10.18653/v1/
2021.naacl-main.168. URL https://doi.org/10.
18653/v1/2021.naacl-main.168.

Pi, X., Liu, Q., Chen, B., Ziyadi, M., Lin, Z., Gao, Y.,

Fu, Q., Lou, J., and Chen, W. Reasoning like program
executors. CoRR, abs/2201.11473, 2022. URL https:
//arxiv.org/abs/2201.11473.

Press, O., Zhang, M., Min, S., Schmidt, L., Smith, N. A.,

and Lewis, M. Measuring and narrowing the composi-
tionality gap in language models. CoRR, abs/2210.03350,
2022. doi: 10.48550/arXiv.2210.03350. URL https:
//doi.org/10.48550/arXiv.2210.03350.

Reimers, N. and Gurevych, I. Sentence-BERT: Sentence

embeddings using Siamese BERT-networks. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pp. 3982-3992, Hong Kong,
China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1410. URL https:
//aclanthology.org/D19-1410.

Sanh, V., Webson, A., Raffel, C., Bach, S., Sutawika, L.,
Alyafeai, Z., Chaffin, A., Stiegler, A., Raja, A., Dey,
M., Bari, M. S., Xu, C., Thakker, U., Sharma, S. S.,
Szczechla, E., Kim, T., Chhablani, G., Nayak, N. V.,
Datta, D., Chang, J., Jiang, M. T., Wang, H., Manica,
M., Shen, S., Yong, Z. X., Pandey, H., Bawden, R.,
Wang, T., Neeraj, T., Rozen, J., Sharma, A., Santilli,
A., Févry, T., Fries, J. A., Teehan, R., Scao, T. L., Bi-
derman, S., Gao, L., Wolf, T., and Rush, A. M. Mul-
titask prompted training enables zero-shot task gener-
alization. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https:
//openreview.net/forum?id=9Vrb9D0OWI4.

Shin, S., Lee, S., Ahn, H., Kim, S., Kim, H., Kim, B., Cho,
K., Lee, G., Park, W., Ha, J., and Sung, N. On the ef-
fect of pretraining corpora on in-context learning by a
large-scale language model. In Carpuat, M., de Marn-
effe, M., and Ruiz, I. V. M. (eds.), Proceedings of the
2022 Conference of the North American Chapter of the

https://doi.org/10.18653/v1/n16-1136
https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2201.05955
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.48550/arXiv.2212.09865
https://doi.org/10.48550/arXiv.2212.09865
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://arxiv.org/abs/2201.11473
https://arxiv.org/abs/2201.11473
https://doi.org/10.48550/arXiv.2210.03350
https://doi.org/10.48550/arXiv.2210.03350
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL 2022, Seattle, WA, United
States, July 10-15, 2022, pp. 5168-5186. Association
for Computational Linguistics, 2022. doi: 10.18653/v1/

2022.naacl-main.380. URL https://doi.org/10.

18653/v1/2022.naacl-main.380.

Suzgun, M., Scales, N., Schérli, N., Gehrmann, S., Tay, Y.,
Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H., Zhou,
D., and Wei, J. Challenging big-bench tasks and whether
chain-of-thought can solve them. CoRR, abs/2210.09261,
2022. doi: 10.48550/arXiv.2210.09261. URL https:
//doi.org/10.48550/arXiv.2210.09261.

Thoppilan, R., Freitas, D. D., Hall, J., Shazeer, N., Kul-
shreshtha, A., Cheng, H., Jin, A., Bos, T., Baker, L., Du,
Y., Li, Y, Lee, H., Zheng, H. S., Ghafouri, A., Mene-
gali, M., Huang, Y., Krikun, M., Lepikhin, D., Qin, J.,
Chen, D., Xu, Y., Chen, Z., Roberts, A., Bosma, M.,
Zhou, Y., Chang, C., Krivokon, 1., Rusch, W., Pickett,
M., Meier-Hellstern, K. S., Morris, M. R., Doshi, T.,
Santos, R. D., Duke, T., Soraker, J., Zevenbergen, B.,
Prabhakaran, V., Diaz, M., Hutchinson, B., Olson, K.,
Molina, A., Hoffman-John, E., Lee, J., Aroyo, L., Ra-
jakumar, R., Butryna, A., Lamm, M., Kuzmina, V., Fen-
ton, J., Cohen, A., Bernstein, R., Kurzweil, R., Aguera-
Arcas, B., Cui, C., Croak, M., Chi, E. H., and Le, Q.
Lamda: Language models for dialog applications. CoRR,
abs/2201.08239, 2022. URL https://arxiv.org/
abs/2201.082309.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi, E. H.,
and Zhou, D. Self-consistency improves chain of thought
reasoning in language models. CoRR, abs/2203.11171,
2022a. doi: 10.48550/arXiv.2203.11171. URL https:
//doi.org/10.48550/arXiv.2203.11171.

Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y.,
Mirzaei, A., Arunkumar, A., Ashok, A., Dhanasekaran,
A. S., Naik, A., Stap, D., Pathak, E., Karamanolakis, G.,
Lai, H. G., Purohit, I., Mondal, I., Anderson, J., Kuznia,
K., Doshi, K., Patel, M., Pal, K. K., Moradshahi, M., Par-
mar, M., Purohit, M., Varshney, N., Kaza, P. R., Verma,
P, Puri, R. S., Karia, R., Sampat, S. K., Doshi, S., Mishra,
S., Reddy, S., Patro, S., Dixit, T., Shen, X., Baral, C.,
Choi, Y., Smith, N. A., Hajishirzi, H., and Khashabi, D.
Super-naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks, 2022b.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,

B., Du, N, Dai, A. M., and Le, Q. V. Finetuned language
models are zero-shot learners. In The Tenth Interna-
tional Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022a. URL https://openreview.net/forum?
id=gEZrGCozdgR.

12

Wei, J.,, Wang, X., Schuurmans, D., Bosma, M., Chi,

E. H, Le, Q., and Zhou, D. Chain of thought prompt-
ing elicits reasoning in large language models. CoRR,
abs/2201.11903, 2022b. URL https://arxiv.org/
abs/2201.11903.

West, P., Bhagavatula, C., Hessel, J., Hwang, J. D., Jiang, L.,

Bras, R. L., Lu, X., Welleck, S., and Choi, Y. Symbolic
knowledge distillation: from general language models
to commonsense models. In Carpuat, M., de Marneffe,
M., and Ruiz, I. V. M. (eds.), Proceedings of the 2022
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, NAACL 2022, Seattle, WA, United
States, July 10-15, 2022, pp. 4602-4625. Association
for Computational Linguistics, 2022. doi: 10.18653/v1/
2022.naacl-main.341. URL https://doi.org/10.
18653/v1/2022.naacl-main.341.

Yang, K., Klein, D., Peng, N., and Tian, Y. DOC: im-

proving long story coherence with detailed outline con-
trol. CoRR, abs/2212.10077, 2022. doi: 10.48550/arXiv.
2212.10077. URL https://doi.org/10.48550/
arxXiv.2212.10077.

Ye, J., Gao, J., Li, Q., Xu, H., Feng, J., Wu, Z., Yu, T,

and Kong, L. Zerogen: Efficient zero-shot learning via
dataset generation. CoRR, abs/2202.07922, 2022a. URL
https://arxiv.org/abs/2202.07922.

Ye, X., Iyer, S., Celikyilmaz, A., Stoyanov, V., Durrett,

G., and Pasunuru, R. Complementary explanations for
effective in-context learning. CoRR, abs/2211.13892,
2022b. doi: 10.48550/arXiv.2211.13892. URL https:
//doi.org/10.48550/arXiv.2211.13892.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,

Chen, S., Dewan, C., Diab, M. T., Li, X., Lin, X. V.,
Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig,
D., Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068, 2022a. doi: 10.48550/arXiv.
2205.01068. URL https://doi.org/10.48550/
arXiv.2205.01068.

Zhang, Z., Zhang, A., Li, M., and Smola, A. Automatic

chain of thought prompting in large language models.
CoRR, abs/2210.03493, 2022b. doi: 10.48550/arXiv.
2210.03493. URL https://doi.org/10.48550/
arXiv.2210.03493.

Zhou, D., Schérli, N., Hou, L., Wei, J., Scales, N., Wang,

X., Schuurmans, D., Bousquet, O., Le, Q., and Chi, E. H.
Least-to-most prompting enables complex reasoning in
large language models. CoRR, abs/2205.10625, 2022.
doi: 10.48550/arXiv.2205.10625. URL https://doi.
0rg/10.48550/arXiv.2205.10625.

https://doi.org/10.18653/v1/2022.naacl-main.380
https://doi.org/10.18653/v1/2022.naacl-main.380
https://doi.org/10.48550/arXiv.2210.09261
https://doi.org/10.48550/arXiv.2210.09261
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.48550/arXiv.2212.10077
https://doi.org/10.48550/arXiv.2212.10077
https://arxiv.org/abs/2202.07922
https://doi.org/10.48550/arXiv.2211.13892
https://doi.org/10.48550/arXiv.2211.13892
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2210.03493
https://doi.org/10.48550/arXiv.2210.03493
https://doi.org/10.48550/arXiv.2205.10625
https://doi.org/10.48550/arXiv.2205.10625

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Appendix
A Experiments 13
A.1 Effect of Language Models on Example Synthesis 13
A.2 Effectof Seed Examples e 13
B Topic Words Generation for SYNTHETIC PROMPTING 14
C Question Synthesis for Vanilla SYNTHETIC PROMPTING 14
D Seed Examples and Synthetic Prompts for Inference 14
D.1 Numerical Reasoning Datasets 0 e e e e e 15
D.1.1 With Accessto2 Gold Examples 15
D.1.2 With Accessto4 Gold Examples 20
D.1.3 With Accessto 8 Gold Examples 27
D.2 Colored Objects o o e e e e e 34
D.2.1 With Accessto2 Gold Examples e 34
D.2.2 With Accessto4 Gold Examples Lo 42
D3 Repeat Copy o o v o o e e e e e 53
D.3.1 With Accessto2 Gold Examples 53
D.3.2 WithAccessto4 Gold Exampleso 59
E Selecting Gold Demonstrations from Training Examples for Comparisons 64

A. Experiments
A.1. Effect of Language Models on Example Synthesis

Table 10 shows the numbers of examples successfully synthesized by SYNTHETIC PROMPTING using different language
models.

Seed Examples Numerical Reasoning Datasets Colored Objects Repeat Copy

text-003 codex-002 cushman text-003 codex-002 cushman text-003 codex-002 cushman

2 250 130 10 564 314 115 307 80 27
4 316 174 31 615 416 151 580 199 34
8 531 517 258 - - - - - -

Table 10: The numbers of examples synthesized by SYNTHETIC PROMPTING for experiments in Table 2, Table 6, and Table
7.

A.2. Effect of Seed Examples

As shown by Table 2, on numerical reasoning tasks, using 8 seed examples is sometimes worse than using 2 or 4 seed
examples, not only for our method but also for CoT prompting and PAL prompting. We conjecture that this is because the 8
seeds are not from the same distribution as the test examples, while the 2 seeds and the 4 seeds are: in the setting with access
to 8 seed examples, we used the 8 examples manually crafted by Wei et al. (2022b) as they have been adopted by several
works, while in the setting with access to 2 or 4 seed examples, we randomly sampled seeds from GSM8K. The 8 seeds

13

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

from Wei et al. (2022b) share very similar reasoning patterns (see Table 22), which can hurt the model’s generalization
performance.

To investigate this phenomenon, we re-ran the experiments in the setting with access to 8 seeds, using 8 random examples
from GSMS8K. The experimental results in Table 11 verify our hypothesis.

Datasets GSM8K GSM-Hard SVAMP ASDiv SingleOp
#Gold/Seed Examples 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8
PAL 72.5 73.1 73.4 62.8 62.9 63.3 80.2 79.6 81.6 81.0 79.4 79.6 93.4 92.5 93.8

SYNTHETIC 74.7 75.3 75.1 63.1 64.7 64.4 82.0 80.5 81.8 81.1 80.6 81.0 93.6 93.4 93.6

Table 11: Accuracies on numerical reasoning tasks, which are the same as in Table 2 except that we re-ran the experiments
in the setting with access to 8 seeds, using 8 random examples from GSM8K.

B. Topic Words Generation for SYNTHETIC PROMPTING

Table 12 shows an example prompt for generating topic words.

Table 12: An example prompt for topic words generation when given seed examples are those in Table 15. Words following
numbers are demonstrations, randomly sampled from seed questions.

List 50 noun words. Each word should contain one token only. Do not repeat words already listed.
1: sister
2: vacation
3: signature
4: week
5: book
6: painter
7: school
8: work

9: summer
10: team

C. Question Synthesis for Vanilla SYNTHETIC PROMPTING

Table 13 shows an example prompt for synthesizing questions.

Table 13: An example prompt used by vanilla SYNTHETIC PROMPTING for question synthesis when given seed examples
are those in Table 15. Questions from the seed examples are used as demonstrations.

Question 1: Carol and Jennifer are sisters from Los Angeles who love collecting signatures from celebrities. During
their summer break from school, the sisters spend every afternoon collecting signatures. After five weeks, Carol and
Jennifer compare their autograph books, counting up the number of signatures each sister has collected. Carol has 20
signatures in her book, and Jennifer has 44. The sisters have three more weeks of summer vacation, and they decide
they want to reach 100 signatures between them by the end of the summer. How many signatures do the sisters need
to collect to reach their goal?

Question 2: A team of 4 painters worked on a mansion for 3/8ths of a day every day for 3 weeks. How many hours of
work did each painter put in?

D. Seed Examples and Synthetic Prompts for Inference

This section provides prompts used in Table 2.

14

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

D.1. Numerical Reasoning Datasets
D.1.1. WITH ACCESS TO 2 GOLD EXAMPLES

Table 14 and Table 15 present the 2 seed examples annotated with CoT-style reasoning steps and PAL-style reasoning steps,
respectively. Table 16 and Table 17 present the synthetic prompts used for inference, constructed by vanilla SYNTHETIC
PROMPTING and SYNTHETIC PROMPTING, respectively.

Table 14: 2 seed demonstrations with CoT-style reasoning steps for numerical reasoning datasets.

Question: Carol and Jennifer are sisters from Los Angeles who love collecting signatures from celebrities. During
their summer break from school, the sisters spend every afternoon collecting signatures. After five weeks, Carol and
Jennifer compare their autograph books, counting up the number of signatures each sister has collected. Carol has 20
signatures in her book, and Jennifer has 44. The sisters have three more weeks of summer vacation, and they decide
they want to reach 100 signatures between them by the end of the summer. How many signatures do the sisters need
to collect to reach their goal?

Let’s think step by step

Carol and Jennifer have already collected 20 + 44 signatures = <<20+44=64>>64 signatures.

Since their goal is 100, they need to collect 100 - 64 signatures. 100 - 64 = <<100-64=36>>36 signatures

The answer is 36.

Question: A team of 4 painters worked on a mansion for 3/8ths of a day every day for 3 weeks. How many hours of
work did each painter put in?

Let’s think step by step

There are 24 hours in a day so 3/8ths of a day is (3/8)*24 = <<3/8%24=9>>9 hours

One week has 7 days so 3 weeks have 7#3 = <<7*3=21>>21 days

Each painter put in 9%¥21 = <<9*21=189>>189 hours of work

The answer is 189.

Table 15: 2 seed demonstrations with PAL-style reasoning steps for numerical reasoning datasets.

Q: Carol and Jennifer are sisters from Los Angeles who love collecting signatures from celebrities. During their
summer break from school, the sisters spend every afternoon collecting signatures. After five weeks, Carol and
Jennifer compare their autograph books, counting up the number of signatures each sister has collected. Carol has 20
signatures in her book, and Jennifer has 44. The sisters have three more weeks of summer vacation, and they decide
they want to reach 100 signatures between them by the end of the summer. How many signatures do the sisters need
to collect to reach their goal?
def solution():

signatures_carol_has = 20

signatures_jennifer_has = 44

expected_num_signatures = 100

total_signatures = signatures_carol_has + signatures_jennifer_has

more_signatures_needed = expected_num_signatures - total_signatures

result = more_signatures_needed

return result

Q: A team of 4 painters worked on a mansion for 3/8ths of a day every day for 3 weeks. How many hours of work did
each painter put in?
def solution():

ratio_of_a_day_working = 3/8

num_weeks =3

days_per-week =7

hours_per_day = 24

hours_per_day_working = hours_per_day * ratio_of_a_day_working

15

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

num_days = num_weeks * days_per_week
num_hours_working = hours_per_day_working * num_days
result = num_hours_working

return result

Table 16: The synthetic prompt from vanilla SYNTHETIC PROMPTING on numerical reasoning datasets, with access to 2
seed examples.

Q: The team of 4 painters worked on the mansion for 3/8ths of a day every day for 3 weeks. If each painter was paid
$25 per hour, how much money did the team of painters earn in total?
def solution():

ratio_of_a_day_working = 3/8

num_weeks = 3

days_per_week =7

hours_per_day = 24

hours_per_day_working = hours_per_day * ratio_of_a_day_working

num_days = num_weeks * days_per_week

num_hours_working = hours_per_day_working * num_days

num_painters = 4

hourly_wage = 25

total_earnings = num_painters * num_hours_working * hourly_wage

result = total_earnings

return result

Q: 80 students took a quiz in Mrs. Smith’s math class. The average score was 75%. How many students scored a 95%
or higher?
def solution():
num_students = 80
average_score = 75
required_score = 95
num_students_required_score = 0
for student in range(num_students):
if student >= required_score:
num_students_required_score += 1
result = num_students_required_score
return result

Q: John is an avid golfer and spends every weekend at his local golf course. He spends 2/3 of a day on the green each
Saturday and Sunday. Over the course of 6 weeks, how many hours does John spend golfing?
def solution():

ratio_of_a_day_golfing = 2/3

num_weeks = 6

days_per_week =2

hours_per_day = 24

hours_per_day_golfing = hours_per_day * ratio_of_a_day_golfing

num_days = num_weeks * days_per_week

num_hours_golfing = hours_per_day_golfing * num_days

result = num_hours_golfing

return result

Q: John and David are two long-distance runners. John ran 8 km in 30 minutes, while David ran 10 km in 40 minutes.

How much faster, in kilometers per hour, is John running than David?
def solution():

16

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

john_distance = 8

john_time = 30

david_distance = 10

david_time = 40

john_speed = john_distance / john_time
david_speed = david_distance / david_time
difference_in_speeds = john_speed - david_speed
result = difference_in_speeds

return result

Q: The Smith family has a garden of 12 tomato plants. They harvest 2 tomatoes from each plant every week and keep
track of the total number of tomatoes they have picked. After 4 weeks, the Smith family has picked a total of 48
tomatoes. How many tomatoes will they have picked after 8 weeks?
def solution():

num_tomatoes_per_plant = 2

num_plants = 12

num_weeks = 8

total_tomatoes_picked_after_4_weeks = 48

tomatoes_per_week = num_plants * num_tomatoes_per_plant

total_tomatoes_picked_after_8_weeks = total _tomatoes_picked_after_ 4_weeks + (tomatoes_per_week * (num_weeks
-4))

result = total_tomatoes_picked_after_8_weeks

return result

Q: Anna and Daniel are getting a new puppy and need to buy supplies. Anna and Daniel have a budget of $250. They
need to buy a collar, a leash, food, a bed, and a toy. Collars cost $15, leashes cost $10, food costs $20, beds cost $50,
and toys cost $5. How much money do Anna and Daniel have left after buying all of the supplies?
def solution():

budget = 250

cost_of_collar = 15

cost_of_leash = 10

cost_of_food =20

cost_of_bed = 50

cost_of_toy =5

total_cost = cost_of_collar + cost_of leash + cost_of _food + cost_of_bed + cost_of_toy

money_left = budget - total_cost

result = money_left

return result

Q: 80 people attended a party. 40 of them were men and 40 were women. Of the men, 10 were married and of the
women, 20 were married. How many single people were at the party?
def solution():
num_people = 80
num_men = 40
num_women = 40
num_men_married = 10
num_women_married = 20
num_single_people = num_people - (num_men_married + num_women_married)
result = num_single_people
return result

Q: John is a carpenter who is building a shed in his backyard. He needs to buy 10 sheets of plywood and 10 boards of

2x4s to complete the project. Each sheet of plywood costs $25 and each board of 2x4s costs $2. How much money
does John need to spend on materials?

17

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

def solution():
num_plywood_sheets = 10
cost_per_plywood_sheet = 25
num_2x4s = 10
cost_per 2x4 =2
total_cost_plywood = num_plywood_sheets * cost_per_plywood_sheet
total_cost_2x4s = num_2x4s * cost_per_2x4
total_material_cost = total_cost_plywood + total_cost_2x4s
result = total_material_cost
return result

Table 17: The synthetic prompt from SYNTHETIC PROMPTING on numerical reasoning datasets, with access to 2 seed
examples.

Q: You are installing a security system with 4 cameras at a cost of $250 each. The installation fee is $1000. You get a
10% discount. The system requires a monthly monitoring fee of $15 for 12 months. How much will the entire system
cost?
def solution():

num_cameras = 4

cost_per_camera = 250

installation_fee = 1000

discount_percentage = 10

monthly_monitoring_fee = 15

num_months = 12

cost_cameras = num-_cameras * cost_per_camera

discount = cost_cameras * (discount_percentage/100)

total_cost = cost_cameras + installation_fee - discount + (monthly_monitoring_fee * num_months)

result = total_cost

return result

Q: A farm has 18 chickens, 24 rabbits, 12 cows, 8 sheep, 14 goats, 10 pigs, and 6 ducks. How many legs does the
farm have in total?
def solution():

num_chickens = 18

num_rabbits = 24

num_cows = 12

num_sheep = 8

num_goats = 14

num_pigs = 10

num_ducks = 6

num_legs_chicken = 2

num_legs_rabbit = 4

num_legs_cow =4

num_legs_sheep = 4

num_legs_goat = 4

num_legs_pig = 4

num_legs_duck =2

total_ num_legs = (num_chickens * num_legs_chicken) + (num_rabbits * num_legs_rabbit) + (num_cows *
num-legs_cow) + (num-sheep * num_legs_sheep) + (num_goats * num_legs_goat) + (num_pigs * num_legs_pig)
+ (num_ducks * num_legs_duck)

result = total_num_legs

return result

18

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Q: You are buying a puppy for $350. You also need a vet check for $50, grooming for $75, vaccinations for $100,
food for $25, toys for $20, a bed for $60, and a leash for $30. You get a 10% discount on everything. How much will
you pay in total?
def solution():

puppy-cost = 350

vet_check_cost = 50

grooming_cost = 75

vaccines_cost = 100

food_cost =25

toys_cost = 20

bed_cost = 60

leash_cost = 30

discount = 0.10

total_cost = puppy_cost + vet_check_cost + grooming_cost + vaccines_cost + food_cost + toys_cost + bed_cost +
leash_cost

total_cost_with_discount = total _cost - (total_cost * discount)

result = total_cost_with_discount

return result

Q: The office is 20 feet wide, 30 feet long and 10 feet high. It has two windows that are each 5 feet wide and 6 feet
high, and one door that is 3 feet wide and 8 feet high. What is the total area of the office walls?
def solution():

width = 20

length = 30

height = 10

window_width = 5

window_height = 6

door_width =3

door_height = 8

wall_area = ((length * height * 2) + (width * height * 2)) - (window_width * window_height * 2) - (door_width *
door_height)

result = wall_area

return result

Q: If you have 50 plants and have planted 25, watered 15, weeded 10 and fertilized 5, what percentage of the plants
are left?
def solution():
total_plants = 50
num_planted = 25
num_watered = 15
num_weeded = 10
num_fertilized = 5
num_done = num_planted + num_watered + num_weeded + num_fertilized
num_left = total_plants - num_done
result = (num_left / total_plants) * 100
return result

Q: If 5 people each have 10 ideas, with 5 of those ideas being innovative and taking 2 minutes each to develop, and the
other 5 ideas being non-innovative and taking 1 minute each to develop, how many minutes will it take all 5 people to
develop all 10 ideas?
def solution():

num_people = 5

num_ideas = 10

num_innovative_ideas = 5

19

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

num_non_innovative_ideas = 5

time_per_innovative_idea = 2

time_per_non_innovative_idea = 1

total_time_innovative_ideas = num_innovative_ideas * time_per_innovative_idea * num_people
total_time_non_innovative_ideas = num_non_innovative_ideas * time_per_non_innovative_idea * num_people
result = total_time_innovative_ideas + total_time_non_innovative_ideas

return result

Q: If a total of 50000 films were made, 3000 in the 1930s, 5000 in the 1940s, 8000 in the 1950s, 10000 in the 1960s,
15000 in the 1970s, 30000 in the 1980s, 10000 in the 1990s, and 10000 in the 2000s, how many films were made in
other decades?
def solution():

films_1930s = 3000

films_1940s = 5000

films_1950s = 8000

films_1960s = 10000

films_1970s = 15000

films_1980s = 30000

films_1990s = 10000

films_2000s = 10000

total_films = 50000

other_decades_films = total_films - (films_1930s + films_1940s + films_1950s + films_1960s + films_1970s +
films_1980s + films_1990s + films_2000s)

result = other_decades_films

return result

Q: A gallery has 10 paintings, 9 sculptures, 6 photos, and 4 mixed media pieces. The painting is $200, the sculpture is
$500, the photo is $100 and the mixed media piece is $150. You get a 15% discount and you have to pay 5% tax. How
much will you pay in total?
def solution():

num_paintings = 10

num_sculptures = 9

num_photos = 6

num_mixed_media = 4

painting_price = 200

sculpture_price = 500

photo_price = 100

mixed_media_price = 150

discount_percent = 15

tax_percent = 5

total_cost_before_discount = num_paintings * painting_price + num_sculptures * sculpture_price + num_photos *
photo_price + num_mixed_media * mixed_media_price

total_discount = total_cost_before_discount * discount_percent/100

total_cost_before_tax = total_cost_before_discount - total_discount

total_tax = total_cost_before_tax * tax_percent/100

total_cost_after_tax = total_cost_before_tax + total_tax

result = total_cost_after_tax

return result

D.1.2. WITH ACCESS TO 4 GOLD EXAMPLES

Table 18 and Table 19 present the 4 seed examples annotated with CoT-style reasoning steps and PAL-style reasoning steps,
respectively. Table 20 and Table 21 present the synthetic prompts used for inference, constructed by vanilla SYNTHETIC
PROMPTING and SYNTHETIC PROMPTING, respectively.

20

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Table 18: 4 seed demonstrations with CoT-style reasoning steps for numerical reasoning datasets.

Question: Carol and Jennifer are sisters from Los Angeles who love collecting signatures from celebrities. During
their summer break from school, the sisters spend every afternoon collecting signatures. After five weeks, Carol and
Jennifer compare their autograph books, counting up the number of signatures each sister has collected. Carol has 20
signatures in her book, and Jennifer has 44. The sisters have three more weeks of summer vacation, and they decide
they want to reach 100 signatures between them by the end of the summer. How many signatures do the sisters need
to collect to reach their goal?

Let’s think step by step

Carol and Jennifer have already collected 20 + 44 signatures = <<20+44=64>>64 signatures.

Since their goal is 100, they need to collect 100 - 64 signatures. 100 - 64 = <<100-64=36>>36 signatures

The answer is 36.

Question: A team of 4 painters worked on a mansion for 3/8ths of a day every day for 3 weeks. How many hours of
work did each painter put in?

Let’s think step by step

There are 24 hours in a day so 3/8ths of a day is (3/8)*24 = <<3/8%24=9>>9 hours

One week has 7 days so 3 weeks have 7%3 = <<7*3=21>>21 days

Each painter put in 9*21 = <<9*21=189>>189 hours of work

The answer is 189.

Question: It costs $194 per meter to repave a street. Monica’s street is 150 meters long. How much more does it cost
to repave Lewis’ street, which is 490 meters long?

Let’s think step by step

Total cost to repave Monica’s street is 194%150 = <<194*150=29100>>29,100 dollars.

Total cost to repave Lewis’ street is 194%490 = < <194%490=95060>>95,060.

It costs 95,060-29,100 = <<95060-29100=65960>>65,960 more dollars to repave Lewis’ street.

The answer is 65,960.

Question: Richard lives in an apartment building with 15 floors. Each floor contains 8 units, and 3/4 of the building is
occupied. What’s the total number of unoccupied units In the building?

Let’s think step by step

The total number of units in the building will be 8 units/floor * 15 floors = <<8*15=120>>120 units.

If 3/4 of the building is occupied, then the total number of occupied units is 3/4 * 120 units = <<3/4*120=90>>90
units.

The total number of unoccupied units is 120 units - 90 units = <<120-90=30>>30 units.

The answer is 30.

Table 19: 4 seed demonstrations with PAL-style reasoning steps for numerical reasoning datasets.

Q: Carol and Jennifer are sisters from Los Angeles who love collecting signatures from celebrities. During their
summer break from school, the sisters spend every afternoon collecting signatures. After five weeks, Carol and
Jennifer compare their autograph books, counting up the number of signatures each sister has collected. Carol has 20
signatures in her book, and Jennifer has 44. The sisters have three more weeks of summer vacation, and they decide
they want to reach 100 signatures between them by the end of the summer. How many signatures do the sisters need
to collect to reach their goal?
def solution():

signatures_carol_has = 20

signatures_jennifer_has = 44

expected_num_signatures = 100

total_signatures = signatures_carol_has + signatures_jennifer_has

more_signatures_needed = expected_num_signatures - total_signatures

result = more_signatures_needed

21

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

return result

Q: A team of 4 painters worked on a mansion for 3/8ths of a day every day for 3 weeks. How many hours of work did
each painter put in?
def solution():
ratio_of_a_day_working = 3/8
num_weeks = 3
days_per-week =7
hours_per_day = 24
hours_per_day_working = hours_per_day * ratio_of_a_day_working
num_days = num_weeks * days_per_week
num_hours_working = hours_per_day_working * num_days
result = num_hours_working
return result

Q: It costs $194 per meter to repave a street. Monica’s street is 150 meters long. How much more does it cost to
repave Lewis’ street, which is 490 meters long?
def solution():
cost_per_meter = 194
monica_street_length_in_meters = 150
lewis_street_length_in_meters = 490
monica_cost = cost_per_meter * monica_street_length_in_meters
lewis_cost = cost_per_meter * lewis_street_length_in_meters
more_cost_for_lewis = lewis_cost - monica_cost
result = more_cost_for_lewis
return result

Q: Richard lives in an apartment building with 15 floors. Each floor contains 8 units, and 3/4 of the building is
occupied. What’s the total number of unoccupied units In the building?
def solution():

num_floors = 15

units_per_floor = 8

occupied_ratio = 3/4

num_units = num_floors * units_per_floor

unoccupied_ratio = 1 - occupied_ratio

unoccupied_units = num_units * unoccupied_ratio

result = unoccupied_units

return result

Table 20: The synthetic prompt from vanilla SYNTHETIC PROMPTING on numerical reasoning datasets, with access to 4
seed examples.

Q: Mandy is planning a trip from London to Paris. The train from London to Paris takes 3 hours and 45 minutes. If
she leaves London at 8:00 AM, what time will she arrive in Paris?
def solution():

departure_time = 8

hours_traveling = 3

minutes_traveling = 45

total_minutes_traveling = hours_traveling * 60 + minutes_traveling

arrival_time_in_minutes = departure_time * 60 + total_minutes_traveling

arrival_hour = arrival_time_in_minutes // 60

arrival_minute = arrival_time_in_minutes % 60

99,99

result = str(arrival _hour) + ”:” + str(arrival_minute)

22

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

return result

Q: Lisa is planning a birthday party for her daughter. She wants to make sure she has enough cake to feed everyone.
Each cake is 9 inches long, 6 inches wide and 2 inches thick. Lisa’s daughter has 24 friends coming to the party. How
many cakes will Lisa need to buy for the party?
def solution():

length_of_cake =9

width_of_cake = 6

thickness_of_cake = 2

num_friends = 24

total_volume_of_cake = length_of_cake * width_of_cake * thickness_of_cake

num_cakes = num_friends / total_volume_of_cake

result = num_cakes

return result

Q: Five friends are playing a game of basketball. Each player takes a turn shooting from the three-point line. Sarah
makes 2 shots out of 3 attempts, while Jordan makes 3 shots out of 4 attempts. What is the combined success rate of
the two players?
def solution():

sarah_shots_made =2

sarah_shots_attempted = 3

jordan_shots_made = 3

jordan_shots_attempted = 4

total_shots_made = sarah_shots_made + jordan_shots_made

total_shots_attempted = sarah_shots_attempted + jordan_shots_attempted

success_rate = total_shots_made / total_shots_attempted

result = success_rate

return result

Q: Jason is a construction worker who is paid $18 per hour. He works for 7 hours on Monday, 5 hours on Tuesday, 4
hours on Wednesday, and 6 hours on Thursday. How much did Jason earn for the week?
def solution():

hourly _rate = 18

monday_hours =7

tuesday_hours = 5

wednesday_hours = 4

thursday_hours = 6

total_hours = monday _hours + tuesday_hours + wednesday_hours + thursday_hours

total_pay = hourly_rate * total_hours

result = total_pay

return result

Q: John is making a quilt for his niece’s birthday. He has 7 pieces of cloth, each measuring 8 inches by 4 inches. How
much fabric will John need to buy in order to make a quilt that measures 48 inches by 36 inches?
def solution():

num_pieces_of_cloth =7

piece_width = 8

piece_length = 4

quilt_width = 48

quilt_length = 36

area_of_each_piece = piece_width * piece_length

area_of_all_pieces = num_pieces_of_cloth * area_of_each_piece

area_of_quilt = quilt_width * quilt_length

fabric_needed = area_of_quilt - area_of_all_pieces

23

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

result = fabric_needed
return result

Q: Liz needs to buy materials for her art project. She needs 25 meters of cloth, 10 rolls of decorative paper, and 5
boxes of paint brushes. Each roll of decorative paper costs $12, each box of paint brushes costs $8, and the cloth costs
$3 per meter. How much does Liz need to spend in total?
def solution():

meters_of_cloth = 25

rolls_of_paper = 10

boxes_of_paint_brushes = 5

cost_of_cloth =3

cost_of_paper = 12

cost_of_paint_brushes = 8

cost_of_cloth_total = meters_of_cloth * cost_of_cloth

cost_of_paper_total = rolls_of_paper * cost_of_paper

cost_of_paint_brushes_total = boxes_of_paint_brushes * cost_of_paint_brushes

total_cost = cost_of_cloth_total + cost_of_paper_total + cost_of_paint_brushes_total

result = total_cost

return result

Q: Kayla buys a new car for $20,000 and puts $5,000 down and finances the rest. The loan she takes out has an
interest rate of 4.5% compounded monthly over 5 years. How much will Kayla’s total payments be?
def solution():

principal = 20000

down_payment = 5000

loan_amount = principal - down_payment

interest_rate = 4.5

num_years = 5

num_months = num_years * 12

monthly_interest_rate = interest_rate/100/12

monthly_payment = loan_amount * (monthly_interest_rate * (1 + monthly_interest_rate) ** num_months) / ((1 +
monthly _interest_rate) ** num_months - 1)

total_payment = monthly_payment * num_months

result = total_payment

return result

Q: A store sells boxes of chocolates. Each box contains 10 pieces, and each piece costs $0.50. How much does it cost
to buy 75 pieces of chocolates?
def solution():
pieces_per_box = 10
cost_per_piece = 0.5
num_pieces = 75
num_boxes = num_pieces // pieces_per_box
cost_of_boxes = num_boxes * (pieces_per_box * cost_per_piece)
remaining_pieces = num_pieces % pieces_per_box
cost_of_remaining_pieces = remaining_pieces * cost_per_piece
total_cost = cost_of_boxes + cost_of_remaining_pieces
result = total_cost
return result

24

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Table 21: The synthetic prompt from SYNTHETIC PROMPTING on numerical reasoning datasets, with access to 4 seed
examples.

Q: You have a basket that is 10 inches wide, 5 inches deep and 3 inches high. If each apple is 2 inches wide, 2 inches
deep and 2 inches high, how many apples can you fit in the basket?
def solution():
basket_width = 10
basket_depth =5
basket_height = 3
apple_width =2
apple_depth =2
apple_height =2
num_apples_in_width = basket_width // apple_width
num_apples_in_depth = basket_depth // apple_depth
num_apples_in_height = basket_height // apple_height
num_apples = num_apples_in_width * num_apples_in_depth * num_apples_in_height
result = num_apples
return result

Q: In a society of 2 million people, 60% are adults, 20% are children, and 20% are seniors. 80% of the adults are
working, 60% of the children are in school, and the rest are not working. What is the ratio of working people to
non-working people?
def solution():

num_people = 2_000_000

adult_ratio = 0.6

children_ratio = 0.2

seniors_ratio = 0.2

working_adults_ratio = 0.8

children_in_school = 0.6

adults_not_working = 1 - working_adults_ratio

children_not_working = 1 - children_in_school

total_working_ratio = (adult_ratio * working_adults_ratio) + (children_ratio * children_in_school) + (seniors_ratio *
0)

total_not_working_ratio = (adult_ratio * adults_not_working) + (children_ratio * children_not_working) + (se-
niors_ratio * 1)

result = total_working_ratio / total_not_working_ratio

return result

Q: On a map, the starting coordinates are (0, 0) and the ending coordinates are (10, 5). What is the length of the route
in meters?

def solution():
x1=0
yl=0
x2=10
y2=5

x_difference = x2 - x1

y_difference = y2 - y1

length = (x_difference**2 + y_difference**2)**0.5
result = length

return result

Q: 500 fans of a celebrity buy t-shirts at $15, hats at $10, and posters at $5. If 35% buy t-shirts, 20% buy hats, and

45% buy posters, how much money do they spend in total?
def solution():

25

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

num_fans = 500

cost_of_tshirt = 15

cost_of_hat = 10

cost_of_poster = 5

percent_buying_tshirt = .35

percent_buying_hat = .20

percent_buying_poster = .45

num_buying_tshirt = num_fans * percent_buying_tshirt
num_buying_hat = num_fans * percent_buying_hat
num_buying_poster = num_fans * percent_buying_poster
total_cost_tshirt = num_buying_tshirt * cost_of _tshirt
total_cost_hat = num_buying_hat * cost_of_hat
total_cost_poster = num_buying_poster * cost_of_poster
total_cost = total_cost_tshirt + total_cost_hat + total_cost_poster
result = total_cost

return result

Q: You are knitting a scarf that is 4 meters wide and 10 meters long. Each stitch is 2 cm wide and 4 cm long. Assuming
you can knit each stitch in 0.5 minutes, how many hours will it take you to knit the scarf?
def solution():

width_in_meters = 4

length_in_meters = 10

width_in_cm = width_in_meters * 100

length_in_cm = length_in_meters * 100

stitch_width_in_cm = 2

stitch_length_in_.cm = 4

num_stitches = width_in_cm * length_in_cm / (stitch_width_in_cm * stitch_length_in_cm)

time_per_stitch_in_minutes = 0.5

num_minutes = num_stitches * time_per_stitch_in_minutes

num_hours = num_minutes / 60

result = num_hours

return result

Q: An apartment is 30m long and 20m wide. There is a bathroom that is 5m long and 5m wide and a living room that
is 15m long and 15m wide. How much area is left in the apartment after the bathroom and living room are taken into
account?
def solution():

apartment_length = 30

apartment_width = 20

bathroom_length = 5

bathroom_width = 5

livingroom_length = 15

livingroom_width = 15

apartment_area = apartment_length * apartment_width

bathroom_area = bathroom_length * bathroom_width

livingroom_area = livingroom_length * livingroom_width

total_area = apartment_area - bathroom_area - livingroom_area

result = total_area

return result

Q: 15 copies of a magazine cost $5 each plus a $10 delivery fee and a $12 subscription fee. If the customer gets a 10%
discount and 15% tax applied, how much does the customer need to pay in total?
def solution():

num_magazines = 15

26

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

cost_per_magazine = 5

delivery_fee = 10

subscription_fee = 12

discount_percentage = 10

tax_percentage = 15

total_cost_before_discounts = num_magazines * cost_per_magazine + delivery_fee + subscription_fee
discount_amount = total_cost_before_discounts * (discount_percentage / 100)
total_cost_after_discounts = total_cost_before_discounts - discount_amount
tax_amount = total_cost_after_discounts * (tax_percentage / 100)

total_cost = total_cost_after_discounts + tax_amount

result = total_cost

return result

Q: A one-story building is 5 meters long, 10 meters wide, and 12 meters high. If each brick is 0.25 meters long, 0.5
meters wide, and 0.25 meters high, what is the total volume of the bricks needed to build the story?
def solution():

building_length = 5

building_width = 10

building_height = 12

brick_length = 0.25

brick_-width = 0.5

brick_height = 0.25

num_bricks_length = building_length / brick_length

num_bricks_width = building_width / brick_width

num_bricks_height = building_height / brick_height

num_bricks = num_bricks_length * num_bricks_width * num_bricks_height

brick_volume = brick_length * brick_width * brick_height

total_volume = num_bricks * brick_volume

result = total_volume

return result

D.1.3. WITH ACCESS TO 8 GOLD EXAMPLES

Table 22 and Table 23 present the 8 seed examples annotated with CoT-style reasoning steps and PAL-style reasoning steps,
respectively. Table 24 and Table 25 present the synthetic prompts used for inference, constructed by vanilla SYNTHETIC
PROMPTING and SYNTHETIC PROMPTING, respectively.

Table 22: 8 seed demonstrations with CoT-style reasoning steps for numerical reasoning datasets.

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
Let’s think step by step

Olivia had 23 dollars.

5 bagels for 3 dollars each will be 5 x 3 = 15 dollars.

So she has 23 - 15 dollars left.

23-151s 8.

The answer is 8.

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf
balls did he have at the end of wednesday?

Let’s think step by step

Michael started with 58 golf balls.

After losing 23 on tuesday, he had 58 - 23 = 35.

After losing 2 more, he had 35 - 2 = 33 golf balls.

The answer is 33.

27

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Question: There were nine computers in the server room. Five more computers were installed each day, from monday
to thursday. How many computers are now in the server room?

Let’s think step by step

There were originally 9 computers.

For each of 4 days, 5 more computers were added.

So 5 *4 =20 computers were added.

9 +201is 29.

The answer is 29.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he
have now?

Let’s think step by step

Shawn started with 5 toys.

If he got 2 toys each from his mom and dad, then that is 4 more toys.

54+44=09.

The answer is 9.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

Let’s think step by step

Jason started with 20 lollipops.

Then he had 12 after giving some to Denny.

So he gave Denny 20 - 12 = 8.

The answer is 8.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
Let’s think step by step

Originally, Leah had 32 chocolates.

Her sister had 42.

So in total they had 32 + 42 = 74.

After eating 35, they had 74 - 35 = 39.

The answer is 39.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
Let’s think step by step

There are originally 3 cars.

2 more cars arrive.

3+2=5.

The answer is 5.

Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there
will be 21 trees. How many trees did the grove workers plant today?

Let’s think step by step

There are 15 trees originally.

Then there were 21 trees after some more were planted.

So there must have been 21 - 15 =6.

The answer is 6.

Table 23: 8 seed demonstrations with PAL-style reasoning steps for numerical reasoning datasets.

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
def solution():

28

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

money_initial = 23

bagels =5

bagel_cost =3

money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
result = money_left

return result

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls
did he have at the end of wednesday?
def solution():

golf_balls_initial = 58

golf_balls_lost_tuesday = 23

golf_balls_lost_wednesday = 2

golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday

result = golf_balls_left

return result

Q: There were nine computers in the server room. Five more computers were installed each day, from monday to
thursday. How many computers are now in the server room?
def solution():

computers_initial =9

computers_per_day = 5

num_days = 4 # 4 days between monday and thursday

computers_added = computers_per_day * num_days

computers_total = computers_initial + computers_added

result = computers_total

return result

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have
now?
def solution():

toys_initial = 5

mom_toys = 2

dad_toys =2

total_received = mom_toys + dad_toys

total_toys = toys_initial + total_received

result = total_toys

return result

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason
give to Denny?
def solution():

jason_lollipops_initial = 20

jason_lollipops_after = 12

denny _lollipops = jason_lollipops_initial - jason_lollipops_after

result = denny _lollipops

return result

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
def solution():

leah_chocolates = 32

sister_chocolates = 42

total_chocolates = leah_chocolates + sister_chocolates

29

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

chocolates_eaten = 35

chocolates_left = total_chocolates - chocolates_eaten
result = chocolates_left

return result

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
def solution():

cars_initial =3

cars_arrived = 2

total_cars = cars_initial + cars_arrived

result = total _cars

return result

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be
21 trees. How many trees did the grove workers plant today?
def solution():

trees_initial = 15

trees_after = 21

trees_added = trees_after - trees_initial

result = trees_added

return result

Table 24: The synthetic prompt from vanilla SYNTHETIC PROMPTING on numerical reasoning datasets, with access to 8
seed examples.

Q: Sam had 10 apples. He gave 3 to his brother and 2 to his sister. How many apples does Sam have now?
def solution():

apples_initial = 10

apples_given_brother = 3

apples_given_sister = 2

apples_given_total = apples_given_brother + apples_given_sister

apples_left = apples_initial - apples_given_total

result = apples_left

return result

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have
now?
def solution():

toys_initial = 5

mom_toys = 2

dad_toys =2

total_received = mom_toys + dad_toys

total_toys = toys_initial + total _received

result = total_toys

return result

Q: There were nine computers in the server room. Five more computers were installed each day, from monday to
thursday. How many computers are now in the server room?
def solution():

computers_initial =9

computers_per_day = 5

num_days = 4 # 4 days between monday and thursday

computers_added = computers_per_day * num_days

30

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

computers_total = computers_initial + computers_added
result = computers_total
return result

Q: There were 30 candies in the jar. If Sarah took 13 candies, and John took 8 candies, how many candies are left in
the jar?
def solution():

candies_initial = 30

sarah_candies = 13

john_candies = 8

candies_taken = sarah_candies + john_candies

candies_left = candies_initial - candies_taken

result = candies_left

return result

Q: Mark had $50. He went to the store and bought a shirt for $20, a hat for $15, and a pair of shoes for $25. How
much money does he have left?
def solution():
money_initial = 50
shirt_cost = 20
hat_cost =15
shoes_cost = 25
money_spent = shirt_cost + hat_cost + shoes_cost
money_left = money_initial - money_spent
result = money_left
return result

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls
did he have at the end of wednesday?
def solution():

golf_balls_initial = 58

golf_balls_lost_tuesday = 23

golf balls_lost_wednesday = 2

golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday

result = golf_balls_left

return result

Q: There were 7 books in the bookshelf. Two more books were added each day from Monday to Friday. How many
books are in the bookshelf now?
def solution():

books_initial = 7

books_per_day = 2

num_days = 5 # 5 days between monday and friday

books_added = books_per_day * num_days

books_total = books_initial + books_added

result = books_total

return result

Q: There are 28 cats in the cat shelter. 27 more cats will be brought to the shelter. How many cats will be in the shelter
after the new arrivals?
def solution():

cats_initial = 28

cats_arriving = 27

cats_total = cats_initial + cats_arriving

31

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

result = cats_total
return result

Table 25: The synthetic prompt from SYNTHETIC PROMPTING on numerical reasoning datasets, with access to 8 seed
examples.

Q: There were 8 hours of light and 8 hours of darkness. 4 hours of light were added, 5 hours of darkness were added,
3 hours of light were removed, and 2 hours of darkness were removed. What is the difference between the hours of
light and darkness, now?
def solution():

light_initial = 8

darkness_initial = 8

light_added = 4

darkness_added = 5

light removed = 3

darkness_removed = 2

light_now = light_initial + light_added - light_removed

darkness_now = darkness_initial + darkness_added - darkness_removed

difference = light_now - darkness_now

result = difference

return result

Q: There were 10 cows and 8 horses on the ranch. Two cows and two horses were sold. Five cows were purchased.
How many animals are on the ranch now?
def solution():
cows_initial = 10
horses_initial = 8
cows_sold =2
horses_sold =2
cows_purchased = 5
cows_after = cows_initial - cows_sold + cows_purchased
horses_after = horses_initial - horses_sold
total_animals = cows_after + horses_after
result = total_animals
return result

Q: There were 20 employees and 2 managers. 8 employees were hired, 5 were fired, and 6 left. One manager was
hired and one manager was fired. How many employees are there per manager now?
def solution():
employees_initial = 20
managers_initial = 2
employees_hired = 8
employees_fired =5
employees_left = 6
managers_hired = 1
managers_fired = 1
employees_current = employees_initial + employees_hired - employees_fired - employees_left
managers_current = managers_initial + managers_hired - managers_fired
result = employees_current / managers_current
return result

Q: There were 50 houses in the village and each house had 5 people. 10 houses were added, 5 were removed. 15
people moved in and 10 people moved out. How many people are there in the village now?

32

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

def solution():
houses_initial = 50
people_per_house = 5
people_initial = houses_initial * people_per_house
houses_added = 10
houses_removed = 5
people_moved_in = 15
people_moved_out = 10
houses_final = houses_initial + houses_added - houses_removed
people_final = houses_final * people_per_house + people_moved_in - people_moved_out
result = people_final
return result

Q: There were 10 cars and 5 bikes in the garage. 4 cars and 3 bikes were sold. 6 cars and 4 bikes were bought. How
many vehicles are left in the garage now?
def solution():
cars_initial = 10
bikes_initial = 5
cars_sold =4
bikes_sold =3
cars_bought = 6
bikes_bought = 4
cars_remaining = cars_initial - cars_sold + cars_bought
bikes_remaining = bikes_initial - bikes_sold + bikes_bought
vehicles_remaining = cars_remaining + bikes_remaining
result = vehicles_remaining
return result

Q: The room was 10ft long and 8ft wide. 4ft was added to the length and 3ft was added to the width. If there are 12ft
of furniture in the room, what is the area of the room?
def solution():

length_initial = 10

width_initial = 8

length_added = 4

width_added = 3

length_total = length_initial + length_added

width_total = width_initial + width_added

room_area = length_total * width_total

furniture_area = 12

room_area_with_furniture = room_area - furniture_area

result = room_area_with_furniture

return result

Q: There was 1 bed and 4 pillows. 2 more beds were added and 1 was removed. 6 pillows were added and 2 were
removed. How many pillows are there per bed now?
def solution():
beds_initial = 1
pillows_initial = 4
beds_added =2
beds_removed = 1
pillows_added = 6
pillows_removed = 2
beds_total = beds_initial + beds_added - beds_removed
pillows_total = pillows_initial + pillows_added - pillows_removed

33

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

pillows_per_bed = pillows_total / beds_total
result = pillows_per_bed
return result

Q: There were 12 plates and 8 bowls in the kitchen. 4 plates and 3 bowls were broken. 3 plates were given away and 5
plates and 2 bowls were bought. How many dishes are in the kitchen now?
def solution():
plates_initial = 12
bowls_initial = 8
plates_broken = 4
bowls_broken = 3
plates_given_away = 3
plates_bought = 5
bowls_bought =2
plates_left = plates_initial - plates_broken - plates_given_away + plates_bought
bowls_left = bowls_initial - bowls_broken + bowls_bought
total_dishes = plates_left + bowls_left
result = total_dishes
return result

D.2. Colored Objects
D.2.1. WITH ACCESS TO 2 GOLD EXAMPLES

Table 26 and Table 27 present the 2 seed examples annotated with CoT-style reasoning steps and PAL-style reasoning steps,
respectively. Table 28 and Table 29 present the synthetic prompts used for inference, constructed by vanilla SYNTHETIC
PROMPTING and SYNTHETIC PROMPTING, respectively.

Table 26: 2 seed demonstrations with CoT-style reasoning steps for Colored Objects.

Question: On the nightstand, you see the following items arranged in a row: a burgundy keychain, a pink pair of
sunglasses, a blue plate, and a yellow puzzle. What is the color of the item directly to the left of the blue item?
Let’s think step by step

According to this question, the objects are arranged in a row, from left to right, as follows: (1) a burgundy keychain,
(2) a pink pair of sunglasses, (3) a blue plate, (4) a yellow puzzle.

The blue item is the third object on the list, namely (3).

The object that is to the left of the stress ball corresponds to (2), which is a pink pair of sunglasses.

The color of the pair of sunglasses is pink.

The answer is pink.

Question: On the table, I see a turquoise jug, a red stress ball, a purple puzzle, and a mauve textbook. Is the puzzle
purple?

Let’s think step by step

According to this question, the color of the puzzle is purple.

The answer is yes.

Table 27: 2 seed demonstrations with PAL-style reasoning steps for Colored Objects.

Q: On the nightstand, you see the following items arranged in a row: a burgundy keychain, a pink pair of sunglasses,
a blue plate, and a yellow puzzle. What is the color of the item directly to the left of the blue item?

Put objects into a list to record ordering

objects =[]

objects += [(’keychain’, "burgundy’)] * 1

34

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

objects += [(’sunglasses’, ’pink’)] * 1
objects += [(’plate’, *blue’)] * 1
objects += [("puzzle’, "yellow’)] * 1

Find the index of the blue item
blue_idx = None
for i, object in enumerate(objects):
if object[1] == "blue’:
blue_idx =i
break

Find the directly left object
direct_left = objects[i-1]

Check the directly left object’s color
direct_left_color = direct_left[1]
answer = direct_left_color

Q: On the table, I see a turquoise jug, a red stress ball, a purple puzzle, and a mauve textbook. Is the puzzle purple?
Put objects into a dictionary for quick look up

objects = dict()

objects[’jug’] = ’turquoise’

objects[’stress ball’] = 'red’

objects[’puzzle’] = ’purple’

objects[’textbook’] = mauve’

Look up the color of puzzle
puzzle_color = objects[’puzzle’]

check whether the color of puzzle is purple
if puzzle_color == "purple’:

answer = ’yes’
else:

answer = 'no’

Table 28: The synthetic prompt from vanilla SYNTHETIC PROMPTING on Colored Objects, with access to 2 seed examples.

Q: On the shelf, I see a green candle, a silver watch, a white mug, and a black scarf. What color is the item between
the white mug and the black scarf?

Put objects into a list to record ordering

objects =[]

objects += [("candle’, ’green’)] * 1

objects += [("watch’, ’silver’)] * 1

objects += [("mug’, "white’)] * 1

objects += [(’scarf’, *black’)] * 1

Find the index of the white mug and black scarf
white_idx = None
black_idx = None

for i, object in enumerate(objects):

if object[1] == white’:
white_idx =1

35

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

if object[1] == "black’:
black_idx =i

Find the item between the white mug and black scarf
between_item = objects[white_idx + 1]

Check the item between the white mug and black scarf’s color
between_color = between_item[1]
answer = between_color

Q: On the counter, there are a green plate, a black candle holder, a blue vase, and a white flowerpot. What color is
the vase?

Put objects into a list to record ordering

objects =[]

objects += [(’plate’, "green’)] * 1

objects += [("candle holder’, ’black’)] * 1

objects += [(’vase’, "blue’)] * 1

objects += [("flowerpot’, white’)] * 1

Find the object of vase
vase = None
for object in objects:
if object[0] == ’vase’:
vase = object
break

Check the color of vase
vase_color = vase[1]
answer = vase_color

Q: On the countertop, there is a white mug, a black remote control, a green bottle, and a silver pen. Is the black item
amug?

Put objects into a dictionary for quick look up

objects = dict()

objects[’'mug’] = *white’

objects['remote control’] = "black’

objects[’bottle’] = ’green’

objects[’pen’] = ’silver’

Look up the color of the black item
black_item = None
for item, color in objects.items():
if color == black’:
black_item = item
break

check whether the black item is a mug
if black_item == "mug’:

answer = ’yes’
else:

answer = ’'no’

Q: On the counter, you see a brown cup, a black hairbrush, a green bowl, and a white box. Is the black item a cup?
Put objects into a dictionary for quick look up

36

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

objects = dict()
objects[’cup’] = "brown’
objects[hairbrush’] = *black’
objects[’bowl’] = ’green’
objects[’box’] = ’white’

Look up the object of black item
black_item = None
for object, color in objects.items():
if color == "black’:
black_item = object
break

check whether the black item is a cup
if black_item == "cup’:

answer = ’yes’
else:

answer = 'no’

Q: On the bookshelf, there is a yellow journal, a green pen, a blue pen, and an orange bookmark. What color is the
item directly to the left of the blue pen?

Put objects into a list to record ordering

objects =[]

objects += [(’journal’, "yellow’)] * 1

objects += [(pen’, "green’)] * 1

objects += [(’pen’, ’blue’)] * 1

objects += [(’bookmark’, orange’)] * 1

Find the index of the blue pen
blue_pen_idx = None
for i, object in enumerate(objects):
if object[1] == "blue’ and object[0] == "pen’:
blue_pen_idx =1
break

Find the directly left object
direct_left = objects[i-1]

Check the directly left object’s color
direct_left_color = direct_left[1]
answer = direct_left_color

Q: On the bookshelf, you see a black lamp, a green notebook, a white eraser, and a maroon book. Is the white item
an eraser?

Put objects into a dictionary for quick look up

objects = dict()

objects[’lamp’] = ’black’

objects['notebook’] = ’green’

objects[’eraser’] = *white’

objects[’book’] = "'maroon’

Look up the color of white item

white_item = None
for item, color in objects.items():

37

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

if color == ’white’:
white_item = item

check whether the white item is an eraser
if white_item == "eraser’:

answer = ’yes’
else:

answer = 'no’

Q: On the bookshelf, you spot a green book, a white lamp, a yellow pencil, and a brown box. Is the lamp white?
Put objects into a list to record ordering

objects =[]

objects += [("book’, "green’)] * 1

objects += [(’lamp’, white’)] * 1

objects += [(’pencil’, "yellow’)] * 1

objects += [(’box’, brown’)] * 1

Look up the color of lamp
lamp_color = objects[1][1]

check whether the color of lamp is white
if lamp_color == "white’:

answer = ’yes’
else:

answer = 'no’

Q: On the shelf, there are a yellow book, a gold medal, a green watch, and a silver bracelet. Is the item directly to
the left of the gold medal green?

Put objects into a list to record ordering

objects =[]

objects += [("book’, "yellow’)] * 1

objects += [("medal’, gold’)] * 1

objects += [("watch’, "green’)] * 1

objects += [("bracelet’, ’silver’)] * 1

Find the index of the gold item
gold_idx = None
for i, object in enumerate(objects):
if object[1] == "gold’:
gold_idx =1
break

Find the directly left object
direct_left = objects[i-1]

Check the directly left object’s color
direct_left_color = direct_left[1]

Check whether the color of directly left object is green

if direct_left_color == ’green’:
answer = ’yes’
else:

answer = 'no’

38

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Table 29: The synthetic prompt from SYNTHETIC PROMPTING on Colored Objects, with access to 2 seed examples.

Q: I have two red items, three orange items, five yellow items, two green items, four blue items, six indigo items,
and seven violet items. What is the item directly to the right of the orange item?
Put objects into a list to record ordering

objects =[]

objects += [(’red’,)] * 2

objects += [(Corange’,)] * 3

objects += [(yellow’,)] * 5

objects += [("green’,)] * 2

objects += [(’blue’,)] * 4

objects += [(’indigo’,)] * 6

objects += [(’violet’,)] * 7

Find the index of the orange item
orange_idx = None
for i, object in enumerate(objects):
if object[0] == "orange’:
orange_idx =1
break

Find the directly right object
direct_right = objects[i+1]

Check the directly right object
direct_right_item = direct_right[0]
answer = direct_right_item

Q: I have a piece of fabric with eight colors: red, orange, orange, yellow, green, blue, indigo, and violet. Does the
fabric have eight colors?
Put colors into a list
colors =[]

colors +=[red’] * 1
colors += ["orange’] * 2
colors += ["yellow’] * 1
colors +=["green’] * 1
colors += [’'blue’] * 1
colors += [’indigo’] * 1
colors += [’violet’] * 1

Count the number of colors
num_colors = len(colors)

Check whether the fabric has eight colors
if num_colors == 8:

answer = ’yes’
else:

answer = 'no’

Q: I have one white talcum powder, two pink blushes, one red bronzer, one gold highlighter, and two transparent
setting powders. What is the meaning and color of the powder two items to the left of the gold highlighter?

Put objects into a list to record ordering

objects =[]

objects += [("talcum powder’, white’)] * 1

39

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

objects += [(’blush’, *pink’)] * 2

objects += [("bronzer’, 'red’)] * 1

objects += [("highlighter’, gold’)] * 1

objects += [(’setting powder’, ’transparent’)] * 2

Find the index of the gold item
gold_idx = None
for i, object in enumerate(objects):
if object[1] == "gold’:
gold_idx =1
break

Find the two items to the left
left_two = objects[i-2]

Check the two items to the left’s color
left_two_color = left_two[1]
left_two_name = left_two[0]

answer = (left_two_name, left_two_color)

Q: You have a silver fins, pink scales, black eyes, red mouth, red gill, silver tail, and pink body on a salmon. Is the
body pink?

Put features into a dictionary for quick look up

features = dict()

features[’fins’] = ’silver’
features|’scales’] = "pink’
features[’eyes’] = ’black’
features[’mouth’] = 'red’
features[’gill’] = "red’
features[’tail’] = ’silver’
features[’body’] = ’pink’

Look up the color of the body
body_color = features[body’]

Check whether the color of the body is pink
if body_color == "pink’:

answer = ’yes’
else:

answer = 'no’

Q: I have a laptop with a black case and eight colors on the back in this order: gray, white, red, orange, yellow,
green, blue, and purple. What color is directly to the left of the black case?
Put objects into a list to record ordering

objects =[]

objects += [("case’, ’black’)] * 1

objects += [("gray’, 'gray’)] * 1

objects += [("white’, *white’)] * 1

objects += [(’red’, 'red’)] * 1

objects += [(Corange’, "orange’)] * 1

objects += [(Cyellow’, *yellow’)] * 1

objects += [("green’, *green’)] * 1

objects += [(’blue’, ’blue’)] * 1

40

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

objects += [(’purple’, 'purple’)] * 1

Find the index of the black item
black_idx = None
for i, object in enumerate(objects):
if object[1] == "black’:
black_idx =1
break

Find the directly left object
direct_left = objects[i-1]

Check the directly left object’s color
direct_left_color = direct_left[1]
answer = direct_left_color

Q: You have 2 white sneakers, 1 black boots, 3 brown sandals, 1 green flip-flops, 2 gray slippers, and 1 red heels.
What color is the shoe directly to the right of the boots?

Put objects into a list to record ordering

objects =[]

objects += [(’sneakers’, *white’)] * 2

objects += [("boots’, *black’)] * 1

objects += [(’sandals’, ’brown’)] * 3

objects += [(’flip-flops’, "green’)] * 1

objects += [(’slippers’, *gray’)] * 2

objects += [(Cheels’, 'red’)] * 1

Find the index of the boots
boots_idx = None
for i, object in enumerate(objects):
if object[1] == "black’:
boots_idx =1
break

Find the directly right object
direct_right = objects[i+1]

Check the directly right object’s color
direct_right_color = direct_right[1]
answer = direct_right_color

Q: In my refrigerator, I have one white milk, one green yoghurt, one yellow cheese, one red salami, one green apple,
and one green lettuce. What food is directly to the right of the yellow item?

Put objects into a list to record ordering
objects =[]

objects += [("milk’, *white’)] * 1

objects += [(yoghurt’, *green’)] * 1
objects += [("cheese’, yellow’)] * 1
objects += [(’salami’, 'red’)] * 1

objects += [(Capple’, "green’)] * 1
objects += [(’lettuce’, *green’)] * 1

Find the index of the yellow item

41

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

yellow_idx = None
for i, object in enumerate(objects):
if object[1] == "yellow’:
yellow_idx =i
break

Find the directly right object
direct_right = objects[i+1]

Check the directly right object’s food
direct_right_food = direct_right[0]
answer = direct_right_food

Q: I have a black towel, a green blanket, a red pillow, a blue tablecloth, and a yellow curtain. Is the black item a
towel?

Put objects into a dictionary for quick look up

objects = dict()

objects[’towel’] = "black’

objects[’blanket’] = "green’

objects[’pillow’] = 'red’

objects[’tablecloth’] = "blue’

objects[’curtain’] = "yellow’

Look up the item with black color
black_item = None
for item, color in objects.items():
if color == black’:
black_item = item
break

Check whether the black item is a towel
if black_item == "towel’:

answer = ’yes’
else:

answer = 'no’

D.2.2. WITH ACCESS TO 4 GOLD EXAMPLES

Table 30 and Table 31 present the 4 seed examples annotated with CoT-style reasoning steps and PAL-style reasoning steps,
respectively. Table 32 and Table 33 present the synthetic prompts used for inference, constructed by vanilla SYNTHETIC
PROMPTING and SYNTHETIC PROMPTING, respectively.

Table 30: 4 seed demonstrations with CoT-style reasoning steps for Colored Objects.

Question: On the floor, you see a bunch of things arranged in a row: a green scrunchiephone charger, a blue puzzle, a
red mug, and a yellow plate. What is the color of the thing directly to the right of the puzzle?

Let’s think step by step

According to this question, the objects are arranged in a row, from left to right, as follows: (1) a green scrunchiephone
charger, (2) a blue puzzle, (3) a red mug, (4) a yellow plate.

The puzzle is the second object on the list, namely (2).

The object that is to the right of the puzzle corresponds to (3), which is a yellow plate.

The color of the plate is yellow.

The answer is yellow.

42

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Question: On the table, there is a pink paperclip, a turquoise scrunchiephone charger, a gold puzzle, and a blue pair of
sunglasses. Is the paperclip pink?

Let’s think step by step

According to this question, the color of the paperclip is pink.

The answer is yes.

Question: On the floor, you see one burgundy bracelet, three burgundy booklets, three burgundy cat toys, three mauve
booklets, and one mauve bracelet. If I remove all the burgundy things from the floor, how many bracelets remain on it?
Let’s think step by step

According to this question, the objects on the floor are as follows: (1) one burgundy bracelet, (2) three burgundy
booklets, (3) three burgundy cat toys, (4) three mauve booklets, (5) one mauve bracelet.

If I remove all the burgundy things, namely (1), (2), (3), objects remaining correspond to (4), (5).

Bracelets remain on the floor is (5), whose number is 1.

The answer is 1.

Question: On the nightstand, there is one teal necklace, two fuchsia necklaces, three black scrunchiephone chargers,
two black puzzles, two teal puzzles, two burgundy puzzles, and three black necklaces. If I remove all the fuchsia
things from the nightstand, how many scrunchiephone chargers remain on it?

Let’s think step by step

According to this question, the objects on the nightstand are as follows: (1) one teal necklace, (2) two fuchsia
necklaces, (3) three black scrunchiephone chargers, (4) two black puzzles, (5) two teal puzzles, (6) two burgundy
puzzles, (7) three black necklaces.

If I remove all the fuchsia things, namely (2), objects remaining correspond to (1) (3) (4) (5) (6) (7).
scrunchiephone chargers remain on the nightstand is (3), whose number is 3.

The answer is 3.

Table 31: 4 seed demonstrations with PAL-style reasoning steps for Colored Objects.

Q: On the floor, you see a bunch of things arranged in a row: a green scrunchiephone charger, a blue puzzle, a red
mug, and a yellow plate. What is the color of the thing directly to the right of the puzzle?

Put objects into a list to record ordering

objects =[]

objects += [(’scrunchiephone charger’, *green’)] * 1

objects += [(’puzzle’, *blue’)] * 1

objects += [("mug’, 'red’)] * 1

objects += [(’plate’, "yellow’)] * 1

Find the index of the puzzle
puzzle_idx = None
for i, object in enumerate(objects):
if object[0] == "puzzle’:
puzzle_idx =i
break

Find the directly right object
direct_right = objects[i+1]

Check the directly right object’s color
direct_right_color = direct_right[1]

answer = direct_right_color

Q: On the table, there is a pink paperclip, a turquoise scrunchiephone charger, a gold puzzle, and a blue pair of
sunglasses. Is the paperclip pink?

43

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Put objects into a dictionary for quick look up
objects = dict()

objects[paperclip’] = *pink’
objects[’scrunchiephone charger’] = ’turquoise’
objects[’ puzzle’] = *gold’

objects[’pair of sunglasses’] = "blue’

Look up the color of paperclip
paperclip_color = objects[’paperclip’]

check whether the color of paperclip is pink
if paperclip_color == pink’:

answer = ’yes’
else:

answer = 'no’

Q: On the floor, you see one burgundy bracelet, three burgundy booklets, three burgundy cat toys, three mauve
booklets, and one mauve bracelet. If I remove all the burgundy things from the floor, how many bracelets remain on it?
Put objects into a list to record ordering

objects =[]

objects += [("bracelet’, ’burgundy’)] * 1

objects += [(’booklet’, ’burgundy’)] * 3

objects += [(’cat toy’, “burgundy’)] * 3

objects += [("booklet’, 'mauve’)] * 3

objects += [("bracelet’, 'mauve’)] * 1

Remove all burgundy things from objects
remaining_objects = [object for object in objects if object[1] !="burgundy’]

Find bracelets remaining
bracelets = [object for object in remaining_objects if object[0] == ’bracelet’]

Count number of bracelets remaining
num_bracelets = len(bracelets)
answer = num_bracelets

Q: On the nightstand, there is one teal necklace, two fuchsia necklaces, three black scrunchiephone chargers, two
black puzzles, two teal puzzles, two burgundy puzzles, and three black necklaces. If I remove all the fuchsia things
from the nightstand, how many scrunchiephone chargers remain on it?

Put objects into a list to record ordering

objects =[]

objects += [("necklace’, teal’)] * 1

objects += [("necklace’, *fuchsia’)] * 2

objects += [(’scrunchiephone charger’, "black’)] * 3

objects += [(’puzzle’, *black’)] * 2

objects += [(puzzle’, "teal’)] * 2

objects += [("puzzle’, *burgundy’)] * 2

objects += [("necklace’, *black’)] * 3

Remove all fuchsia things from objects
remaining_objects = [object for object in objects if object[1] !="fuchsia’]

Find scrunchiephone chargers remaining
chargers = [object for object in remaining_objects if object[0] == ’scrunchiephone charger’]

44

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Count number of scrunchiephone chargers remaining
num_chargers = len(chargers)
answer = num_chargers

Table 32: The synthetic prompt from vanilla SYNTHETIC PROMPTING on Colored Objects, with access to 4 seed examples.

Q: On the countertop, there is one yellow mug, three blue pens, two green pens, one yellow pen, and two mauve
notebooks. Is the pen closest to the mug yellow?

Put objects into a list to record ordering

objects =[]

objects += [("mug’, "yellow’)] * 1

objects += [(pen’, "blue’)] * 3

objects += [(’pen’, "green’)] * 2

objects += [(’pen’, ’yellow’)] * 1

objects += [(’notebook’, 'mauve’)] * 2

Find the index of the mug
mug_idx = None
for i, object in enumerate(objects):
if object[0] == "mug’:
mug_idx =1
break

Find the closest pen
closest_pen = objects[i+1]

Check the closest pen’s color
closest_pen_color = closest_pen[1]

Check whether the color of closest pen is yellow

if closest_pen_color == "yellow’:
answer = ’yes’
else:

answer = 'no’

Q: On the shelf, you see one blue mug, two green mugs, three pink mugs, and four yellow mugs. What color mugs
are the most numerous on the shelf?

Put objects into a dictionary for quick look up

objects = dict()

objects['mug’] = [’blue’, *green’, ’pink’, "yellow’]

Create a dictionary to record the number of mugs
num_mugs = dict()
for color in objects[’mug’]:

num_mugs[color] =0

Count the number of mugs for each color
for color in objects[’'mug’]:

num_mugs[color] += 1

Find the most numerous color
most_numerous_color = None

45

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

max_num =0
for color, num in num_mugs.items():
if num > max_num:
most_numerous_color = color
max_num = num

answer = most_numerous_color

Q: On the couch, you see one purple pillow, one purple blanket, two yellow pillows, two yellow blankets, three pink
pillows, and two pink blankets. Which color has the most pillows?

Put objects into a list to record ordering

objects =[]

objects += [(pillow’, *purple’)] * 1

objects += [("blanket’, purple’)] * 1

objects += [(’pillow’, "yellow’)] * 2

objects += [("blanket’, yellow’)] * 2

objects += [(pillow’, ’pink’)] * 3

objects += [("blanket’, *pink’)] * 2

Count number of pillows for each color
num_pillows = dict()
for object in objects:
if object[0] == "pillow’:
if object[1] in num_pillows:
num_pillows[object[1]] +=1
else:
num_pillows[object[1]] = 1

Find the color with the most pillows
most_pillows = None
most_pillows_num = 0
for color, num in num_pillows.items():
if num > most_pillows_num:
most_pillows = color
most_pillows_num = num

answer = most_pillows

Q: On the bed, there is one yellow pillow, one pink pillow, one orange blanket, and one purple blanket. Is the yellow
pillow to the left or right of the pink pillow?

Put objects into a list to record ordering

objects =[]

objects += [(’pillow’, *yellow’)] * 1

objects += [(pillow’, *pink’)] * 1

objects += [("blanket’, *orange’)] * 1

objects += [("blanket’, *purple’)] * 1

Find the index of the yellow pillow
yellow_pillow_idx = None
for i, object in enumerate(objects):
if object[0] == "pillow’ and object[1] == "yellow’:
yellow_pillow_idx =i
break

46

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Find the index of the pink pillow
pink_pillow_idx = None
for i, object in enumerate(objects):
if object[0] == ’pillow’ and object[1] == "pink’:
pink_pillow_idx =i
break

Check the relative position

if yellow_pillow_idx < pink_pillow_idx:
answer = ’left’

else:
answer = ‘right’

Q: On the shelf, there are three purple mugs, two yellow books, four blue plates, and one orange book. Is the book
directly to the right of the blue plates yellow?

Put objects into a list to record ordering

objects =[]

objects += [("mug’, "purple’)] * 3

objects += [("book’, "yellow’)] * 2

objects += [(’plate’, *blue’)] * 4

objects += [(’book’, orange’)] * 1

Find the index of the blue plates
plate_idx = None
for i, object in enumerate(objects):
if object[0] == "plate’ and object[1] == "blue’:
plate_idx =1
break

Find the directly right object
direct_right = objects[i+1]

Check the directly right object’s color
direct_right_color = direct_right[1]

Check whether the color of directly right object is yellow
if direct_right_color == "yellow’:

answer = ’yes’
else:

answer = 'no’

Q: In the drawer, there are two silver necklaces, two gold necklaces, one black necklace, and two pink necklaces.
What is the color of the necklace directly to the left of the silver necklace?

Put objects into a list to record ordering

objects =[]

objects += [("necklace’, *silver’)] * 2

objects += [("necklace’, *gold’)] * 2

objects += [("necklace’, "black’)] * 1

objects += [("necklace’, 'pink’)] * 2

Find the index of the silver necklace
silver_idx = None
for i, object in enumerate(objects):
if object[0] == "necklace’ and object[1] == "silver’:

47

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

silver_idx =1
break

Find the directly left object
direct_left = objects[i-1]

Check the directly left object’s color
direct_left_color = direct_left[1]
answer = direct_left_color

Q: On the shelf, there is a purple pen, a navy blue book, a pink eraser, an orange pen, and a yellow pencil. If I
remove the orange pen, what color is the item directly to the left of the yellow pencil?

Put objects into a list to record ordering

objects =[]

objects += [(’pen’, "purple’)] * 1

objects += [(’book’, 'navy blue’)] * 1

objects += [("eraser’, 'pink’)] * 1

objects += [(pen’, "orange’)] * 1

objects += [(pencil’, yellow’)] * 1

Remove orange pen from objects
remaining_objects = [object for object in objects if object[1] !="orange’]

Find the index of the yellow pencil
pencil_idx = None
for i, object in enumerate(remaining_objects):
if object[0] == ’pencil’ and object[1] == "yellow’:
pencil_idx =1
break

Find the directly left object
direct_left = remaining_objects[i-1]

Check the directly left object’s color
direct_left_color = direct_left[1]
answer = direct_left_color

Q: On the coffee table, there is one green necklace, two pink necklaces, one yellow puzzle, one pink scrunchiephone
charger, one blue necklace, and one yellow scrunchiephone charger. Is the scrunchiephone charger directly to the right
of the necklace yellow?

Put objects into a list to record ordering

objects =[]

objects += [("necklace’, "green’)] * 1

objects += [("necklace’, *pink’)] * 2

objects += [(puzzle’, *yellow’)] * 1

objects += [(’scrunchiephone charger’, *pink’)] * 1

objects += [("necklace’, *blue’)] * 1

objects += [(’scrunchiephone charger’, "yellow’)] * 1

Find the index of the necklace
necklace_idx = None
for i, object in enumerate(objects):
if object[0] == "necklace’:
necklace_idx =1

48

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

break

Find the directly right object
direct_right = objects[i+1]

Check the directly right object’s color
direct_right_color = direct_right[1]

Check whether the color of directly right object is yellow
if direct_right_color == "yellow’:

answer = ’yes’
else:

answer = 'no’

Table 33: The synthetic prompt from SYNTHETIC PROMPTING on Colored Objects, with access to 4 seed examples.

Q: In the box, there is a white candle, a gray rock, a pink flower, a blue jar, and a brown doll. What color is the jar,
how many colors are there, and what is the third color in descending order?

Put objects into a list to record ordering

objects =[]

objects += [("candle’, *white’)] * 1

objects += [(’rock’, "gray’)] * 1

objects += [("flower’, "pink’)] * 1

objects += [(jar’, *blue’)] * 1

objects += [(’doll’, "brown’)] * 1

Find the jar
jar_color = None
for object in objects:
if object[0] == "jar’:
jar_color = object[1]
break

Count number of colors
colors = [object[1] for object in objects]
num_colors = len(set(colors))

Find the third color in descending order
colors.sort()
third_color = colors[-3]

answer = (jar_color, num_colors, third_color)

Q: On the table, there is a yellow orange, a red apple, a green pear, a yellow banana, a purple plum, an orange peach,
and a green grape. What is the name of the item directly to the right of the yellow orange?

Put objects into a list to record ordering

objects =[]

objects += [(Corange’, "yellow’)] * 1

objects += [(Capple’, 'red’)] * 1

objects += [(pear’, "green’)] * 1

objects += [("banana’, *yellow’)] * 1

objects += [(Cplum’, "purple’)] * 1

objects += [(’peach’, *orange’)] * 1

49

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

objects += [("grape’, 'green’)] * 1

Find the index of the yellow orange
orange_idx = None
for i, object in enumerate(objects):
if object[0] == ’orange’ and object[1] == "yellow’:
orange_idx =1
break

Find the directly right object
direct_right = objects[i+1]

Check the directly right object’s name
direct_right_name = direct_right[0]
answer = direct_right_name

Q: In the bedroom, there is a red bed, a blue table, a green chair, and a yellow dresser. How many unique colors are
there, and how many objects have the most frequent color?

Put objects into a list to record ordering

objects =[]

objects += [("bed’, 'red’)] * 1

objects += [(’table’, *blue’)] * 1

objects += [(’chair’, "green’)] * 1

objects += [(’dresser’, "yellow’)] * 1

Create a set of colors

colors = set()

for object in objects:
colors.add(object[1])

Count the number of unique colors
num_unique_colors = len(colors)

Find the most frequent color
max_count =0
most_freq_color = None
for color in colors:
color_count =0
for object in objects:
if object[1] == color:
color_count +=1
if color_count > max_count:
max_count = color_count
most_freq_color = color

Count number of objects with the most frequent color
num_most_freq_color_objs = 0
for object in objects:
if object[1] == most_freq_color:
num_most_freq_color_objs += 1

Answer
answer = (num_unique_colors, num_most_freq_color_objs)

50

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Q: On the shelf, there is a red clock, a black alarm, a silver watch, and a white siren. What is the ratio of the most
common color to the total number of objects?

Put objects into a list to record ordering

objects =[]

objects += [(’clock’, 'red’)] * 1

objects += [("alarm’, ’black’)] * 1

objects += [("watch’, silver’)] * 1

objects += [(’siren’, "white’)] * 1

Count frequency of colors
color_count = dict()
for object in objects:
color = object[1]
if color in color_count:
color_count[color] += 1
else:
color_count[color] = 1

Find the most common color
most_common_color = None
max_count =0
for color, count in color_count.items():
if count > max_count:
most_common_color = color
max_count = count

Calculate ratio of most common color to total number of objects
ratio = max_count / len(objects)
answer = ratio

Q: In the closet, there is a navy hat, an ivory sandal, a gray scarf, a brown jacket, and a black shirt. Is there a color
before the navy hat?

Put objects into a list to record ordering

objects =[]

objects += [(Chat’, 'navy’)] * 1

objects += [(’sandal’, ’ivory’)] * 1

objects += [(’scarf’, "gray’)] * 1

objects += [(’jacket’, brown’)] * 1

objects += [(’shirt’, *black’)] * 1

Find the index of navy hat
hat_idx = None
for i, object in enumerate(objects):
if object[0] == "hat’ and object[1] == 'navy’:
hat.idx =1
break

Check whether there is a color before the navy hat
if hat_idx == 0:

answer = 'no’
else:

answer = ’yes’

51

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Q: On the launch pad, there is one blue rocket, one silver satellite, one red probe, one white shuttle, one green rocket,
and two yellow satellites. How many distinct colors are there, excluding the color of the item directly to the right of
the rocket?

Put objects into a list to record ordering

objects =[]

objects += [(’rocket’, ’blue’)] * 1

objects += [(’satellite’, ’silver’)] * 1

objects += [('probe’, 'red’)] * 1

objects += [(’shuttle’, white’)] * 1

objects += [(’rocket’, "green’)] * 1

objects += [(’satellite’, "yellow’)] * 2

Find the index of the rocket
rocket_idx = None
for i, object in enumerate(objects):
if object[0] == "rocket’:
rocket_idx =1
break

Find the directly right object
direct_right = objects[i+1]

List all colors
all_colors = [object[1] for object in objects]

Find distinct colors
distinct_colors = list(set(all_colors))

Remove the color of the directly right object
distinct_colors.remove(direct_right[1])

Count number of distinct colors
num_distinct_colors = len(distinct_colors)
answer = num_distinct_colors

Q: In the wardrobe, there are white shorts, a pink sundress, a red shirt, and a yellow skirt. What is the tuple (color
directly to the right of the pink sundress, least common color)?

Put objects into a list to record ordering

objects =[]

objects += [(’shorts’, "white’)] * 1

objects += [(’sundress’, pink’)] * 1

objects += [(’shirt’, red’)] * 1

objects += [(’skirt’, "yellow’)] * 1

Find the index of the sundress
sundress_idx = None
for i, object in enumerate(objects):
if object[0] == ’sundress’:
sundress_idx =1
break

Find the directly right object
direct_right = objects[i+1]

52

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Compute the tuple
direct_right_color = direct_right[1]

Find the least common color
colors = [object[1] for object in objects]
color_counts = dict()
for color in colors:
if color in color_counts:
color_counts[color] += 1
else:
color_counts[color] = 1

Find the least common color
least_common_color = None
for color in color_counts:
if least_common_color is None or color_counts[color] < color_counts[least_.common_color]:
least_common_color = color

answer = (direct_right_color, least_common_color)

Q: You have one red helmet, two blue shields, three green swords, and two yellow armours. Does the helmet have
the same color as any of the other items?

Put objects into a list to record ordering

objects =[]

objects += [(Chelmet’, 'red’)] * 1

objects += [(’shield’, ’blue’)] * 2

objects += [(’sword’, ’green’)] * 3

objects += [(Carmour’, "yellow’)] * 2

Find the color of the helmet
helmet_color = None
for object in objects:
if object[0] == "helmet’:
helmet_color = object[1]
break

Check if the helmet has the same color as any of the other items
same_colors = [object for object in objects if object[1] == helmet_color]
if len(same_colors) > 1:

answer = ’yes’
else:

answer = 'no’

D.3. Repeat Copy
D.3.1. WITH ACCESS TO 2 GOLD EXAMPLES

Table 34 and Table 35 present the 2 seed examples annotated with CoT-style reasoning steps and PAL-style reasoning steps,
respectively. Table 36 and Table 37 present the synthetic prompts used for inference, constructed by vanilla SYNTHETIC
PROMPTING and SYNTHETIC PROMPTING, respectively.

Table 34: 2 seed demonstrations with CoT-style reasoning steps for Repeat Copy.

Question: Repeat the phrase all cars eat gas four times. On the odd times, drop words that start with vowels

53

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Let’s think step by step

Following the instruction, as "all’ and ’eat’ are words starting with vowels, I can’t say "all’ and ’eat’ on the ood time.
So I'say ’cars gas’ at the first, and the third time, and say ’all cars eat gas’ at the second and fourth time.

The answer is cars gas all cars eat gas cars gas all cars eat gas.

Question: repeat election to the council three times, but after every other word say cool

Let’s think step by step

Following the instruction, I repeat ’election to the council® for three times, which is ’election to the council election to
the council election to the council’.

But I have to say "cool’ every other word.

The answer is ’election to cool the council cool election to cool the council cool election to cool the council cool’.

Table 35: 2 seed demonstrations with PAL-style reasoning steps for Repeat Copy.

Q: Repeat the phrase all cars eat gas four times. On the odd times, drop words that start with vowels
def solution():
result = []
foriin range(1, 4 + 1):
ifi%2==1:
result.append(’cars gas”)
else:
result.append(”all cars eat gas”)

99 99 ¢

return ” ” join(result)

Q: repeat election to the council three times, but after every other word say cool
def solution():
tmp =[]
for i in range(3):
tmp.append(”election to the council”)
words =" 7 join(tmp).split()
result = []
for i, word in enumerate(words):
result.append(word)
if(i+1)%2==0:
result.append(”’cool”)

return ” ” join(result)

Table 36: The synthetic prompt from vanilla SYNTHETIC PROMPTING on Repeat Copy, with access to 2 seed examples.

Q: Repeat the sentence “The sun is bright” five times, with a different emphasis on a different word each time
def solution():
result =[]
for i in range(5):
ifi==0:
result.append(”The sun is bright”)
elifi==1:
result.append(”The sun is bright”)
elif i ==2:
result.append(”The sun is bright”)
elifi==3:
result.append(”The sun is bright”)
else:

54

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

result.append(”The sun is bright”)
return ” ”’ join(result)
Q: Repeat the phrase 1 like to eat pizza” five times, but on the even times add the word “deliciously” after every word
def solution():
result = []
for i in range(1l, 5 + 1):
ifi%2==1:
result.append(I like to eat pizza”)
else:
tmp = []
for word in "I like to eat pizza”.split():
tmp.append(word + ” deliciously”)
result.append(” ”.join(tmp))
return ” 7 join(result)
Q: Repeat the phrase ”She sings a happy song” three times, but after every other word say “yay”.
def solution():
tmp =[]
for i in range(3):
tmp.append(”’She sings a happy song”)
words =" ”.join(tmp).split()
result =[]
for i, word in enumerate(words):
result.append(word)
ifG+1)%2==0:
result.append(’yay”)
return ” . join(result)
Q: Repeat the phrase ”I am excited for the party” five times, but after every other word say “really”
def solution():
tmp =[]
for i in range(5):
tmp.append(”’I am excited for the party”)
words =" " join(tmp).split()
result = []
for i, word in enumerate(words):
result.append(word)
ifi+1)%2==0:
result.append(”really”)
return ” ” join(result)
Q: Repeat the sentence She sells sea shells by the seashore three times, but add the word “’really” after every other
word.
def solution():
tmp =[]
for i in range(3):
tmp.append(”She sells sea shells by the seashore”)
words =" ”.join(tmp).split()
result =[]
for i, word in enumerate(words):
result.append(word)
ifG+1)%2==0:
result.append(’really”)

55

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

99 9

return ” 7 join(result)
Q: Repeat the sentence I have a dog” five times in a row. After every other sentence add ”and it is fluffy”
def solution():
tmp =[]
for i in range(5):
tmp.append(”’I have a dog”)
words = " join(tmp).split()
result = []
for i, word in enumerate(words):
result.append(word)
ifi+1)%2==0:
result.append(”and it is fluffy”)
return ” ” join(result)
Q: All cars eat gas, All cars gas, Cars eat, Eat gas, All gas, Gas four, Eat four. Cool Election to the council, Cool
Council, Election Cool, to the Cool.
def solution():
result = []
for phrase in [’All cars eat gas”, ”All cars gas”, ”Cars eat”, "Eat gas”, ”All gas”, ”Gas four”, "Eat four”]:
words = phrase.split()
for i, word in enumerate(words):
result.append(word)
if(i+1)%2==0:
result.append(”cool”)
for phrase in [’Election to the council”, ”Cool Council”, ”Election Cool”, ’to the Cool”’]:
words = phrase.split()
for word in words:
result.append(word)
return ” ” join(result)
Q: repeat election to the council three times, but after every other word say cool
def solution():
tmp = []
for i in range(3):
tmp.append(”election to the council”)
words =" ”.join(tmp).split()
result = []
for i, word in enumerate(words):
result.append(word)
ifi+1)%2==0:
result.append(”’cool”)

return ” ” join(result)

Table 37: The synthetic prompt from SYNTHETIC PROMPTING on Repeat Copy, with access to 2 seed examples.

Q: Repeat explore the valley twice, run through the valley four times, enjoy the valley three times, admire the valley’s
beauty, examine the valley’s wildlife, observe the valley’s plants and respect the valley’s environment.
def solution():

tmp = []

tmp.append(”’explore the valley”)

tmp.append(”explore the valley”)

tmp.append(”’run through the valley”)

56

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

tmp.append(’run through the valley”)
tmp.append(’run through the valley”)
tmp.append(’run through the valley”)
tmp.append(’enjoy the valley”)
tmp.append(”’enjoy the valley”)
tmp.append(”’enjoy the valley”)
tmp.append(’admire the valley’s beauty’)
tmp.append(”’examine the valley’s wildlife”)
tmp.append(”’observe the valley’s plants™)
tmp.append(”respect the valley’s environment’)
return ” ” join(tmp)

Q: Book the flight six times, but after every other flight check in, after every third flight board the plane, after every
fourth flight take off, and after every fifth flight arrive at the destination.
def solution():
result = []
for i in range(6):
result.append(”book the flight”)
ifi+1)%2==0:
result.append(”’check in”)
ifG+1)%3==0:
result.append(”’board the plane”)
ifi+1)%4==0:
result.append(”take off’’)
ifi+1)%5==0:
result.append(”arrive at the destination”)
return ” ” join(result)
Q: Repeat ”An analyst”, studies data three times, analyzes trends two times, develops insights two times, makes
predictions, recommends solutions and monitors changes.
def solution():
result = []
result.append(”An analyst”)
result.append(”studies data”)
result.append(”studies data’)
result.append(”’studies data”)
result.append(”analyzes trends”)
result.append(”analyzes trends”)
result.append(”develops insights™)
result.append(”develops insights™)
result.append(”makes predictions”)
result.append(”’recommends solutions’)
result.append(”’monitors changes”)
return ” 7 join(result)

Q: Begin with the phrase protect your skin, then say from the sun twice, from the wind three times, from the cold
twice, from the heat twice, from harsh products three times, and from chemicals twice, and finally add at all times.
def solution():
result = [’protect your skin”,

”’from the sun”,

”’from the sun”,

”from the wind”,

”from the wind”,

”from the wind”,

57

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

”from the cold”,
”from the cold”,
”’from the heat”,
”from the heat”,
”from harsh products”,
”from harsh products”,
”from harsh products”,
”from chemicals”,
”from chemicals”,
“at all times”]
return ” ” join(result)
Q: Repeat the words the quick brown fox twice, but after every third word say jumps over and after every fifth word
say the lazy mouse.
def solution():
tmp = []
for i in range(2):
tmp.append(”’the quick brown fox™)
words =" " join(tmp).split()
result = []
for i, word in enumerate(words):
result.append(word)
ifi+1)%3==0:
result.append(”jumps over’)
elif(i+1) % 5==0:
result.append(’the lazy mouse”)
return ” ” join(result)
Q: Pour a glass of milk four times, stir in cocoa powder twice, add a spoonful of sugar four times, stir the mixture
twice, put a lid on the cup, and shake the cup.
def solution():
result = []
for i in range(4):
result.append(”pour a glass of milk”™)
for i in range(2):
result.append(”’stir in cocoa powder”)
for i in range(4):
result.append(”’add a spoonful of sugar”)
for i in range(2):
result.append(”stir the mixture”)
result.append(”put a lid on the cup”)
result.append(”’shake the cup”)
return ” 7 join(result)

Q: Repeat listen to the sound six times, but after every second word say of the sea, after every third word say of the
wind, and after the other words say of the birds.
def solution():
tmp = []
for i in range(6):
tmp.append(listen to the sound”)
words = " join(tmp).split()
result = []
for i, word in enumerate(words):
result.append(word)

58

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

if(i+1)%2==0:
result.append(”of the sea”)
elifi+1) % 3==0:
result.append(’of the wind”)
else:
result.append(”of the birds”)
return ” ” join(result)
Q: Repeat earn a dollar four times, spend a dollar three times, save a dollar twice, invest a dollar, give a dollar away,
spend a dollar wisely and think before spending a dollar.
def solution():
result =[]
for _ in range(4):
result.append(earn a dollar’)
for _in range(3):
result.append(”’spend a dollar”)
for _in range(2):
result.append(”’save a dollar™)
result.append(”invest a dollar”)
result.append(’give a dollar away”)
result.append(”’spend a dollar wisely”)
result.append(”think before spending a dollar”)

99 99+

return ” ”’ join(result)

D.3.2. WITH ACCESS TO 4 GOLD EXAMPLES

Table 38 and Table 39 present the 4 seed examples annotated with CoT-style reasoning steps and PAL-style reasoning steps,
respectively. Table 40 and Table 41 present the synthetic prompts used for inference, constructed by vanilla SYNTHETIC
PROMPTING and SYNTHETIC PROMPTING, respectively.

Table 38: 4 seed demonstrations with CoT-style reasoning steps for Repeat Copy.

Question: say hello world five times, but don’t say world every even time

Let’s think step by step

Following the instruction, I can’t say world’ every even time.

So I say "hello world’ at the first, third, and the fifth time, and say ’hello’ at the second and fourth time.
The answer is hello world hello hello world hello hello world.

Question: Repeat squiggly line twice after the phrase can you draw

Let’s think step by step

Following the instruction, I first say can you draw’, and then repeat ’squiggle line’ twice, which is ’squiggly line
squiggly line’.

The answer is can you draw squiggly line squiggly line.

Question: say all work and no play makes three times, but every even time add Jack and odd time add Jill

Let’s think step by step

Following the instruction, I append *Jack’ to ’all work and no play makes’ at the second time, which is "all work and
no play makes Jack’.

I append "Jill” to *all work and no play makes’ at the first and third time, which is ’all work and no play makes Jill’.
The answer is all work and no play makes Jill all work and no play makes Jack all work and no play makes Jill.

Question: Seven times please repeat The School of Music

Let’s think step by step
Following the instruction, I repeat *The Schoolf of Music’ for seven times.

59

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

The answer is The School of Music The School of Music The School of Music The School of Music The School of
Music The School of Music The School of Music.

Table 39: 4 seed demonstrations with PAL-style reasoning steps for Repeat Copy.

Q: say hello world five times, but don’t say world every even time
def solution():
result = []
foriin range(1, 5 + 1):
ifi% 2==0:
result.append(”hello”)
else:
result.append(”hello world”)
return ” 7 join(result)
Q: Repeat squiggly line twice after the phrase can you draw
def solution():
result = [’can you draw”’]
for i in range(2):
result.append(”’squiggly line”)
return ” 7 join(result)

Q: say all work and no play makes three times, but every even time add Jack and odd time add Jill
def solution():
result = []
foriin range(1, 3 + 1):
result.append(”all work and no play makes”)
ifi% 2==0:
result.append(”Jack’)
else:
result.append(”Jill”)
return ” ” join(result)
Q: Seven times please repeat The School of Music
def solution():
result = []
for i in range(7):
result.append(”The School of Music”)
return ” ” join(result)

Table 40: The synthetic prompt from vanilla SYNTHETIC PROMPTING on Repeat Copy, with access to 4 seed examples.

Q: Can you draw a squiggly line, squiggly line, a circle three times, a triangle four times, and a square five times?
def solution():
result = [’Can you draw a squiggly line”, ’squiggly line”]
for i in range(3):
result.append(”a circle”)
for i in range(4):
result.append(”a triangle”)
for i in range(5):
result.append(”’a square”)
return ” 7 join(result)

60

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Q: Say the phrase practice makes perfect three times, but every even time add until you get it right and odd time add
until you make it shine.
def solution():
result = []
foriin range(1, 3 + 1):
result.append(”practice makes perfect”)
ifi% 2==0:
result.append(”until you get it right™)
else:
result.append(’until you make it shine”)
return ” 7 join(result)
Q: repeat the phrase “we are the champions” four times, but every even time add of the world and odd time add of the
universe
def solution():
result =[]
for i in range(1, 4 + 1):
result.append(”we are the champions™)
ifi%2==0:
result.append(”of the world”)
else:
result.append(”of the universe”)
return ” ” join(result)

Q: Repeat the phrase ”’I am learning” four times, but every even time add ”to code” and odd time add to play the

guitar”
def solution():
result =[]

for iin range(1, 4 + 1):
result.append(’l am learning”)
ifi%2==0:
result.append(”’to code”)
else:
result.append(”to play the guitar”)
return ” ” join(result)

Q: Say the names Jack and Jill four times, but don’t say the same name twice in a row

def solution():
result = []
last_name ="
foriinrange(1,4 + 1):
if last_name == "Jack™:

result.append(”Jill”")
last_name = "Jill”
else:
result.append(”Jack™)
last_name = "Jack”
return ” ” join(result)
Q: Say “up, down, left, right” three times, but don’t say right every even time.
def solution():
result = []
foriin range(1, 3 + 1):

61

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

ifi% 2==0:
result.append(’up”)
result.append(”down’)
result.append(”’left”)
else:
result.append(’up”)
result.append(’down”)
result.append(”’left”)
result.append(’right”)
return ” ” join(result)
Q: Repeat the words red, blue, green” four times, but don’t say green every time
def solution():
result = []
foriinrange(l, 4 + 1):
ifi% 2==0:
result.append(’red”)
result.append(”blue”)
else:
result.append(’red”)
result.append(”’blue”)
result.append(”’green’)

99 99+

return ” ” join(result)

Q: Answer 1: Hello, Hello, World, Hello, Hello
def solution():
result = []
foriinrange(1,5 + 1):
ifi%2==0:
result.append(”Hello)
else:
result.append(”Hello World”)

return ” ” join(result)

Table 41: The synthetic prompt from SYNTHETIC PROMPTING on Repeat Copy, with access to 4 seed examples.

Q: Say go to the park four times, first time add happily, second time add eagerly, third time add joyfully, other times
add excitedly.
def solution():
result = []
foriinrange(l, 4 + 1):
ifi==1:
result.append(”’go to the park happily”)
elifi==2:
result.append(”go to the park eagerly”)
elifi==3:
result.append(”go to the park joyfully”)
else:
result.append(”go to the park excitedly”)
return ” ” join(result)
Q: Repeat ’set a goal’ and "and’ three times, then *work hard” once. After that, repeat everyday/every week three
times, but every even time use everyday and odd time use every week.

62

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

def solution():
result =[]
for i in range(3):
result.append(”’set a goal”)
result.append(”’and”)
result.append(”work hard”)
for i in range(1, 3 + 1):
ifi% 2==0:
result.append(”everyday”)
else:
result.append(’every week’)
return ” 7 join(result)
Q: Say put on a dress five times, but the first time add make sure it fits properly, the second time add adjust the dress,
the third time add check the dress and other times add smooth out the dress.
def solution():
result =[]
for i in range(1, 5 + 1):
result.append(”put on a dress”)
ifi==1:
result.append(”make sure it fits properly”)
elif i ==2:
result.append(”adjust the dress”)
elifi==3:
result.append(check the dress”)
else:
result.append(”’smooth out the dress”)
return ” . join(result)
Q: Say people of the world twice, then unite and fight. After that, repeat for justice/for peace three times, but every
even time use for justice and odd time use for peace.
def solution():
result = []
for i in range(2):
result.append(”people of the world™)
result.append(’unite and fight”)
foriin range(1, 3 + 1):
ifi%2==0:
result.append(”for justice”)
else:
result.append(”for peace”)
return ” ” join(result)
Q: Repeat right side of the desk and left side of the desk twice, then add bottom of the desk, top of the desk and front
of the desk once.
def solution():
result = []
for i in range(2):
result.append(’right side of the desk™)
result.append(”left side of the desk™)
result.append(”bottom of the desk™)
result.append(’top of the desk™)
result.append(”front of the desk”)
return ” 7 join(result)

63

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Q: Say get the power four times, first time add from the sun, second time add from the wind, other times add from the
water.
def solution():
result = []
foriinrange(1,4 + 1):
result.append(”’get the power”)
ifi==1:
result.append(”from the sun”)
elifi==2:
result.append(”from the wind”)
else:
result.append(”from the water”)
return ” ” join(result)
Q: Say swim across the lake four times, but every even time add joyfully and odd time add happily. After that, add
and and reach the other side.
def solution():
result = []
foriin range(1, 4 + 1):
result.append(”’swim across the lake”)
ifi% 2==0:
result.append(”joyfully”)
else:
result.append(”happily”)
result.append(”’and”)
result.append(”reach the other side”)
return ” . join(result)

Q: Say clean the room five times, first time add thoroughly, second time add diligently, third time add meticulously,
other times add quickly.
def solution():
result = []
for i in range(1, 5 + 1):
result.append(”clean the room”)
ifi==1:
result.append(”thoroughly”)
elifi ==2:
result.append(”diligently”)
elifi==3:
result.append(”meticulously’)
else:
result.append(”quickly”)

return ” 7 join(result)

E. Selecting Gold Demonstrations from Training Examples for Comparisons

Table 42 and Table 43 present the gold demonstrations used in Section 4.7, which are selected from the training set of
GSMEK with the Complexity and In-Cluster Complexity selection scheme, respectively.

Table 42: Gold demonstrations used in Section 4.7, which are selected from GSMS8K training set with the Complexity
selection scheme. PAL-style reasoning chains are manually-annotated after selection.

64

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Q: You can buy 4 apples or 1 watermelon for the same price. You bought 36 fruits evenly split between oranges,
apples and watermelons, and the price of 1 orange is $0.50. How much does 1 apple cost if your total bill was $66?
def solution():

num_fruits = 3

price_per_orange = 0.50

total_bill = 66

num_oranges = num_fruits / 3

num_apples = num_fruits / 3

num_watermelons = num_fruits / 3

cost_of_oranges = price_per_orange * num_oranges

cost_of_apples_and_watermelons = total_bill - cost_of_oranges

price_per_apple = cost_of _apples_and_watermelons / (num_apples + 4 * num_watermelons)

result = price_per_apple

return result

Q: Mark’s basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws. Their opponents score double the
2 pointers but half the 3 pointers and free throws. What’s the total number of points scored by both teams added
together?
def solution():

points_per_2_pointer = 2

points_per_3_pointer = 3

points_per_free_throw = 1

num_2_pointers_by_mark = 25

num_3_pointers_by_mark = 8§

num_free_throws_by_mark = 10

num_2_pointers_by_opponents = 2 * num_2_pointers_by_mark

num_3_pointers_by_opponents = num_3_pointers_by_mark / 2

num_free_throws_by_opponents = num_free_throws_by_mark / 2

points_of_ mark = points_per_2_pointer * num_2_pointers_by_mark + points_per_3_pointer *
num_3_pointers_by_mark + points_per_free_throw * num_free_throws_by_mark
points_of_opponents = points_per_2_pointer * num_2_pointers_by_opponents + points_per_3_pointer *

num_3_pointers_by_opponents + points_per_free_throw * num_free_throws_by_opponents
points_of_both_teams = points_of_mark + points_of_opponents
result = points_of_both_teams
return result

Q: Susy goes to a large school with 800 students, while Sarah goes to a smaller school with only 300 students. At the
start of the school year, Susy had 100 social media followers. She gained 40 new followers in the first week of the
school year, half that in the second week, and half of that in the third week. Sarah only had 50 social media followers
at the start of the year, but she gained 90 new followers the first week, a third of that in the second week, and a third of
that in the third week. After three weeks, how many social media followers did the girl with the most total followers
have?
def solution():

susy_-initial _followers = 100

susy_new _followers_first_ week = 40

sarah_initial followers = 50

sarah_new_followers_first_-week = 90

susy_followers_after_first_ week = susy_initial _followers + susy_new_followers_first_week

susy_new _followers_second_week = susy_new_followers_first_week / 2

susy_followers_after_second_week = susy_followers_after_first_ week + susy_new_followers_second-week

susy_new _followers_third_week = susy_new_followers_second_week / 2

susy_followers_after_third_week = susy_followers_after_second_week + susy_new_followers_third_week

sarah_followers_after_first_week = sarah_initial _followers + sarah_new_followers_first_week

65

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

sarah_new_followers_second_week = sarah_new_followers_first_week / 3
sarah_followers_after_second_week = sarah_followers_after_first_week + sarah_new_followers_second_week
sarah_new_followers_third_week = sarah_new_followers_second_week / 3
sarah_followers_after_third_week = sarah_followers_after_second_week + sarah_new _followers_third_week
if sarah_followers_after_third_week > susy_followers_after_third_week:

result = sarah_followers_after_third_week
else:

result = susy_followers_after_third_week
return result

Q: Angelo and Melanie want to plan how many hours over the next week they should study together for their test next
week. They have 2 chapters of their textbook to study and 4 worksheets to memorize. They figure out that they should
dedicate 3 hours to each chapter of their textbook and 1.5 hours for each worksheet. If they plan to study no more than
4 hours each day, how many days should they plan to study total over the next week if they take a 10-minute break
every hour, include 3 10-minute snack breaks each day, and 30 minutes for lunch each day?
def solution():

hours_per_chapter = 3

num_chapters = 2

hours_per_worksheet = 1.5

num_worksheet = 4

hours_to_study_per_day = 4

minutes_of_study_break _per_hour = 10

minutes_per_snack_break = 10

num_snack_break_per_day = 3

minutes_per_lunch = 30

minutes_per_hour = 60

hours_on_chapters = hours_per_chapter * num_chapters

hours_on_worksheets = hours_per_worksheet * num_worksheet

hours_to_study = hours_on_chapters + hours_on_worksheets

minutes_on_study_breaks = minutes_of_study_break_per_hour * hours_to_study

minutes_on_snack_breaks = minutes_per_snack_break * num_snack_break _per_day

minutes_on_breaks_and_lunch = minutes_on_study_breaks + minutes_on_snack_breaks + minutes_per_lunch

hours_on_breaks_and_lunch = minutes_on_breaks_and_lunch / minutes_per_hour

total_hours_spent = hours_to_study + hours_on_breaks_and_lunch

num_days_spent = round(total_hours_spent / hours_to_study_per_day)

result = num_days_spent

return result

Q: A group of 4 fruit baskets contains 9 apples, 15 oranges, and 14 bananas in the first three baskets and 2 less of each
fruit in the fourth basket. How many fruits are there?
def solution():
apples_per_first_three_baskets = 9
oranges_per_first_three_baskets = 15
bananas_per_first_three_baskets = 14
apples_fourth_basket = apples_per_first_three_baskets - 2
oranges_fourth_basket = oranges_per_first_three_baskets - 2
bananas_fourth_basket = bananas_per_first_three_baskets - 2
total_apples = apples_per_first_three_baskets * 3 + apples_fourth_basket
total_oranges = oranges_per_first_three_baskets * 3 + oranges_fourth_basket
total_bananas = bananas_per_first_three_baskets * 3 + bananas_fourth_basket
total_fruits = total_apples + total_oranges + total_bananas
result = total _fruits
return result

66

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Q: In a certain school, 2/3 of the male students like to play basketball, but only 1/5 of the female students like to play
basketball. What percent of the population of the school do not like to play basketball if the ratio of the male to female
students is 3:2 and there are 1000 students?
def solution():

ratio_of_males_like_basketball = 2/3

ratio_of_females_like_basketball = 1/5

ratio_of_males_to_females = 3/2

num_students = 1000

num_females = num_students / (1 + ratio_of_males_to_females)

num_males = num_students - num_females

num_males_like_basketball = num_males * ratio_of_males_like_basketball

females_like_basketball = num_females * ratio_of_females_like_basketball

students_like_basketball = num_males_like_basketball + females_like_basketball

students_not_like_basketball = num_students - students_like_basketball

ratio_not_like_basketball = students_not_like_basketball / num_students

percent_not_like_basketball = ratio_not_like_basketball * 100

result = percent_not_like_basketball

return result

Q: Bella has two times as many marbles as frisbees. She also has 20 more frisbees than deck cards. If she buys 2/5
times more of each item, what would be the total number of the items she will have if she currently has 60 marbles?
def solution():

num_marbles = 60

num_frisbees = num_marbles / 2

num_deck_cards = num_frisbees - 20

num_marbles_bought = 2/5 * num_marbles

num_frisbees_bought = 2/5 * num_frisbees

num_deck_cards_bought = 2/5 * num_deck_cards

total_num_marbles = num_marbles + num_marbles_bought

total_num_frisbees = num_frisbees + num_frisbees_bought

total_num_deck_cards = num_deck_cards + num_deck_cards_bought

total_num_items = total_num_marbles + total_num_frisbees + total_num_deck_cards

result = total_num_items

return result

Q: Sam bought a dozen boxes, each with 30 highlighter pens inside, for $10 each box. He rearranged five of these
boxes into packages of six highlighters each and sold them for $3 per package. He sold the rest of the highlighters
separately at the rate of three pens for $2. How much profit did he make in total, in dollars?
def solution():

num_boxes = 12

pens_per_box = 30

cost_per_box = 10

boxes_to_rearrange = 5

pens_to_rearange = boxes_to_rearrange * pens_per_box

pens_per_package = 6

price_per_package = 3

price_per_3_pens = 2

total_pens = pens_per_box * num_boxes

total_cost = cost_per_box * num_boxes

num_packages = pens_to_rearange / pens_per_package

money_got_by_selling_packages = price_per_package * num_packages

num_rest_pens = total_pens - pens_to_rearange

money_got_by_selling_rest_pens = price_per_3_pens * num_rest_pens / 3

total_money_got = money_got_by _selling_packages + money_got_by_selling_rest_pens

67

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

profit = total_money_got - total_cost
result = profit
return result

Table 43: Gold demonstrations used in Section 4.7, which are selected from GSMS8K training set with the In-Cluster
Complexity selection scheme. PAL-style reasoning chains are manually-annotated after selection.

Q: You can buy 4 apples or 1 watermelon for the same price. You bought 36 fruits evenly split between oranges,
apples and watermelons, and the price of 1 orange is $0.50. How much does 1 apple cost if your total bill was $66?
def solution():

num_fruits = 3

price_per_orange = 0.50

total_bill = 66

num_oranges = num_fruits / 3

num_apples = num_fruits / 3

num_watermelons = num_fruits / 3

cost_of_oranges = price_per_orange * num_oranges

cost_of_apples_and_watermelons = total_bill - cost_of_oranges

price_per_apple = cost_of_apples_and_watermelons / (num_apples + 4 * num_watermelons)

result = price_per_apple

return result

Q: Mark’s basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws. Their opponents score double the
2 pointers but half the 3 pointers and free throws. What’s the total number of points scored by both teams added
together?
def solution():

points_per_2_pointer = 2

points_per_3_pointer = 3

points_per_free_throw = 1

num_2_pointers_by_mark = 25

num_3_pointers_by_mark = 8

num_free_throws_by_mark = 10

num_2_pointers_by_opponents = 2 * num_2_pointers_by_mark

num_3_pointers_by_opponents = num_3_pointers_by_mark / 2

num_free_throws_by_opponents = num_free_throws_by_mark / 2

points_.of_ mark = points_per_2_pointer * num_2_pointers_by_mark + points_per_3_pointer *
num_3_pointers_by_mark + points_per_free_throw * num_free_throws_by_mark
points_of_opponents = points_per_2_pointer * num_2_pointers_by_opponents + points_per_3_pointer *

num_3_pointers_by_opponents + points_per_free_throw * num_free_throws_by_opponents
points_of_both_teams = points_of_mark + points_of_opponents
result = points_of_both_teams
return result

Q: The total average age of three friends is 40. Jared is ten years older than Hakimi, and Molly’s age is 30. How old is
Hakimi?
def solution():

average_age = 40

molly_age = 30

total_age = 3 * average_age

jared_age_plus_hakimi_age = total_age - molly_age

hakimi_age = (jared_age_plus_hakimi_age - 10) / 2

result = hakimi_age

return result

68

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

Q: Angelo and Melanie want to plan how many hours over the next week they should study together for their test next
week. They have 2 chapters of their textbook to study and 4 worksheets to memorize. They figure out that they should
dedicate 3 hours to each chapter of their textbook and 1.5 hours for each worksheet. If they plan to study no more than
4 hours each day, how many days should they plan to study total over the next week if they take a 10-minute break
every hour, include 3 10-minute snack breaks each day, and 30 minutes for lunch each day?
def solution():

hours_per_chapter = 3

num_chapters = 2

hours_per_worksheet = 1.5

num_worksheet = 4

hours_to_study_per_day =4

minutes_of _study_break_per_hour = 10

minutes_per_snack _break = 10

num_snack_break _per_day =3

minutes_per_lunch = 30

minutes_per_hour = 60

hours_on_chapters = hours_per_chapter * num_chapters

hours_on_worksheets = hours_per_worksheet * num_worksheet

hours_to_study = hours_on_chapters + hours_on_worksheets

minutes_on_study_breaks = minutes_of_study_break _per_hour * hours_to_study

minutes_on_snack_breaks = minutes_per_snack _break * num_snack _break _per_day

minutes_on_breaks_and_lunch = minutes_on_study_breaks + minutes_on _snack_breaks + minutes_per_lunch

hours_on_breaks_and_lunch = minutes_on_breaks_and_lunch / minutes_per_hour

total_hours_spent = hours_to_study + hours_on_breaks_and_lunch

num_days_spent = round(total_hours_spent / hours_to_study_per_day)

result = num_days_spent

return result

Q: A group of 4 fruit baskets contains 9 apples, 15 oranges, and 14 bananas in the first three baskets and 2 less of each
fruit in the fourth basket. How many fruits are there?
def solution():
apples_per_first_three_baskets = 9
oranges_per_first_three_baskets = 15
bananas_per_first_three_baskets = 14
apples_fourth_basket = apples_per_first_three_baskets - 2
oranges_fourth_basket = oranges_per_first_three_baskets - 2
bananas_fourth_basket = bananas_per _first_three_baskets - 2
total_apples = apples_per_first_three_baskets * 3 + apples_fourth_basket
total_oranges = oranges_per_first_three_baskets * 3 + oranges_fourth_basket
total_bananas = bananas_per_first_three_baskets * 3 + bananas_fourth_basket
total_fruits = total_apples + total_oranges + total_bananas
result = total_fruits
return result

Q: A printing press is printing brochures. The press prints 20 single-page spreads, and twice as many double-page
spreads. For each 4 pages printed for the spreads, the press prints a block of 4 ads, each of which take up a quarter of
a page. The brochures can be arranged in any order as long as they are made up of 5 pages each. How many brochures
is the printing press creating?
def solution():

single_page_spreads = 20

double_page_spreads = 2 * single_page_spreads

num_pages_of_double_page_spreads = 2 * double_page_spreads

total_pages = single_page_spreads + num_pages_of_double_page_spreads

69

Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

blocks_of_ads = total_pages / 4

ads_per_block = 4

num_ads = blocks_of_ads * ads_per_block

space_per_ads = 1/4

pages_for_ads = num_ads * space_per_ads

pages_per_brochure =5

num_brochures = (total_pages + pages_for_ads) / pages_per_brochure
result = num_brochures

return result

Q: Bella has two times as many marbles as frisbees. She also has 20 more frisbees than deck cards. If she buys 2/5
times more of each item, what would be the total number of the items she will have if she currently has 60 marbles?
def solution():

num_marbles = 60

num_frisbees = num_marbles / 2

num_deck_cards = num_frisbees - 20

num_marbles_bought = 2/5 * num_marbles

num_frisbees_bought = 2/5 * num_frisbees

num_deck_cards_bought = 2/5 * num_deck_cards

total_num_marbles = num_marbles + num_marbles_bought

total_num_frisbees = num_frisbees + num_frisbees_bought

total_num_deck_cards = num_deck_cards + num_deck_cards_bought

total_num_items = total_num_marbles + total_num _frisbees + total_num_deck_cards

result = total_num_items

return result

Q: Janet hires six employees. Four of them are warehouse workers who make $15/hour, and the other two are
managers who make $20/hour. Janet has to pay 10% of her workers’ salaries in FICA taxes. If everyone works 25
days a month and 8 hours a day, how much does Janet owe total for their wages and taxes for one month?
def solution():

num_workers = 4

wages_per_worker_per_hour = 15

num_managers = 2

wages_per_-manager_per_hour = 20

days_per_month = 25

hours_per_day = 8

hours_per_month = hours_per_day * days_per_month

wages_per_worker = wages_per_worker_per_hour * hours_per_month

wages_for_workers = wages_per_worker * num_workers

wages_per_manager = wages_per_manager_per_hour * hours_per_month

wages_for_managers = wages_per_manager * num_managers

wages = wages_for_workers + wages_for_managers

taxes = wages * 10/ 100

total_money = wages + taxes

result = total_money

return result

70

	Introduction
	Related Work
	Synthetic Prompting
	Overview
	Example Synthesis Phase
	Backward Process
	Forward Process

	Inference Phase

	Experiments
	Datasets
	Evaluation Settings
	Baselines
	Implementation Details
	Main Results
	Ablation Studies
	Conditions Used for Question Synthesis
	Schemes of Demonstration Selection
	Sensitivity to Seed Examples

	Comparison with Selecting from Training Examples
	Effect of Language Models
	Quality Analysis of Synthetic Examples

	Conclusion
	Experiments
	Effect of Language Models on Example Synthesis
	Effect of Seed Examples

	Topic Words Generation for Synthetic prompting
	Question Synthesis for Vanilla Synthetic prompting
	Seed Examples and Synthetic Prompts for Inference
	Numerical Reasoning Datasets
	With Access to 2 Gold Examples
	With Access to 4 Gold Examples
	With Access to 8 Gold Examples

	Colored Objects
	With Access to 2 Gold Examples
	With Access to 4 Gold Examples

	Repeat Copy
	With Access to 2 Gold Examples
	With Access to 4 Gold Examples

	Selecting Gold Demonstrations from Training Examples for Comparisons

