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Abstract001

Large Language Models (LLMs) have demon-002
strated remarkable performance on various003
tasks, yet their ability to extract and internalize004
deeper insights from domain-specific datasets005
remains underexplored. In this study, we in-006
vestigate how continual pre-training (CPT) can007
enhance LLMs’ capacity for insight learning008
across three distinct forms: declarative, statis-009
tical, and probabilistic insights. Focusing on010
two critical domains: medicine and finance,011
we employ LoRA to train LLMs on two exist-012
ing datasets. To evaluate each insight type, we013
create benchmarks to measure how well contin-014
ual pre-training (CPT) helps models go beyond015
surface-level knowledge. We also assess the016
impact of document modification on captur-017
ing insights. The results show that, while CPT018
on original documents has a marginal effect,019
modifying documents to retain only essential020
information significantly enhances the insight-021
learning capabilities of LLMs. We will release022
our dataset and code.023

1 Introduction024

Large Language Models (LLMs) have demon-025

strated extraordinary capabilities across a broad026

spectrum of NLP tasks, from text generation to rea-027

soning and summarization (Touvron et al., 2023;028

OpenAI, 2023; Team et al., 2023). Despite these029

advancements, a crucial question persists: To what030

extent can LLMs internalize and utilize deeper031

insights from domain-specific datasets? While032

surface-level patterns and explicit knowledge can033

often be captured and delivered to LLMs using034

techniques such as retrieval-augmented generation035

(RAG) (Lewis et al., 2020; Gao et al., 2023), ex-036

tracting and leveraging deeper insights remains a037

significant challenge.038

Solving complex tasks often requires uncovering039

deeply embedded information or patterns across040

many samples. Additionally, such knowledge can041

be ambiguous or context dependent and may not042

Figure 1: We use domain-specific data, like the Hall-
marks of Cancer dataset, to adapt an LLM through CPT
with LoRA. Our goal is to assess whether LLMs are
capable of effectively capture three types of insights:
declarative, statistical, and probabilistic.

be universally correct outside the scope of domain- 043

specific data, posing significant challenges for ex- 044

isting approaches like RAG. We classify these in- 045

sights into three categories: Declarative insights 046

representing explicit, factual knowledge directly 047

stated in the dataset. Statistical insights arise 048

from aggregations, distributions, and quantitative 049

summaries observed across multiple data points. 050

And, Probabilistic insights, involve inferring like- 051

lihoods, and drawing conclusions from incomplete 052

or ambiguous information. Together, these insight 053

types encompass a range of knowledge necessary 054

for nuanced understanding and problem-solving. 055

Through our investigation, we aim to answer two 056

key research questions: How effectively can LLMs 057

internalize declarative, statistical, and probabilis- 058

tic insights through continual pre-training (CPT) 059

(Gururangan et al., 2020; Ke et al., 2023a) with low- 060

rank adaptation (LoRA) (Hu et al., 2021)? And, 061

to what extent can simplifying documents to train 062

LLMs on them enhance their insight-learning ca- 063

pabilities? Building on the success of continual 064

pre-training (Ke et al., 2023b,a) and LoRA (Zhao 065

et al., 2024), we aim to investigate LLMs’ ability to 066

extract insights and solve tasks when neither tasks 067

nor required insights are predefined. This motivates 068

our focus on CPT, which allows dynamic adapta- 069

tion without relying on task-specific supervision. 070

While prior works (Zhao et al., 2024; Biderman 071

et al., 2024) have examined LoRA in CPT, our 072

study differs in two key ways: (1) earlier research 073
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primarily focuses on declarative insights, while we074

also consider statistical and probabilistic insights;075

and (2) although previous studies mostly highlight076

LoRA’s limited effectiveness, we demonstrate that077

with proper input modification, it can lead to sub-078

stantial gains in insight learning.079

In this work, we address the challenge of en-080

hancing LLMs’ capability to learn insights from a081

domain-specific dataset through CPT using LoRA082

(Figure 1). Specifically, we adapt LLaMA-3.2 1B,083

LLaMA-3.2 3B, and LLaMA-3.1 8B models to084

two domain-specific datasets: Hallmarks of Can-085

cer (Baker et al., 2016) for the medicine domain086

and Buster (Zugarini et al., 2024) for the finance087

domain. To construct evaluation sets, we first use088

GPT-4o mini (Hurst et al., 2024) to extract triples of089

information from these datasets, then manually fil-090

ter and normalize the relations. The final processed091

triples serve as the basis for creating an evaluation092

set for each type of insight.093

Our experiments show that LLMs with CPT094

using LoRA achieve marginal improvements in095

declarative and statistical insights, with even096

smaller gains for probabilistic ones. However, train-097

ing on modified documents containing only essen-098

tial knowledge in the form of triples significantly099

enhances insight learning. Breaking down LLM100

performance across different relation types reveals101

notable discrepancies, emphasizing the potential102

influence of the models’ prior understanding of103

relations on new knowledge acquisition. To fur-104

ther test the limits of LoRA CPT, we also trained105

the models on individual triple-based sentences106

instead of the document format, leading to substan-107

tial improvements. This highlights the crucial role108

of input format in LLMs’ ability to learn insights.109

Across all experiments, larger models consistently110

performed better, demonstrating the scalability of111

insight learning with increased model capacity.112

2 Data-Specific Insights113

Extracting insights from large datasets is crucial114

for solving tasks across domains like medicine,115

finance, education, and technology. Insights help116

models make predictions, answer questions, and117

support evidence-based decisions. For example,118

medical data can reveal disease indicators, while119

financial reports can inform investment strategies.120

In this section, we first define different types of121

insight and then describe how we benchmark the122

insight-mining capability of LLMs.123

2.1 Insight Types 124

Not all insights are of the same nature. They vary in 125

complexity and the reasoning required to uncover 126

them. We classify the insights into three primary 127

types: Declarative, Statistical, and Probabilistic. 128

Declarative Insights refer to explicit, factual 129

knowledge directly stated in a dataset, including 130

definitions, facts, and specific details. Most exist- 131

ing works focus on this type of insight, which re- 132

quires minimal inference and is typically retrieved 133

rather than deduced. However, when such insights 134

are deeply buried within documents, they can pose 135

significant challenges for retrieval models. As an 136

example, in a medical dataset, a declarative insight 137

might state: "The BRCA1 gene mutation is associ- 138

ated with an increased risk of breast cancer." These 139

insights ensure accurate, direct answers to factual 140

queries, such as "What type of cancer is associated 141

with the BRCA1 gene mutation?" 142

Statistical Insights emerge from patterns and 143

trends observed across multiple data points. These 144

insights often involve analyzing aggregated data 145

to identify distributions and generalizable trends. 146

They require the model to abstract knowledge from 147

repeated observations. Example of a statistical in- 148

sight in finance: "The top-k companies with the 149

highest debt-to-equity ratio are X, Y, ... ." 150

Probabilistic Insights involve reasoning under 151

uncertainty, inferring likelihoods, and drawing con- 152

clusions from incomplete or ambiguous informa- 153

tion. These insights are crucial in scenarios where 154

definitive answers are not available and predictions 155

must be made based on probabilities. Example of 156

a probabilistic insight in medicine: "Given the pa- 157

tient’s symptoms and test results, there is a 70% 158

chance they have condition Y." 159

2.2 Benchmarking 160

To evaluate CPT LLMs’ insight-mining capabili- 161

ties, we use two domain-specific datasets: Hall- 162

marks of Cancer (Baker et al., 2016) for medicine 163

and Buster (Zugarini et al., 2024) for finance. Cho- 164

sen for their scale, diversity, and rich relational 165

structure, these datasets are well-suited for assess- 166

ing insight extraction. To systematically bench- 167

mark LLMs, inspired by prior works (Papaluca 168

et al., 2023; Wadhwa et al., 2023), we first use GPT- 169

4o mini to extract triples of information in the form 170

of < subject-relation-object > from the documents 171

(prompt in the Appendix). These triples are then: 172

(1) filtered to remove noisy, or rare triples, and 173

2



(2) manually normalized, standardizing the rela-174

tions to maintain consistency. The refined triples175

then form the basis for evaluating the three insight176

types. For declarative insights, we focus on subject-177

relation pairs with a single object, asking LLMs178

to predict the object given the subject-relation pair.179

For statistical insights, we use subject-relation pairs180

with multiple objects, tasking LLMs to predict all181

objects. For probabilistic insights, we evaluate182

the LLMs ability to estimate p(entity2 | entity1),183

computed from co-occurring entity pairs within184

documents. These probabilities serve as queries to185

create an evaluation set for probabilistic insights.186

It is important to note that in this work we focus on187

the most atomic form of queries/knowledge, leav-188

ing more complex tasks such as subject prediction189

and multi-step queries for future work.190

To ensure uniformly distributed evaluation sets,191

we sample 500 queries as evenly as possible. We do192

this by selecting equal samples from each class (de-193

fined by the number of objects in statistical insights194

and five probability bins in probabilistic insights195

uniformly covering 0-1 probabilities). Classes with-196

out sufficient samples are removed, and the remain-197

ing samples are drawn uniformly from the remain-198

ing classes. This process continues iteratively until199

we reach 500 samples. The details of benchmark200

statistics are provided in the Appendix.201

Document Simplification: Since documents often202

contain a significant amount of irrelevant infor-203

mation, LLMs may struggle to focus on the most204

important content during training. To address this,205

we also perform CPT of LLMs on a processed ver-206

sion of the documents. In this approach, for each207

document, we retain only the identified triples of208

information, which appear in the form of sentences,209

while discarding all other content. Focusing on210

triples, we aim to reduce noise and enhance LLMs’211

ability to internalize and extract critical insights.212

3 Experimental Details213

Models: We consider three variants from LLaMA214

models—LLaMA-3.2 1B, LLaMA-3.2 3B, and215

LLaMA-3.1 8B—adapting them to datasets with216

LoRA. CPT is used to adapt LLMs in an unsuper-217

vised manner, as real-world scenarios often lack218

predefined task-specific labels. This approach al-219

lows models to dynamically access insights without220

prior knowledge of the exact type required.221

Insight Mining: To extract declarative and statis-222

tical insights, we use top-1 and top-k predictions223

from LLMs given the concatenated subject-relation 224

string. For probabilistic insights, inspired by self- 225

consistency (Wang et al., 2022; Chen et al., 2023), 226

we provide only entity1 to the models, sample top- 227

k generations, and calculate p(entity2 | entity1) by 228

counting how often entity2 appears in the outputs. 229

We also explored alternatives for estimating proba- 230

bilities, such as asking models to output a probabil- 231

ity or using output logits, but sampling consistently 232

performed best, aligning with prior work on confi- 233

dence approximation (Lyu et al., 2024). 234

Evaluation Metrics: We evaluate LLM perfor- 235

mance on declarative insights using Exact Match 236

(EM) and F1 Score (standard QA metrics). For 237

statistical insights, we use Recall@K, measuring 238

the proportion of correct predictions in the top-k re- 239

sults. Probabilistic insights are assessed with mean 240

absolute error (MAE) and Pearson correlation. Ad- 241

ditional details on datasets, hyperparameters, and 242

model configurations are in the Appendix. 243

4 Experiments 244

This section explores two key questions: (1) Can 245

CPT with LoRA help LLMs capture different types 246

of insights? (2) Does processing the original data 247

improve insight extraction? 248

Effectiveness of CPT with LoRA: Figure 2 shows 249

that CPT provides only marginal improvements 250

across all insight types, aligning with LoRA’s 251

known limitations (Biderman et al., 2024). Declar- 252

ative and statistical insights show slight improve- 253

ments, with exact match scores increasing by a few 254

percentage points. However, probabilistic insights 255

remain largely unchanged and continue to be the 256

most challenging for all models. Moreover, larger 257

models (e.g., LLaMA-3.1 8B) consistently outper- 258

form smaller ones, underscoring the role of model 259

capacity. We provide F1 scores for declarative, 260

Recall@5 for statistical, and Pearson correlation re- 261

sults for probabilistic insights that further reinforce 262

and emphasize these observations in the Appendix. 263

Impact of Simplifying the Original Data: To 264

evaluate the impact of document simplification on 265

insight learning, we conducted CPT on simplified 266

documents. As shown in Figure 2, this approach 267

led to noticeable improvements in declarative and 268

statistical insights, with larger models demonstrat- 269

ing greater gains. However, probabilistic insights 270

exhibit similar behavior as before, further empha- 271

sizing the challenges in learning this type of insight. 272

Do LLMs learn insights uniformly across dif- 273
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Figure 2: Insight extraction during CPT: slight gains in declarative and statistical insights, while probabilistic insights
remain largely unchanged. Using larger models and simplified documents improve performance significantly.

ferent relations? We provide a per-relation break-274

down of LLM performance on declarative and sta-275

tistical insights for the top five most frequent rela-276

tions in each dataset (in the Appendix). Despite277

similar distributions, the effects of CPT and doc-278

ument simplification vary widely across relations.279

This variation may stem from the differing levels280

of prior understanding that LLMs possess for these281

relations.282

Do LoRA’s limitations in knowledge acquisi-283

tion hinder insight learning, and can further284

simplifying information improve performance?285

Instead of training models on the document for-286

mat, we concatenate the components of each triple,287

treat them as separate inputs, and conduct CPT288

on this processed format. The results show near-289

perfect performance on declarative insights, show-290

ing LoRA’s capacity to capture structured knowl-291

edge (Table 1). Statistical insights improve signifi-292

cantly but still lag behind—especially in the Buster293

dataset—highlighting LLMs’ limitations in effec-294

tively aggregating information. This may be due295

to Buster’s greater relation variety and larger triple296

volume. Finally, as in earlier observations, larger297

LLMs consistently perform better, while probabilis-298

tic insights remain challenging.299

Inspired by Jiang et al. (2024), we also explore300

a CPT variation where models are trained only on301

object prediction, given the subject and relation,302

alongside full documents (see the Appendix). This303

setup improves performance over other CPT vari-304

ants, except for CPT on extracted triples, which305

performs significantly better—especially for 1B306

Dec Stat Prob

H
al

l LLaMA-3.2 1B 98.4 66.7 0.151
LLaMA-3.2 3B 98.8 74.0 0.147
LLaMA-3.1 8B 99.0 82.0 0.148

B
us

te
r LLaMA-3.2 1B 97.2 36.1 0.161

LLaMA-3.2 3B 97.4 43.3 0.162
LLaMA-3.1 8B 97.8 50.3 0.162

Table 1: Impact of CPT on the triples, evaluated after
30 epochs using EM for declarative, Recall@10 for
statistical, and MAE for probabilistic insights.

and 3B models. We also evaluate RAG (Gao et al., 307

2023) using LLaMA-3.1 8B for declarative and 308

statistical insights (see the Appendix). While RAG 309

performance improves with more retrieved docu- 310

ments, it only matches CPT on original data. We 311

attribute this to LLaMA-3.1 8B’s limited capac- 312

ity, the similarity of documents and retrieval errors 313

caused by mismatches between extracted triples 314

and original text phrasing (Modarressi et al., 2025). 315

5 Conclusion 316

We investigate the impact of CPT with LoRA along- 317

side the effect of document processing on LLMs’ 318

ability to extract declarative, statistical, and proba- 319

bilistic insights from domain-specific datasets. Us- 320

ing medicine and finance datasets, we create bench- 321

marks to evaluate the insight-mining capabilities 322

of LLMs. Our findings reveal that CPT on origi- 323

nal documents yields only marginal improvements 324

across all insight types. In contrast, modifying the 325

document format to retain only essential informa- 326

tion significantly boosts performance, particularly 327

for declarative and statistical insights. 328
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6 Limitations329

While this study explores the impact of continual330

pre-training with LoRA on LLMs’ ability to extract331

insights, several limitations remain. First, we eval-332

uate only three LLaMA models (LLaMA-3.2 1B,333

LLaMA-3.2 3B, and LLaMA-3.1 8B), leaving open334

the question of how our findings generalize to other335

architectures and model scales. Additionally, we336

focus solely on LoRA for adaptation, whereas other337

fine-tuning or parameter-efficient tuning methods338

may offer different benefits or trade-offs.339

Moreover, while we categorize insights340

into three types—declarative, statistical, and341

probabilistic—there may be other forms of insight342

that require different methodologies for learning343

and evaluation. Lastly, we examine only four344

document processing formats: original documents,345

extracted triples, individual triples as separate in-346

puts, individual triples (only predicting the object)347

in addition to the full original documents. Other348

ways of structuring data may further optimize349

insight learning. Addressing these limitations in350

future work can provide a more comprehensive351

understanding of how LLMs acquire and utilize352

insights.353
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A Experimental Details466

Benchmarking We present the statistical details467

of the Hallmarks of Cancer and Buster datasets,468

along with the extracted triples from each, in Ta-469

ble 2. Additionally, Table 3 provides details of470

the evaluation sets created for each dataset and in-471

sight type. Finally, Figure 3 illustrates the distribu-472

tion of the number of objects for statistical insights473

and the distribution of different probability values474

p(entity2|entity1) for probabilistic insights in the475

evaluation sets for each dataset. To create these476

evaluation sets, we use the prompt B.1 to extract477

triples of information from documents.478

Models We conduct continual pre-training on479

LLaMA-3.2 1B, LLaMA-3.2 3B, and LLaMA-3.1480

8B models with LoRA and tune hyperparameters481

on training loss via grid search. Specifically, tuned482

hyperparameters include the learning rate α =483

[3× 10−3, 10−3, 3× 10−4, 10−4, 3× 10−5, 10−5];484

the LoRA rank r = [4, 8, 16]; the LoRA-alpha ∈485

{8, 16, 32}; and the LoRA-dropout ∈ {0.05, 0.1}.486

We trained the LLMs for up to 30 epochs. For prob- 487

abilistic insights, we set the maximum token length 488

to 200 and sampled the top 10 generated outputs. 489

B Experiments 490

We provide the F1 score, Recall@5, and Pearson 491

correlation coefficient for declarative, statistical, 492

and probabilistic insights, respectively, in Figure 493

4. The results align with the trends observed in the 494

previously reported metrics. Additionally, Tables 495

5, 6, 7, and 8 provide a per-relation breakdown 496

of LLM performance for declarative and statisti- 497

cal insights, focusing on the top five most frequent 498

relations. The results show that, despite the top 499

five frequent relations having similar distributions 500

across the data, the impact of continual pre-training 501

and the use of original versus simplified documents 502

on LLM insight-mining performance varies signif- 503

icantly across different relations. This variation 504

may be linked to the differing levels of prior under- 505

standing that LLMs have for these relations. 506

Inspired by Jiang et al. (2024), we also explore 507

a variation of continual pre-training where models 508

are trained solely on object prediction, in addition 509

to the full original documents. The results, shown 510

in Table 4, indicate improved performance com- 511

pared to other CPT variations—except for CPT 512

on extracted triples, which performs significantly 513

better, especially on the 1B and 3B models. 514

We report the performance of RAG using 515

LLaMA-3.1 8B on predicting declarative and statis- 516

tical insights over our benchmarks in Figure 5 (log 517

scale). For RAG baselines, we use LlamaIndex 518

(Liu, 2022) with the gte-Qwen2-7B-instruct em- 519

bedding model (Li et al., 2023), the current open- 520

source state-of-the-art on the MTEB leaderboard 521

(Muennighoff et al., 2022). As shown, RAG per- 522

formance improves with more retrieved documents 523

but only achieving comparable results to CPT on 524

original documents even with 50 documents. We at- 525

tribute this to the limited capability of LLaMA-3.1 526

8B and retrieval errors caused by discrepancies in 527

phrasing between extracted triples and the original 528

document text, which hinder performance (Modar- 529

ressi et al., 2025). 530

Triple Extraction Prompt

Given the following document text, your task
is to extract all the triples. The text might
have several predicates expressing a relation
between a subject and an object.
The subject is the entity that takes or undergo

531

6



Dataset # Documents # Extracted Triples # Relations # Entities

Hallmarks of Cancer 1,852 13,084 135 16,050
Buster 9,972 88,078 500 86,641

Table 2: Data statistics for the Hallmarks of Cancer and Buster datasets, including details of the extracted triples
from each.
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Figure 3: Distribution of the number of objects for statistical insights and probability values p(entity2|entity1) for
probabilistic insights in the created evaluation sets of each dataset.

# Samples # Relations # Entities

H
al

l Dec 500 103 959
Stat 500 87 2,159
Prob 500 - 548

B
us

te
r Dec 500 162 986

Stat 500 100 3,965
Prob 500 - 586

Table 3: Data statistics of created evaluation sets.

Dec Stat Prob

H
al

l LLaMA-3.2 1B 63.4 50.2 0.15
LLaMA-3.2 3B 74.8 52.3 0.15
LLaMA-3.1 8B 86.2 53.8 0.149

B
us

te
r LLaMA-3.2 1B 26.4 17.4 0.163

LLaMA-3.2 3B 54.0 27.1 0.16
LLaMA-3.1 8B 74.6 38.7 0.16

Table 4: Impact of CPT trained exclusively on object
prediction combined with full documents, evaluated
after 30 epochs using Exact Match for declarative, Re-
call@10 for statistical, and MAE for probabilistic in-
sights.

the action expressed by the predicate.
The object is the entity which is the factual
object of the action.
The information provided by each predicate can
be summarized as a knowledge triplet of the
form (subject, relation, object).
Extract the information contained in the text
in the form of knowledge triplets.
Please ignore any non-informative
relationships, and focus only on meaningful
entities and their relations.
Additionally, focus only on information

532

that is self-contained and maintains its
meaning independently of surrounding context,
ensuring clarity and minimizing ambiguity in
relationships.
To ensure the triples are self-contained, first
extract the information. Then, verify that it
does not rely on any preceding or following
content. Finally, structure the information
into subject, relation, and object format.
Each triple should contain a single named
entity as the subject and a single named
entity as the object. Avoid including multiple
entities within either the subject or object.
Finally, normalize the relation using
your internal knowledge to ensure that
relations with the same meaning, but different
representations, are mapped to a single,
consistent form.
Provide the output in JSON format as follows:

Expected JSON Output:
[
{“subject": “SUBJECT-1", “relation":
“RELATION-1", “object": “OBJECT-1"},
{“subject": “SUBJECT-2", “relation":
“RELATION-2", “object": “OBJECT-2"},
...
]

Document Text: {}
533
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Figure 4: LLM performance on insight extraction during continual pre-training. We report F1 scores for declarative
insights, Recall@5 for statistical insights, and Pearson correlation coefficients for probabilistic insights. The results
follow similar trends to the metrics in Figure 2.

Relations LLaMA-3.2 1B LLaMA-3.2 3B LLaMA-3.1 8B

Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp

is a 1.8 5.4 25.5 1.8 0.0 25.5 1.8 3.6 40.0
induced 3.1 12.5 34.3 3.1 9.4 31.3 3.1 3.1 37.5
increases 5.0 0.0 20.0 5.0 5.0 15.0 5.0 5.0 20.0
associated with 5.9 5.9 29.4 0.0 0.0 35.3 5.9 5.9 35.3
causes 0.0 12.5 18.8 0.0 12.5 31.3 0.0 6.3 50.0
inhibits 0.0 0.0 12.5 0.0 0.0 12.5 0.0 0.0 25.0

Table 5: Per-relation breakdown of LLMs performance in capturing declarative insights for the top five most
frequent relations in the Hallmarks of Cancer dataset. Exact match scores are reported for the vanilla LLMs (Vanil)
without training, after 30 epochs of continual pre-training on original documents (CPT-Orig), and after 30 epochs of
continual pre-training on simplified documents (CPT-Simp).

Relations LLaMA-3.2 1B LLaMA-3.2 3B LLaMA-3.1 8B

Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp

provides 0.0 3.1 0.0 0.0 0.0 3.1 3.1 9.4 50.0
is President of 0.0 0.0 3.2 0.0 0.0 9.7 0.0 0.0 25.8
acquired 0.0 0.0 78.6 0.0 0.0 78.6 3.6 10.7 78.5
is approved for 0.0 0.0 0.0 12.5 0.0 0.0 0.0 12.5 50.0
located in 8.3 8.3 8.3 8.3 8.3 8.3 16.7 16.7 75.0

Table 6: Per-relation breakdown of LLMs performance in capturing declarative insights for the top five most frequent
relations in the Buster dataset. Exact match scores are reported for the vanilla LLMs (Vanil) without training, after
30 epochs of continual pre-training on original documents (CPT-Orig), and after 30 epochs of continual pre-training
on simplified documents (CPT-Simp).
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Relations LLaMA-3.2 1B LLaMA-3.2 3B LLaMA-3.1 8B

Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp

is a 11.6 16.8 23.5 12.2 18.9 19.5 10.3 15.3 26.2
inhibits 7.3 10.0 15.3 7.2 11.0 10.4 6.6 5.1 19.0
induced 12.3 14.7 23.4 12.3 16.0 24.0 15.5 13.5 30.1
increases 2.0 9.8 7.6 2.8 7.6 7.9 1.9 4.9 16.6
decreased 1.1 3.2 2.6 1.6 4.1 1.1 1.5 2.1 1.0

Table 7: Per-relation breakdown of LLMs performance in capturing statistical insights for the top five most frequent
relations in the Hallmarks of Cancer dataset. Recall@10 are reported for the vanilla LLMs (Vanil) without training,
after 30 epochs of continual pre-training on original documents (CPT-Orig), and after 30 epochs of continual
pre-training on simplified documents (CPT-Simp)..

Relations LLaMA-3.2 1B LLaMA-3.2 3B LLaMA-3.1 8B

Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp

acquired 0.7 1.7 27.1 1.0 2.9 29.4 2.2 9.2 28.1
operates 6.3 12.0 11.0 8.6 11.7 12.1 9.9 12.7 14.9
includes 7.2 6.4 10.6 8.9 12.8 11.9 16.0 16.2 13.8
provides 6.7 6.6 12.0 7.5 10.4 11.0 12.4 14.6 22.3
offers 2.3 7.0 10.5 10.0 10.2 17.3 15.9 18.9 25.7

Table 8: Per-relation breakdown of LLMs performance in capturing statistical insights for the top five most frequent
relations in the Buster dataset. Recall@10 are reported for the vanilla LLMs (Vanil) without training, after 30
epochs of continual pre-training on original documents (CPT-Orig), and after 30 epochs of continual pre-training on
simplified documents (CPT-Simp).
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Figure 5: Comparison of RAG performance against the various CPT approaches.
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