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Abstract

Large Language Models (LLMs) have demon-
strated remarkable performance on various
tasks, yet their ability to extract and internalize
deeper insights from domain-specific datasets
remains underexplored. In this study, we in-
vestigate how continual pre-training (CPT) can
enhance LLMs’ capacity for insight learning
across three distinct forms: declarative, statis-
tical, and probabilistic insights. Focusing on
two critical domains: medicine and finance,
we employ LoRA to train LLMs on two exist-
ing datasets. To evaluate each insight type, we
create benchmarks to measure how well contin-
ual pre-training (CPT) helps models go beyond
surface-level knowledge. We also assess the
impact of document modification on captur-
ing insights. The results show that, while CPT
on original documents has a marginal effect,
modifying documents to retain only essential
information significantly enhances the insight-
learning capabilities of LLMs. We will release
our dataset and code.

1 Introduction

Large Language Models (LLMs) have demon-
strated extraordinary capabilities across a broad
spectrum of NLP tasks, from text generation to rea-
soning and summarization (Touvron et al., 2023;
OpenAl, 2023; Team et al., 2023). Despite these
advancements, a crucial question persists: To what
extent can LLMs internalize and utilize deeper
insights from domain-specific datasets? While
surface-level patterns and explicit knowledge can
often be captured and delivered to LLMs using
techniques such as retrieval-augmented generation
(RAG) (Lewis et al., 2020; Gao et al., 2023), ex-
tracting and leveraging deeper insights remains a
significant challenge.

Solving complex tasks often requires uncovering
deeply embedded information or patterns across
many samples. Additionally, such knowledge can
be ambiguous or context dependent and may not
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Declarative: What type of cancer is associated
with BRCA1 gene mutation?

__»| Statistical: What are the top five gene mutations
associated with breast cancer?
Probabilistic: What is the probability of a BRCA2
mutation given a BRCA1 mutation already
observed?
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Figure 1: We use domain-specific data, like the Hall-
marks of Cancer dataset, to adapt an LLM through CPT
with LoRA. Our goal is to assess whether LLMs are
capable of effectively capture three types of insights:
declarative, statistical, and probabilistic.
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be universally correct outside the scope of domain-
specific data, posing significant challenges for ex-
isting approaches like RAG. We classify these in-
sights into three categories: Declarative insights
representing explicit, factual knowledge directly
stated in the dataset. Statistical insights arise
from aggregations, distributions, and quantitative
summaries observed across multiple data points.
And, Probabilistic insights, involve inferring like-
lihoods, and drawing conclusions from incomplete
or ambiguous information. Together, these insight
types encompass a range of knowledge necessary
for nuanced understanding and problem-solving.

Through our investigation, we aim to answer two
key research questions: How effectively can LLMs
internalize declarative, statistical, and probabilis-
tic insights through continual pre-training (CPT)
(Gururangan et al., 2020; Ke et al., 2023a) with low-
rank adaptation (LoRA) (Hu et al., 2021)? And,
to what extent can simplifying documents to train
LLMs on them enhance their insight-learning ca-
pabilities? Building on the success of continual
pre-training (Ke et al., 2023b,a) and LoRA (Zhao
etal., 2024), we aim to investigate LLMs’ ability to
extract insights and solve tasks when neither tasks
nor required insights are predefined. This motivates
our focus on CPT, which allows dynamic adapta-
tion without relying on task-specific supervision.
While prior works (Zhao et al., 2024; Biderman
et al., 2024) have examined LoRA in CPT, our
study differs in two key ways: (1) earlier research



primarily focuses on declarative insights, while we
also consider statistical and probabilistic insights;
and (2) although previous studies mostly highlight
LoRA’s limited effectiveness, we demonstrate that
with proper input modification, it can lead to sub-
stantial gains in insight learning.

In this work, we address the challenge of en-
hancing LLMs’ capability to learn insights from a
domain-specific dataset through CPT using LoRA
(Figure 1). Specifically, we adapt LLaMA-3.2 1B,
LLaMA-3.2 3B, and LLaMA-3.1 8B models to
two domain-specific datasets: Hallmarks of Can-
cer (Baker et al., 2016) for the medicine domain
and Buster (Zugarini et al., 2024) for the finance
domain. To construct evaluation sets, we first use
GPT-40 mini (Hurst et al., 2024) to extract triples of
information from these datasets, then manually fil-
ter and normalize the relations. The final processed
triples serve as the basis for creating an evaluation
set for each type of insight.

Our experiments show that LLMs with CPT
using LoRA achieve marginal improvements in
declarative and statistical insights, with even
smaller gains for probabilistic ones. However, train-
ing on modified documents containing only essen-
tial knowledge in the form of triples significantly
enhances insight learning. Breaking down LLM
performance across different relation types reveals
notable discrepancies, emphasizing the potential
influence of the models’ prior understanding of
relations on new knowledge acquisition. To fur-
ther test the limits of LoRA CPT, we also trained
the models on individual triple-based sentences
instead of the document format, leading to substan-
tial improvements. This highlights the crucial role
of input format in LLLMs’ ability to learn insights.
Across all experiments, larger models consistently
performed better, demonstrating the scalability of
insight learning with increased model capacity.

2 Data-Specific Insights

Extracting insights from large datasets is crucial
for solving tasks across domains like medicine,
finance, education, and technology. Insights help
models make predictions, answer questions, and
support evidence-based decisions. For example,
medical data can reveal disease indicators, while
financial reports can inform investment strategies.
In this section, we first define different types of
insight and then describe how we benchmark the
insight-mining capability of LLMs.

2.1 Insight Types

Not all insights are of the same nature. They vary in
complexity and the reasoning required to uncover
them. We classify the insights into three primary
types: Declarative, Statistical, and Probabilistic.

Declarative Insights refer to explicit, factual
knowledge directly stated in a dataset, including
definitions, facts, and specific details. Most exist-
ing works focus on this type of insight, which re-
quires minimal inference and is typically retrieved
rather than deduced. However, when such insights
are deeply buried within documents, they can pose
significant challenges for retrieval models. As an
example, in a medical dataset, a declarative insight
might state: "The BRCAI gene mutation is associ-
ated with an increased risk of breast cancer." These
insights ensure accurate, direct answers to factual
queries, such as "What type of cancer is associated
with the BRCAI gene mutation?"

Statistical Insights emerge from patterns and
trends observed across multiple data points. These
insights often involve analyzing aggregated data
to identify distributions and generalizable trends.
They require the model to abstract knowledge from
repeated observations. Example of a statistical in-
sight in finance: "The top-k companies with the
highest debt-to-equity ratio are X, Y, ... ."

Probabilistic Insights involve reasoning under
uncertainty, inferring likelihoods, and drawing con-
clusions from incomplete or ambiguous informa-
tion. These insights are crucial in scenarios where
definitive answers are not available and predictions
must be made based on probabilities. Example of
a probabilistic insight in medicine: "Given the pa-
tient’s symptoms and test results, there is a 70%
chance they have condition Y."

2.2 Benchmarking

To evaluate CPT LLMs’ insight-mining capabili-
ties, we use two domain-specific datasets: Hall-
marks of Cancer (Baker et al., 2016) for medicine
and Buster (Zugarini et al., 2024) for finance. Cho-
sen for their scale, diversity, and rich relational
structure, these datasets are well-suited for assess-
ing insight extraction. To systematically bench-
mark LLMs, inspired by prior works (Papaluca
etal., 2023; Wadhwa et al., 2023), we first use GPT-
4o mini to extract triples of information in the form
of < subject-relation-object > from the documents
(prompt in the Appendix). These triples are then:
(1) filtered to remove noisy, or rare triples, and



(2) manually normalized, standardizing the rela-
tions to maintain consistency. The refined triples
then form the basis for evaluating the three insight
types. For declarative insights, we focus on subject-
relation pairs with a single object, asking LLMs
to predict the object given the subject-relation pair.
For statistical insights, we use subject-relation pairs
with multiple objects, tasking LLMs to predict all
objects. For probabilistic insights, we evaluate
the LLMs ability to estimate p(entity, | entity,),
computed from co-occurring entity pairs within
documents. These probabilities serve as queries to
create an evaluation set for probabilistic insights.
It is important to note that in this work we focus on
the most atomic form of queries/knowledge, leav-
ing more complex tasks such as subject prediction
and multi-step queries for future work.

To ensure uniformly distributed evaluation sets,
we sample 500 queries as evenly as possible. We do
this by selecting equal samples from each class (de-
fined by the number of objects in statistical insights
and five probability bins in probabilistic insights
uniformly covering O-1 probabilities). Classes with-
out sufficient samples are removed, and the remain-
ing samples are drawn uniformly from the remain-
ing classes. This process continues iteratively until
we reach 500 samples. The details of benchmark
statistics are provided in the Appendix.

Document Simplification: Since documents often
contain a significant amount of irrelevant infor-
mation, LLMs may struggle to focus on the most
important content during training. To address this,
we also perform CPT of LLMs on a processed ver-
sion of the documents. In this approach, for each
document, we retain only the identified triples of
information, which appear in the form of sentences,
while discarding all other content. Focusing on
triples, we aim to reduce noise and enhance LLMs’
ability to internalize and extract critical insights.

3 Experimental Details

Models: We consider three variants from LLaMA
models—LLaMA-3.2 1B, LLaMA-3.2 3B, and
LLaMA-3.1 8B—adapting them to datasets with
LoRA. CPT is used to adapt LLMs in an unsuper-
vised manner, as real-world scenarios often lack
predefined task-specific labels. This approach al-
lows models to dynamically access insights without
prior knowledge of the exact type required.

Insight Mining: To extract declarative and statis-
tical insights, we use top-1 and top-k predictions

from LLMs given the concatenated subject-relation
string. For probabilistic insights, inspired by self-
consistency (Wang et al., 2022; Chen et al., 2023),
we provide only entity, to the models, sample top-
k generations, and calculate p(entity, | entity,) by
counting how often entity, appears in the outputs.
We also explored alternatives for estimating proba-
bilities, such as asking models to output a probabil-
ity or using output logits, but sampling consistently
performed best, aligning with prior work on confi-
dence approximation (Lyu et al., 2024).

Evaluation Metrics: We evaluate LLM perfor-
mance on declarative insights using Exact Match
(EM) and F1 Score (standard QA metrics). For
statistical insights, we use Recall @K, measuring
the proportion of correct predictions in the top-k re-
sults. Probabilistic insights are assessed with mean
absolute error (MAE) and Pearson correlation. Ad-
ditional details on datasets, hyperparameters, and
model configurations are in the Appendix.

4 Experiments

This section explores two key questions: (1) Can
CPT with LoRA help LLMs capture different types
of insights? (2) Does processing the original data
improve insight extraction?

Effectiveness of CPT with LoRA: Figure 2 shows
that CPT provides only marginal improvements
across all insight types, aligning with LoRA’s
known limitations (Biderman et al., 2024). Declar-
ative and statistical insights show slight improve-
ments, with exact match scores increasing by a few
percentage points. However, probabilistic insights
remain largely unchanged and continue to be the
most challenging for all models. Moreover, larger
models (e.g., LLaMA-3.1 8B) consistently outper-
form smaller ones, underscoring the role of model
capacity. We provide F1 scores for declarative,
Recall @S5 for statistical, and Pearson correlation re-
sults for probabilistic insights that further reinforce
and emphasize these observations in the Appendix.
Impact of Simplifying the Original Data: To
evaluate the impact of document simplification on
insight learning, we conducted CPT on simplified
documents. As shown in Figure 2, this approach
led to noticeable improvements in declarative and
statistical insights, with larger models demonstrat-
ing greater gains. However, probabilistic insights
exhibit similar behavior as before, further empha-
sizing the challenges in learning this type of insight.

Do LLMs learn insights uniformly across dif-
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Figure 2: Insight extraction during CPT: slight gains in declarative and statistical insights, while probabilistic insights
remain largely unchanged. Using larger models and simplified documents improve performance significantly.

ferent relations? We provide a per-relation break-
down of LLM performance on declarative and sta-
tistical insights for the top five most frequent rela-
tions in each dataset (in the Appendix). Despite
similar distributions, the effects of CPT and doc-
ument simplification vary widely across relations.
This variation may stem from the differing levels
of prior understanding that LLMs possess for these
relations.

Do LoRA’s limitations in knowledge acquisi-
tion hinder insight learning, and can further
simplifying information improve performance?
Instead of training models on the document for-
mat, we concatenate the components of each triple,
treat them as separate inputs, and conduct CPT
on this processed format. The results show near-
perfect performance on declarative insights, show-
ing LoRA’s capacity to capture structured knowl-
edge (Table 1). Statistical insights improve signifi-
cantly but still lag behind—especially in the Buster
dataset—highlighting LLMs’ limitations in effec-
tively aggregating information. This may be due
to Buster’s greater relation variety and larger triple
volume. Finally, as in earlier observations, larger
LLM:s consistently perform better, while probabilis-
tic insights remain challenging.

Inspired by Jiang et al. (2024), we also explore
a CPT variation where models are trained only on
object prediction, given the subject and relation,
alongside full documents (see the Appendix). This
setup improves performance over other CPT vari-
ants, except for CPT on extracted triples, which
performs significantly better—especially for 1B

Dec Stat Prob

. LLaMA-321B 984 66.7 0.151
E LLaMA-323B 98.8 74.0 0.147
LLaMA-3.18B 99.0 82.0 0.148

5 LLaMA-321B 972 36.1 0.161
§ LLaMA-323B 974 433 0.162
2= LLaMA-3.18B 97.8 50.3 0.162

Table 1: Impact of CPT on the triples, evaluated after
30 epochs using EM for declarative, Recall@10 for
statistical, and MAE for probabilistic insights.

and 3B models. We also evaluate RAG (Gao et al.,
2023) using LLaMA-3.1 8B for declarative and
statistical insights (see the Appendix). While RAG
performance improves with more retrieved docu-
ments, it only matches CPT on original data. We
attribute this to LLaMA-3.1 8B’s limited capac-
ity, the similarity of documents and retrieval errors
caused by mismatches between extracted triples
and original text phrasing (Modarressi et al., 2025).

5 Conclusion

We investigate the impact of CPT with LoRA along-
side the effect of document processing on LLMs’
ability to extract declarative, statistical, and proba-
bilistic insights from domain-specific datasets. Us-
ing medicine and finance datasets, we create bench-
marks to evaluate the insight-mining capabilities
of LLMs. Our findings reveal that CPT on origi-
nal documents yields only marginal improvements
across all insight types. In contrast, modifying the
document format to retain only essential informa-
tion significantly boosts performance, particularly
for declarative and statistical insights.



6 Limitations

While this study explores the impact of continual
pre-training with LoRA on LLMs’ ability to extract
insights, several limitations remain. First, we eval-
uate only three LLaMA models (LLaMA-3.2 1B,
LLaMA-3.2 3B, and LLaMA-3.1 8B), leaving open
the question of how our findings generalize to other
architectures and model scales. Additionally, we
focus solely on LoRA for adaptation, whereas other
fine-tuning or parameter-efficient tuning methods
may offer different benefits or trade-offs.

Moreover, while we categorize insights
into three types—declarative, statistical, and
probabilistic—there may be other forms of insight
that require different methodologies for learning
and evaluation. Lastly, we examine only four
document processing formats: original documents,
extracted triples, individual triples as separate in-
puts, individual triples (only predicting the object)
in addition to the full original documents. Other
ways of structuring data may further optimize
insight learning. Addressing these limitations in
future work can provide a more comprehensive
understanding of how LLMs acquire and utilize
insights.
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A Experimental Details

Benchmarking We present the statistical details
of the Hallmarks of Cancer and Buster datasets,
along with the extracted triples from each, in Ta-
ble 2. Additionally, Table 3 provides details of
the evaluation sets created for each dataset and in-
sight type. Finally, Figure 3 illustrates the distribu-
tion of the number of objects for statistical insights
and the distribution of different probability values
p(entity,|entity; ) for probabilistic insights in the
evaluation sets for each dataset. To create these
evaluation sets, we use the prompt B.1 to extract
triples of information from documents.

Models We conduct continual pre-training on
LLaMA-3.2 1B, LLaMA-3.2 3B, and LLaMA-3.1
8B models with LoRA and tune hyperparameters
on training loss via grid search. Specifically, tuned
hyperparameters include the learning rate o =
[3x1073,1073,3 x 1074,107%,3 x 107°,107°];
the LoRA rank r = [4,8, 16]; the LoRA-alpha €
{8,16,32}; and the LoRA-dropout € {0.05,0.1}.

We trained the LLMs for up to 30 epochs. For prob-
abilistic insights, we set the maximum token length
to 200 and sampled the top 10 generated outputs.

B Experiments

We provide the F1 score, Recall@5, and Pearson
correlation coefficient for declarative, statistical,
and probabilistic insights, respectively, in Figure
4. The results align with the trends observed in the
previously reported metrics. Additionally, Tables
5, 6, 7, and 8 provide a per-relation breakdown
of LLM performance for declarative and statisti-
cal insights, focusing on the top five most frequent
relations. The results show that, despite the top
five frequent relations having similar distributions
across the data, the impact of continual pre-training
and the use of original versus simplified documents
on LLM insight-mining performance varies signif-
icantly across different relations. This variation
may be linked to the differing levels of prior under-
standing that LLMs have for these relations.

Inspired by Jiang et al. (2024), we also explore
a variation of continual pre-training where models
are trained solely on object prediction, in addition
to the full original documents. The results, shown
in Table 4, indicate improved performance com-
pared to other CPT variations—except for CPT
on extracted triples, which performs significantly
better, especially on the 1B and 3B models.

We report the performance of RAG using
LLaMA-3.1 8B on predicting declarative and statis-
tical insights over our benchmarks in Figure 5 (log
scale). For RAG baselines, we use Llamalndex
(Liu, 2022) with the gte-Qwen2-7B-instruct em-
bedding model (Li et al., 2023), the current open-
source state-of-the-art on the MTEB leaderboard
(Muennighoff et al., 2022). As shown, RAG per-
formance improves with more retrieved documents
but only achieving comparable results to CPT on
original documents even with 50 documents. We at-
tribute this to the limited capability of LLaMA-3.1
8B and retrieval errors caused by discrepancies in
phrasing between extracted triples and the original
document text, which hinder performance (Modar-
ressi et al., 2025).

Triple Extraction Prompt

Given the following document text, your task
is to extract all the triples. The text might
have several predicates expressing a relation
between a subject and an object.

The subject is the entity that takes or undergo




Dataset # Documents # Extracted Triples # Relations # Entities

Hallmarks of Cancer 1,852
Buster 9,972

13,084 135 16,050
88,078 500 86,641

Table 2: Data statistics for the Hallmarks of Cancer and Buster datasets, including details of the extracted triples

from each.
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Figure 3: Distribution of the number of objects for statistical insights and probability values p(entity, |entity, ) for
probabilistic insights in the created evaluation sets of each dataset.

# Samples  # Relations  # Entities

_ Dec 500 103 959
F  Stat 500 87 2,159
= Prob 500 ; 548
& Dec 500 162 986
% St 500 100 3,965
& Prob 500 i 586

Table 3: Data statistics of created evaluation sets.

Dec Stat Prob
LLaMA-321B 634 50.2 0.15

E LLaMA-323B 748 523 0.15

LLaMA-3.18B 86.2 53.8 0.149
% LLaMA-3.21B 264 174 0.163
‘g LLaMA-323B 54.0 27.1 0.16
m LLaMA-3.18B 746 38.7 0.16

Table 4: Impact of CPT trained exclusively on object
prediction combined with full documents, evaluated
after 30 epochs using Exact Match for declarative, Re-
call@10 for statistical, and MAE for probabilistic in-
sights.

4 A
the action expressed by the predicate.
The object is the entity which is the factual
object of the action.
The information provided by each predicate can
be summarized as a knowledge triplet of the
form (subject, relation, object).
Extract the information contained in the text
in the form of knowledge triplets.
Please ignore any non-informative
relationships, and focus only on meaningful
entities and their relations.
Additionally, focus only on information

that is self-contained and maintains its
meaning independently of surrounding context,
ensuring clarity and minimizing ambiguity in
relationships.

To ensure the triples are self-contained, first
extract the information. Then, verify that it
does not rely on any preceding or following
content. Finally, structure the information
into subject, relation, and object format.
Each triple should contain a single named
entity as the subject and a single named
entity as the object. Avoid including multiple
entities within either the subject or object.
Finally, normalize the relation using
your internal knowledge to ensure that
relations with the same meaning, but different
representations, are mapped to a single,
consistent form.

Provide the output in JSON format as follows:

Expected JSON Output:

L

{“subject”: “SUBJECT-1", “relation”:
“RELATION-1", “object”: “OBJECT-1"},
{“subject”: “SUBJECT-2", “relation”:

“RELATION-2", “object”: “OBJECT-2"3},

Document Text: {3}

N
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Figure 4: LLM performance on insight extraction during continual pre-training. We report F1 scores for declarative
insights, Recall@5 for statistical insights, and Pearson correlation coefficients for probabilistic insights. The results
follow similar trends to the metrics in Figure 2.

Relations LLaMA-3.2 1B LLaMA-3.2 3B LLaMA-3.1 8B

Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp
isa 1.8 5.4 25.5 1.8 0.0 25.5 1.8 3.6 40.0
induced 3.1 12.5 343 3.1 9.4 31.3 3.1 3.1 375
increases 5.0 0.0 20.0 5.0 5.0 15.0 5.0 5.0 20.0
associated with 5.9 59 29.4 0.0 0.0 353 59 59 353
causes 0.0 12.5 18.8 0.0 12.5 31.3 0.0 6.3 50.0
inhibits 0.0 0.0 12.5 0.0 0.0 12.5 0.0 0.0 25.0

Table 5: Per-relation breakdown of LLMs performance in capturing declarative insights for the top five most
frequent relations in the Hallmarks of Cancer dataset. Exact match scores are reported for the vanilla LLMs (Vanil)
without training, after 30 epochs of continual pre-training on original documents (CPT-Orig), and after 30 epochs of
continual pre-training on simplified documents (CPT-Simp).

Relations LLaMA-3.2 1B LLaMA-3.2 3B LLaMA-3.1 8B

Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp
provides 0.0 3.1 0.0 0.0 0.0 3.1 3.1 9.4 50.0
is President of 0.0 0.0 32 0.0 0.0 9.7 0.0 0.0 25.8
acquired 0.0 0.0 78.6 0.0 0.0 78.6 3.6 10.7 78.5
is approved for 0.0 0.0 0.0 12.5 0.0 0.0 0.0 12.5 50.0
located in 8.3 8.3 8.3 8.3 8.3 83 16.7 16.7 75.0

Table 6: Per-relation breakdown of LLMs performance in capturing declarative insights for the top five most frequent
relations in the Buster dataset. Exact match scores are reported for the vanilla LLMs (Vanil) without training, after
30 epochs of continual pre-training on original documents (CPT-Orig), and after 30 epochs of continual pre-training
on simplified documents (CPT-Simp).



LLaMA-3.2 1B LLaMA-3.2 3B LLaMA-3.1 8B

Relations

Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp
isa 11.6 16.8 23.5 12.2 18.9 19.5 10.3 15.3 26.2
inhibits 7.3 10.0 15.3 7.2 11.0 104 6.6 5.1 19.0
induced 12.3 14.7 234 12.3 16.0 24.0 15.5 13.5 30.1
increases 2.0 9.8 7.6 2.8 7.6 7.9 1.9 4.9 16.6
decreased 1.1 3.2 2.6 1.6 4.1 1.1 1.5 2.1 1.0

Table 7: Per-relation breakdown of LLMs performance in capturing statistical insights for the top five most frequent
relations in the Hallmarks of Cancer dataset. Recall@ 10 are reported for the vanilla LLMs (Vanil) without training,
after 30 epochs of continual pre-training on original documents (CPT-Orig), and after 30 epochs of continual
pre-training on simplified documents (CPT-Simp)..

Relations LLaMA-3.2 1B LLaMA-3.2 3B LLaMA-3.1 8B

Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp Vanil CPT-Orig CPT-Simp
acquired 0.7 1.7 27.1 1.0 29 29.4 22 9.2 28.1
operates 6.3 12.0 11.0 8.6 11.7 12.1 9.9 12.7 14.9
includes 7.2 6.4 10.6 8.9 12.8 11.9  16.0 16.2 13.8
provides 6.7 6.6 12.0 7.5 104 11.0 124 14.6 223
offers 2.3 7.0 10.5 10.0 10.2 173 159 18.9 25.7

Table 8: Per-relation breakdown of LLMs performance in capturing statistical insights for the top five most frequent
relations in the Buster dataset. Recall@10 are reported for the vanilla LLMs (Vanil) without training, after 30
epochs of continual pre-training on original documents (CPT-Orig), and after 30 epochs of continual pre-training on
simplified documents (CPT-Simp).
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Figure 5: Comparison of RAG performance against the various CPT approaches.
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