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Abstract

We consider the online linear optimization problem, where at every step the algo-
rithm plays a point xt in the unit ball, and suffers loss hct, xti for some cost vector
ct that is then revealed to the algorithm. Recent work showed that if an algorithm
receives a hint ht that has non-trivial correlation with ct before it plays xt, then it
can achieve a regret guarantee of O(log T ), improving on the bound of ⇥(

p
T ) in

the standard setting. In this work, we study the question of whether an algorithm
really requires a hint at every time step. Somewhat surprisingly, we show that an
algorithm can obtain O(log T ) regret with just O(

p
T ) hints under a natural query

model; in contrast, we also show that o(
p
T ) hints cannot guarantee better than

⌦(
p
T ) regret. We give two applications of our result, to the well-studied setting

of optimistic regret bounds and to the problem of online learning with abstention.

1 Introduction

There has been a spate of work on improving the performance of online algorithms with the help of
externally available hints. The goal of these works is to circumvent worst-case bounds and exploit
the capability of machine-learned models that can potentially provide these hints. There have been
two main lines of study. The first is for combinatorial problems, where the goal has been to be
improve the competitive ratio of online algorithms; problems considered here include ski-rental [9,
17], caching [13, 19, 26], scheduling [1, 12, 17, 22], matching [16, 18], etc. The second is in the
learning theory setting, where the goal has to been to improve the regret of online optimization
algorithms. A series of recent papers showed how to achieve better regret guarantees, assuming that
we have a hint about the cost function before the algorithm makes a choice. For many variants of
the online convex optimization problem, works such as [25, 8, 2, 3] studied the power of having
prior information about a cost function. Works such as [29] have also studied improved regret
bounds in partial information or bandit settings. In all these works, a desirable property is to ensure
consistency, which demands better performance with better quality hints, and robustness, which
guarantees a certain level of performance with poor quality or even adversarially bad hints.

Recall the standard online optimization model [30], which is a game between an algorithm and an
adversary. In each round, the algorithm plays a point and the adversary responds with a cost function
that is visible to the algorithm, and the cost in this round is measured by evaluating the cost function
on the played point. In online linear optimization, the cost function is linear. The regret of an
algorithm is the worst-case difference between the cost of the algorithm and the cost of an algorithm
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that plays a fixed point in each round. A natural way to incorporate hints or prior information is to
give the algorithm access to a hint about the cost function at a given round before it chooses a point
to play at that round. In this sense, hints are present gratis [25].

The availability of a hint in each round seems natural in some settings, e.g., when cost functions
change gradually with time [25, 4]). However, it can be prohibitive in many others, for instance,
if hints are obtained by using expensive side information, or if they are generated by a running a
computationally expensive ML model. Furthermore, hints can also be wasteful when the problem
instance, or even a large sub-instance, is such that the algorithm cannot really derive any substantial
benefit from their presence. This leads to the question of strengthening the online learning with
hints model by making it parsimonious. In this work, we pursue this direction, where we offer the
algorithm the flexibility to choose to ask for a hint before it plays the point. It then becomes an onus
on the algorithm to know when to ask for a hint and how to use it judiciously, while ensuring both
consistency and robustness. The performance of such an algorithm is measured not only by its regret
but also by the number of hints it uses.

Our contributions. We now present a high level summary of our results. For ease of exposition,
we will defer the formal statements to the respective sections. All our results are for the problem of
online linear optimization (OLO) when the domain is the unit `2 ball; the cost function at every step
is defined using a cost vector ct (and the cost or loss is the inner product of the point played with
ct). We call a hint perfect if it is the same as the cost vector at that time step, good if it is weakly
correlated with the cost vector, and bad otherwise.

As our main result, we show that for OLO in which hints are guaranteed to be good whenever the
algorithm asks for a hint, there is an efficient randomized algorithm that obtains O(log T ) regret
using only O(

p
T ) hints. We extend our result to the case when |B| hints can be bad (chosen in an

oblivious manner, as we will discuss later), and give an algorithm that achieves a regret bound of
O(
p
|B| log T ), while still asking for O(

p
T ) hints. It is interesting to contrast our result with prior

work: Dekel et al. [8] obtained an algorithm with O(log T ) regret, when a good hint is available in
every round. Bhaskara et al. [2] made this result robust, obtaining a regret bound of O(

p
|B| log T ),

when there are |B| bad hints. Our result improves upon these works by showing the same asymptotic
regret bounds, but using only O(

p
T ) hints. Our result also has implications for optimistic regret

bounds [25] (where we obtain the same results, but with fewer hints) and for online learning with
abstention [24] (where we can bound the number of abstentions).

We also show two lower bounds that show the optimality of our algorithm. The first is regarding the
minimum number of hints needed to get O(log T ) regret: we show that any (potentially randomized)
algorithm that uses o(

p
T ) hints will suffer a regret of ⌦(

p
T ). The second and more surprising

result is the role of randomness: we show that any deterministic algorithm that obtains O(log T )
regret must use ⌦(T/ log(T )) hints, even if each of them is perfect. This shows the significance of
having a randomized algorithm and an oblivious adversary.

Finally we extend our results to the unconstrained OLO setting (see Section 6), where we design a
deterministic algorithm to obtain O(log3/2 T ) regret (suitably defined for the unconstrained case)
when all hints are good, and a randomized algorithm to obtain O(log T ) regret, which can be ex-
tended to the presence of bad hints.

There are three aspects of our results that we find surprising. The first is even the possibility of
obtaining O(log T ) regret using only a sublinear number of hints. The second is the sharp threshold
on the number of hints needed to obtain logarithmic regret; the regret does not gracefully degrade
when the number of hints is below O(

p
T ). The third is the deterministic vs randomized separation

between the constrained and the unconstrained cases, when all queried hints are good.

We now present some intuition why our result is plausible. Consider the standard “worst-case”
adversary for OLO: random mean-zero costs. This case is “hard” because the learner achieves zero
expected cost, but the competitor achieves �

p
T total cost. However, if we simply play a hint �ht

on O(
p
T/↵) rounds, each such round incurs �↵ cost, which is enough to cancel out the

p
T regret

while making only O(
p
T ) hint queries. Thus, the standard worst-case instances are actually easy

with hints. More details on this example and an outline of our algorithm are provided at the start of
Section 3.
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Organization. Section 2 provides the necessary background. The main algorithm and analysis for
the constrained OLO case are in Section 3. The extensions and applications of this can be found in
Section 4. Section 5 contains the lower bounds and Section 6 contains the algorithms and analyses
for the unconstrained case. All missing proofs are in the Supplementary Material.

2 Preliminaries

Let k · k denote the `2-norm and Bd = {x 2 Rd | kxk  1} denote the unit `2 ball in Rd. We use
the compressed sum notation and use c1:t to denote

Pt
i=1 ci and kck21:t to denote

Pt
i=1 kcik2. Let

~c = c1, . . . , cT be a sequence of cost vectors. Let [T ] = {1, . . . , T}.

OLO problem and Regret. The constrained online linear optimization (OLO) problem is modeled
as a game over T rounds. At each time t 2 [T ], an algorithm A plays a vector xt 2 Bd, and then an
adversary responds with a cost vector ct 2 Bd. The algorithm incurs cost (or loss) hxt, cti at time t.
The total cost incurred by the algorithm is costA(~c) =

PT
t=1hxt, cti. The regret of the algorithm A

with respect to a ‘comparator’ or benchmark vector u 2 Bd is

RA(u,~c) = costA(~c)� costAu(~c) =
TX

t=1

hxt � u, cti,

where Au is the algorithm that always plays u at every time step. The regret of an algorithm A is its
worst-case regret with respect to all u 2 Bd:

RA(~c) = sup
u2Bd

RA(u,~c).

Hints and query cost. Let ↵ > 0 be fixed and known. In this paper we consider the OLO setting
where, at any round t before choosing xt, an algorithm A is allowed to obtain a hint ht 2 Bd. If
hht, cti � ↵kctk2, we say that the hint is ↵-good. If A opts to obtain a hint at time t, then it incurs
a query cost of ↵kctk2; the query cost is 0 if no hint was obtained at time t. The definition of regret
stays the same and we denote it by RA,↵(·). The total query cost of A is given by QA,↵(~c) =PT

t=1 t · ↵kctk2 where t is an indicator function used to denote whether A queried for a hint
at time t. Note that the algorithm does not actually know the query cost for a round until the end
of the round. If A is a randomized algorithm, the notions of expected regret and expected query
cost follow naturally. We consider the setting when the adversarial choice of the hint ht and cost
vector ct at time t is oblivious to whether the algorithm queries for a hint at time t but can depend
adaptively on all previous decisions.

More generally, we consider the case that some subset of the hints are “bad” in the sense that
hct, hti < ↵kctk2; we let B denote the set of such indices t. Although we assume ↵ is known
to our algorithms, we do not assume any information about B. Further, our algorithm is charged
↵kctk2 for querying a hint even if the hint was bad.

3 Main algorithm

Intuition and outline. The high-level intuition behind our algorithm is the following: suppose for
a moment that ↵ = 1/2 and each hint is ↵-correlated with the corresponding cost. Now suppose
the cost vectors c1, . . . , cT are random unit vectors, as in the standard tight example for FTRL. In
this case, if an algorithm were to make a hint query for the first 4

p
T steps, set xt = �ht in those

steps, and play FTRL subsequently, then the cost incurred by the algorithm will be less than �2
p
T

in the first 4
p
T steps, and 0 (in expectation) subsequently. On the other hand, for random vectors,

we have kc1:T k  2
p
T with high probability, and thus the best vector in hindsight achieves a total

cost �kc1:T k � �2
p
T . Thus the algorithm above actually incurs regret  0.

It turns out that the key to the above argument is kc1:T k being small. In fact, suppose that ct are unit
vectors, and assume that kc1:T k  T/4. Now, suppose the algorithm makes a hint query at 10

p
T

random indices, sets xt = �ht in those steps, and uses FTRL in the other steps. One can show that
the cost incurred by the algorithm is �5

p
T plus the cost of the FTRL steps. Since the cost in the
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FTRL steps is within
p
T of the cost incurred by the competitor u, we can show that the regret is

once again  0. The missing subtlety here is accounting for the cost of u on the query steps, but
using the bound on kc1:T k, this can be adequately controlled if the queries are done at random.

The above outline suggests that the difficult case is kc1:T k being large. However, it turns out that
prior work of Huang et al. [11] showed that when the domain is the unit ball, FTL achieves logarith-
mic regret if we have kc1:tk � ⌦(t) for all t.

Our algorithm can be viewed as a combination of the two ideas above. If we could identify the
largest round S for which kc1:Sk is small, then we can perform uniform sampling until round S and
use FTL subsequently, and hope that we have logarithmic regret overall (although it is not obvious
that the two bounds compose). The problem with this is that we do not know the value of S. We
thus view the problem of picking a sampling probability as a one-dimensional OLO problem in itself,
and show that an online gradient descent (OGD) algorithm achieves low regret when compared to all
sequences that have the structure of being � until a certain time and 0 thereafter (which captures the
setting above). The overall algorithm thus picks the querying probability using the OGD procedure,
and otherwise resorts to FTRL, as in the outline above.

We now present the details of the overall algorithm (Section 3.3) and the two main subroutines it
uses (Sections 3.1 and 3.2).

3.1 A sharper analysis of FTRL

In this section we consider the classic adaptive Follow the Regularized Leader (FTRL) algorithm
Aftrl (Algorithm 1) and show a regret bound that is better than the usual one, if the length of the
aggregate cost vector grows “rapidly” after a certain initial period.

For convenience, let �t = kctk2. Define the regularizer terms as r0 = 1 and for t � 1, let

rt =
p
1 + �1:t �

p
1 + �1:t�1. (1)

By definition, we have r0:t =
p
1 + �1:t. Furthermore, we have rt < 1 for all t, since �t = kctk2 

1. The FTRL algorithm Aftrl then plays the points x1, x2, . . . , which are defined as

xt+1 = argmin
kxk1

n
hc1:t, xi+

r0:t
2
kxk2

o
. (2)

Algorithm 1 Adaptive FTRL Aftrl.
x1  0, r0  1
for t = 1, . . . , T do

Play point xt

Receive cost ct
r0:t  

p
1 + kck21:t

xt+1  argmin
kxk1

n
hc1:t, xi+

r0:t
2
kxk2

o

end for

Algorithm 2 OGD with shrinking domain Aogd.
Require: Parameter �
p1  0, D1  [0, 1]
for t = 1, . . . , T do

Play point pt
Receive cost zt and �t  1
{�t will eventually be set to kctk2}
Dt  [0,min(1, �p

1+�1:t
)]

⌘t  �
1+�1:t

pt+1  ⇧Dt (pt � ⌘tzt), where ⇧Dt is the
projection to the interval

end for

We will show that Aftrl satisfies the following refined regret guarantee:

Theorem 3.1. Consider Aftrl on a sequence ct of cost vectors and let ↵ 2 (0, 1) be any parameter.

Suppose that S is an index such that for all t > S, kc1:tk � ↵
4 (1 + �1:t) (recall �t = kctk2). Then,

1. For all N 2 [T ] and for any kuk  1, we have

NX

t=1

hct, xt � ui  4.5
p
1 + �1:N .
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2. For the index S defined above, we have the refined regret bound:

RAftrl
(~c) 

p
1 + �1:S

2
+

18 + 8 log(1 + �1:T )

↵
+ kc1:Sk+

SX

t=1

hct, xti. (3)

Part (1) of the theorem follows from the standard analysis of FTRL; we include the proof in Ap-
pendix B.1 for completeness. Part (2) is a novel contribution, where we show that if kc1:tk grows
quickly enough, then the “subsequent” regret is small. It can be viewed as a generalization of a
result of Huang et al. [11], who proved such a regret bound for S = 0.

3.2 Switch-once dynamic regret

In this section we show a regret bound against all time-varying comparators of a certain form. More
formally, we consider the one-dimensional OLO problem where the costs are zt and � � 1 is
a known parameter. We also assume that at time t, the algorithm is provided with a parameter
�t 2 [0, 1] that will give some extra information about the sequence of comparators of interest.
Thus the modified OLO game can be described as follows:

• For t = 1, 2, . . . , the algorithm first plays pt 2 [0, 1], and then zt,�t are revealed.
• zt always satisfies z2t  4�t.
• We wish to minimize the regret with respect to a class of comparator sequences (qt)Tt=1

(defined below), i.e., minimize
P

t zt(pt � qt) over all sequences in the class.

We remark that for the purposes of this subsection, we can think of �t as z2t . (The more general
setup is needed when we use this in Algorithm 3.)
Definition 3.2 (Valid-in-hindsight sequences). We say that a sequence (qt)Tt=1 is valid in hindsight
if there exists an S 2 [T ] and a � 2 [0, 1] such that

1. qt = � for all t  S and qt = 0 for t > S.

2. At the switching point, we have �2  �2

1+�1:S
.

We now show that a variant of online gradient descent (OGD) with a shrinking domain achieves low
regret with respect to all valid-in-hindsight sequences; we call this Aogd (see Algorithm 2).

Theorem 3.3. Let � � 1 be a given parameter, and (zt)Tt=1 be any sequence of cost values satisfying

z2t  4�t. Let (qt)Tt=1 be a valid-in-hindsight sequence. The points pt produced by Aogd then satisfy:

TX

t=1

zt(pt � qt)  � (1 + 3 log(1 + �1:T )) .

3.3 Full algorithm

In this section we present the full algorithm that utilizes the above two ingredients.

Algorithm 3 Algorithm with hints Ahints.
Require: Parameter ↵

Initialize an instance of Aftrl and an instance of Aogd with parameter � = 10/↵
for t = 1, . . . , T do

Receive pt from Aogd; Receive xt from Aftrl
With probability pt, get a hint ht and play x̂t = �ht; otherwise, play x̂t = xt

Receive ct
Send ct to Aftrl as tth cost; Send zt = �↵kctk2 � hct, xti and �t = kctk2 to Aogd

end for

Theorem 3.4. When B = ;,

E[RAhints,↵(~c)] 
78 + 38 log(1 + kck21:T )

↵
and E[QAhints,↵(~c)]  20

q
kck21:T .

5



Proof. Let us first bound the expected cost of querying the hints. From the description of Aogd
(Algorithm 2), because of the shrinking domain, we have pt  |Dt�1|  10

↵
p

1+�1:t�1
. At time t,

the expected query cost paid by the algorithm is pt · ↵ kctk2. Using the above, we can bound this as
TX

t=1

pt↵ kctk2 
TX

t=1

10�tp
1 + �1:t�1


TX

t=1

10�tp
�1:t
 20

p
�1:T = 20

q
kck21:T ,

where the last inequality follows from concavity of the square root function (e.g., [20, Lemma 4]).

Now we proceed to the more challenging task of bounding the expected regret. We start by noting
that the expected loss on any round t is simply E[hct, x̂ti] = �pthct, hti+(1�pt)hct, xti. Therefore
the expected regret for a fixed u is:
TX

t=1

E[hct, x̂t � ui] =
TX

t=1

pthct,�ht � xti+ hct, xt � ui 
TX

t=1

pt(�↵kctk2 � hct, xti) + hct, xt � ui,

where we have used the fact that the hint ht is ↵-good. The main claim is then the following.

Lemma 3.5. For the choice of pt, xt defined in Ahints (Algorithm 3), we have

TX

t=1

pt(�↵kctk2�hct, xti)+ hct, xt�ui  78 + 38 log(1 + kck21:T )
↵

= O

✓
1 + log(1 + �1:T )

↵

◆
.

Assuming this, the bound on expected regret easily follows, completing the proof.

We now focus on proving Lemma 3.5.

Proof of Lemma 3.5. The key idea is to prove the existence of a valid-in-hindsight sequence (qt)Tt=1
(Definition 3.2) such that when pt on the LHS is replaced with qt, the sum is O(log(T )/↵). The
guarantee of Algorithm 2 (i.e., Theorem 3.3) then completes the proof. Specifically, since we set
� = 10/↵ and zt = (�↵kctk2 � hct, xti), Theorem 3.3 guarantees that for any valid-in-hindsight
sequence (qt)Tt=1, we have:

TX

t=1

pt(�↵kctk2 � hct, xti) + hct, xt � ui


TX

t=1

qt(�↵kctk2 � hct, xti) + hct, xt � ui+ 10

↵

�
1 + 3 log(1 + kck21:T )

�
. (4)

Let us define S to be the largest index in [T ] such that kc1:Sk  ↵
4 (1 + �1:S). Firstly, by Theorem

3.1 (part 2), for any such index S we have:
TX

t=1

hct, xt � ui 
p
1 + �1:S

2
+

18 + 8 log(1 + �1:T )

↵
+ kc1:Sk+

SX

t=1

hct, xti. (5)

Let � :=
p
1+�1:S

2 +kc1:Sk+
PS

t=1hct, xti denote the “excess” over the logarithmic term. Note that
by Theorem 3.1 (part 1), for a vector u = �c1:S

kc1:Sk , we have kc1:Sk+
PS

t=1hct, xti =
PS

t=1hct, xt �
ui  4.5

p
1 + �1:S . Thus, we have �  5

p
1 + �1:S .

Now, note that if 1 + �1:S  100
↵2 , we have 5

p
1 + �1:S  50/↵. Thus, by setting qt = 0 for all

t (which is clearly valid-in-hindsight), the proof follows. Further, if �  1, then clearly we can
again set qt = 0 for all t to complete the proof. Thus, we assume in the remainder of the proof that
1 + �1:S > 100

↵2 and � > 1.

Our goal now is to construct a valid-in-hindsight switch-once sequence that has value qt = � 2 [0, 1]
for t  S and qt = 0 for t > S such that we also have :

�

 
SX

t=1

↵�t + hct, xti
!
� 5
p
1 + �1:S . (6)

6



First, let us understand the term in the parentheses on the LHS above. We bound this using the
following claim.

Claim. ↵ · �1:S +
P

tShct, xti � ↵
2 (1 + �1:S).

Proof of claim. Suppose that we have
P

tShct, xti < ↵
2 (1� �1:S). By definition of S, we have

� =

p
1 + �1:S

2
+ kc1:Sk+

SX

t=1

hct, xti 
p
1 + �1:S

2
+

↵

4
(1 + �1:S) +

↵

2
(1� �1:S)

=

p
1 + �1:S

2
� ↵

4
(1 + �1:S) + ↵.

From our assumption that
p
1 + �1:S � 10

↵ , the RHS above is ↵, which in turn is at most 1. Since
we assumed � > 1, this is a contradiction so the claim holds.

Thus in order to satisfy (6), we simply choose

� =
10

↵
p
1 + �1:S

.

By assumption, this lies in [0, 1], and further, for � = 10/↵, the (qt) defined above is a valid-in-
hindsight sequence. Combining the fact that �  5

p
1 + �1:S with (6), we have that

TX

t=1

qt(�↵kctk2 � hct, xti) + hct, xt � ui  18 + 8 log(1 + �1:T )

↵
.

Now appealing to the guarantee of Theorem 3.3 as discussed earlier, we can replace qt with pt by
suffering an additional logarithmic term on the RHS. Combining all these cases completes the proof
of Lemma 3.5, and thus also the proof of Theorem 3.4.

4 Extensions and applications

In the following subsections, we extend the analysis of Algorithm 3 to disparate settings: we con-
sider robustness to uninformative or “bad” hints, the more classical “optimistic” regret setting, and
online learning with abstention.

4.1 Bad hints

First, we extend Theorem 3.4 to consider the case B 6= ; by carefully accounting for the regret
incurred during rounds where t 2 B and making crucial use of the shrinking domain Dt.
Theorem 4.1. For any B,

E[RAhints,↵(~c)] 
78 + 38 log(1 + kck21:T )

↵
+ 40

sX

t2B
kctk2 +

20

↵

sX

t2B
khtk2

q
log(1 + kck21:T )

= O

 p
|B| log T
↵

!
, and E[QAhints,↵(~c)]  20

q
kck21:T .

4.2 Optimistic bounds

Next, we show that our results have implications for optimistic regret bounds (e.g., [10, 6, 25, 27,

23]). The standard optimistic regret bound takes the form O(
qPT

t=1 kct � htk2). We will show
that the same result can be obtained (up to logarithmic factors) even while only looking at O(

p
T )

hints. The approach is very simple: if we set ↵ = 1
4 , then a little calculation shows that for t 2 B,

kctk2 + khtk2 = O(kct � htk2), so that Theorem 4.1 directly implies the desired result.
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Theorem 4.2. Set ↵ = 1
4 . Then

E[RAhints,↵(~c)]  312 + 152 log(1 + kck21:T ) + 80

✓
1 +

q
log(1 + kck21:T )

◆sX

t2B
kct � htk2

= O

0

@log(T ) +

vuut
TX

t=1

kct � htk2 log(T )

1

A , and E[QAhints,↵(~c)]  20
q
kck21:T .

4.3 Online learning with abstention

Finally, we apply our algorithm to the problem of online learning with abstentions. In this variant
of the OLO game, instead of being provided with hints, the learner is allowed to “abstain” on any
given round. When the learner abstains, it receives a loss of �↵kctk2 for some known ↵ but pays
a query cost of ↵kctk2. The regret is again the total loss suffered by the learner minus the total
loss suffered by the best fixed adversary, which does not abstain. This setting is very similar to the
scenario studied by [24] in the expert setting, but in addition to moving from the simplex to the unit
ball, we ask for a more detailed guarantee from the learner: it is not allowed to abstain too often,
as measured by the query cost. In this setting, our Algorithm 3 works essentially out-of-the-box:
every time the algorithm queries a hint, we instead simply choose to abstain. This procedure then
guarantees:
Theorem 4.3. In the online learning with abstention model, the variant of Algorithm 3 that abstains

whenever the original algorithm would ask for a hint guarantees expected regret at most:

78 + 38 log(1 + kck21:T )
↵

= O

✓
1 + log(1 + �1:T )

↵

◆
.

Further, the expected query cost is at most 20
p
kck21:T .

Proof. Since we abstain with probability pt and otherwise play xt, the expected regret isPT
t=1�pt↵kctk2 + (1� pt)hct, xti � hct, ui. Thus the regret bound follows directly from Lemma

3.5. The query cost bound follows the identical argument as Theorem 3.4.

5 Lower bounds

In this section we first show that the regret bound obtained in Theorem 3.4 is essentially tight. Next,
we show that randomness is necessary in our algorithms.
Theorem 5.1. Let ↵ 2 (0, 1] be any parameter, and suppose A is an algorithm for OLO with hints

that makes o
⇣p

T
↵

⌘
hint queries. Then there exists a sequence of cost vectors ct and hints ht of unit

length, such that (a) in any round t where a hint is asked, hct, hti � ↵ kctk2, and (b) the regret of A
on this input sequence is ⌦(

p
T ).

Proof. We will construct a distribution over inputs {ct, ht} and argue that any deterministic al-
gorithm has an expected regret ⌦(

p
T ) for inputs drawn from this distribution. By the minmax

theorem, we then have a lower bound for any (possibly randomized) algorithm A.

We consider two-dimensional inputs. At each step, ht is chosen to be a uniformly random vector
on the unit circle (in R2). The cost ct is set to be ↵ht ±

p
1� ↵2 h?

t , where h?
t is a unit vector

orthogonal to ht, and the sign is chosen uniformly at random. Now for any deterministic algorithm,
if A queries ht at time t, then it can play a point aht + bh?

t , for scalars a, b. In expectation, this
has inner product a↵ with ct, and thus the expected cost incurred by A in this step is � �↵ (since
|a|  1). If A does not query ht, then ct is simply a random unit vector, and thus the expected cost
incurred by A in this step is 0.

Next, consider the value minkuk1

P
thct, ui, i.e., the best cost in hindsight; this is clearly

�k
P

t ctk. By construction, ct is a uniformly random vector on the unit circle in R2 (and the

8



choices are independent for different t). Thus we have E[k
P

t ctk] � ⌦(
p
T ). (This follows from

properties of sums of independent random unit vectors; see Supplementary Material for a proof.)

Thus, if the algorithm makes K queries, then the expected regret is at least �K↵ + ⌦(
p
T ). This

quantity is ⌦(
p
T ) as long as K = o

⇣p
T
↵

⌘
, thus completing the proof.

We next show that for deterministic algorithms, making O(
p
T ) hint queries is insufficient for ob-

taining o(
p
T ) regret, even if the hints provided are always 1-good (i.e., hints are perfect).

Theorem 5.2. Let A be any deterministic algorithm for OLO with hints that makes at most C
p
T <

T/2 queries, for some parameter C > 0. Then there is a sequence cost vectors ct and hints ht of

unit length such that (a) ht = ct whenever A makes a hint query, and (b) the regret of A on this

input sequence is at least

p
T

2(1+C) .

We remark that by setting C appropriately, we can also show that for a deterministic algorithm to
achieve logarithmic regret, it needs to make ⌦

⇣
T

log T

⌘
queries.

6 Unconstrained setting

Algorithm 4 Algorithm with hints (unconstrained case).
Require: Parameters ✏, ↵, K, d-dimensional unconstrained OLO algorithm Aunc, one-dimensional

unconstrained OLO algorithm Aunc-1D guaranteeing (7)
for t = 1, . . . , T do

{Randomized version} t  1 with probability min

✓
1, K

↵
p

1+kck2
1:t�1

◆
; 0 otherwise.

{Deterministic version} t  1 iff 1 +
Pt�1

⌧=1 i⌧ hc⌧ , h⌧ i  K
q
1 + kck21:t�1.

Receive wt 2 Rd from Aunc; Receive yt 2 R from Aunc-1D.
If t = 1, get hint ht

Play xt = wt � thtyt; Receive cost ct.
Send ct to Aunc as tth cost; Send gt = � thht, cti 2 R to Aunc-1D as tth cost.

end for

In this section, we consider unconstrained online learning in which the domain is all of Rd. In this
setting, it is unreasonable to define the regret using a supremum over all comparison points u 2 Rd

as this will invariably lead to infinite regret. Instead, we bound the regret as a function of u. For
example, when hints are not available, standard results provide bounds of the form [7, 15, 28, 21, 5]:

TX

t=1

hct, xt � ui  ✏+Akuk

vuut
TX

t=1

kctk2 log(kukT/✏+ 1) +Bkuk log(kukT/✏+ 1), (7)

for constants A and B and any user-specified ✏. Using such algorithms as building blocks, we design
an algorithm with O(

p
T ) expected query cost and for all comparators u, regret is Õ(kuk/↵).

The algorithm is somewhat simpler than in the constrained case: we take an ordinary algorithm that
does not use hints and subtract the hints from its predictions. Intuitively, each subtraction decreases
the regret by ↵kck2, so we need only O(

p
T ) such events. With constraints, this is untenable because

subtracting the hint might violate the constraint, but there is no problem in the unconstrained setting.
Instead, the primary difficulty is that we need the regret to decrease not by ↵kck2 but by ↵kukkck2
for some unknown kuk. This is accomplished by learning a scaling factor yt that is applied to the
hints.

Moreover, in the case that all hints are guaranteed to be ↵-good, we devise a deterministic algo-
rithm for the unconstrained setting. In light of Theorem 5.2, this establishes a surprising separation
between the unconstrained and constrained settings. For the deterministic approach, we directly

9



measure the total query cost and simply query a hint whenever the cost is less than our desired bud-
get. Note that this strategy fails if we allow bad hints as the adversary could provide a bad hint every
time we ask for a hint. The full algorithm is presented in Algorithm 4, with the randomized and
deterministic analyses provided by Theorems 6.1 and 6.2.
Theorem 6.1. The randomized version of Algorithm 4 guarantees an expected regret at most:

2✏+ Õ

0

@
kuk
p
log(kukT/✏)

h
K + log(kukT/✏) log log(Tkuk/✏)

K +
pP

t2B khtk2 log(T )
i

↵

1

A ,

with expected query cost at most 2K
p
kck21:T .

Theorem 6.2. If B = ;, then the deterministic version of Algorithm 4 guarantees:

TX

t=1

hct, xt � ui  2✏+O

 
kuk
p
log(kukT/✏+ 1)

↵
+
kuk log3/2(kukT/✏) log log(kukT/✏)

K

!
,

with a query cost at most 2K
p
kck21:T .

7 Conclusions

In this paper, we consider OLO where an algorithm has query access to hints, in both the constrained
and unconstrained settings. Surprisingly, we show that it is possible to obtain logarithmic expected
regret by querying for hints at only O(

p
T ) time steps. Our work also demonstrates an intriguing

separation between randomized and deterministic algorithms for constrained online learning. While
our algorithms need to know ↵, an open question is to obtain an algorithm that can operate without
knowing ↵. Extending our model to the bandit setting is also an interesting research direction.
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