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Abstract

The Gromov-Wasserstein (GW) distance, rooted in optimal transport (OT) theory,
quantifies dissimilarity between metric measure spaces and provides a framework
for aligning heterogeneous datasets. While computational aspects of the GW
problem have been widely studied, a duality theory and fundamental statistical
questions concerning empirical convergence rates remained obscure. This work
closes these gaps for the quadratic GW distance over Euclidean spaces of different
dimensions dx and dy. We derive a dual form that represents the GW distance in
terms of the well-understood OT problem. This enables employing proof techniques
from statistical OT based on regularity analysis of dual potentials and empirical
process theory, using which we establish the first GW empirical convergence rates.
The derived two-sample rate is n−2/max{min{dx,dy},4} (up to a log factor when
min{dx, dy} = 4), which matches the corresponding rates for OT. We also provide
matching lower bounds, thus establishing sharpness of the derived rates. Lastly, the
duality is leveraged to shed new light on the open problem of the one-dimensional
GW distance between uniform distributions on n points, illuminating why the
identity and anti-identity permutations may not be optimal. Our results serve as
a first step towards a comprehensive statistical theory as well as computational
advancements for GW distances, based on the discovered dual formulations.

1 Introduction

The Gromov-Wasserstein (GW) distance, proposed by Mémoli in [30], quantifies discrepancy between
probability distributions supported on different metric spaces by aligning them with one another.
Given two metric measure (mm) spaces (X , dX , µ) and (Y, dY , ν), the (p, q)-GW distance between
them is [42]

Dp,q(µ, ν) := inf
π∈Π(µ,ν)

(∫
X×Y

∫
X×Y

∣∣dX (x, x′)q − dY(y, y
′)q
∣∣pdπ ⊗ π(x, y, x′, y′)

) 1
p

, (1)

where Π(µ, ν) is the set of all couplings between µ and ν. The GW distances thus equals the least
amount of distance distortion one can achieve between the mm spaces when optimizing over all
possible alignments thereof (as modeled by couplings). This approach, which is rooted in optimal
transport (OT) theory [46, 36], is an Lp relaxation of the Gromov-Hausdorff distance between metric
spaces and enjoys various favorable properties. Among others, the GW distance (i) identifies pairs of
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mm spaces between which there exists an measure preserving isometry; (ii) defines a metric on the
space of all mm spaces modulo the aforementioned isomorphic relation; and (iii) captures empirical
convergence of mm space, i.e., when µ, ν are estimated by their empirical measures µ̂n, ν̂n based
on n samples. As such, the GW framework has been utilized for many applications concerning
heterogeneous data, including single-cell genomics [4, 10], alignment of language models [1], shape
and graph matching [29, 49, 48, 24], and heterogeneous domain adaptation [50].

While such applications predominantly run on sampled data, a statistical GW theory to guarantee
valid estimation and inference has remained elusive. This gap can be attributed, in part, to the
quadratic (in π) structure of the GW functional, which prevents directly using well-developed proof
techniques from statistical OT. Indeed, the linear OT problem enjoys strong duality, which enables
analyzing empirical OT distances via techniques from empirical process theory, such as chaining,
entropy integral bounds, and the functional delta method. These approaches have proven central
to the development of statistical OT, leading to a comprehensive account of empirical convergence
rates [11, 5, 26, 22] and limit distributions of both classical [41, 43, 7, 27, 21, 16] and regularized
OT distances [31, 3, 23, 13, 14, 16, 8, 15]. For the GW distance, on the other hand, while we know
that Dp,q(µ̂n, ν̂n) → Dp,q(µ, ν) as n→ ∞ [30],1 the rate at which this convergence happens is an
open problem of theoretical and practical importance. This work closes this gap by deriving a dual
formulation for the (2, 2)-GW distance over Euclidean spaces, and leveraging it to establish the first
empirical convergence rates for the GW problem.

1.1 Contribution

Our first main contribution is a duality theory for GW, which linearizes the quadratic functional and
ties it to the well-understood problems of OT. This is done by introducing an auxiliary, matrix-valued
optimization variable A ∈ Rdx×dy that enables linearizing the dependence on the coupling. We then
interchange the optimization over A and π and identify the inner problem as classical OT with respect
to (w.r.t.) a cost function cA that depends on A. Upon verifying that cA satisfies mild regularity
conditions, we invoke OT duality to arrive at a dual formulation for D2,2(µ, ν)

2. The dual form
involves optimization over A, which we show can be restricted to a hypercube whose side length
depends only on the second moments of µ, ν.

The GW dual form enables an analysis of expected empirical convergence rates by drawing upon
proof techniques from statistical OT. Namely, we consider the rates at which E

[∣∣D2,2(µ, ν)
2 −

D2,2(µ̂n, ν̂n)
2
∣∣] decay sto zero with n, as well as the one-sample case where ν is not estimated.

Invoking strong duality we bound the empirical estimation error by the suprema of empirical processes
indexed by OT dual potentials w.r.t. the cost cA, supremized over all feasible matrices A. We then
study the regularity of optimal potentials, uniformly in A, which is the main technical difference
from the corresponding OT analysis. We focus on compactly supported distributions and exploit
smoothness and marginal-concavity of the cost cA to show that optimal potentials are concave
and Lipschitz. Following a chaining argument while leveraging the so-called lower complexity
adaptation (LCA) principle form [22], we then establish the n−2/max{min{dx,dy},4} upper bound
on the two-sample rate of the quadratic GW distance (up to a log factor when min{dx, dy} = 4).
We then provide matching lower bounds on the one- and two-sample empirical estimation errors,
demonstrating that the said rates are sharp. The lower bound proof is constructive and utilizes a novel
inequality between the quadratic GW distance and the 2-Wasserstein procrustes [18], which may be
of independent interest.

Lastly, we revisit the open problem of the one-dimensional GW distance between uniform distributions
on n points and use our duality theory to shed new light on it. We consider the peculiar example
from [2], where, contrary to common belief (cf. [45]), the identity and anti-identity permutations
were shown to not necessarily be optimal. Our dual form allows representing the GW distance on R
as a sum of concave and convex functions, explaining why the optimum need not be attained at the
boundary. We visualize the different regimes of optimal solutions via simple numerical simulations.

1[30] established this convergence for compact mm spaces and q = 1, but the argument readily extends to
any q ≥ 1 and arbitrary mm space, so long that µ, ν have bounded pq-th moments.
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1.2 Literature review

The GW distance was first proposed in [30] as an Lp relaxation of the Gromov-Hausdorff distance
between metric spaces. Basic structural properties of the distance were also established in that work,
with more advanced aspects concerning topology and curvature addressed in [42]. The existence of
Gromov-Monge maps was studied in [12], showing that optimal couplings are induced by a bimap
(viz. two-way map) under quite general conditions. Targeting analytic solutions, optimal couplings
between Gaussian distributions were explored in [9], but only upper and lower bounds on the GW
value were derived. An exact characterization of the optimal coupling and cost is known for the
entropic inner product GW distance between Gaussians [25].

As GW distances grew in popularity for applications, computational tractability became increasingly
important. However, exact computation of the GW distance is generally a quadratic assignment
problem, which is NP-complete [6]. For this reason, significant attention was devoted to variants
of the GW problem that circumvent this computational hardness. The sliced GW distance [45]
attempts to reduce the computational burden by considering the average of GW distances between
one-dimensional projections of the marginals. However, unlike one-dimensional OT, the GW problem
does not have a known simple solution even in one dimension [2]. Another approach is to relax
the strict marginal constraints to obtain the unbalanced GW distance [39], which lends well for
convex/conic relaxations. A variant that directly optimizes over bi-directional Monge maps between
the mm space was considered in [51]. While these methods offer certain advantages, it is the
approach based on entropic regularization that is most frequently used in practice. This is since
entropic GW (EGW) is computable via iterative optimization routines that employ Sinkhorn iterations
[40, 33, 37, 35], which allows scalability and parallelization in large-scale applications. Another
notable concurrent work is [19], which pointed out that LCA principle can be applied to GW, and also
showed that the dimensionality dependence of the convergence rate is min{dx, dy} rather than max.

1.3 Notation

Let ∥ · ∥ and ⟨·, ·⟩ denote the Euclidean norm and inner product, respectively. Let Bd(x, r) := {y ∈
Rd : ∥y− x∥ ≤ r} denote the closed ball with center x and radius r. We use ∥ · ∥op and ∥ · ∥F for the
operator and Frobenius norms of matrices, respectively. For a topological space S, P(S) denotes the
class of Borel probability measures on it. For p ∈ [1,∞), let Pp(Rd) be the space of Borel probability
measures with finite p-th absolute moment, i.e., Mp(ρ) :=

∫
Rd ∥x∥pdρ(x) <∞ for any ρ ∈ Pp(Rd).

For a signed Borel measure ρ and a measurable function f , we use the shorthand ρf :=
∫
fdρ,

whenever the integral exists. The support of ρ ∈ P(Rd) is spt(ρ), while its covariance matrix (when
exists) is denoted by Σρ. For a sequence of probability measure (ρn)n∈N that weakly converges to ρ,
we write ρn

w−→ ρ. Let Cb(Rd) be the space of bounded continuous functions on Rd equipped with
the L∞ norm. The Lipschitz seminorm of a function f : Rd → R is ∥f∥Lip := supx ̸=x′

|f(x)−f(x′)|
∥x−x′∥ .

For p ∈ [1,∞) and ρ ∈ P(Rd), let Lp(ρ) be the space of measurable functions f of Rd such that
∥f∥Lp(ρ) := (

∫
Rd |f |pdρ)1/p <∞. with D0f = f . We write N(ε,F , d) for the ε-covering number

of a function class F w.r.t. a metric d, and N[ ](ε,F , d) for the bracketing number. We use ≲x to
denote inequalities up to constants that only depend on x; the subscript is dropped when the constant
is universal. For a, b ∈ R, let a ∨ b = max{a, b} and a ∧ b = min{a, b}.

2 Background and preliminaries

2.1 Classical optimal transport

We briefly review basic definitions and results concerning the classical OT problem, which serve
as a building block for our subsequent analysis of the GW distance. For a detailed exposition the
reader is referred to [46, 36, 34]. Let X ,Y be two Polish spaces and consider a lower semicontinuous
cost function c : X × Y → R, where note that we allow c to take negative value. The OT problem
between (µ, ν)∈P(X )×P(Y) with cost c is

OTc(µ, ν) := inf
π∈Π(µ,ν)

∫
X×Y

c dπ, (2)
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where Π(µ, ν) is the set of all couplings of µ and ν, i.e., each π ∈ Π(µ, ν) is a probability distribution
on X × Y that has µ and ν as its first and second marginals, respectively. The special case of the p-
Wasserstein distance, for p ∈ [1,∞), is given by Wp(µ, ν) :=

(
OT∥·∥p(µ, ν)

)1/p
. Wp is a metric on

Pp(Rd) which metrizes weak convergence plus convergence of p-th moments, i.e., Wp(µ̂n, µ) → 0

if and only if µ̂n
w→ µ and Mp(µ̂n) →Mp(µ).

OT is a linear program and as such it admits strong duality. Suppose that the cost function satisfies
c(x, y) ≥ a(x) + b(y), for all (x, y) ∈ X × Y , for some upper semicontinuous functions (a, b) ∈
L1(µ)× L1(ν). Then (cf. [46, Theorem 5.10]):

OTc(µ, ν) = sup
(φ,ψ)∈Φc

∫
X
φdµ+

∫
Y
ψdν, (3)

where Φc :=
{
(φ,ψ) ∈ Cb(X )×Cb(Y) : φ(x)+ψ(y) ≤ c(x, y), ∀(x, y) ∈ X ×Y

}
. Furthermore,

defining the c- and c̄-transform of φ ∈ Cb(X ) and ψ ∈ Cb(Y) as φc(y) := infx∈X c(x, y) − φ(x)
and ψc̄(x) := infy∈Y c(x, y)− ψ(y), respectively, the optimization above can be restricted to pairs
(φ,ψ) such that ψ = φc and φ = ψc̄.

2.2 Classical Gromov-Wasserstein distance

The objects of interest in this work is the GW distance. The (p, q)-GW distance quantifies similarity
between (complete and separable) mm spaces (X , dX , µ) and (Y, dY , ν) as [30, 42].

Dp,q(µ, ν) := inf
π∈Π(µ,ν)

∥∥∆X ,Y
q

∥∥
Lp(π⊗π),

where ∆X ,Y
q (x, y, x′, y′) =

∣∣dX (x, x′)q − dY(y, y
′)q
∣∣. This definition is an Lp relaxation of the

Gromov-Hausdorff distance between metric spaces,2 and gives rise to a metric on the collection
of all isomorphism classes of mm spaces3 with finite pq-size, i.e.,

∫
dX (x, x′)pqdµ ⊗ µ(x, x′) <

∞ and similarly for ν. Like the p-Wasserstein distance, Theorem 5.1 in [30] reveals that Dp,q
captures empirical convergence of mm spaces: if X1, . . . , Xn are samples from µ ∈ P(X ) and
µ̂n := n−1

∑n
i=1 δXi

is their empirical measures, then Dp,q(µ̂n, µ) → 0 a.s. The rate at which this
empirical convergence happens is, however, an open problem.

Towards a complete resolution, one of our main contributions is to quantify the empirical convergence
rate of the (2, 2)-GW distance between Euclidean mm spaces (Rdx , ∥ · ∥, µ) and (Rdy , ∥ · ∥, ν) of
different dimensions. Abbreviating ∆Rdx ,Rdy

2 = ∆, the distance of interest is

D(µ, ν) := inf
π∈Π(µ,ν)

∥∆∥L2(π⊗π)

= inf
π∈Π(µ,ν)

(∫
Rdx×Rdy

∫
Rdx×Rdy

∣∣∥x− x′∥2 − ∥y − y′∥2
∣∣2dπ ⊗ π(x, y, x′, y′)

) 1
2

. (4)

We drop subscripts from our notation because we focus on the (2, 2)-GW case from here on out.
For finiteness we will always assume µ ∈ P4(Rdx) and ν ∈ P4(Rdy ). Another major gap in GW
theory is the lack of dual formulation, without which an empirical convergence rate analysis of GW
distances remained obscure. In what follows, we close this gap.

3 Gromov-Wasserstein distance

We now consider the (2, 2)-GW distance from (4), establish duality, derive its sample complexity,
and study its one-dimensional structure.

2The Gromov-Hausdorff distance between (X , dX ) and (Y, dY) is given by 1
2
infR∈R(X ,Y) ∥∆X ,Y

1,1 ∥L∞(R),
where R(X ,Y) is the collection of all correspondence sets of X and Y , i.e., subsets R ⊂ X × Y such that the
coordinate projection maps are surjective when restricted to R. The correspondence set can be thought of as
spt(π) in the GW formulation.

3The mm spaces (X , dX , µ) and (Y, dY , ν) are isomorphic if there is an isometry f : X → Y with f♯µ = ν.
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3.1 Duality

We first derive a dual formulation for the GW distance. This duality serves as the key component for
our sample complexity analysis of empirical GW in the next subsection. Let (µ, ν) ∈ P4(Rdx) ×
P4(Rdy ). Towards the dual form, first observe that D is invariant to isometric operations on the
marginal spaces, such as translation and orthonormal rotation. Thus, without loss of generality
(w.l.o.g.), we assume that µ and ν are centered, i.e.,

∫
xdµ(x) =

∫
ydν(y) = 0.

Next, by expanding the (2, 2)-GW cost, we split the GW functional into two terms as

D(µ, ν)2 = S1(µ, ν) + S2(µ, ν), (5)

where

S1(µ, ν) :=

∫
∥x−x′∥4dµ⊗ µ(x, x′)+

∫
∥y−y′∥4dν ⊗ ν(y, y′)− 4

∫
∥x∥2∥y∥2dµ⊗ ν(x, y)

S2(µ, ν) := inf
π∈Π(µ,ν)

∫
−4∥x∥2∥y∥2dπ(x, y)−8

∑
1≤i≤d1
1≤j≤d2

(∫
xiyjdπ(x, y)

)2
.

Evidently, the first term depends only on the marginals µ, ν, while the second captures the dependence
on the coupling π. The following theorem (proved in Appendix A.1) establishes duality for S2(µ, ν),
which, in turn, yields a dual form for D(µ, ν)2 via the above decomposition.

Theorem 3.1 (GW duality). Let (µ, ν) ∈ P4(Rdx)×P4(Rdy ) and define Mµ,ν :=
√
M2(µ)M2(ν).

We have
S2(µ, ν) = inf

A∈Rdx×dy
32∥A∥2F + OTA(µ, ν), (6)

where OTA is the OT problem with cost function cA : (x, y) ∈ Rdx ×Rdy 7→−4∥x∥2∥y∥2−32x⊺Ay.
Moreover, the infimum is achieved at some A⋆∈DMµ,ν

:=[−Mµ,ν/2,Mµ,ν/2]
dx×dy .

Note that the optimization in A is unconstrained, and the optimum is guaranteed to exist in a
simple bounded domain DMµ,ν , which will prove crucial for the proof of our sample complexity.
The variational representation above relates the GW to the well understood problem of OT. This
enables leveraging knowledge on the latter to make progress in the study of GW. In particular, this
representation unlocks our sample complexity analysis, which relies on inserting the OT dual from (3)
into the above. Since (6) allows utilizing OT duality for the GW analysis, we synonymously refer to
it as the GW dual (even though it is somewhat of a misnomer, since strictly speaking, (6) is not a dual
problem for D(µ, ν)2 in the standard optimization theory sense). We note that a similar result was
also discovered independently in [44] Theorem 4.2.5, with similar derivation but different focuses.
The employed equivalence analysis therein can be generalized to arbitrary concave programming,
while our focus is more on the reformulation of GW and analysis of the optimal matrix.

3.2 Sample complexity

Given the dual form for D(µ, ν)2 we proceed with a sample complexity analysis. We focus on
compactly supported distributions and refer the reader to Remark 1 ahead for a discussion on
extensions to unbounded domains. The following theorem gives a sharp characterization of the one-
and two-sample empirical convergence rate of the quadratic GW distance.

Theorem 3.2 (GW sample complexity). Let (µ, ν) ∈ P(X )×P(Y), where X ⊂ Rdx and Y ⊂ Rdy
are compact, and let R = diam(X ) ∨ diam(Y). We have

E
[∣∣D(µ, ν)2 − D(µ̂n, ν)

2
∣∣] ≲dx,dy R4

√
n
+
(
1 +R4

)
n
− 2

(dx∧dy)∨4 (log n)1{dx∧dy=4}

E
[∣∣D(µ, ν)2 − D(µ̂n, ν̂n)

2
∣∣] ≲dx,dy R4

√
n
+
(
1 +R4

)
n
− 2

(dx∧dy)∨4 (log n)1{dx∧dy=4} ,

and if µ, ν are separated in the (2, 2)-GW distance, i.e., D(µ, ν) > 0, then the same rates hold for
estimating D itself, without the square.
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Furthermore, the above rates are sharp in the sense that for any n large enough, we have

sup
(µ,ν)∈P(X )×P(Y)

E
[∣∣D(µ, ν)2 − D(µ̂n, ν)

2
∣∣] ≳ dx,dy,R n

− 2
(dx∧dy)∨4

sup
(µ,ν)∈P(X )×P(Y)

E
[∣∣D(µ, ν)2 − D(µ̂n, ν̂n)

2
∣∣] ≳ dx,dy,R n

− 2
(dx∧dy)∨4 .

Theorem 3.2 is proven in Appendix A.2. The upper bounds leverage the duality from Theorem 3.1
to reduce the empirical estimation analysis of D2 to that of the OT problem with cost cA. The
OT estimation error is then bounded by the suprema of empirical processes indexed by dual OT
potentials. To control the corresponding entropy integrals, we exploit smoothness of our cost as well
as Lipschitzness and convexity of optimal potentials as c-transforms of each other. The fact that the
two-sample convergence rate adapts to the smaller dimension is a consequence of the LCA principle
[22, Lemma 2.1], whereby the L∞ covering number of a function class F is no less than that of its
c-transform Fc. This observation enables adapting the bound to the class of dual potentials over the
lower-dimensional space. Still, when the estimated measure(s) are high-dimensional, both the one-
and two-sample rates for the GW distance suffer from the curse of dimensionality. This is expected
and is in line with empirical convergence rates for OT; see Remark 1 ahead for further discussion on
the comparison between the empirical rates for GW and OT.

To prove the lower bound, we present a reduction from GW distance estimation to that of the 2-
Wasserstein procrustes infU∈E(d) W2(µ,U♯ν), where E(d) is the isometry group on Rd [18] (see
also [38, 17]). This relies on the following lemma, which may be of independent interest. We state
two-sided bounds, but only the lower bound is used in the derivation.
Lemma 3.3 (GW vs. W-procrustes). For any p, q ∈ [1,∞) and µ, ν ∈ Ppq(Rd), we have

Dp,q(µ, ν) ≤ qp 2pq+p−1+1/q
(
Mpq(µ) +Mpq(ν)

) q−1
pq Wpq(µ, ν).

Furthermore, for p = q = 2, if µ and ν have covariance matrices Σµ and Σν with full rank and
smallest eigenvalues λmin(Σµ) and λmin(Σν), respectively, then(

32
(
λmin(Σµ)

2 + λmin(Σν)
2
)) 1

4

inf
U∈E(d)

W2(µ,U♯ν) ≤ D(µ, ν).

If µ and ν are also centered, then it suffices to optimize only over the orthogonal group O(d).

The lemma enables showing that the empirical GW rate, when the population measures are uniform
over the unit ball and its scaled version, is at least as large as that of the Wasserstein procrustes. We
then develop a new lower bound on the convergence rate of the latter, showing that it is at least n−1/d.
This, in turn, gives rise to the rates from Theorem 3.2.
Remark 1 (Comparison to OT and unbounded domains). The rates in Theorem 3.2 are inline with those
for the classical OT problem with Hölder smooth costs [26] (although our analysis is different from
theirs). Over compact domains, this smoothness of the cost enables establishing global Lipschitzness
and convexity of OT potentials, which, in turn, leads to the quadratic improvement from the standard
n−1/d empirical convergence rate to n−2/d, when d > 4. Evidently, a similar phenomenon happens
in the GW case. Unbounded domains are treated in Theorem 13 of [26], but this result relies on
restrictive assumptions on the population distributions and the cost. Namely, the distributions must
satisfy certain high-level concentration and anti-concentration conditions, while the cost must be
locally Hölder smooth and be lower and upper bounded by a polynomial of appropriate degree. Our
cost cA does not immediately adhere to these assumptions. While we believe that the argument can
be adapted, we leave this extension as a question for future work.

3.3 One-dimensional case study

We leverage our duality theory to shed new light on the one-dimensional GW distance. The solution to
the GW problem between distributions on R is currently unknown and remains one of the most basic
open questions in that space. While the standard p-Wasserstein distance between distributions on R is
given by the Lp([0, 1]) distance between their quantile functions,4 there is no known simple solution

4For p = 1, the formula further simplifies to the L1(R) distance between the cumulative distribution
functions.
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for the one-dimensional GW problem. Even for uniform distributions over n distinct points, for which
it was previously believed that the optimal GW coupling is always induced by the identity or anti-
identity permutations [45], it was recently shown that this is not true in general [2] (see also discussion
in [12]). Indeed, [2] produced an example of discrete distributions, defined up to a tuning parameter
ξ, for which the identity or anti-identity become suboptimal once ξ surpasses a certain threshold. We
revisit this example and attempt to better understand it using our dual formulation. Consider two
uniform distributions on n distinct points, i.e., µ = n−1

∑n
i=1 δxi

and ν = n−1
∑
i=1 δyi , where

(xi)
n
i=1, (yi)

n
i=1 ⊂ R with x1 < x2 < . . . < xn and y1 < y2 < . . . < yn. To compute D(µ, ν) it

suffices to optimize over couplings induced by permutations [45, Theorem 9.2] (see also [28]), i.e.,

D(µ, ν)2 =
1

n2
min
σ∈Sn

n∑
i=1

n∑
j=1

∣∣|xi − xj |2 − |yσ(i) − yσ(j)|2
∣∣2, (7)

where Sn is the symmetric group over n elements. For ξ ∈ (0, 2/(n − 3)) and n > 6, define the
point sets xξ = (xξi )

n
i=1 and yξ = (yξi )

n
i=1 as

xξi :=


−1, i = 1
2i−n−1

2 ξ, 2 ≤ i ≤ n− 1

1, i = n

and yξi :=


−1, i = 1

−1 + ξ, i = 2

(i− 2)ξ, 3 ≤ i ≤ n

. (8)

Note that each of these sets indeed has ascending ordered, pairwise distinct components. The proof
of Proposition 1 in [2] shows that there exists ξ⋆ ∈ (0, 2/(n− 3)), such that the cyclic permutation
σcyc(i) = i + 1 mod n between xξ

⋆

and yξ
⋆

achieves a strictly smaller cost in (7) than both the
identity id(i) = i and the anti-identity id(i) = n− i+ 1 permutations.

To better understand the reason for the existence of strict optimizers outside the boundary, we recall
that D(µ, ν)2 = S1(µ, ν)+S2(µ, ν) and henceforth focus on S2(µ, ν), which is the term that depends
on the coupling. As mentioned before, this decomposition requires µ and ν to be centered, but we may
assume this w.l.o.g. due the translation invariance of the GW-distance and of optimal permutations.
By Theorem 3.1 we have the following representation:

S2(µ, ν) = inf
A∈DM

32∥A∥2F + inf
π∈Π(µ,ν)

∫
cA(x, y)dπ(x, y).

Specializing to the one-dimensional case, we further obtain

S2(µ, ν) = inf
a∈[0.5W−,0.5W+]

32a2 + inf
π∈Π(µ,ν)

∫ (
− 4x2y2 − 32axy

)
dπ(x, y), (9)

where W− := infπ∈Π(µ,ν)

∫
xydπ(x, y) and W+ := supπ∈Π(µ,ν)

∫
xydπ(x, y). Here, we have

used the fact that, switching the infima order, for each π ∈ Π(µ, ν), optimality is attained at
a⋆(π) = 1

2

∫
xydπ(x, y). The notation W− and W+ reflects the relation to the 2-Wasserstein

distance: indeed, 2W+ =M2(µ) +M2(ν)−W2
2(µ, ν), while W− is OT with product cost.

Once we identify the optimal a⋆ in (9), the GW problem is reduced to an OT problem. Hence, we
investigate the optimization in a. Define f(a) := 32a2 and g(a) := infπ∈Π(µ,ν)

∫ (
− 4x2y2 −

32axy
)
dπ(x, y), and note that g is concave (as the infimum of affine functions). We see that the

optimization over a in (9), which is rewritten as infa∈[0.5W−,0.5W+](f + g)(a), minimizes the sum
of a convex and a concave function. The next proposition identifies a correspondence between the
boundary values of a and optimal permutations in (7); see Appendix D for the proof.
Proposition 1 (Boundary values and optimal permutations). Consider the GW problem from (7)
between uniform distributions over n distinct points and its representation as D(µ, ν)2 = S1(µ, ν) +
S2(µ, ν), where S2(µ, ν) is given in (9). Let S⋆ ⊂ Sn and A⋆ ⊂ [0.5W−, 0.5W+] be the argmin
sets for (7) and (9), respectively. Then A⋆ ⊂ {0.5W−, 0.5W+} if and only if S⋆ ⊂ {id, id}.

Proposition 1 thus implies that the identity and anti-identity can only optimize the GW distance
when (9) achieves its minimum on the boundary. However, as f is convex and g is concave, it is
not necessarily the case that A⋆ contains only boundary points, as other values may be optimal. To
visualize this behavior, Fig. 1 plots the two datasets xξ and yξ from (8) and the corresponding f , g, and
f + g functions for different ξ values. While the infimum is achieved at the boundaries for ξ = 0.06
and ξ = 0.03, when ξ = 0.01 the optimizing a⋆ ≈ 0 and, by Proposition 1, the optimal permutation
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Figure 1: (Left) The datasets xξ and yξ from (8), for n = 7 and ξ = 0.06; (Right) The functions f ,
g, and f + g on the interval a ∈ [0.5W−, 0.5W+], for ξ = 0.01, 0.03, 0.06. When ξ = 0.01, the
minimizer of f + g is attained outside the boundary and thus the corresponding optimal permutation
is neither the identity nor the anti-identity.

is different from id and id. The structure of the corresponding optimal coupling is not trivial, as
already seen from the proof of Proposition 1 from [2]. Better understanding the relation between
optimal a values and their corresponding couplings is an interesting research avenue. Nevertheless,
the above clarifies the optimization structure of the one-dimensional GW problem and provides a
visual argument for the suboptimality of id and id in the example above.

4 Outlook and concluding remarks

This paper established a dual formulation for the (2, 2)-GW distance, between distributions supported
on Euclidean spaces of different dimensions dx and dy . The dual forms represented GW as infima of
a class of OT problems, indexed by a dx × dy auxiliary matrix with bounded entries, which specified
the associated cost function. This connection to the well-understood OT problem enabled lifting
analysis techniques from statistical OT to establish, for the first time, sharp empirical convergences
rates for GW. The derived two-sample rate is n−2/((dx∧dy)∨4) (up to a log factor when dx ∧ dy = 4)
for GW. The GW result accounts for compactly supported distributions, and provides matching upper
and lower rate bound. These results are in line with the empirical convergence rates of OT [26, 22].

Lastly, we reexamined the open problem of the one-dimensional GW distance between discrete
distributions on n points. Leveraging our duality, we shed new light on the peculiar example from [2],
that showed that the identity and anti-identity permutations are not necessarily optimal. Specifically,
the dual form allows representing the GW distance as a sum of concave and convex functions,
illuminating that, in certain regimes, the optimum is not necessarily attained on the boundary.

Future research directions stemming from this work are aplenty. Due to the central role of duality for
statistical and algorithmic advancements, a first key objective is to extend our duality theory beyond
the (2, 2)-cost and to non-Euclidean mm spaces. While our techniques are rather specialized for
the (2, 2)-cost and treating arbitrary (p, q) values may require new ideas, we comment here on one
relatively direct extension. Consider the GW distance of order (p, q) = (2, 2k), for some k ∈ N,
between distributions (µ, ν) ∈ P4k(Rdx) × P4k(Rdy ) (in fact, we can treat any even p parameter
as well, but restrict to p = 2 for simplicity). Following a decomposition along the lines of (11), in
Appendix E we show that

D2,2k(µ, ν)
2 = 4 sup

a∈Rℓ

inf
b∈Rm−ℓ

{
− ∥a∥2 + ∥b∥2 + inf

π∈Π(µ,ν)

∫
ca,b(x, y)dπ(x, y)

}
, (10)

where notice that the inner optimization over π specifies an OT problem with cost ca,b where

ca,b : (x, y) 7→ −∥x∥2k∥y∥2k +
ℓ∑
i=1

aigi(x, y)−
m∑

i=ℓ+1

bi−ℓ gi(x, y),

g1, . . . , gm are polynomials of degree at most 4k, m corresponds to the number of polynomials
emerging from the quadratic expansion of the (2, 2k)-cost, and ℓ ≤ m is determined by a certain
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diagonalization argument (see Appendix E for the specifics). One may further show that
∫
gidπ are

uniformly bounded for all i = 1, . . . ,m and π ∈ Π(µ, ν), and so we may restrict optimization over
a, b to bounded domains. In the appendix, we also show how the above dual reduces to the one from
Theorem 3.1 once we set k = 1 and assume that µ, ν are centered. Also notice now that ca,b smooth
(indeed, a polynomial) but not necessarily convex in x or y. For the standard (2, 2k)-GW distance
between compactly supported distributions, an argument similar to the proof of Theorem 3.2, would
result in a two-sample convergence rate of O

(
n−1/(dx∧dy)

)
. This rate stems from the fact that the

corresponding dual potentials are Lipschitz continuous, but it is unclear whether they posses further
convexity/concavity properties. In sum, while a duality theory for general (p, q) remains an open
question, our results for the quadratic GW distance can be extended to cover any even q value.

As mentioned above, extending our duality to cover non-Euclidean mm spaces is of great interest, as
this would enable accounting for graph and manifold data modalities. We also believe that our dual
can be used to derive new and efficient algorithms for computing the GW and EGW distances. Lastly,
we mention the avenue of generalizing the GW empirical convergence results to distributions with
unbounded supports. Identifying sufficient conditions for deriving explicit rates seems non-trivial
and may require assumptions along the lines of Theorem 13 from [26], where empirical convergence
of OT on unbounded domains was treated.
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A Proofs of Main Theorem

A.1 Proof of Theorem 3.1

For completeness we first show the decomposition of D(µ, ν) for centered µ, ν, given in (5). Expand-
ing the (2, 2)-GW cost we have

D(µ, ν)2 =

∫
∥x−x′∥4dµ⊗µ(x, x′)+

∫
∥y− y′∥4dν⊗ν(y, y′)− 4

∫
∥x∥2∥y∥2dµ⊗ν(x, y)

+ inf
π∈Π(µ,ν)

{
− 4

∫
∥x∥2∥y∥2dπ(x, y)− 8

∫
⟨x, x′⟩⟨y, y′⟩dπ ⊗ π(x, y, x′, y′)

+ 8

∫ (
⟨x, x′⟩∥y∥2 + ∥x∥2⟨y, y′⟩

)
dπ ⊗ π(x, y, x′, y′)

}
. (11)

By the centering assumption, the term in the last line nullifies, while the first and second lines on the
RHS correspond to S1(µ, ν) and S2(µ, ν), respectively.

We now move to derive the dual form for S2. Recall that Mµ,ν :=
√
M2(µ)M2(ν), DMµ,ν

:=

[−Mµ,ν/2,Mµ,ν/2]
dx×dy . Consider:

S2ε(µ, ν) = inf
π∈Π(µ,ν)

∫
−4∥x∥2∥y∥2dπ(x, y)− 8

∑
1≤i≤dx
1≤j≤dy

(∫
xiyjdπ(x, y)

)2

= inf
π∈Π(µ,ν)

∫
−4∥x∥2∥y∥2dπ(x, y)+

∑
1≤i≤dx
1≤j≤dy

inf
|aij |≤

Mµ,ν
2

32

(
a2ij−

∫
aijxiyjdπ(x, y)

)

= inf
A∈DMµ,ν

inf
π∈Π(µ,ν)

∫
−4∥x∥2∥y∥2dπ(x, y)+

∑
1≤i≤dx
1≤j≤dy

32

(
a2ij −

∫
aijxiyjdπ(x, y)

)

= inf
A∈DMµ,ν

32∥A∥2F + inf
π∈Π(µ,ν)

∫
cA(x, y)dπ(x, y)

where in the second step we introduced aij whose optimum is achieved at 1
2

∫
xiyjdπ(x, y). This

means we may restrict the optimization to DMµ,ν
without affecting the value since

∫
xiyjdπ(x, y) ≤

Mµ,ν by the Cauchy–Schwarz inequality. We also switched the order of the two inf and claimed that
the optimums are achieved, which follows from the lower semicontinuity in π and A. We conclude
by identifying the OT problem OTA in the last line.

A.2 Proof of Theorem 3.2

A.2.1 Upper bounds

We maintain our convention of suppressing the subscript A from our notation for optimal dual
potentials for the OT problem with cost cA, simply writing (φ,ψ). For simplicity we only prove the
two-sample case. The one-sample result follows similarly. Derivations of technical lemmas stated
throughout this proof are deferred to Appendix C.

Assume w.l.o.g. that µ, ν are centered and recall that we have the decomposition D(µ, ν)2 =
S1(µ, ν) + S2(µ, ν). To split our sample complexity analysis into those of S1 and S2, we need to
account for the fact that empirical measures are generally not centered. Let µ̃n and ν̃n be centered
versions of the empirical measures µ̂n and ν̂n, respectively.

This decomposition is convenient for analysis as it allows separately treating the marginals- and the
coupling-dependents terms. However, while the EGW distance Sε is translation invariant and we may
assume µ, ν are both centered w.l.o.g., the empirical measures µ̂n, ν̂n are generally not centered and
the decomposition into S1 and S2 may not hold. To amend this, we center µ̂n, ν̂n and quantify the
bias that this incurs on D. This is stated in the following lemma, which is proven in Appendix C.1
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Lemma A.1 (Centering bias). If µ, ν are centered, then

E
[∣∣D(µ, ν)2−D(µ̂n, ν̂n)2∣∣]≤E

[∣∣S1(µ, ν)−S1(µ̂n, ν̂n)
∣∣]+E

[∣∣S2(µ, ν)−S2(µ̂n, ν̂n)
∣∣]+ R4

√
n
, (12)

Given this decomposition, we proceed to separately treat the empirical errors of S1 and S2. The
analysis of S1 reduces to estimating moments of µ, ν, with parametric convergence rate for the error.
The following lemma is proven in Appendix C.2.
Lemma A.2 (S1 parametric rate). If µ, ν satisfy the conditions of Theorem 3.2, then

E
[∣∣S1(µ, ν)− S1(µ̂n, ν̂n)

∣∣] ≲ R4

√
n
.

To treat S2, we start from the variational representation from Theorem 3.1 and choose M = R2 ≥
Mµ,ν , which is evidently feasible. Invoking this result, we obtain∣∣S2(µ, ν)− S2(µ̂n, ν̂n)

∣∣ ≤ sup
A∈DR2

∣∣OTA(µ, ν)− OTA(µ̂n, ν̂n)
∣∣, (13)

and proceed to show that for any A ∈ DR2 , corresponding optimal dual potentials can be restricted
to concave Lipschitz functions and their c-transforms (w.r.t. the cost function cA).

(i) Smoothness of OT potentials. Let

FR :=

φ : Bdx(0, R) → R :
φ concave, ∥φ∥∞ ≤ 1 + 10

(
1 + 4

√
dxdy

)
R4,

∥φ∥Lip ≤ 8
(
1 + 2

√
dxdy

)
R3


and define GR analogously over Bdy (0, R). Recall that the c-transform of φ : Rdx → R w.r.t. cA
is a new function φc : Rdy → R, given by φc = infx∈X cA(x, ·) − φ(x). The next lemma allows
restricting the set of optimal dual potentials for OTA(µ, ν) to pairs (φ,φc) ∈ FR × GR.
Lemma A.3 (Uniform regularity of OT potentials). Fix R > 0 and suppose that (µ, ν) ∈ P(X )×
P(Y), with X ⊂ Bdx(0, R) and Y ⊂ Bdy (0, R). Then, for any A ∈ DR2 , there exist φ ∈ FR with
φc ∈ GR, such that (φ,φc) is a pair of optimal dual potentials for OTA(µ, ν).

The proof, which is given in Appendix C.3, arrives at the above properties by exploiting concavity of
cA and the c-transform representation of optimal dual pairs.

(ii) Sample complexity analysis. Equipped with Lemma A.3, we are ready to conduct the sample
complexity analysis. Suppose w.l.o.g. that dx ≤ dy; otherwise, flip their roles in the derivation below.
For each A ∈ DR2 , let ΦA be the class of of optimal dual potential pairs for OTA(µ, ν) (see (3)).
Define FA := projFR

(
ΦA ∩ (FR × GR)

)
and let F c

A be its c-transform w.r.t. cA. We may now
further upper bound the RHS of (13), to arrive at

E
[∣∣S2(µ, ν)− S2(µ̂n, ν̂n)

∣∣] ≤ E
[

sup
φ∈∪AFA

∣∣(µ− µ̂n)φ
∣∣]+ E

[
sup

ψ∈∪AF c
A

∣∣(ν − ν̂n)ψ
∣∣] . (14)

As Lemma A.3 implies that ∪AFA ⊂ FR, the first term above is controlled by the expected
supremum of an empirical process indexed by FR. Dudley’s entropy integral formula yields

E
[
sup
φ∈FR

∣∣(µ− µ̂n)φ
∣∣] ≲ inf

α>0
α+

1√
n

∫ 2 supφ∈FR
∥φ∥∞

α

√
logN(ξ,FR, ∥ · ∥∞)dξ.

Theorem 1 from [20] provides a bound on the metric entropy of bounded, convex, Lipschitz functions,
whereby if F̃d := {f : Bd(0, 1) → R : f convex, ∥f∥∞ ∨ ∥f∥Lip ≤ 1}, then logN(ξ, F̃d, ∥·∥∞) ≤
Cd ξ

− d
2 . For any φ : Rd → R, define its rescaled version5 (Sφ)(z) := φ(Rz)/(1 + Cdx,dyR

4),

5With some abuse of notation, we apply this re-scaling transform to functions defined on spaces of possibly
different dimensions without explicitly reflecting this in the notation.
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where Cdx,dy = 10
(
1 + 4

√
dxdy

)
, and note that Sφ ∈ F̃dx , for any φ ∈ FR. We also define the

map s : x 7→ x/R. Combining the above, for dx ≥ 4, we have

E
[
sup
φ∈FR

∣∣(µ− µ̂n)φ
∣∣] ≲dx,dy (1 +R4)E

[
sup
φ∈FR

∣∣(s♯µ− s♯µ̂n
)
(Sφ)

∣∣]
≲dx,dy (1 +R4)

(
inf
α>0

α+
1√
n

∫ 2

α

ξ−
dx
4 dξ

)
≲dx,dy (1 +R4)n−

2
dx (log n)1{dx=4} .

When dx < 4, the entropy integral is finite and we may pick α = 0. Hence, in this case, FR is a
Donsker class and the resulting convergence rate is parametric n−1/2. Altogether, we have

E
[

sup
φ∈∪AFA

∣∣(µ− µ̂n)φ
∣∣] ≲dx,dy (1 +R4

)
n−

2
dx∨4 (log n)1{dx=4} . (15)

We now move to treat the second term on the RHS of (14). First, observe that one may control
it by the expected supremum of an empirical process indexed by GR, which is bounded by

(
1 +

R4
)
n−2/(dy∨4)(log n)1{dy=4} via similar steps as above. Together with (15), this would yield a

two-sample empirical convergence rate bound of n−2/(dx∨dy∨4)(log n)1{dx∨dy=4} for the squared
(2, 2)-GW distance. However, we aim to arrive at an upper bound that depends on the smaller
dimension dx∧dy , as opposed to the larger one. As pointed out in Remark 5.6 of [19], this is possible
by employing the LCA principle from [22, Lemma 2.1], which states that for any cost function c and
function class F , we have N(ξ,Fc, ∥ · ∥∞) ≤ N(ξ,F , ∥ · ∥∞). Starting from a rescaling step as
before, we obtain

E

[
sup

ψ∈∪AF c
A

∣∣(ν − ν̂n)ψ
∣∣] ≲dx,dy (1 +R4)E

[
sup

ψ∈∪AF c
A

∣∣(s♯ν − s♯ν̂n
)
(Sψ)

∣∣] . (16)

Using the LCA principle, we have the following bound on the covering number of the union of
rescaled c-transformed classes.
Lemma A.4. For any ξ > 0, we have the covering bound

N
(
ξ,∪A∈DR2S(F c

A), ∥ · ∥∞
)
≤ N

(
ξ

64R2
,DR2 , ∥ · ∥op

)
N

(
ξ

2
, F̃dx , ∥ · ∥∞

)
.

Armed with the lemma, we proceed from (16) and, for dx ≥ 4, obtain

E

[
sup

ψ∈∪AFc
A

∣∣(ν − ν̂n)ψ
∣∣] ≲dx,dy (1 +R4)

(
inf
α>0

α+
1√
n

∫ 2

α

ξ−
dx
4 + log

R4

ξ
dξ

)
≲dx,dy (1 +R4)n−

2
dx (log n)1{dx=4} .

As before, when dx < 4, a parametric rate bound holds instead. Inserting the above along with (14)
into (15) concludes the proof of the two-sample upper bound for the squared distance.

Lastly, observe that if D(µ, ν) > 0, then the two-sample rate for D(µ, ν)2 readily extends to D(µ, ν),
since E

[∣∣D(µ, ν) − D(µ̂n, ν̂n)
∣∣] ≤ D(µ, ν)−1E

[∣∣D(µ, ν)2 − D(µ̂n, ν̂n)
2
∣∣], and similarly for the

one-sample case. We note, however, that unlike the bounds for D2, this bound is not uniform over
pairs of distributions with compact supports.

A.2.2 Lower bounds

We now move to establish the lower bounds. As the parametric lower bound of n−1/2 trivially
holds for our problem, we assume w.l.o.g. that 4 < dx ≤ dy and R = 4.6 Denoting d := dx,
we shall construct compactly supported distributions µ, ν ∈ Rd with the desired n−2/d empirical
convergence rate lower bound. This is sufficient since lower-dimensional distributions can be

6To treat general R, one only needs to include a factor of R4/256 in front of the one- and two-sample errors.
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canonically embedded into higher dimensions without changing the value of D. As the lower
bound holds for n sufficiently large, we occasionally absorb terms of order O(1/n), O(1/

√
n)

and O(
√
log(n)/n) into the n−2/d convergence rate. Consider the uniform distributions µ =

Unif
(
Bd(0, 1)

)
and ν = Unif

(
Bd(0, 2)

)
.

We start from the one-sample case and establish E
[∣∣D(µ, ν)2 − D(µ̂n, ν)

2
∣∣] ≥ n−2/d. Theorem

9.21 of [42] implies that T : x 7→ 2x is an optimal Gromov-Monge map from µ and ν, and thus
D(µ, ν)2 =

∫
X×X

∣∣∥x − x′∥2 − ∥2x − 2x′∥2
∣∣2dµ ⊗ µ(x, x′). Let πn ∈ Π(µ̂n, ν) be an optimal

coupling for D(µ̂n, ν) and notice that π′
n = (id, ·/2)♯πn ∈ Π(µ̂n, µ) is optimal for D(µ̂n, µ). By

completing the square, we then have

D(µ̂n, ν)
2 =

∫ ∣∣∥y − y′∥2 − ∥z − z′∥2
∣∣2dπn ⊗ πn(y, z, y

′, z′)

=

∫ ∣∣∥y − y′∥2 − ∥2x− 2x′∥2
∣∣2dπ′

n ⊗ π′
n(y, x, y

′, x′)

= 4D(µ̂n, µ)
2 − 3

∫
∥y − y′∥4dµ̂n ⊗ µ̂n(y, y

′) + 12

∫
∥x− x′∥4dµ⊗ µ(x, x′).

(17)

Combining this with the above expression for D(µ, ν)2, we obtain

E
[∣∣D(µ, ν)2 − D(µ̂n, ν)

2
∣∣]

≥ 4E
[
D(µ̂n, µ)

2
]
+ 3E

[∫
∥x− x′∥4dµ⊗ µ(x, x′)−

∫
∥y − y′∥4dµ̂n ⊗ µ̂n(y, y

′)

]
.

Evidently, the second term decays as n−1 since

E
[∫

∥y − y′∥4dµ̂n ⊗ µ̂n(y, y
′)

]
−
∫

∥x− x′∥4dµ⊗ µ(x, x′) =
1

n

∫
∥x− x′∥4dµ⊗ µ(x, x′).

For the first term, let µ̃n be the centered version of µ̂n and invoke Lemma 3.3 to obtain
E
[
D2(µ̂n, µ)

]
= E

[
D2(µ̃n, µ)

]
≳ λmin(Σµ) inf

U∈O(d)
W2(µ̃n,U♯µ)

2

= λmin(Σµ)E
[
W2(µ̃n, µ)

2
]

≥ λmin(Σµ)
(
E
[
W1(µ̂n, µ)−W1(µ̂n, µ̃n)

])2
,

where the equality uses the rotational invariance of µ, while the last step is by monotonicity of
p 7→ Wp and Jensen’s inequality. Observe that E[W1(µ̂n, µ̃n)] ≤ E[∥x̄n∥] ≤

√
M2(µ)/n, where

x̄n :=
∫
xµ̂n(x) is the sample mean. Combining this with the fact that E[W1(µ̂n, µ)] ≳ n−1/d [11],

produces the desired lower bound on the one-sample GW convergence rate.

We proceed with the two-sample lower bound, which requires more work. Given the empirical
measures µ̂n, ν̂n, define µ̂′

n := (·/2)♯ν̂n and note that it forms an empirical distribution of µ that is
independent of µ̂n. Write X ′

1, . . . , X
′
n for the samples comprising µ̂′

n. Let πn ∈ Π(µ̂n, ν̂n) be an
optimal GW coupling for D(µ̂n, ν̂n) and set π′

n := (id, ·/2)♯πn ∈ Π(µ̂n, µ̂
′
n), which is optimal for

D(µ̂n, µ̂
′
n). Repeating the steps in (17), with ν̂n, µ̂′

n in place of ν, µ yields

D(µ̂n, ν̂n)
2 = 4D(µ̂n, µ̂

′
n)

2 − 3

∫
∥y − y′∥4dµ̂n ⊗ µ̂n(y, y

′) + 12

∫
∥y − y′∥4dµ̂′

n ⊗ µ̂′
n(y, y

′).

Consequently, we represent the two-sample error as

D(µ̂n, ν̂n)
2 − D(µ, ν)2 = 4D(µ̂n, µ̂

′
n)

2 − 3

∫
∥y − y′∥4dµ̂n ⊗ µ̂n(y, y

′)

+ 12

∫
∥y − y′∥4dµ̂′

n ⊗ µ̂′
n(y, y

′)− 9

∫
∥y − y′∥4dµ⊗ µ(y, y′). (18)

As before, we have E
[∫

∥y − y′∥4dµ̂n ⊗ µ̂n(y, y
′)
]
= n−1

n

∫
∥y − y′∥4dµ⊗ µ(y, y′) and similarly

for E
[∫

∥y − y′∥4dµ̂′
n ⊗ µ̂′

n(y, y
′)
]
, and the problem reduces to lower bounding E[D(µ̂n, µ̂′

n)
2]. We

have the technical lemma below, which is proven in Appendix C.5
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Lemma A.5 (Intermediate lower bound). The following bound holds

E[D(µ̂n, µ̂′
n)

2] ≳ E
[
λmin(Σµ̂n

)E
[

inf
U∈O(d)

W1(µ̂n,U♯µ̂
′
n)

2

∣∣∣∣X1, . . . , Xn

]]
− 2

√
M2(µ)

n
. (19)

To treat the inner (conditional) expectation on the RHS of (19), we make use of the next lemma; see
Appendix C.6 for the proof.
Lemma A.6. For any µ, ν ∈ P(Rd) with spt(µ), spt(ν) ⊂ Bd(0, 1), we have

E
[

inf
U∈O(d)

W1(µ̂n,U♯ν)

]
≥ inf

U∈O(d)
E
[
W1(µ̂n,U♯ν)

]
− Cd

√
log n

n
,

where Cd depends only on the dimension d.

Applying the lemma, we obtain

E
[

inf
U∈O(d)

W1(µ̂n,U♯µ̂
′
n)

∣∣∣∣X1, · · · , Xn

]
≥ inf

U∈O(d)
E
[
W1(µ̂n,U♯µ̂

′
n)
∣∣X1, · · · , Xn

]
− Cd

√
log n

n

Note that for any U ∈ O(d), we have E
[
W1(µ̂n,U♯µ̂

′
n)
∣∣X1, · · · , Xn

]
≥ W1(µ,U♯µ̂

′
n) =

W1(µ, µ̂
′
n), where the first inequality follows because E[W1(µ̂n, ν)] ≥ W1(µ, ν) for any µ, ν (due to

convexity), while the second equality uses the fact that Wp(µ, ν) = Wp(f♯µ, f♯ν) for any isometry
f and the rotational invariance of µ. Inserting this back into (19), yields

E[D(µ̂n, µ̂′
n)

2] ≳ E
[
λmin(Σµ̂n

) inf
U∈O(d)

W2(µ̂n,U♯µ̂
′
n)

2

]
≥ E

[
λmin(Σµ̂n

)W1(µ̂n, µ)
2
]
.

To lower bound the expectation on the RHS, recall that by Proposition 2.1 in [11] (see also [47,
Proposition 6]), for n sufficiently large, we have W1(α, βn) ≳d n−1/d for any distributions α, βn ∈
P(Rd), such that α has a Lebesgue density and βn is supported on n points. In particular, we conclude
that there exists n0 ∈ N and cd > 0, such that for all n > n0, we have W1(µ, µ̂

′
n) ≥ cdn

−1/d a.s.
Inserting this into the bound above gives

E[D(µ̂n, µ̂′
n)

2] ≳ d E
[
λmin(Σµ̂n)

]
· n−2/d, (20)

and the problem reduces to lower bounding the expected smallest eigenvalue.

Write E
[
λmin(Σµ̂n

)
]
= E

[
inf∥v∥=1 µ̂n|v · x|2

]
. We again control this quantity via bounds on an

empirical processes indexed by the Donsker class {|v · x|2 : ∥v∥ = 1}. Specifically, there is an
n1 ∈ N that depends only on d, such that for any n > n1, we have E

[
sup∥v∥=1

∣∣(µ̂n−µ)|v ·x|2∣∣] ≤
λmin(Σµ)/2. Consequently

E
[

inf
∥v∥=1

µ̂n|v · x|2
]
= E

[
inf

∥v∥=1
µ̂n|v · x|2 − inf

∥v∥=1
E
[
µ̂n|v · x|2

]]
+ inf

∥v∥=1
E
[
µ̂n|v · x|2

]
≥ E

[
inf

∥v∥=1
µ̂n|v · x|2 − E

[
µ̂n|v · x|2

]]
+ inf

∥v∥=1
µ|v · x|2

= E
[

inf
∥v∥=1

(µ̂n − µ)|v · x|2
]
+ inf

∥v∥=1
µ|v · x|

≥ inf
∥v∥=1

µ|v · x|2 − E

[
sup

∥v∥=1

|(µ̂n − µ)|v · x|2|

]

≥ λmin(Σµ)

2
.

Inserting this back into (20) and recalling the decomposition of the empirical estimation error from
(18) concludes the proof of the two-sample lower bound.
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Remark 2 (Wasserstein Procrustes empirical convergence rate). Our two-sample analysis above
essentially establishes an n−1/d lower bound on the Wasserstein Procrustes empirical convergence
rate, whenever d ≥ 3. Since the Procrustes is trivially upper bounded by standard W2 and is a
pseudometric, it inherits the n−1/d upper bound on the rate from it as well. Together, these show that
the n−1/d empirical convergence rate is sharp in general. Our argument is readily adjusted to cover
both the one- and two-sample settings and can be extended to any order p ≥ 1.

B Proof of Lemma 3.3

Throughout this proof, we omit the dummy variables from the probability measure in our notation for
integrals, writing

∫
f(x, y, x′, y′)dπ ⊗ π instead of

∫
f(x, y, x′, y′)dπ ⊗ π(x, y, x′, y′). For the first

inequality, we now have

Dp,q(µ, ν)
p

=

∫ ∣∣∥x− x′∥q − ∥y − y′∥q
∣∣pdπ ⊗ π

≤ qp
∫ (

∥x− x′∥q−1 + ∥y − y′∥q−1
)p (∥x− y∥+ ∥x′ − y′∥

)p
dπ ⊗ π

≤ qp
(∫ (

∥x−x′∥q−1+∥y−y′∥q−1
) pq

q−1 dπ ⊗ π

) q−1
q
(∫ (

∥x−y∥+∥x′−y′∥
)qp

dπ ⊗ π

) 1
q

≤ qp22p−1

(∫
∥x−x′∥pq+∥y−y′∥pqdπ ⊗ π

) q−1
q
(∫

∥x−y∥qp+∥x′−y′∥qpdπ ⊗ π

) 1
q

≤ qp2pq+p−1+1/q
(
Mpq(µ) +Mpq(ν)

) q−1
q

(∫
∥x− y∥qpdπ

) 1
q

,

where the second line follows by mean value theorem for the function x 7→ xq, while the third line
uses by Hölder’s inequality.

For the second inequality, suppose first that µ, ν are centered. We may now expand

D(µ, ν)2

= inf
π∈Π(µ,ν)

2
(
M2(µ)−M2(ν)

)2
+2

∫ (
∥x∥2−∥y∥2

)2
dπ+4

∫ (
⟨x, x′⟩−⟨y, y′⟩

)2
dπ⊗π

=2
(
M2(µ)−M2(ν)

)2
+ inf
π∈Π(µ,ν)

2

∫ (
∥x∥2−∥y∥2

)2
dπ+4

(
∥Σµ∥2F+∥Σν∥2F−2∥Γπ∥2F

)
,

where Γπ =
∫
xy⊺dπ is the cross-covariance of (X,Y ) ∼ π.

As the bound trivializes when D(µ, ν) = 0, suppose that D(µ, ν)2 = ι > 0 and let π be the
corresponding optimal coupling. This implies 4

(
∥Σµ∥2F + ∥Σν∥2F − 2∥Γπ∥2F

)
≤ ι. Consider the

singular value decomposition Γπ = PΛQ⊺, where P,Q ∈ O(d), and Γ is diagonal. By invariance
of the GW distance to rotations and since π̃ = (P⊺,Q⊺)♯π is optimal for GW(P⊺

♯µ,Q
⊺
♯ ν), we

similarly obtain 4
(
∥P⊺ΣµP∥2F + ∥Q⊺ΣνQ∥2F − 2∥Λ∥2F

)
≤ ι. Denote the singular values of a

matrix A ∈ Rd×d by σ1(A), . . . , σd(A). Also denote the diagonal entries of PΣµP
⊺,QΣνQ

⊺ as
a1, · · · , ad and b1, · · · , bd, respectively. We thus obtain

d∑
i=1

(
a2i + b2i − 2σi(Γπ)

2
)
≤ ι.

Observing that ai + bi − 2σi(Γπ) ≥ 0, as
∫
x2i + y2i − 2xiyidπ̃ ≥ 0, we further have√

a2i + b2i
2

≥ ai + bi
2

≥ σi(Γπ), ∀i = 1, . . . , d,

6



which implies

ι ≥ 8

d∑
i=1

(√
a2i + b2i

2
+ σi(Γπ)

)(√
a2i + b2i

2
− σi(Γπ)

)

≥ 8 min
i=1,...,d

√
a2i + b2i

2
·
d∑
i=1

(√
a2i + b2i

2
− σi(Γπ)

)
.

Having that, we compute

W2

(
µ, (PQ⊺)♯ν

)2
= W2

(
P⊺
♯µ,Q

⊺
♯ ν
)2

≤
∫

∥x− y∥2dπ̃

=

d∑
i=1

(
ai + bi − 2σi(Γπ)

)
≤

d∑
i=1

(√
a2i + b2i

2
− σi(Γπ)

)
≤ ι

8mini

√
a2i+b

2
i

2

.

Notice that λmin(Σµ) ≤ ai and λmin(Σν) ≤ bi, for all i = 1, . . . , d, and use the fact that PQ⊺ ∈
O(d) to conclude that(

32
(
λmin(Σµ)

2 + λmin(Σν)
2
)) 1

4

inf
U∈O(d)

W2(µ,U♯ν) ≤ D(µ, ν),

whenever µ, ν are centered. To remove the centering assumption one only has to replace O(d) above
with the isometry group E(d), which contains translations in addition to rotations.

C Proofs of Lemmas for Theorem 3.2

C.1 Proof of Lemma A.1

Let x̄n :=
∫
xµ̂n, ȳn :=

∫
yν̂n denote the sample means and define µ̃n, ν̃n as the centered versions

of the empirical distributions, i.e., µ̃n = (· − x̄n)♯µ̂n and similarly for ν̃. Note that Sε(µ̂n, ν̂n) =
Sε(µ̃n, ν̃n) = S1(µ̃n, ν̃n) + S2(µ̃n, ν̃n) and so

E
[∣∣D(µ, ν)− D(µ̂n, ν̂n)

∣∣] ≤ E
[∣∣S1(µ, ν)−S1(µ̂n, ν̂n)

∣∣]+E
[∣∣S2(µ, ν)−S2(µ̂n, ν̂n)

∣∣]
+E
[∣∣S1(µ̂n, ν̂n)−S1(µ̃n, ν̃n)

∣∣]+E
[∣∣S2(µ̂n, ν̂n)−S2(µ̃n, ν̃n)

∣∣]
We proceed by bounding the terms in the second line. For the first one, observe

E
[∣∣S1(µ̂n, ν̂n)−S1(µ̃n, ν̃n)

∣∣] ≲ E
[∣∣∣∣∫ (∥x− x̄n∥2∥y − ȳn∥2 − ∥x∥2∥y∥2

)
dµ̂n⊗ν̂n(x, y)

∣∣∣∣]
= E

[∣∣∣∣∥x̄n∥2∥ȳn∥2−∥x̄n∥2∫ ∥y∥2dν̂n(y)−∥ȳn∥2
∫
∥x∥2dµ̂n(x)

∣∣∣∣]
≲
R4

n
. (21)

In the last step above we have used the following bound on the 4th absolute moment of the sample
mean. Write x̄n = 1

n

∑n
i=1Xi, where X1, . . . , Xn are the i.i.d. samples defining the empirical
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measure µ̂n. Consider:

E[∥x̄n∥4] =
1

n4
E
[(∑

i,j
⟨Xi, Xj⟩

)2]
=

1

n4
E
[
2
∑

i̸=j
⟨Xi, Xj⟩2 +

∑
i,j
⟨Xi, Xi⟩⟨Xj , Xj⟩

]
=

1

n4
E
[
2
∑

i̸=j
⟨Xi, Xj⟩2 +

∑
i ̸=j

⟨Xi, Xi⟩⟨Xj , Xj⟩+
∑

i
⟨Xi, Xi⟩2

]
=

1

n4
(
2n(n− 1)∥Σµ∥2F + n(n− 1)M2(µ)

2 + nM4(µ)
)

≤ 3n2M4(µ)

n4

≤ 3R4

n2

where the two last steps bound ∥Σµ∥2F ≤M2(µ)
2 ≤M4(µ) and M4(µ) ≤ R4.

It remains to analyze the centering bias of S2. Consider

E
[∣∣S2(µ̂n, ν̂n)− S2(µ̃n, ν̃n)

∣∣]
≲ E

[
sup

π∈Π(µ̂n,ν̂n)

∣∣∣∣∫ (∥x− x̄n∥2∥y − ȳn∥2 − ∥x∥2∥y∥2
)
dπ(x, y)

∣∣∣∣
]

+ E

 sup
π∈Π(µ̂n,ν̂n)

∣∣∣∣∣∣∣∣
∑

1≤i≤dx
1≤j≤dy

(∫
xiyjdπ(x, y)

)2

−
(∫

(xi − x̄n,i)(yj − ȳn,j)dπ(x, y)

)2

∣∣∣∣∣∣∣∣
 .
(22)

For the first term above, we have

E

[
sup

π∈Π(µ̂n,ν̂n)

∣∣∣∣∫ (∥x− x̄n∥2∥y − ȳn∥2 − ∥x∥2∥y∥2
)
dπ(x, y)

∣∣∣∣
]

= E

[
sup

π∈Π(µ̂n,ν̂n)

∣∣∣∣2 ∫ (2⟨x, x̄n⟩⟨y, ȳn⟩ − ⟨x, x̄n⟩∥y∥2 − ⟨y, ȳn⟩∥x∥2
)
dπ(x, y)

− 3∥x̄n∥2∥ȳn∥2 + ∥x̄n∥2
∫

∥y∥2dν̂n(y) + ∥ȳn∥2
∫

∥x∥2dµ̂n(x)
∣∣∣∣
]

≲
R4

√
n
,

using the same fourth moment expansion of x̄n as above. For the second term, we have

E

 sup
π∈Π(µ̂n,ν̂n)

∣∣∣∣∣∣∣∣
∑

1≤i≤dx
1≤j≤dy

(∫
xiyjdπ(x, y)

)2
−
(∫

(xi − x̄n,i)(yj − ȳn,j)dπ(x, y)
)2∣∣∣∣∣∣∣∣


= E

 sup
π∈Π(µ̂n,ν̂n)

∣∣∣∣∣∣∣∣
∑

1≤i≤dx
1≤j≤dy

(∫
xiyjdπ(x, y)−

∫
(xi − x̄n,i)(yj − ȳn,j)dπ(x, y)

)

×
(∫

xiyjdπ(x, y) +

∫
(xi − x̄n,i)(yj − ȳn,j)dπ(x, y)

)∣∣∣∣∣∣∣∣
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with

E

 sup
π∈Π(µ̂n,ν̂n)

∑
1≤i≤dx
1≤j≤dy

(∫
xiyjdπ(x, y)−

∫
(xi − x̄n,i)(yj − ȳn,j)dπ(x, y)

)2



= E

 sup
π∈Π(µ̂n,ν̂n)

∑
1≤i≤dx
1≤j≤dy

(∫
xiȳn,j + x̄n,iyj − x̄n,iȳn,jdπ(x, y)

)2


≲

∑
1≤i≤dx
1≤j≤dy

E
[∫

(xiȳn,j)
2dµ̂n(x) +

∫
(x̄n,iyj)

2dν̂n(x) + (x̄n,iȳn,j)
2

]

= E
[
∥ȳn∥2

∫
∥x∥2dµ̂n(x) + ∥x̄n∥2

∫
∥y∥2dν̂n(y) + ∥x̄n∥2∥ȳn∥2

]
≲
R4

n

and

E

 sup
π∈Π(µ̂n,ν̂n)

∑
1≤i≤dx
1≤j≤dy

(∫
xiyjdπ(x, y) +

∫
(xi − x̄n,i)(yj − ȳn,j)dπ(x, y)

)2



= E

 sup
π∈Π(µ̂n,ν̂n)

∑
1≤i≤dx
1≤j≤dy

(∫
2xiyj − xiȳn,j − x̄n,iyj + x̄n,iȳn,jdπ(x, y)

)2


≲

∑
1≤i≤dx
1≤j≤dy

E
[∫

(xiȳn,j)
2dµ̂n(x)+

∫
(x̄n,iyj)

2dν̂n(y) + (x̄n,iȳn,j)
2+

∫
x2i dµ̂n(x)

∫
y2jdν̂n(y)

]

= E
[
∥ȳn∥2

∫
∥x∥2dµ̂n(x) + ∥x̄n∥2

∫
∥y∥2dν̂n(y) + ∥x̄n∥2∥ȳn∥2

]
+ E

[
M2(µ̂n)M2(ν̂n)

]
≲ R4.

Combine the pieces, we obtain E
[∣∣S2ε(µ̂n, ν̂n)− S2ε(µ̃n, ν̃n)

∣∣] ≲ R4n−1/2, which together with (21)
concludes the proof.

C.2 Proof of Lemma A.2

First, rewrite

S1(µ, ν)

=

∫
∥x− x′∥4dµ⊗ µ(x, x′) +

∫
∥y − y′∥4dν ⊗ ν(y, y′)− 4

∫
∥x∥2∥y∥2dµ⊗ ν(x, y)

= 2
(
M4(µ) +M4(ν)

)
+ 2
(
M2(µ)

2 +M2(ν)
2
)
+ 4
(
∥Σµ∥2F + ∥Σν∥2F

)
− 4M2(µ)M2(ν).

9



With this expansion, the empirical estimation error of S1 can be bounded as

E
[∣∣S1(µ, ν)− S1(µ̂n, ν̂n)

∣∣]
≲ E

[∣∣M4(µ)−M4(µ̂n)
∣∣]+E

[∣∣M4(ν)−M4(ν̂n)
∣∣]+E

[∣∣M2(µ)M2(ν)−M2(µ̂n)M2(ν̂n)
∣∣]

+
√
E [∥Σµ − Σµ̂n

∥2F]E [∥Σµ +Σµ̂n
∥2F] +

√
E [∥Σν − Σν̂n∥2F]E [∥Σν +Σν̂n∥2F]

+

√
E
[(
M2(µ) +M2(µ̂n)

)2]E[(M2(µ)−M2(µ̂n)
)2]

+

√
E
[(
M2(ν) +M2(ν̂n)

)2]E[(M2(ν)−M2(ν̂n)
)2]

. (23)

Note that all terms above are moment estimations. Simple computation yields

E
[∣∣S1(µ, ν)− S1(µ̂n, ν̂n)

∣∣] ≲ R4

√
n
.

C.3 Proof of Lemma A.3

With some abuse of notation, let X = Bdx(0, R) and Y = Bdy (0, R) be the ambient spaces. Recall
from Section 2.1 that, for any A ∈ DR2 , we have ΦA ⊂ Cb(X )×Cb(Y) and we may further restrict
to pairs of potentials that can be written as (φcc̄, φc), for some φ ∈ Cb(X ). Since φcc̄c = φc, the
potentials are c- and c̄-transforms of each other, i.e., we may only consider pairs (φ,ψ) with

φ(x) = inf
y∈Y

cA(x, y)− ψ(y) and ψ(y) = inf
x∈X

cA(x, y)− φ(x).

Observing that cA is concave in both arguments, we see that φ and ψ are both concave. Indeed,
one readily verifies that the epigraphs of −φ and −ψ are convex sets, since for any α ∈ [0, 1] and
x1, x2 ∈ X , we have

φ
(
αx1 + (1− α)x2

)
≥ inf
y∈Y

αcA(x1, y) + (1− α)cA(x1, y)− ψ(y) ≥ αφ(x1) + (1− α)φ(x2)

and similarly for the other dual potential.

To bound the sup-norm of the augmented potentials, observe that the functional value is invariant to
translations (i.e., (φ− a, ψ + a) for some constant a). Since

OTcA(µ, ν) ≥ −∥cA∥∞ ≥ −4
(
1 + 4

√
dxdy

)
R4,

we further restrict to a class of functions with
∫
φdµ+

∫
ψdν ≥ −2

(
1 + 2

(
1 + 4

√
dxdy

)
R4
)

. For
such functions there must exist a point (x0, y0), for which

φ(x0) + ψ(y0) ≥ −2
(
1 + 2

(
1 + 4

√
dxdy

)
R4
)
,

and by shifting the potentials to coincide on (x0, y0), i.e., φ(x0) = ψ(y0), we obtain

φ(x0) ≥ −1− 2
(
1 + 4

√
dxdy

)
R4 and ψ(y0) ≥ −1− 2

(
1 + 4

√
dxdy

)
R4.

By the constraint, we then have

φ(x) ≤ cA(x, y0)− ψ(y0) ≤ 1 + 6
(
1 + 4

√
dxdy

)
R4

ψ(y) ≤ cA(x0, y)− φ(x0) ≤ 1 + 6
(
1 + 4

√
dxdy

)
R4.

From the above, we also deduce

−φ(x) ≤ ∥cA∥∞ + ∥ψ∥∞ ≤ 1 + 10
(
1 + 4

√
dxdy

)
R4

−ψ(y) ≤ ∥cA∥∞ + ∥φ∥∞ ≤ 1 + 10
(
1 + 4

√
dxdy

)
R4,

which concludes the boundedness.
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For Lipschitzness of optimal potentials note that for any x ∈ Rdx we can find a sequence {yk}k∈N ⊂
Rdy , such that φ(x) ≤ cA(x, yk)− ψ(yk) ≤ φ(x) + 1/k. So for any x′ ̸= x,

φ(x′)− φ(x) ≤ cA(x′, yk)− ψ(yk)−
(
cA(x, yk)− ψ(yk)

)
+

1

k

=
1

k
+ 4∥yk∥2

(
∥x∥2 − ∥x′∥2

)
+ 32(x− x′)⊺Ay

≤ 1

k
+ 8
(
1 + 2

√
dxdy

)
R3∥x− x′∥.

Now take k → ∞ and interchange x, x′ to conclude that the φ is Lipschitz. Applying the same
argument for ψ concludes the proof of the lemma.

C.4 Proof of Lemma A.4

We aim to prove the covering bound

N
(
ξ,∪A∈DR2S(F c

A), ∥ · ∥∞
)
≤ N

(
ξ

64R2
,DR2 , ∥ · ∥op

)
N

(
ξ

2
, F̃dx , ∥ · ∥∞

)
.

First, note that by Lemma A.3, we have

N
(
ξ,∪A∈DR2S(F c

A), ∥ · ∥∞
)
≤ N

(
ξ,∪A∈DR2S(F c

R), ∥ · ∥∞
)
. (24)

Set ξ1 = ξ
64R2 and ξ2 = ξ

2 , and take a ξ1-net {Ai}N1
i=1 of DR2 and a ξ2-net {φi}N2

i=1 of F̃dx . For
i = 1, . . . , N1 and j = 1, . . . , N2, define the functions gi,j : Rdy → R by

gi,j(y) = S
[
inf
x

(
cAj (x, y)− (S−1φi)(x)

)]
,

where (Sφ)(z) := φ(Rz)/(1 + Cdx,dyR
4) is the rescaling operator defined after Eq. (14). We will

show that {gi,j}(N1,N2)
i,j=(1,1) forms a ξ-net of ∪A∈DR2S(F c

R), which together with the covering bound
from (24) yields the result. Indeed, for any φ ∈ FR, we have∥∥∥S[ inf

x

(
cA(x, ·)− φ(x)

)]
− gi,j

∥∥∥
∞

≤ sup
x,y

|32x⊺(A−Ai)y|
1 + Cdx,dyR

4
+ ∥φ− φj∥∞

≤ 32R2

1 + Cdx,dyR
4
ξ1 + ξ2

≤ ξ,

which concludes the proof.

C.5 Proof of Lemma A.5

Using Lemma 3.3 along with the centering step from the proof of the one-sample lower bound, we
have

E[D(µ̂n, µ̂′
n)

2] = E[D(µ̃n, µ̃′
n)

2]

≳ E
[
λmin(Σµ̃n

) inf
U∈O(d)

W2(µ̃n,U♯µ̃
′
n)

2

]
≳ E

[
λmin(Σµ̂n) inf

U∈O(d)
W2(µ̂n,U♯µ̂

′
n)

2

]
− 2E [∥x̄n∥]

≥ E
[
λmin(Σµ̂n)E

[
inf

U∈O(d)
W1(µ̂n,U♯µ̂

′
n)

2

∣∣∣∣X1, . . . , Xn

]]
− 2

√
M2(µ)

n
.

To justify the third step above, observe that∣∣λmin(Σµ̂n
)− λmin(Σµ̃n

)
∣∣ ≤ sup

∥v∥=1

µ̂n
∣∣|v · x|2 − |v · (x− x̄′n)|2

∣∣ ≤ 3∥x̄′n∥,
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and∣∣∣∣ inf
U∈O(d)

W2(µ̃n,U♯µ̃
′
n)

2 − inf
U∈O(d)

W2(µ̂n,U♯µ̂
′
n)

2

∣∣∣∣
≤ sup

U∈O(d)

∣∣W2(µ̃n,U♯µ̃
′
n)

2 −W2(µ̂n,U♯µ̂
′
n)

2
∣∣

= sup
U∈O(d)

(
W2(µ̃n,U♯µ̃

′
n) +W2(µ̂n,U♯µ̂

′
n)
)∣∣W2(µ̃n,U♯µ̃

′
n)−W2(µ̂n,U♯µ̂

′
n)
∣∣

≤ sup
U∈O(d)

(
W2(µ̃n,U♯µ̃

′
n) +W2(µ̂n,U♯µ̂

′
n)
)(
W2(µ̂n, µ̃n) +W2(U♯µ̂

′
n,U♯µ̃

′
n)
)

≤ 6
(
W2(µ̂n, µ̃n) +W2(µ̂

′
n, µ̃

′
n)
)

≤ 6(∥x̄n∥+ ∥x̄′n∥).

Together, these imply the desired bound as infU∈O(d) W2(µ̂n,U♯µ̂
′
n)

2 ≤ 4, λmin(Σµ̃n) ≤ 1, and∣∣∣∣λmin(Σµ̃n
) inf
U∈O(d)

W2(µ̃n,U♯µ̃
′
n)

2 − λmin(Σµ̂n
) inf
U∈O(d)

W2(µ̂n,U♯µ̂
′
n)

2

∣∣∣∣
≤
∣∣λmin(Σµ̃n)− λmin(Σµ̂n)

∣∣ inf
U∈O(d)

W2(µ̂n,U♯µ̂
′
n)

2

+ λmin(Σµ̃n
)

∣∣∣∣ inf
U∈O(d)

W2(µ̃n,U♯µ̃
′
n)

2 − inf
U∈O(d)

W2(µ̂n,U♯µ̂
′
n)

2

∣∣∣∣,
which validates (19).

C.6 Proof of Lemma A.6

Consider the following decomposition

E
[

inf
U∈O(d)

W1(µ̂n,U♯ν)

]
= E

[
inf

U∈O(d)
W1(µ̂n,U♯ν)− inf

U∈O(d)
E
[
W1(µ̂n,U♯ν)

]]
+ inf

U∈O(d)
E
[
W1(µ̂n,U♯ν)

]
≥ E

[
inf

U∈O(d)

(
W1(µ̂n,U♯ν)− E

[
W1(µ̂n,U♯ν)

])]
+ inf

U∈O(d)
E
[
W1(µ̂n,U♯ν)

]
= −E

[
sup

U∈O(d)

(
E
[
W1(µ̂n,U♯ν)

]
−W1(µ̂n,U♯ν)

)]
+ inf

U∈O(d)
E
[
W1(µ̂n,U♯ν)

]
.

Denoting RU := E
[
W1(µ̂n,U♯ν)

]
−W1(µ̂n,U♯ν), we proceed to upper bound E[supURU]. Note

that |RU−RV| ≤ 2W1(U♯ν,V♯ν) ≤ 2∥U−V∥op, and thus the process {RU}U∈O(d) is Lipschitz
in U. We further claim that {RU}U∈O(d) is a sub-Gaussian process. To see, for fixed U ∈ O(d),
define the function wU : (x1, · · · , xn)∈Bd(0, 1)n 7→W1

(
n−1

∑n
i=1 δxi

,Uν
)

and note that it has
bounded differences:

sup
xi,x′

i

∣∣wU(x1, · · · , xi−1, xi, xi+1, · · · , xn)− wU(x1, · · · , xi−1, x
′
i, xi+1, · · · , xn)

∣∣
≤ ∥xi − x′i∥

n
≤ 2

n
,

For X1, . . . , Xn i.i.d. from µ (for which spt(µ) ⊂ Bd(0, 1) by assumption), McDiarmid’s inequality
now yields

P
(∣∣wU(X1, . . . , Xn)− E[wU(X1, . . . , Xn)]

∣∣ ≥ t
)
≤ 2e−nt

2/2.

Observing that RU = E[wU(X1, . . . , Xn)] − wU(X1, . . . , Xn), by equivalence between defini-
tions of sub-Gaussianity, we further obtain E[esRU ] ≤ es

2σ2/2, for all s, where σ = 3
√
2√
n

. Thus,
{RU}U∈O(d) is indeed sub-Gaussian.
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Combining Lipschitzness and sub-Gaussianity, we deploy a standard ϵ-net argument. Let {Ui}Ni=1 is
an ϵ-net of O(d) w.r.t. the operator norm. We have

E
[
supURU

]
≤ inf
ϵ>0

2ϵ+ E
[

max
i=1,...,N

RUi

]
≤ inf
ϵ>0

2ϵ+
3
√
2√
n

√
log
(
N(O(d), ϵ, ∥ · ∥op)

)
≲d
√
log(n)/

√
n,

where the last step uses the fact that log
(
N(O(d), ϵ, ∥ ·∥op)

)
≤ (c

√
dϵ−1)d

2

, for a universal constant
c; cf. Lemma 4 from [32]. This concludes the proof.

D Proof of Proposition 1

As mentioned before, for any σ⋆ ∈ S⋆, we have

a⋆ =
1

2

∫
xydπ⋆(x, y) ∈ A⋆,

where π⋆ is the coupling induced by σ⋆, and consequently (a⋆, π⋆) jointly minimize (9). For the first
direction, suppose that A⋆ ⊂ {0.5W−, 0.5W+} but that there exists σ̃ /∈ {id, id} that optimizes (7).
Denoting the corresponding coupling by π̃, the above implies that ã = 1

2

∫
xydπ̃(x, y) ∈ A∗.

However, by the rearrangement inequality 0.5W− < ã < 0.5W+, which is a contradiction. Since the
minimum in (7) is achieved, we conclude that S⋆ ⊂ {id, id}.

For the other direction, suppose that S⋆⊂{id, id} but that there exists ã ∈ (0.5W−, 0.5W+) with
ã ∈ A⋆. We first argue the f + g is differentiable at ã. This follows because g is piecewise linear
and concave, and so for any non-differentiability point a0, the left and right derivatives satisfy
g′−(a0) > g′+(a0). Since f is smooth, we further obtain (f + g)′−(a0) > (f + g)′+(a0), so a0 cannot
be a local minimum. We conclude that f + g is differentiable at ã with (f + g)′(ã) = 0.

Having that, let Πã ⊂ Π(µ, ν) be the argmin set for g(ã) and fix π̃ ∈ Πã. Since (f + g)′(ã) = 0,
computing the derivative, we obtain

64ã− 32

∫
xydπ̃(x, y) = 0.

Thus,
∫
xydπ̃(x, y) = 2ã, for every π ∈ Πã. Now, Since (ã, π̃) minimize (9), consider

S2(µ, ν) = 32ã2 + inf
π∈Πã

∫ (
− 4x2y2 − 32ãxy

)
dπ(x, y)

= inf
π∈Πã

32ã2 +

∫ (
− 4x2y2 − 32ãxy

)
dπ(x, y)

= inf
π∈Πã

8

(∫
xydπ(x, y)

)2

+

∫
−4x2y2dπ(x, y)− 16

(∫
xydπ(x, y)

)2

= inf
π∈Πã

∫
−4x2y2dπ(x, y)− 8

(∫
xydπ(x, y)

)2

.

Recalling that

S2(µ, ν) = inf
π∈Π(µ,ν)

∫
−4x2y2dπ(x, y)− 8

(∫
xydπ(x, y)

)2

by definition (see (5)), we conclude that all elements of Πã are minimizers for S2, and hence also
minimizers of D(µ, ν).

To get a contradiction, recall that
∫
xydπ̃(x, y) = 2ã, for all π̃ ∈ Πã. Since ã ∈ (0.5W−, 0.5W+),

one readily verifies W− <
∫
xydπ̃(x, y) < W+. However, the couplings induced by id and id

achieve exactly W+ and W− for the said integral, and thus they are not contained in Πã. Since by
assumption the argmin is S⋆ = {id, id}, we again have a contradiction and ã cannot be optimal
for (9). The infimum must therefore be achieved on the boundary, i.e., A⋆ ⊂ {0.5W−, 0.5W+},
which concludes the proof.
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E Generalized Duality

We derive here the generalized dual representation for the GW distance of order (p, q) = (2, 2k),
where k ∈ N. The approach naturally extends to any even p value, but the cost of tedious technical
details, which we prefer to avoid for presentation. Like in Appendix B, we omit dummy variables from
our integral notation, writing

∫
f(x, y, x′, y′)dπ ⊗ π instead of

∫
f(x, y, x′, y′)dπ ⊗ π(x, y, x′, y′).

Let (µ, ν) ∈ P4k(Rdx)× P4k(Rdy ), and expand the distortion cost to obtain

D2,2k(µ, ν)
2= inf

π∈Π(µ,ν)

∫ (∣∣(∥x∥2−2x · x′+∥x′∥2)k−(∥y∥2−2y · y′+∥y′∥2)k
∣∣2) dπ ⊗ π.

Collecting terms that depend only on the marginals into S1(µ, ν) as before and omitting them for
now, we seek a dual for the optimization problem

inf
π∈Π(µ,ν)

∫ (
−2(∥x∥2 − 2x · x′ + ∥x′∥2)k(∥y∥2 − 2y · y′ + ∥y′∥2)k

)
dπ ⊗ π.

The integrand is a homogeneous polynomial that is symmetric in (x, y) and (x′, y′). Consequently,
there exist polynomials f1, . . . , fm of degree at most 4k, and a symmetric matrix C ∈ Rm×m (whose
entries are denoted by Cij , for i, j = 1, . . . ,m), such that

inf
π∈Π(µ,ν)

∫ (
−2(∥x∥2 − 2x · x′ + ∥x′∥2)k(∥y∥2 − 2y · y′ + ∥y′∥2)k

)
dπ ⊗ π

= inf
π∈Π(µ,ν)

∫ (
− 2∥x∥2k∥y∥2k − 2∥x′∥2k∥y′∥2k +

∑
1≤i,j≤m

Cijfi(x, y)fj(x
′, y′)

)
dπ ⊗ π

= inf
π∈Π(µ,ν)

∫
−4∥x∥2k∥y∥2kdπ +

∑
1≤i,j≤m

Cij

∫
fi(x

′, y′)dπ

∫
fj(x, y)dπ.

Note that m is bounded by the number of monomials of degree at most 4k that can constructed from
entries of x, y, i.e., m = O((dx + dy)

4k).7 By diagonalizing C, we rewrite∑
1≤i,j≤m

Cij

∫
fi(x, y)dπ

∫
fj(x

′, y′)dπ =

ℓ∑
i=1

(∫
gi(x, y)dπ

)2

−
m∑

i=ℓ+1

(∫
gi(x, y)dπ

)2

,

(25)
where gi are linear combinations of fi, and ℓ is the number of positive eigenvalues of C. Notice that
the sum of squares on the RHS above can have positive or negative coefficient, which differs form
the (2, 2) case where only a negative coefficient is present.

Armed with (25), we proceed with the same linearization step from the proof of Theorem 3.1 by
introducing the new auxiliary optimization variables a ∈ Rℓ and b ∈ Rm−ℓ, as follows

inf
π∈Π(µ,ν)

∫ (
−2(∥x∥2 − 2x · x′ + ∥x′∥2)k(∥y∥2 − 2y · y′ + ∥y′∥2)k

)
dπ ⊗ π

= inf
π∈Π(µ,ν)

∫
−4∥x∥2k∥y∥2kdπ +

ℓ∑
i=1

(∫
gi(x, y)dπ

)2
−

m∑
i=ℓ+1

(∫
gi(x, y)dπ

)2

= inf
π∈Π(µ,ν)

∫
−4∥x∥2k∥y∥2kdπ + sup

a∈Rℓ

ℓ∑
i=1

(
4ai

∫
gi(x, y)dπ − 4a2i

)

+ inf
b∈Rm−ℓ

m∑
i=ℓ+1

(
4b2i−ℓ − 4bi−ℓ

∫
gi(x, y)dπ

)
= 4 sup

a∈Rℓ

inf
b∈Rm−ℓ

−∥a∥2+ ∥b∥2

+ inf
π∈Π(µ,ν)

∫ (
−∥x∥2k∥y∥2k +

ℓ∑
i=1

aigi(x, y)−
m∑

i=ℓ+1

bi−ℓgi(x, y)

)
dπ,

7In practice, m is often be much smaller, as seen from the example below.
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where the last step follows from Sion’s minimax theorem. The RHS above is the desired dual
representation from (10). Further observe that as

∫
gidπ are uniformly bounded for all i and π, we may

restrict optimization domains for a and b to compact sets. We identify the inner optimization over π as
an OT problem with cost ca,b : (x, y) 7→ −∥x∥2k∥y∥2k +

∑ℓ
i=1 aigi(x, y)−

∑m
i=ℓ+1 bi−ℓgi(x, y),

which is smooth (indeed, a polynomial) but not necessarily convex in x or y. Considering compactly
supported distributions, one may invoke OT duality and establish Lipschitzness of the optimal
potential, although convexity seems challenging to obtain in general. As explain in Section 4, by
following the steps in the proof of Theorem 3.2, this leads to a two-sample empirical convergence
rate of O(n−1/(dx∧dy)). We leave further refinements of this rate as well as proofs of lower bounds
for future work.

To illustrate the above procedure, we consider the special case of p = q = 2. This will also show
how the duality formula from (10) reduces back to that from Theorem 3.1, after assuming that the
populations are centered. As above, we start by expanding the (2, 2)-cost and omitting terms that
depend only on the marginals (cf. (11)), to arrive at

inf
π∈Π(µ,ν)

∫
−4∥x∥2∥y∥2dπ

+ 4

∫ (
⟨x, x′⟩(∥y∥2 + ∥y′∥2) + (∥x∥2 + ∥x′∥2)⟨y, y′⟩ − 2⟨x, x′⟩⟨y, y′⟩

)
dπ ⊗ π

= inf
π∈Π(µ,ν)

∫ −4
∑

1≤i≤dx,1≤j≤dy

x2i y
2
j

 dπ

+ 4

∫  ∑
1≤i≤dx,1≤j≤dy

xix
′
i(y

2
j + y′2j ) + (x2i + x′2i )yjy

′
j − 2xix

′
iyjy

′
j

 dπ ⊗ π (26)

To diagonalize the second term, consider the set of linearly independent monomials
{xi, yj , xiy2j , x2i yj , xiyj}1≤i≤dx,1≤j≤dy , of which there are dx + dy + 3dxdy in total (these are
denoted by fi in the general derivation above). For concreteness and simplicity, we henceforth
assume dx = dy = 1. Define the vector

v(π) =

(∫
xdπ,

∫
y dπ,

∫
xy2 dπ,

∫
x2y dπ,

∫
xy dπ

)⊺

,

and construct coefficient matrix

C =


0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 −2

 .
For instance, we set C1,3 = 1 since the term

∫
xdπ

∫
xy2dπ, which is the product of v1(π) and

v3(π), appears inside the functional from (26). We may now express

inf
π∈Π(µ,ν)

−4

∫
x2y2dπ + 4

∫ (
xx′y2 + x′xy′2 + x2yy′ + x′2y′y − 2xx′yy′

)
dπ ⊗ π

= inf
π∈Π(µ,ν)

−4

∫
x2y2dπ + 4v(π)⊺Cv(π).

Diagonalizing C, further yields

v(π)⊺Cv(π) =

(∫ √
2

2
x+

√
2

2
xy2dπ

)2

+

(∫ √
2

2
y +

√
2

2
x2ydπ

)2

−

(∫
−
√
2

2
x+

√
2

2
xy2dπ

)2

−

(∫
−
√
2

2
y +

√
2

2
x2ydπ

)2

−
(∫ √

2xydπ

)2
.

15



We proceed by introducing a ∈ R2 and b ∈ R3, as follows

inf
π∈Π(µ,ν)

−4

∫
x2y2dπ + 4

∫ (
xx′y2 + x′xy′2 + x2yy′ + x′2y′y − 2xx′yy′

)
dπ ⊗ π

= inf
π∈Π(µ,ν)

−4

∫
x2y2dπ +

(∫ √
2x+

√
2xy2dπ

)2
+

(∫ √
2y +

√
2x2ydπ

)2
−
(∫

−
√
2x+

√
2xy2dπ

)2
−
(∫

−
√
2y +

√
2x2ydπ

)2
−
(∫

2
√
2xydπ

)2
= inf
π∈Π(µ,ν)

−4

∫
x2y2dπ

+ sup
a∈R2

4a1

∫ (√
2x+

√
2xy2

)
dπ − 4a21 + 4a2

∫ (√
2y +

√
2x2y

)
dπ − 4a22

+ inf
b∈R3

4b21 − 4b1

∫ (
−
√
2x+

√
2xy2

)
dπ + 4b22 − 4b2

∫ (
−
√
2y +

√
2x2y

)
dπ

+ 4b23 − 4b3

∫
2
√
2xydπ

= 4 sup
a∈R2

inf
b∈R3

−∥a∥2 + ∥b∥2 + inf
π∈Π(µ,ν)

∫
ca,b(x, y)dπ,

where the cost function is

ca,b(x, y) = −x2y2 +
√
2a1x+

√
2a1xy

2 +
√
2a2y +

√
2a2x

2y +
√
2b1x−

√
2b1xy

2

+
√
2b2y −

√
2b2x

2y − 2
√
2b3xy.

Lastly, notice that if µ, ν are centered, then

v(π)⊺Cv(π) = −2

(∫
xydπ

)2
,

which immediately recovers the dual form from Theorem 3.1, where the OT cost function is
cA(x, y) = −4x2y2 − 32A1,1xy. The cost ca,b that arises from the general derivation is evi-
dently more complex and comprises additional mixed terms (of order 3). This makes it harder to
analyze, e.g., it is unclear whether ca,b is marginally convex/concave in each argument. Consequently,
this approach may not lead to the same regularity profile for dual potentials as we have in Lemma A.3,
which, in turn, may result in suboptimal empirical convergence rates.
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